458系列电磁炉维修手册.1

458系列电磁炉维修手册.1
458系列电磁炉维修手册.1

1.1 电磁加热原理

电磁灶是一种利用电磁感应原理将电能转换为热能的厨房电器。在电磁灶内部,由整流电路将

50/60Hz的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿(导磁又导电材料)底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西。

1.2 458系列筒介

458系列是由建安电子技术开发制造厂设计开发的新一代电磁炉,介面有LED发光二极管显示模式、LED数码显示模式、LCD液晶显示模式、VFD莹光显示模式机种。操作功能有加热火力调节、自动恒温设定、定时关机、预约开/关机、预置操作模式、自动泡茶、自动煮饭、自动煲粥、自动煲汤及煎、炸、烤、火锅等料理功能机种。额定加热功率有700~3000W的不同机种,功率调节范围为额定功率的85%,并且在全电压范围内功率自动恒定。200~240V机种电压使用范围为160~260V, 100~120V机种电压使用范围为90~135V。全系列机种均适用于50、60Hz的电压频率。使用环境温度为-23℃~45℃。电控功能有锅具超温保护、锅具干烧保护、锅具传感器开/短路保护、2小时不按键(忘记关机) 保护、IGBT温度限制、IGBT温度过高保护、低温环境工作模式、IGBT测温传感器开/短路保护、高低电压保护、浪涌电压保护、VCE抑制、VCE过高保护、过零检测、小物检测、锅具材质检测。

458系列须然机种较多,且功能复杂,但不同的机种其主控电路原理一样,区别只是零件参数的差异及CPU程序不同而己。电路的各项测控主要由一块8位4K内存的单片机组成,外围线路简单且零件极少,并设有故障报警功能,故电路可靠性高,维修容易,维修时根据故障报警指示,对应检修相关单元电路,大部分均可轻易解决。

二、原理分析

2.1 特殊零件简介

2.1.1 LM339集成电路

LM339内置四个翻转电压为6mV的电压比较器,当电压比较器输入端电压正向时(+输入端电压高于-

入输端电压), 置于LM339内部控制输出端的三极管截止, 此时输出端相当于开路; 当电压比较器输入端电压反向时(-输入端电压高于+输入端电压), 置于LM339内部控制输出端的三极管导通, 将比较器外部接入输出端的电压拉低,此时输出端为0V。

2.1.2 IGBT

绝缘栅双极晶体管(Iusulated Gate Bipolar Transistor)简称IGBT,是一种集BJT的大电流密度和MOSFET等电压激励场控型器件优点于一体的高压、高速大功率器件。

目前有用不同材料及工艺制作的IGBT, 但它们均可被看作是一个MOSFET输入跟随一个双极型晶体管放大的复合结构。

IGBT有三个电极(见上图), 分别称为栅极G(也叫控制极或门极) 、集电极C(亦称漏极) 及发射极E(也称源极) 。

从IGBT的下述特点中可看出, 它克服了功率MOSFET的一个致命缺陷, 就是于高压大电流工作时, 导通电阻大, 器件发热严重, 输出效率下降。

IGBT的特点:

1.电流密度大, 是MOSFET的数十倍。

2.输入阻抗高, 栅驱动功率极小, 驱动电路简单。

3.低导通电阻。在给定芯片尺寸和BVceo下, 其导通电阻Rce(on) 不大于MOSFET的Rds(on) 的10%。

4.击穿电压高, 安全工作区大, 在瞬态功率较高时不会受损坏。

5.开关速度快, 关断时间短,耐压1kV~1.8kV的约1.2us、600V级的约0.2us, 约为GTR的10%,接近于功

率MOSFET, 开关频率直达100KHz, 开关损耗仅为GTR的30%。

IGBT将场控型器件的优点与GTR的大电流低导通电阻特性集于一体, 是极佳的高速高压半导体功率器件。

目前458系列因应不同机种采了不同规格的IGBT,它们的参数如下:

(1) SGW25N120----西门子公司出品,耐压1200V,电流容量25℃时46A,100℃时25A,内部不带阻尼二

极管,所以应用时须配套6A/1200V以上的快速恢复二极管(D11)使用,该IGBT配套6A/1200V以上的快

速恢复二极管(D11)后可代用SKW25N120。

(2) SKW25N120----西门子公司出品,耐压1200V,电流容量25℃时46A,100℃时25A,内部带阻尼二极管,该IGBT可代用SGW25N120,代用时将原配套SGW25N120的D11快速恢复二极管拆除不装。

(3) GT40Q321----东芝公司出品,耐压1200V,电流容量25℃时42A,100℃时23A, 内部带阻尼二极管, 该IGBT可代用SGW25N120、SKW25N120, 代用SGW25N120时请将原配套该IGBT的D11快速恢复二极管拆除不装。

(4) GT40T101----东芝公司出品,耐压1500V,电流容量25℃时80A,100℃时40A,内部不带阻尼二极管,所以应用时须配套15A/1500V以上的快速恢复二极管(D11)使用,该IGBT配套6A/1200V以上的快速恢

复二极管(D11)后可代用SGW25N120、SKW25N120、GT40Q321, 配套15A/1500V以上的快速恢复二极管(D11)后可代用GT40T301。

(5) GT40T301----东芝公司出品,耐压1500V,电流容量25℃时80A,100℃时40A, 内部带阻尼二极管, 该IGBT可代用SGW25N120、SKW25N120、GT40Q321、 GT40T101, 代用SGW25N120和GT40T101时请将原配套该IGBT的D11快速恢复二极管拆除不装。

(6) GT60M303 ----东芝公司出品,耐压900V,电流容量25℃时120A,100℃时60A, 内部带阻尼二极管。

2.2 电路方框图

2.3 主回路原理分析

时间t1~t2时当开关脉冲加至Q1的G极时,Q1饱和导通,电流i1从电源流过L1,由于线圈感抗不允许电

流突变.所以在t1~t2时间i1随线性上升,在t2时脉冲结束,Q1截止,同样由于感抗作用,i1不能立即变0,于是向C3充电,产生充电电流i2,在t3时间,C3电荷充满,电流变0,这时L1的磁场能量全部转为C3的电场能量,在电容两端出现左负右正,幅度达到峰值电压,在Q1的CE极间出现的电压实际为逆程脉冲

峰压+电源电压,在t3~t4时间,C3通过L1放电完毕,i3达到最大值,电容两端电压消失,这时电容中的

电能又全部转为L1中的磁能,因感抗作用,i3不能立即变0,于是L1两端电动势反向,即L1两端电位左

正右负,由于阻尼管D11的存在,C3不能继续反向充电,而是经过C2、D11回流,形成电流i4,在t4时间,第二个脉冲开始到来,但这时Q1的UE为正,UC为负,处于反偏状态,所以Q1不能导通,待i4减小到0,L1

中的磁能放完,即到t5时Q1才开始第二次导通,产生i5以后又重复i1~i4过程,因此在L1上就产生了和开关脉冲f(20KHz~30KHz)相同的交流电流。t4~t5的i4是阻尼管D11的导通电流,

在高频电流一个电流周期里,t2~t3的i2是线盘磁能对电容C3的充电电流,t3~t4的i3是逆程脉冲峰压通过L1放电的电流,t4~t5的i4是L1两端电动势反向时, 因D11的存在令C3不能继续反向充电, 而经过C2、D11回流所形成的阻尼电流,Q1的导通电流实际上是i1。

Q1的VCE电压变化:在静态时,UC为输入电源经过整流后的直流电源,t1~t2,Q1饱和导通,UC接近地电位,t4~t5,阻尼管D11导通,UC为负压(电压为阻尼二极管的顺向压降),t2~t4,也就是LC自由振荡的半个周期,UC上出现峰值电压,在t3时UC达到最大值。

以上分析证实两个问题:一是在高频电流的一个周期里,只有i1是电源供给L的能量,所以i1的大小就决定加热功率的大小,同时脉冲宽度越大,t1~t2的时间就越长,i1就越大,反之亦然,所以要调节加热功率,只需要调节脉冲的宽度;二是LC自由振荡的半周期时间是出现峰值电压的时间,亦是Q1的截止

时间,也是开关脉冲没有到达的时间,这个时间关系是不能错位的,如峰值脉冲还没有消失,而开关脉冲己提前到来,就会出现很大的导通电流使Q1烧坏,因此必须使开关脉冲的前沿与峰值脉冲后沿相同步。

2.4 振荡电路

(1) 当G点有Vi输入时、V7 OFF时(V7=0V), V5等于D12与D13的顺向压降, 而当V6

(2) 当V6>V5时,V7转态为OFF,V5亦降至D12与D13的顺向压降, 而V6则由C5经R54、D29放电。

(3) V6放电至小于V5时, 又重复(1) 形成振荡。

“G点输入的电压越高, V7处于ON的时间越长, 电磁炉的加热功率越大,反之越小”。

2.5 IGBT激励电路

振荡电路输出幅度约4.1V的脉冲信号,此电压不能直接控制IGBT(Q1)的饱和导通及截止,所以必须通过激励电路将信号放大才行,该电路工作过程如下:

(1) V8 OFF时(V8=0V),V8

(2) V8 ON时(V8=4.1V),V8>V9,V10为低,Q8和Q3截止、Q9和Q10导通,+22V通过R71、Q10加至Q1的G极,Q1导通。

2.6 PWM脉宽调控电路

CPU输出PWM脉冲到由R6、C33、R16组成的积分电路, PWM脉冲宽度越宽,C33的电压越高,C20的电压也跟着升高,送到振荡电路(G点)的控制电压随着C20的升高而升高, 而G点输入的电压越高, V7处于ON的时间越长, 电磁炉的加热功率越大,反之越小。

“CPU通过控制PWM脉冲的宽与窄, 控制送至振荡电路G的加热功率控制电压,控制了IGBT导通时间的长短,结果控制了加热功率的大小”。

2.7 同步电路

R78、R51分压产生V3,R74+R75、R52分压产生V4, 在高频电流的一个周期里,在t2~t4时间 (图1),由于C3两端电压为左负右正,所以V3V5,V7 OFF(V7=0V),振荡没有输出,也就没有开关脉冲加至Q1的G极,保证了Q1在t2~t4时间不会导通, 在t4~t6时间,C3电容两端电压消失, V3>V4, V5上升,振荡有输出,有开关脉冲加至Q1的G极。以上动作过程,保证了加到Q1 G极上的开关脉冲前沿与Q1上产生的VCE脉冲后沿相同步。

2.8 加热开关控制

(1)当不加热时,CPU 19脚输出低电平(同时13脚也停止PWM输出), D18导通,将V8拉低,另V9>V8,使IGBT激励电路停止输出,IGBT截止,则加热停止。

(2)开始加热时, CPU 19脚输出高电平,D18截止,同时13脚开始间隔输出PWM试探信号,同时CPU通过分析电流检测电路和VAC检测电路反馈的电压信息、VCE检测电路反馈的电压波形变化情况,判断是否己放入适合的锅具,如果判断己放入适合的锅具,CPU13脚转为输出正常的PWM信号,电磁炉进入正常加热状态,如果电流检测电路、VAC及VCE电路反馈的信息,不符合条件,CPU会判定为所放入的锅具不符或无锅,则继续输出PWM试探信号,同时发出指示无锅的报知信息(祥见故障代码表),如1分钟内仍不符合条件,则关机。

2.9 VAC检测电路

AC220V由D1、D2整流的脉动直流电压通过R79、R55分压、C32平滑后的直流电压送入CPU,根据监测该

电压的变化,CPU会自动作出各种动作指令:

(1) 判别输入的电源电压是否在充许范围内,否则停止加热,并报知信息(祥见故障代码表)。

(2) 配合电流检测电路、VCE电路反馈的信息,判别是否己放入适合的锅具,作出相应的动作指令(祥见加热开关控制及试探过程一节)。

(3) 配合电流检测电路反馈的信息及方波电路监测的电源频率信息,调控PWM的脉宽,令输出功率保持稳定。

“电源输入标准220V±1V电压,不接线盘(L1)测试CPU第7脚电压,标准为1.95V±0.06V”。

2.10 电流检测电路

电流互感器CT二次测得的AC电压,经D20~D23组成的桥式整流电路整流、C31平滑,所获得的直流电压送至CPU,该电压越高,表示电源输入的电流越大, CPU根据监测该电压的变化,自动作出各种动作指令:

(1) 配合VAC检测电路、VCE电路反馈的信息,判别是否己放入适合的锅具,作出相应的动作指令(祥见加热开关控制及试探过程一节)。

(2) 配合VAC检测电路反馈的信息及方波电路监测的电源频率信息,调控PWM的脉宽,令输出功率保持稳定。

相关主题
相关文档
最新文档