桥梁工程中的桩基负摩阻力问题研究

桥梁工程中的桩基负摩阻力问题研究
桥梁工程中的桩基负摩阻力问题研究

桥梁工程中的桩基负摩阻力问题研究

[摘要]随着国内经济建设的不断发展,桩基础在实际工程中的应用越来越广泛,但是对于负摩阻力的机理及其影响因素的研究还不够全面和深入,设计计算方法和承栽力评价方法还很不完善。本文对桩基的负摩阻力的理论内容作了阐述,对某桩基的负摩阻力进行了计算比较的结果研究。

[关键词]桩基;负摩阻力;桥梁工程

1.负摩阻力概述

一般情况下,施加于竖直桩上的垂直外荷载,将通过桩壁与土的相互作用传至桩周土和桩尖土上,桩壁和桩周土的相对位移则会产生摩阻力。作用于桩侧的摩阻力的方向取决于桩和其周围地基土的相对位移情况。如果桩的沉降大于地基土的沉降时。地基土对桩侧表面就会产生向上作用的摩擦阻力,这个力对桩起支承作用,称为正表面摩阻力;反之,当地基土的沉降大于桩的沉降(包括桩身压缩及桩尖下沉)时,则桩侧土相对于桩向下移动,压缩的地基土对桩侧表面产生向下作用的摩擦阻力,这个力就称之为负摩阻力。如图1所示:桩基负摩阻力是桩周土产生相对于相应深度桩截面向下位移时作用于桩身的向下的力,因而在桩身分布负摩阻力的所有情况中。一般存在中性点,即该深度桩土相对位移为零、桩身摩阻力为零,另有沿桩身全为负摩阻力的情况,这种情况一般讲的是桩穿透湿陷性黄土层后随即落在几乎不压缩的持力层,如卵石和基岩等。

2.负摩阻力的产生

在桩周围的土层相对于桩侧作向下的位移时,土产生于桩侧的摩阻力方向向下,称为负摩阻力,而正摩阻力正好相反。方向向上。负摩阻力产生的原因很多,主要有大面积堆载使桩周土层压密固结下沉:位于桩周的欠固结软粘土或新近填土在其自重作用下产生新的固结;自重湿陷性黄土浸水后产生湿陷:砂土液化后和冻土融化而发生下沉时也会对桩基产生负摩擦力:灵敏度较高的饱和粘性土,受打桩等施工扰动(振动、挤压、推移)影响,附加超静孔隙水压力增加揿土触变增强,后又产生新的固结下沉:在正常固结或轻微超固结的软粘土地区,由于抽取地下水或深基坑开挖降水等原因引起地下水位全面降低。致使土的有效应力增加。同时产生大面积的地面沉降:大面积软土地区达打人挤土桩。使原来地面雍高,桩土间土内总应力和孔隙水压力都普遍增高,随后这部分桩间土的固结引起土相对于桩体的下沉等方面的原因。

3.负摩阻力的特性

土体在重力和附加应力的作用下发生沉降,土体的沉降是随着时间的变化而增加并逐渐趋于稳定。桩体的沉降量与桩身的弹性压缩变形,以及桩尖处土体的沉降有关。一般来说,桩体下沉要比土体固结沉降快,桩体下沉趋于稳定的时间要比土体沉降稳定的时间短。因此,桩体在很短的时间内有一定的沉降量,这时

负摩阻力计算实例

负摩阻力计算实例 本建筑场地为自重湿陷性黄土场地,湿陷等级为Ⅱ级(中等),依椐JGJ94-2008规范第5.4.2条规定,在计算基桩承载力时应计入桩侧负摩阻力。首先,根据场地地质情况(以3#井处的地层为例)确定压缩 4.2 桩基 4.2.1 桩基类型及桩端持力层的选择 依据勘察结果分析, 本建筑场地为自重湿陷性黄土场地,(自重湿陷量的计算值为120.5-151.6mm)湿陷等级为Ⅱ级(中等),湿陷性土层为②、③、④、⑤层,湿陷土层厚度为10-15m,湿陷最大深度17m(3#井)。可采用钻孔灌注桩基础,第⑦层黄土状粉土属中密-密实状态,具低-中压缩性,不具湿陷性,平均层厚4.0m,可做为桩端持力层。 4.2.2 桩基参数的确定 根据《建筑地基基础设计规范》(GB50007-2002)、《建筑桩基技术规范》(JGJ94-2008)、《湿陷性黄土地区建筑规范》(GB50025-2004)中的有关规定,结合地区经验,饱和状态下的桩侧阻力特征值qsia(或极限侧阻力标准值qsik)、桩端阻力特征值qpa(或极限端阻力标准值qpk?)建议采用下列估算值: 土层 编号土层名称土的 状态桩侧阻力特征值qsia(kPa) 极限侧阻力标准值 qsik(kPa) 桩端阻力特征值 qpa(kPa) 极限端阻力标准值 qpk(kPa) ②黄土状粉土稍密 11 23 ③黄土状粉土稍密 12 24 ④黄土状粉土稍密 12 24 ⑤黄土状粉土稍密 13 26 ⑥黄土状粉土中密 18 36 ⑦黄土状粉土中密 18 36 500 1000 ⑧黄土状粉土中密 20 40 600 1200 4.2.3 单桩承载力的估算 依据JGJ94-2008规范,参照《建筑地基基础设计规范》GB50007-2002第8.5.5条,单桩竖向承载力特征值可按下式估算: Ra=qpaAp+up∑qsiaLi 式中:Ra——单桩竖向承载力特征值; qpa 、qsia——桩端端阻力、桩侧阻力特征值; Ap——桩底端横截面面积= πd2(圆桩); up——桩身周边长度=πd; Li——第i层岩土的厚度; 以3#孔处的地层为例,桩身直径取600mm,以第⑦层黄土状粉土做为桩端持力层,桩入土深度24.0m(桩端进入持力层的深度对于粘性土、粉土应不小于1.5d)。 本建筑场地为自重湿陷性黄土场地,湿陷等级为Ⅱ级(中等),依椐JGJ94-2008规范第5.4.2条规定,在计算基桩承载力时应计入桩侧负摩阻力。首先,根据场地地质情况(以3#井处的地层为例)确定压缩土层厚度,求出中性点深度Ln:

桩基负摩阻力影响的浅析

桩基负摩阻力影响的浅析 【摘要】负摩阻力严重影响着建筑物的安全,其大小受多种因素的影响,因此很难准确计算其数值。总结分析桩侧负摩阻力产生的条件、机理及影响因素,提出减少桩侧负摩阻力的方法和防治措施。 【关键词】负摩阻力;成因;影响因素;中性点;下拉力;防治措施 1. 前言 (1)随着人文居住环境的改善以及土地价格的不断攀升,建筑物已从多层不断的转向高层建筑,从而对地基承载力和变形的要求也越来越高,越来越严格。当土体在其自重作用下尚未完成固结,或者由于其他原因造成土体的沉降继续发展,当土体沉降大于桩的沉降时,置于这些土层中的桩会不同程度地受到负摩阻力的影响。负摩阻力对于桩基的不利影响已经引起了广泛的关注。 (2)在设计桩基时如果不考虑负摩阻力,可能会造成不利影响,如:桩端地基的屈服或破坏;桩身破坏;结构物不均匀沉降等。然而在实际工程中,负摩阻力常常被忽视,造成工程事故。 (3)下面对负摩阻力的问题进行分析、阐述。 2. 负摩阻力的产生条件 2.1负摩阻力的产生是由于桩周土的沉降变形大于桩的沉降变形而致。而造成桩周土沉降变形的原因是多方面的,如: (1)桩穿过新沉积的欠固结软粘土或新填土而支撑在硬持力层上时,土层产生自重固结下沉。 (2)饱和软土中打入密集的桩群,引起超孔隙水压力,土体大量上涌,随后土体引起超孔隙水压力消散而重新固结时,或灵敏度较高的饱和粘性土,受打桩等施工扰动(振动、挤压、推移)影响,附加超静孔隙水压力增加,软土触变增强后又产生新的固结下沉。 (3)在正常固结粘土和粉土地基中,由于下卧砂层、砾石层中抽取地下水或其他引起地下水位降低的原因,使土层产生自重固结下沉。 (4)桩侧地面因大面积堆载或大面积填土而大量下沉时。 (5)在黄土、冻土中的桩,因黄土湿陷、冻土融化产生地面下沉。 2.2综上所述,当桩穿过软弱高压缩性土层而支承在坚硬的持力层上时最易

最全面的桩基计算总结

最全面的桩基计算总结 桩基础计算 一.桩基竖向承载力《建筑桩基技术规范》 5.2.2 单桩竖向承载力特征值Ra应按下式确定: Ra=Quk/K 式中 Quk——单桩竖向极限承载力标准值; K——安全系数,取K=2。 5.2.3对于端承型桩基、桩数少于4根的摩擦型柱下独立桩基、或由于地层土性、使用条件等因素不宜考虑承台效应时,基桩竖向承载力特征值应取单桩竖向承载力特征值。5.2.4对于符合下列条件之一的摩擦型桩基,宜考虑承台效应确定其复合基桩的竖向承载力特征值: 1 上部结构整体刚度较好、体型简单的建(构)筑物; 2 对差异沉降适应性较强的排架结构和柔性构筑物; 3 按变刚度调平原则设计的桩基刚度相对弱化区; 4 软土地基的减沉复合疏桩基础。 当承台底为可液化土、湿陷性土、高灵敏度软土、欠固结土、新填土时,沉桩引起超孔隙水压力和土体隆起时,不考虑承台效应,取η=0。

单桩竖向承载力标准值的确定: 方法一:原位测试 1.单桥探头静力触探(仅能测量探头的端阻力,再换算成探头的侧阻力)计算公式见《建筑桩基技术规范》5.3.3 2.双桥探头静力触探(能测量探头的端阻力和侧阻力)计算公式见《建筑桩基技术规 范》5.3.4 方法二:经验参数法 1.根据土的物理指标与承载力参数之间的关系确定单桩承载力标准值《建筑桩基技术规范》5.3.5 2.当确定大直径桩(d>800mm)时,应考虑侧阻、端阻效应系数,参见5. 3.6 钢桩承载力标准值的确定: 1.侧阻、端阻同混凝土桩阻力,需考虑桩端土塞效应系数;参见5.3.7 混凝土空心桩承载力标准值的确定: 1.侧阻、端阻同混凝土桩阻力,需考虑桩端土塞效应系数;参见5.3.8 嵌岩桩桩承载力标准值的确定: 1.桩端置于完整、较完整基岩的嵌岩桩单桩竖向极限承载力,由桩周土总极限侧阻力和嵌岩段总极限阻力组成。 后注浆灌注桩承载力标准值的确定: 1.承载力由后注浆非竖向增强段的总极限侧阻力标准值、后注浆竖向增强段的总极限侧阻力标准值,后注浆总极限端阻力标准值; 特殊条件下的考虑 液化效应: 对于桩身周围有液化土层的低承台桩基,当承台底面上下分别有厚度不小于1.5m、1.0m 的非液化土或非软弱土层时,可将液化土层极限侧阻力乘以土层液化折减系数计算单桩

桩基负摩阻力产生的原因及其计算

浅析桩基负摩阻力产生的原因及其计算 【摘要】桩周土体由于某种原因发生下沉时对桩身产生相对向下的位移,这就使桩身承受向下作用的摩擦力,这种摩擦力就是桩基的负摩擦阻力。本文针对桩基负摩擦阻力产生的机理及原因,并通过实例计算分析桩基负摩擦阻力。 【关键词】桩基;负摩擦阻力;机理及原因;实例计算 rough discuss the reason and count of pile foundation force of negative friction wang zhigang1 liang guankao2 (1.fifth geological mineral exploration and development institute of inner mongolia, baotou 014010, p.r.china;2.inner mongolia geology engineering co.,ltd, hohhot.010010,p.r.china) 【abstract】owing to some reasons ,the soil around pile foundation occur subside will produce displacement downward to pile foundation,so pile foundation will bear downward friction force,this friction force is negative friction force。this paper point at the reason of pile foundation negative friction force and analysis pile foundation negative friction force by living example。 【key words】pile foundation; negative friction force;the mechanisation and reason;living example account

(整理)2考虑负摩阻力的桩基设计需要注意的问题.

考虑负摩阻力的桩基设计需要注意的问题 1 地表的大面积堆载对堆载区内的桩基和邻近桩基的影响 地表的大面积堆载对堆载区内的桩基和邻近桩基会产生很大的影响.首先,地表在沉降过程中,桩侧土体将会对桩身产生负摩阻力,致使桩身的轴力和桩端力增大,甚至导致桩身的破坏;其次,地面堆载引起地基土的侧向变形,邻近桩基的被动桩受到土体挤压会产生绕曲、水平移动,甚至断裂.因此,堆载作用下的桩基可能受到负摩擦和侧向力两种荷载的共同作用. 2 负摩阻力计算分析案例 在有关桥梁地基与基础设计规范中规定,在软土层较厚,持力层较好的地基中,桩基计算应考虑路基填土荷载或地下水位下降所引起的负摩阻力的影响。事实上桥下大面积堆载是一种更危险的工况。 下面以一实际工程为例,对桥梁桩基负摩阻力计算作一分析。 该桥上部结构为30 m跨预应力混凝土连续箱梁,桥梁全宽25.5 m,采用分幅式布置。桥梁下部结构半幅采用变截面墩配2根D 160 (D180)钻孔灌注桩基础,单排桩基础,桩基设计按摩擦桩设计,单桩桩顶最大设计反力为6 150~7 100 KN,上部结构计算时考虑基础不均匀沉降为1.0 cm。 桥址处现为鱼塘,地面标高为0.2~1.6 m之间,由于桥址位于城区,远期规划标高6.5 m左右,如按规划标高平整场地,需填土5.0~ 6.3 m。设计时根据桥址处的地质情况,注意到负摩阻力对桩基的影响,考虑按以下2种方案进行场地平整,进行技术经济比较,以确定最终的设计方

案。 方案1:场地先不平整待桥梁施工完后再进行场地平整。 方案2:场地先平整到规划标高6.5 m(带状80m宽),半年后施工桥梁桩基。 桥址处土层各层分布情况按由上至下顺序描述如下:①人工填土; ②淤泥(Q4ml);③亚粘土(Q4ml);④粘土(Q1mc);⑤亚粘土(Q1al)。场地地质中第四系覆盖层巨厚,地质勘探未能揭露。 2.1 中性点位置的确定 要确定桩身负摩阻力的大小,首先需要确定中性点的位置。所谓“中性点”是指桩土位移相等、摩阻力等于零的分界点,该深度以上土的下沉量大于桩的下沉量,桩承受负摩阻力;该深度以下土的下沉量小于桩的下沉量,桩承受正摩阻力。故确定中性点的位置,首先必须计算出桩基及各土层的沉降量中性点的深度与桩周土的压缩性和变形条件、桩和持力层土的刚度等特性有关。在桩、土稳定前,它也是变动的。当有地面堆载时,中性点的深度取决于堆载的大小,堆载越大则中性点越深。 2.1.1 桩基沉降计算 按桥梁规范公式,单桩沉降 S=P(L0+ξh)/(Ep×Ap)+P/(Co×Ao) 式中P———桩顶荷载; L0———桩自由长度; h———桩入土长度;

桩侧负摩阻力的计算

桩侧负摩阻力的计算 一、 规范对桩侧负摩阻力计算规定 符合下列条件之一的桩基,当桩周土层产生的沉降超过基桩的沉降时,在计算基桩承 载力时应计入桩侧负摩阻力: 1、 桩穿越较厚松散填土、自重湿陷性黄土、欠固结土、液化土层进入相对较硬土层时; 2、 桩周存在软弱土层,邻近桩侧地面承受局部较大的长期荷载,或地面大面积堆载(包括 填土)时; 3、 由于降低地下水位,使桩周土有效应力增大,并产生显著压缩沉降时。 4、 桩周土沉降可能引起桩侧负摩阻力时,应根据工程具体情况考虑负摩阻力对桩基承载力 和沉降的影响;当缺乏可参照的工程经验时,可按下列规定验算。 ① 对于摩擦型基桩,可取桩身计算中性点以上侧阻力为零,并可按下式验算基桩承载力: N k 乞 R a ( 7-9-1) ② 对于端承型基桩,除应满足上式要求外,尚应考虑负摩阻力引起基桩的下拉荷载,并 可按下式验算基桩承载力: N k Q g

桩基负摩阻力机理的研究

桩基负摩阻力机理的研究 桩基负摩阻力机理的研究 摘要:由于桩土作用机理的复杂性,目前对桩-土间相互作用的研究还很不够深入。伴随着桩基础的大量使用,出现了理论滞后于实践的现象。其中桩土间的负摩阻力问题就是一个比较突出的问题,一些桩基础使用后出现的一些工程问题就是对桩侧负摩阻力的认识不足造成的。本文就桩基础的负摩阻力进行了分析研究。 关键词:桩;负摩阻力;机理 中图分类号:TU473.1 文献标识码:A 一、负摩阻力产生原因 桩基础作为一种新型的地基处理方法己经越来越多的应用于土木工程建设中。一般桩侧表面与土体之间存在着摩擦阻力,作用于桩侧表面摩擦阻力的方向取决于桩与周围地基土之间的相对位移。在正常情况下,桩顶受到竖向荷载作用下下沉,若桩的下沉速率(或沉降量)大于桩周土的下沉速率(或沉降量),桩周土对桩侧面就会产生向上作用的摩擦阻力,作用于桩侧单位面积上的这个力称正摩擦力(Positive Friction,简称PF),表现为对桩起支承作用;反之,当桩侧土体因某种原因而下沉,且其沉降速率(或沉降量)大于桩的沉降速率(或沉降量)时,桩周土将对桩产生与桩位移方向一致,即产生向下的摩擦阻力,作用于桩侧单位面积上的这个力称为负摩擦力,也称为负摩阻力,它不但不会对桩的荷载起抵抗作用,由于它对桩产生的下拽荷载,反而成为附加在桩的一个分布于桩侧表面的荷载。桩的负摩阻力产生的原因有很多种,主要有以下几种情况: 1.穿越欠固结的土层(松散填土或河口与海岸的新沉积土层)而支撑于比较硬土层中,从而桩侧土因固结而产生的沉降大于桩的沉降时; 2.在正常固结粘土或粉土地基中,当桩侧土层因长期抽取地下水或其他原因导致大面积地下水位下降,上覆土自重增大及土中的有效应力增加以致大范围出现地区性下沉时;

浅谈桩的负摩阻力及实际工程中的处理

浅谈桩的负摩阻力及实际工程中的处理 [摘要]:负摩阻力是桩基础设计时常见的问题,本文从负摩阻力的产生机理出发,探讨了负摩阻力的计算方法,给出了减小负摩阻力的措施;并结合实际工程分析了桩与承台共同作用机理在负摩阻力桩基础工程中的适用范围。 [关键字]:负摩阻力桩与承台共同作用 1 前言 桩基础是目前采用广泛的一种软弱地基处理方式,其承载力由桩侧土的摩擦力和桩端反力共同构成。但是在有些地质条件下,由于某些原因,当桩周土体的沉降量大于桩本身的沉降时,桩侧表面的一部分面积上将产生负摩阻力。负摩阻力对桩产生下拉作用,致使桩基的荷载增加,变相的降低了桩的承载力,使其沉降加大,严重时会导致建筑物的损害或破坏,由于设计人员忽略了负摩阻力的影响从而引起的工程事故不在少数。本文对桩的负摩阻力的产生条件及其特性进行分析,探讨了桩负摩阻力的计算方法。 正常情况下,计算桩基础的承载力时,假定上部荷载通过承台传递给桩,然后再传给地基,并不考虑承台底部土的承载作用。但是,在某些地基土层中,往往在1m左右的根植土下有2-5m的粉质粘土硬壳层,再往下则是10几米甚至20几米的淤泥层。在这些场地的工程中,一般是采用桩基础进行地基处理,但是由于负摩阻力的存在,正常桩长的单桩承载力往往比较小,布桩很密而且造价比较高;如采用表层换土后作浅层基础,由于硬壳层厚薄不均,填土厚度及质量均难以控制,容易使基础沉降过大或沉降不均匀,影响正常使用。对于这类场地,由于采用的桩基一般是摩擦型桩,桩与桩间土的变形是相互影响的,桩间土具有一定的承载力,而承台承担的荷载将是可观的。因此本人认为,在这样的工程中,考虑桩与承台共同工作承担上部荷载是安全合理的,而且具有可观的经济效益。 2 负摩阻力产生机理、特性及其对桩基的影响分析 布置在土体里的桩,正常情况下由于上部荷载的作用,桩的沉降速率(或沉降量)大于桩周土的沉降速率(或沉降量),桩周土对桩的侧表面产生向上的摩擦阻力,称之为正摩阻力;反之,当由于以下几种情况: 1)桩穿越较厚松散填土、自重湿陷性黄土、欠固结土、液化土层进入相对较硬土层2)桩周存在软弱土层,临近桩侧地面承受局部较大的长期荷载,或地面大面积堆载3)由于降低地下水位,使桩周土中有效应力增大,并产生显著压缩沉降 4)冻土融化 使得桩周土的沉降速率(或沉降量)大于桩的沉降速率(或沉降量)时,桩周土将对桩产生向下的摩阻力,称之为负摩阻力。在桩身某一深度处,桩周土与桩的沉降一致,该处称为中性点。中性点是正、负摩阻力的分界点,且在该处桩身轴力最大。 负摩阻力的存在对桩基性能的不利影响可以概括为3个方面:负摩阻力的存在造成桩侧正摩阻力减小,从而引起桩基有效承载力的降低;负摩阻力的出现大大减少了桩周土提供的荷载抗力,使桩的承载力依靠中性点以下的桩周土和桩尖土来提供,使得桩端土体沉降增加从而引起桩基沉降增加;负摩阻力形成了对桩基的附加荷载,造成桩身轴力增加,降低了桩身强度的安全度。从桩基的工作状况来看,负摩阻力的影响对摩擦型桩和端承型桩有所区别

桩基负摩阻力问题讨论

桩基负摩阻力问题讨论 (1)负摩擦力是怎么形成的?[简单成因,机理很复杂] (2)地基设计为什么要考虑负摩擦力? (3)实践中什么情况下一般考虑负摩擦力? (4)如何测试和估算负摩擦力? (5)影响抚摩擦力大小的主要因素? (6)工程实践中都有那些方法减小抚摩擦力? (7)抚摩擦力的群桩效应?[研究大多数是单桩,实践中基本是群桩] (8)目前的最新进展。 (1)负摩擦力是怎么形成的? 桩周土的沉降大于桩体的沉降!桩—土的相对位移(或者相对位移趋势)是形成摩擦力的原因,桩基础中,如果土给桩体提供向上的摩擦力就称为正摩阻力;反之,则为负摩阻力。(2)地基设计为什么要考虑负摩擦力? 桩周负摩阻力非但不能为承担上部荷载作出贡献,反而要产生作用于桩侧的下拽力。而造成桩端地基的屈服或破坏、桩身破坏、结构物不均匀沉降等影响。因此,考虑桩侧负摩阻力对桩基础的作用是桩基础设计必不可少的问题之一。 (3)实践中什么情况下一般考虑负摩擦力? 这个问题,可以从负摩阻力产生原因来说明:产生负摩擦力的原因主要有, 1)欠固结软粘土或新填土的自重固结; 2)大面积堆载使桩周土层下沉; 3)正常固结软粘土地区地下水位全面下降,有效应力增加引起土层下沉; 4)湿陷性黄土湿陷引起沉降。 (4)如何测试和估算负摩擦力? 在桩体安装应变计这是目前测单桩负摩阻力问题的最常用的方法。80年代,有工程运用瑞士生产的滑动侧微计(Sliding Micrometer---ISETH)来测定。 普遍的方法都是测定桩体轴力,从而推算桩侧摩阻力。这个方法来推算桩侧摩阻力、负摩阻力。这个方法大家可以分析一下利弊,从而讨论一个新的途径、方法可以直接测定桩侧摩阻力问题。这样相比结果更精确可靠,我们的研究也将是一个不小的进步!大家都来思考一下罗,“测定桩侧摩阻力问题!” (5)影响负摩擦力大小的主要因素? 桩周土的特性当然是首当其冲的,其次桩端土特性也不可忽视(因为其之间影响着中性点的位置问题)、桩体的形状、桩土模量比等都有影响。 (6)工程实践中都有那些方法减小抚摩擦力? 沥青涂层这个方法运用很是广泛,效果似乎也不错。这个方法以单桩为考虑对象;另外,隔离桩方法,这个以群桩为研究对象,但是似乎目前运用的不是很广,大家可以找找这方面的咚咚,一起讨论一下,分析原因,相比也是一个不错的思考问题的途径。 (7)负摩擦力的群桩效应?[研究大多数是单桩,实践中基本是群桩] 这个估计跟我们的研究方法有问题吧,目前我们的现场实践方面的研究方法都是针对单一的桩体的。另外,群桩方面的研究,运用数值分析方法也有不少研究。群桩的现场研究很

桩侧负摩阻力的计算

桩侧负摩阻力的计算 一、规范对桩侧负摩阻力计算规定 符合下列条件之一的桩基,当桩周土层产生的沉降超过基桩的沉降时,在计算基桩承载力时应计入桩侧负摩阻力: 1、桩穿越较厚松散填土、自重湿陷性黄土、欠固结土、液化土层进入相对较硬土层时; 2、桩周存在软弱土层,邻近桩侧地面承受局部较大的长期荷载,或地面大面积堆载(包括填土)时; 3、由于降低地下水位,使桩周土有效应力增大,并产生显著压缩沉降时。 4、桩周土沉降可能引起桩侧负摩阻力时,应根据工程具体情况考虑负摩阻力对桩基承载力和沉降的影响;当缺乏可参照的工程经验时,可按下列规定验算。 ①对于摩擦型基桩,可取桩身计算中性点以上侧阻力为零,并可按下式验算基桩承载力: a k R N ≤ (7-9-1) ②对于端承型基桩,除应满足上式要求外,尚应考虑负摩阻力引起基桩的下拉荷载,并可按下式验算基桩承载力: a n g k R Q N ≤+ (7-9-2) ③当土层不均匀或建筑物对不均匀沉降较敏感时,尚应将负摩阻力引起的下拉荷载计入附加荷载验算桩基沉降。 注:本条中基桩的竖向承载力特征值只计中性点以下部分侧阻值及端阻值。 二、计算方法 桩侧负摩阻力及其引起的下拉荷载,当无实测资料时可按下列规定计算: 1、中性点以上单桩桩周第 i 层土负摩阻力标准值,可按下列公式计算: i ni n si q σξ'= (7-9-3) 当填土、自重湿陷性黄土湿陷、欠固结土层产生固结和地下水降低时:ri i σσ'=' 当地面分布大面积荷载时:ri i p σσ'+=' (7-9-4) 其中, i i i m m m ri z z ?∑+?='-=γγσ1 1 21 (7-9-5) (7-9-3)~(7-9-5)式中: n si q ——第i 层土桩侧负摩阻力标准值;当按式(7-9-3)计算值大于正摩阻力标准值 时,取正摩阻力标准值进行设计; ri σ'——由土自重引起的桩周第i 层土平均竖向有效应力;桩群外围桩自地面算起,桩 群内部桩自承台底算起;

软土地区负摩阻力对桩基影响分析及检测实例

第11卷第10期中国水运V ol.11 N o.10 2011年10月Chi na W at er Trans port O ct ober 2011 收稿日期:65 作者简介:肖元杰,湖北洪湖人,湖北天一建筑设计有限公司助理工程师,从事建筑建设相关的设计与检测。 软土地区负摩阻力对桩基影响分析及检测实例 肖元杰1 ,袁观富2 ,张 恒3 ,刘 朝4,田小平 5 (1湖北天一建筑设计有限公司,湖北武汉430071;2湖北联合发展投资有限公司,湖北武汉430077;3湖北建安房地产开发有限公司,湖北武汉430075;4武汉融侨房地产开发有限公司,湖北武汉430075; 5领航动力信息系统有限公司,湖北武汉430071) 摘 要:桩基是软土地区一种较为常见的基础形式,桩周负摩阻力会对桩基工作性状产生影响,首先对桩周负摩阻 力产生原因及其对桩基工作性状的影响进行了分析,再通过位于湖北省黄石市某试验场地的现场试验实例,对灌注桩的轴力进行了检测,并比较了实测中性点位置与规范经验值的差别,分析了其产生差别的原因,最后进行了负摩阻力系数的计算,有效的为工程设计和施工提供了参考。关键词:软土;负摩阻力;桩基;检测中图分类号:TU 473.1文献标识码:A 文章编号:1006-7973(2011)10-0242-03 一、引言 软土具有孔隙率大,固结度低的特点,因而一般固结沉降 较为明显,且须较长时间才能趋于稳定,当桩周软土的沉降大 于桩的变形时,就会出现负摩阻力。桩基是软土地区一种较为常见的基础形式[1],桩周负摩阻力会对桩基工作性状产生影响,如果在设计桩基时没有考虑或没有能充分考虑负摩阻力的影响,就有可能造成桩身或桩端地基的破坏(端承桩),也可能使上部结构加大沉降或产生不均匀沉降(摩擦桩)。负摩阻力导致桩基的荷载增加,有效承载力下降、沉降增大,这些还会影响到建(构)筑物的正常使用,严重时甚至结构安全。 因此,研究桩周负摩阻力产生原因及其对桩基工作性状的影响分析等具有重要的意义。 二、桩周负摩阻力产生原因及其对桩基工作性状的影响分析 1.桩周负摩阻力产生原因分析 桩周负摩阻力一般来讲主要是由于桩周土体下沉或地面沉降引起的。文献[2-4]进行桩基在各类型土的负摩阻力进行了归纳,以下主要对软土地区桩周负摩阻力产生的主要原因进行了补充和完善: (1)桩身穿越欠压密的软土、但支承于较坚硬的土层中,从而使桩周土因固结而产生的沉降大于桩的变形或沉降。 (2)桩周软土表面有大面积堆载或新填土时,由于荷载作用使土层因孔隙水压力消散而重新固结,从而导致地面下沉。 (3)软土地区由于抽水或其他原因导致大面积地下水位下降,上覆土中有效应力增大,从而引起桩周土下沉。 (4)高灵敏度的软粘土在施工过程中,如受到扰动,就引起超孔隙水压力,随后重塑土体会因超孔隙水压力消散和触变作用而又固结下沉,从而引起负摩阻力。 (5)当采用压桩法进行桩基施工时,桩身上段压力解除后桩基一般会产生向上的回弹,该回弹作用将使桩周土产生负摩阻力。 2.桩周负摩阻力对桩基工作性状的影响分析桩周负摩阻力对桩工作性状的影响主要表现为以下几个方面: (1)桩周表面由负摩阻力形成的下拉荷载可能使桩基的负荷过大,从而导致桩基沉降过大或桩身结构受到损坏。 (2)负摩阻力的产生使桩端标高处的有效覆盖压力减小,即桩承受了部分土体的重量,可能导致桩端阻力降低。 (3)群桩中若有部分产生负摩阻力,将有可能出现桩群的不均匀沉降,从而导致上部结构损坏。且对于群桩中,负摩阻力的分担也不均匀,一般位于桩群四角的桩基所分担的负摩阻力比桩群内部的桩基要大。 (4)在一定情况下,如桩基过长等,其负摩阻力会改变桩基的承担载荷方式,如由端承桩转变为摩擦桩。 (5)负摩阻力的产生和发展要经历一个时间过程,因此,桩负摩阻力存在时间效应的问题。当桩自身沉降完成的时间先于桩周土固结完成的时间时,负摩阻力达到峰值后就会稳定不变,反之,负摩阻力在达到峰值后会有一定程度的降低。 三、软土地区负摩阻力检测实例1.试验场地概况 表1 试桩场地各土层分布和物性指标 土层编 号土层名称 厚度 (m )含水率 (%) 重度(KN /m 3) 孔隙比 压缩模量 ①杂填土 5.916.8②淤泥 5.166.715.3 1.9 1.3③粉质粘土 3.028.519.00.8 6.7④粉质粘土含砂砾9.226.919.20.87.1⑤碎石层含粘性土9.725.319.10.8 9.4 ⑥全风化灰岩 2.121.6⑦微风化灰岩 3.624.5⑧ 中风化灰岩 >10 24.1 试验场地位于湖北省黄石市,试验地质土层的土性参数见表1。本次的桩基负摩阻力试验选取的试桩均为冲击锤成孔灌注桩。桩径包含有两种,其中SZ1-1,SZ1-2桩径为 2011-0-2

浅谈桩基负摩阻力

浅谈桩基负摩阻力 摘要:桩基工程中桩侧负摩阻力所产生的下拽力可能引起桩体破坏、桩基不均匀沉降等诸多工程灾害,严重影响着建筑物的安全,而桩的负摩阻力的大小受多种因素的影响,目前其准确数值很难计算。本文简要介绍和阐述了桩侧负摩阻力产生的条件和机理,目前桩侧负摩阻力的计算方法,中性点的确定,防治和减少桩侧负摩阻力的方法。 关键词:负摩阻力中性点成因影响因素防治措施 引言:在地基处理工程中,因负摩阻力问题,造成工程事故屡有发生(建筑物出现沉降、倾斜、开裂),负摩阻力问题在我国工程实践中已成为一个很普遍的问题。下面对负摩阻力的问题进行分析、阐述。 1负摩阻力的成因 桩基工程中, 当桩体与桩周土产生相对位移时,桩侧就会产生摩阻力。当桩体的沉降量大于桩周土的沉降量时, 摩阻力为正;当桩周土的沉降量大于桩体的沉降量时,摩阻力为负。单桩负摩阻力作用机理如图1 所示[。桩侧负摩阻力非但不能为承担上部荷载作出贡献, 反而要产生作用于桩侧的下拽力,称为分布于桩侧表面的荷载。下拽力作用于桩体上, 可能会造成桩身破坏、桩端地基屈服或破坏, 以及上部结构不均匀沉降等问题。 图1单桩负摩阻力作用机理示意 单桩负摩阻力一般可能由以下原因或组合造成: ①未固结的新近回填土地基:桩基穿过欠固结土层后支撑在硬土层中,使得桩侧土因固结发生的沉降超过桩的沉降; ②地面超载:桩侧地面受到较大的地面荷载产生的沉降超过桩的沉降; ③孔隙水压力消散引起的固结沉降:群桩施工中敏感度较高的黏土受扰动,超孔隙水压力使得土体上涌,重塑后因超孔隙水压力消散而重新固结; ④地下水位降低;桩侧土层地下水位大幅下降,导致有效应力增加引起土层下沉; ⑤湿陷性地基:桩基穿过湿陷性土,湿陷性土因浸水湿陷导致土层发生沉降;

【结构设计】负摩阻力对桩基础的危害分析

负摩阻力对桩基础的危害分析 负摩阻力指桩周土层由于某种原因而产生超过桩身沉降量的下沉时,作用于桩身的向下的摩阻力.可能的影响表现:当持力层刚硬时,造成桩身压曲或断裂,需验算桩身承载力;当持力层可压缩时,造成桩端地基屈服或破坏以及不均匀沉降引起上部结构的功能性受损(裂缝等),需验算土承载力与沉降指标.由于桩、土性质的复杂性、荷载及施工条件的多变性以及桩土相互作用的复杂性等影响,负摩阻力的计算尤为复杂. 负摩阻力产生条件: 1)桩穿越较厚松散填土、自重湿陷性黄土、欠固结土(河口与海岸新沉积土层)、欠压密的软粘土或液化土层支承于相对较硬土层(硬粘性土、中密以上砂土、卵石层或岩层)中,桩周土体因固结产生沉降大于桩沉降时; 2)桩周存在软弱土层,邻近桩侧地面承受局部较大的长期荷载,或地面大面积堆载(包括填土),使桩周土压缩固结下沉时; 3)由于地下水位降低(如无节制地抽取地下水、工程施工疏排水等),使桩周土有效应力增大,并产生显著压缩沉降时; 4)挤土桩群施工结束后,孔隙水消散,隆起的或扰动的土体逐渐固结下沉时; 5)桩设置于易受环境影响(如浸水、解冻、动力振动或地震等)而沉陷或重新固结而下沉的土层(自重湿陷性黄

土、季节性冻土层或可液化土层)的地基中,当受水浸湿、融化或受振(震)液化导致地基土大量下沉时; 6)桩周存在欠固结软粘土或新近填土在自重作用下产生新固结时; 7)深基坑开挖,导致土体应力释放而产生释放变形,坑周土体的下沉趋势对相邻建筑物桩基可能产生负摩阻力; 8)相邻建筑物自重悬殊引起附加沉陷. 上述7)点提到了坑周土体下沉的影响,另外,坑中土体回弹也对应着一个问题,对应于《地规2011》8.5.3-8-4)条“桩施工在基坑开挖前完成时,其钢筋长度不宜小于基坑深度的1.5倍”,这条是新规范刚加进去的,然而规范条文没有做出一定的说明,让设计者抓瞎(这是“中国式”规范的共性,让你猜).这半句话隐藏着一个工程实例:上海某工程先施工桩,后基坑开挖,开挖深度13m,验桩时发现基底下约13m处出现断桩,且成批出现.经过数次分析查明,桩身断裂是由于地基土的回弹造成的,基坑回弹的影响深度约等于基坑开挖深度,在影响深度范围内,土体自重小于回弹力,而桩身钢筋长度仅为13m,素混凝土又不足以承担二力之差,随即出现断裂,因此也就有了这半句话.

单桩承载力验算(计负摩阻力)

单桩承载力验算 一、土层分布情况 二、单桩竖向承载力特征值 桩端持力层为全风化花岗岩,按《建筑桩基技术规范》(JGJ94-2008),中性点深度比l n /l 0=0.75,桩周软弱土层下限深度l 0=28.84m ,则自桩顶算起的中性点深度l n =21.63m 。根据规范可知,该处承载力特征值只计中性点以下侧阻值及端阻值。 kN l q u A q Q i sik p pk 3976)613021.712(1141600uk =?+???+?? =+=∑ππkN Q K R uk a 198838942 11=?== 三、单桩负摩阻力

第一层路堤填土和杂填土自重引起的桩周平均竖向有效应力: 地下水以上部分:Pa k 93.6594.6192111=??= σ; 地下水以下部分:Pa k 06.1396.1)1019(2 194.61912=?-?+?=σ; 则kPa 20512111=+=σσσ; 第二层淤泥自重引起的桩周平均竖向有效应力: kPa 26.182)54.863.21()105.15(2 16.1)1019(94.6192=-?-?+?-+?=σ; ; ,故取kPa q kPa kPa q n s n n s 24245.612053.01111=>=?==σξ ; ,故取kPa q kPa kPa q n s n n s 121245.3626.1822.01222=>=?==σξ 对于单桩基础,不考虑群桩效应则1n =η; 基桩下拉荷载: kN l q u Q n i i n si n n g 1137))54.863.21(1254.824(10.11=-?+????==∑=πη 四、单桩分担面积上的荷载 kN N 720)2520(44k =+??= 五、验算 N R N Q N a n k 1988k 185********g k =<=+=+ 故单桩承载力满足要求。

桩基负摩擦力的分析及相应处理措施

桩基负摩擦力的分析及相应处理措施 摘要:桩基负摩擦力的发生将使桩侧土的部分重力传递给桩,因此,负摩擦力不但不能成为桩承载力的一部分,反而变成施加在桩上的外荷载。容许承载力和设计桩基础时应该重视桩的负摩擦力的问题。本文通过对桩基负摩擦力的产生条件及其特性进行分析研究,给出典型的计算方法,并根据实际情况提出相应的处理方法和防范措施。 关键词:负摩擦力中性点有效应力法 1 引言 在正常情况下,桩穿过软弱土层支撑在坚硬土层上的桩,一般说来桩受荷载作用后,地基土对桩的侧阻力是向上作用的。但当软弱土层由于某种原因而发生地面沉降时,桩周土体对桩身产生相对的向下位移,这就使桩身承受向下作用的摩擦力,软弱土层通过作用在桩上的向下作用的摩擦力而悬挂在桩身上。这部分摩擦力不但不是桩承载力的一部分,反而变成施加在桩上的外加荷载。这种由于地面沉降引起的在桩上向下的摩擦力,称为负表面摩擦力。在桩的下沉比地基下沉量大的部分(桩的下部),桩身上仍为向上作用的正摩擦力,正、负摩擦力变换处的位置,称为中性点。 桩的负摩擦力问题,近年来在国内外普遍受到重视。由于未注意到负摩擦力问题,也造成过一些工程事故。因此在实际的工程设计时,应该充分考虑桩的负摩擦力的影响。 本文对桩的负摩擦力的产生条件及计算方法做了分析,并提出相应的处理方法和防范措施。 2 负摩擦力的产生 (a)(b)(c)(d) 图1 单桩产生负摩擦力时的荷载传递 (a)单桩;(b)位移曲线;1-土层竖向位移曲线;2-桩的截面位移曲线; (c)桩侧摩擦力分布曲线;(d)桩身轴力分布曲线 桩侧负摩擦力的产生主要是由于桩土之间相对位移的方向,在土层相对于桩侧向下位移时,产生于桩侧的向下的摩擦力。产生负摩擦力的情况有多种情况:

桩侧摩阻力计算

《桩侧摩阻力计算》 一、工程概况: 本工程①杂填土、②淤泥均为欠固结软弱土应计算桩侧负摩阻力。根据岩土工程勘察报告ZK65揭示地基土分层如下:(孔口标高5.07m ,地下水位标高2.02m ) 第①层杂填土底部标高2.77(厚度2.30) 第②层淤泥底部标高-7.53(厚度10.30) 第③层卵石底部标高-12.43(厚度4.90) 第⑤层砂土状强风化凝灰岩底部标高-14.73(厚度2.30) 第⑥层碎块状强风化凝灰岩………… 该位置软弱土层较厚且土层分布具有代表性,所以计算该位置的桩侧负摩阻力值。 二、计算过程 (1) 根据JGJ94-2008第5.4.4条桩侧负摩阻力标准值按下式计算: 'n si ni i q ξσ=;1 ''112i i i e e i i e z z γσσγγ-===?+?∑ 根据地勘报告杂填土和淤泥的负摩阻力系数分别为0.4和0.25,素填土和淤泥的重度为16.0kN/m 3。 1γ=16.0kN/m 3 '2γ=16.0-10.0=6.0kN/m 3 1n s q =0.4(0.5×16×2.30)=7.36kN/m 2 2n s q =0.25(16×2.30+0.5×6×10.3)=16.92kN/m 2 (2) 桩持力层为⑤砂土状强风化凝灰岩,根据持力层性质中性点深度比0/n l l 取值为1。 0n l l ==12.6m (3) 计算桩下拉荷载标准值。 根据JGJ94-2008第5.4.4-4条 1n n n g n si i i Q u q l η==?∑(不考虑群桩效应,n η取1.0),桩采用PHC500预制管桩。 n g Q =1.0×2×3.14×0.25×(7.36×2.3+16.92×10.3)=300kN

桩基础负摩阻力防治对策

桩基础负摩阻力的防治对策分析 【摘要】随着国民经济的快速发展,各类工程建设迎来了发展机遇,特别是建筑行业得到了空前发展,城市高层建筑的数量日益剧增。桩基础因其自身具有较好的稳定性,能够承受较大的建筑荷载,在目前的工程建设中被广泛采用。然而由于桩基础存在负摩阻力,降低了其实际的承载力。如何对桩基础的负摩阻力进行防治,成为工程建设中备受关注的问题。本文通过对负摩阻力产生的原因进行具体分析,探讨对其防治的有效对策。 近几年来,部分地区的建筑物出现了裂损和倾斜现象,严重影响了建筑物的使用,若由此而引发建筑物倒塌事件,将会对居民的生命和财产造成巨大威胁。根据相关调查发现,建筑物结构不稳定是由桩基础不稳固造成,因为桩基础自身存在负摩阻力,降低了桩基础的荷载承受能力,从而发生不均匀沉降,由此导致建筑物不稳。 一、防治桩基础负摩阻力的重要意义 随着建筑事业的迅猛发展,桩基础被广泛应用于各类建筑施工中,特别是对于软弱地基的处理,桩基础施工技术非常关键。桩基础不仅可以承受建筑物的各种荷载,像水平荷载、竖向荷载等,更具有较大的刚度和整体性,能够增强建筑物的整体稳定。然而桩基础的负摩阻力却降低了其承受能力,对桩基础产生了负面的影响,由于桩基础存在负摩阻力,增加了桩基础的自重,从而相应的降低了对于外荷载的承受能力,若负摩阻力过大将导致桩基础发生不均匀沉降,不仅降低建筑物的使用寿命,严重者将威胁居民的人身安全。基于此,防治桩

基础的负摩阻力具有重要意义,减少负摩阻力对桩基础的影响,不仅可以提高建筑工程质量,增加建筑物使用年限,更为人们提供了安全稳定的居住环境[1]。 二、负摩阻力产生的原因分析 由于桩基础会与土体进行直接接触,两者若存在相对位移,就会产生一定的摩擦阻力,而摩擦阻力的作用将由具体位移情况决定。桩基础会因为建筑物给予的竖向荷载而发生下沉,同时建筑地基也会受到各方面因素发生下沉,如果两者的下沉速率相同,摩擦阻力将不会产生,但是在现实情况中该种现象极少或者根本不会发生,正是由于两者发生的下沉速率不同,而造成了摩擦阻力的产生。摩擦阻力分为两种,一种是正摩阻力,即桩基础的下沉速度较快,由于两者存在相对位移,地基会对桩基础产生向上的作用力,对桩基础起到一定的支撑作用。另一种是负摩阻力,它与正摩阻力的产生正好相反,是由于地基的下沉速度过快产生的,对桩基础将产生一定的抵抗作用,降低桩基础的承载能力。通过以上分析,不难发现导致负摩阻力产生的原因,一般就是造成地基快速下沉的原因,对此进行具体的总结归纳。 第一,随着城市用水的增加,对地下水的开发日渐增多,部分地区出现了地下水位下降现象。地下水位的下降对部分正常固定的粉土和粘土地基而言,将产生严重影响,由于地基会随着土层沉降而发生下沉,造成土层的有效应力增加,相应的会增大桩基础的负摩阻力[2]。 第二,对于路桥建筑的桩基础而言,桩基础的负摩阻力往往由淤泥层的沉降造成,路桥桩基础建成之后会受到河床的冲刷,在桩基础

浅析桩基负摩阻力产生的原因及其计算

浅析桩基负摩阻力产生的原因及其计算 浅析桩基负摩阻力产生的原因及其计算 【摘要】桩周土体由于某种原因发生下沉时对桩身产生相对向下的位移,这就使桩身承受向下作用的摩擦力,这种摩擦力就是桩基的负摩擦阻力。本文针对桩基负摩擦阻力产生的机理及原因,并通过实例计算分析桩基负摩擦阻力。 【关键词】桩基;负摩擦阻力;机理及原因;实例计算 Rough discuss the reason and count of pile foundation force of negative friction Wang Zhigang1 Liang GuanKao2 (1.Fifth Geological Mineral Exploration and Development Institute of Inner Mongolia, Baotou 014010, P.R.China;2.Inner Mongolia Geology Engineering Co.,Ltd, Hohhot.010010,P.R.China) 【abstract】Owing to some reasons ,the soil around pile foundation occur subside will produce displacement downward to pile foundation,so pile foundation will bear downward friction force,this friction force is negative friction force。This paper point at the reason of pile foundation negative friction force and analysis pile foundation negative friction force by living example。 【Key words】pile foundation; negative friction force;the mechanisation and reason;living example account 中图分类号: TU473.1 文献标识码: A 文章编号: 一、桩基负摩阻力产生的机理及原因 桩的承载力是由桩底支承力与桩周土体的侧摩阻力两部分组成的。在一般情况下,桩受轴向荷载作用后,桩相对于桩周土体向下位移,使土对桩产生向上的摩擦力,称正摩阻力。但是,当桩周土为回填土、软弱土层、湿陷性黄土、砂土液化等不良土体情况下, 桩周土

相关文档
最新文档