自动土壤水分人工对比观测要求

自动土壤水分人工对比观测要求
自动土壤水分人工对比观测要求

自动土壤水分人工对比观测要求

各自动土壤水分站:

目前,我省已分两年共安装了82套自动土壤水分仪器。为便于各仪器尽早通过标定,根据最新要求,现就有关注意事项说明如下:

一、人工对比观测

1.为便于相关部门对人工对比观测数据进行分析,按程序读取人工对比数据,现将人工对比观测数据的文件名、数据格式统一要求:自2011年5月起,人工对比观测数据上报格式统一为“[站号][站名][YYYYMM].xls”格式进行(见附件)。该文件共有6个页面,供每月6次对比观测用,尤其是有降水或灌溉时需备注。

上报前文件名应为[站号][站名][YYYYMM].xls,如:宿州第一期2011年3月份的对比观测数据记为I1354宿州201103.xls。站号为自动土壤水分站的站号,而不是气象站号;YYYYMM为年月份,为6个数字,如2011年4月,记为201104。

2.各台站的人工对比观测数据填写完成后,只需发送给所在地市气象局业务科;市气象局业务科收集到所在市所有县的数据后,需检查各县上报的文件命名是否符合[站号][站名][YYYYMM].xls要求,将各县数据压缩为[地市名].rar后,统一发送至“省气象科学研究所-农业气象研究室”公共信箱。要求各市业务科每月10日前将数据发送至“省气象科学研究所-农业气象研究室”公共信箱。

3.各站原发报业务的方式、时效等不变。

二、仪器维护

1.自动土壤水分观测仪若安装在作物地段,应按照自动土壤水分观测规范要求,传感器周边与大田的土壤状况应当一致;而且,由于传感器周边土壤长期不耕作,容易产生龟裂;因此,土壤水分站的日常维护特作出如下要求:

a.每年农田耕作时,土壤水分传感器周边半径0.5米范围内用铲子做一下翻土,深度20-30cm, 将土块砸碎,按照原土层回填压实,压实后上面覆1-2cm的虚土。

b.每当降水超过20mm或灌溉停止72小时后,对传感器周边半径0.5米范围进行一次松土,以防土壤龟裂产生。

c.如果传感器周边土壤已有龟裂发生,可将传感器周边半径0.5米范围内的土壤取出,深度10-20cm(具体可根据龟裂影响深度而定),将土块砸碎,按照原土层回填压实,压实后上面覆1-2cm的虚土。

2.安装在固定地段的,也应对设备的安装进行检查维护,平整场地,务必使设备与土壤紧密结合。

三、数据监控

各台站每日应至少登陆数据浏览软件一次,关注本站的自动土壤水分数据是否正常。若出现异常,应立即处理。

附件1:

第一期30个自动土壤水分站站号站名

站号站名站号站名58015 砀山58222 凤阳58016 萧县58225 定远58102 亳州58236 滁州58107 临泉58240 天长58108 界首58311 六安58114 涡阳58323 肥东58116 淮北I1354 宿州58117 利辛I1655 灵璧58118 蒙城I1755 泗县58129 五河I2512 太和58202 阜南I2906 怀远58203 阜阳I3054 固镇58210 颍上I3201 淮南58214 霍邱I3651 明光58215 寿县I4807 长丰

第二期52个自动土壤水分站站号站名

站号站名站号站名

58230 全椒I4281 霍邱

58234 来安I4381 寿县

58306 金寨I4580 霍山作物58314 霍山固定I4680 舒城

58327 庐江I4801 合肥

58329 无为I4956 肥西

58330 含山I5107 巢湖

58331 和县I6356 安庆

58335 当涂I6455 桐城

58337 繁昌I6501 太湖新仓58338 芜湖县I6709 潜山

58419 东至I6855 怀宁

58426 黄山I6911 宿松高岭58427 池州I7053 望江雷池58428 石台I7151 枞阳

58432 泾县I7571 青阳

58534 休宁I7752 铜陵

I1357 宿州I7871 宣城

I1408 砀山I8071 旌德

I1756 泗县I8171 宁国

I1804 亳州I8371 广德

I2171 蒙城I8471 郎溪

I2211 阜阳I8881 祁门茶叶所

I2570 太和I8882 祁门站I3525 凤阳I9061 歙县园艺场I3781 定远I9062 歙县富堨

农田土壤环境质量监测技术规范

农田土壤环境质量监测技术规范 范围 本标准规定了农田土壤环境监测的布点采样、分析方法、质控措施、数理统计、成果表达与资料整编等技术内容。 本标准适用于农田土壤环境监测。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 8170—1987 数值修约规则 GB/T 14550—1993 土壤质量六六六和滴滴涕的测定气相色谱法 GB 15618—1995 土壤环境质量标准 GB/T17134,—1997 土壤质量总砷的测定二乙基二硫代氨基甲酸银分光光度法 GB/T 17135—1997 土壤质量总砷的测定硼氢化钾—硝酸银分光光度法 GB/T 17136—1997 土壤质量总汞的测定冷原子吸收分光光度法 GB/T 17137—1997 土壤质量总铬的测定火焰原子吸收分光光度法 GB/T 17138—1997 土壤质量铜、锌的测定火焰原子吸收分光光度法 GB/T 17139—1997 土壤质量镍的测定火焰原子吸收分光光度法 GB/T 17140—1997 土壤质量铅、镉的测定 KI—MIBK萃取火焰原子吸收分光光度法 GB/T 17141—1997 土壤质量铅、镉的测定石墨炉原子吸收分光光度法 NY/T 52—1987 土壤水分测定法(原GB 7172—1987) NY/T 53—1987 土壤全氮测定法(半微量开氏法) (原GB 7173—1987) NY/T 85—1988 土壤有机质测定法(原GB 9834—1988) NY/T 88—1988 土壤全磷测定法(原GB 9837—1988) NY/T 148—1990 土壤有效硼测定方法(原GB 12298—1990) NY/T 149,一1990 石灰性土壤有效磷测定方法(原GB 12297一1990) 3 定义 本标准采用下列定义。 3.1 农田土壤 用于种植各种粮食作物、蔬菜、水果、纤维和糖料作物、油料作物及农区森林、花卉、药材、草料等作物的农业用地土壤。 3.2 区域土壤背景点 在调查区域内或附近,相对未受污染,而母质、土壤类型及农作历史与调查区域土壤相似的±壤样点。 3,3 农田土壤监测点 人类活动产生的污染物进入土壤并累积到一定程度引起或怀疑引起土壤环境质量恶化的±壤样点。 3.4 农田土壤剖面样品 按土壤发生学的主要特征,担整个剖面划分成不同的层次,在各层中部位多点取样,等量混均后的A、B、C层或A、C等层的土壤样品。 3.5 农田土壤混合样 在耕作层采样点的周围采集若干点的耕层土壤、经均匀混合后的土壤样品,组成混合样的分点数要在5~20个。 4 农田土壤环境质量监测采样技术 4.1 采样前现场调查与资料收集 4.1.1 区域自然环境特征:水文、气象、地形地貌、植被、自然灾害等。 4.1.2 农业生产土地利用状况:农作物种类、布局、面积、产量、耕作制度等。 4.1.3 区域土壤地力状况:成土母质、土壤类型、层次特点、质地、pH、Eh、代换量、盐基饱和度、±壤肥力等。 4.1.4 土壤环境污染状况:工业污染源种类及分布、污染物种类及排放途径和排放量、农灌水污染状况、大气污染状况、农业固体废弃物投入、农业化学物质投入情况、自然污染源情况等。 4.1.5 土壤生态环境状况:水土流失现状、土壤侵蚀类型、分布面积、侵蚀模数、沼泽化、潜育化、盐渍化、酸化等。 4.1.6 土壤环境背景资料:区域土壤元素背景值、农业土壤元素背景值。 4.1.7 其他相关资料和图件:土地利用总体规划、农业资源调查规划、行政区划图、土壤类型图、土壤环境质量图等。 4.2 监测单元的划分 农田土壤监测单元按土壤接纳污染物的途径划分为基本单元,结合参考土壤举型、农作物种类、耕作制度、商品生产基地、保护区类别、行政区划等要素,由当地农业环境监测部门根据实际情况进行划定。同一单元的差别应尽可能缩小。 4.2.1 大气污染型土壤监测单元

气象观测业务质量综合考核办法[精编版]

气象观测业务质量综合考核办法[精编 版] 气象观测业务质量综合考核办法 (征求意见稿)

第一条为适应气象观测业务改革发展,推进气象观测质量管理体系建设,全面、客观、准确考核观测业务质量,强化各级气象部门业务质量管理,制定本办法。 第二条本办法依据现行业务规范、行业标准和技术规定,根据当前气象观测业务工作实际,面向未来业务发展需求,对现行质量考核办法进行梳理、补充和完善而形成。 第三条气象观测业务质量综合考核对象为全国各观测业务台站、各省(区、市)气象局。 第四条气象观测业务质量综合考核业务种类包括新一代天气雷达观测业务、国家地面气象观测站观测业务、高空气象观测业务、区域气象观测站观测业务、风廓线雷达观测业务、雷电观测业务、自动土壤水分观测业务、GNSS/MET 观测业务、大气成分观测业务和气象卫星观测业务,共计10类。具体指标及解释见附件1-11。 第五条新一代天气雷达观测业务、国家地面气象观测站观测业务和高空气象观测业务考核数据质量、数据传输及时率、设备运行可用性、保障可靠性和探测环境保护五个方面;区域气象观测站观测业务、自动土壤水分观测业务和大气成分观测业务考核数据质量、数据传输及时率、设备运行可用性、保障可靠性四个方面;风廓线雷达观测业务和GNSS/MET观测业务考核数据质量、数据传输及时率、保障可靠性三个方面;雷电观测业务考核数据质量、设备运行可用性和保障可靠性三个方面

;气象卫星观测业务考核数据质量、数据传输及时率、保障可靠性和探测环境保护四个方面。 其中,数据质量、数据传输及时率和设备运行可用性通过考核相关业务上传的数据和状态文件实现,考核文件种类详见附件12;保障可靠性和探测环境保护通过考核相关业务的填报表单和上报文件实现。 第六条每项业务的考核总分为100分。各考核内容包含若干单项考核指标并分配相应的分值,各单项考核指标得分之和为综合考核得分。考核以月度、年度为周期。 第七条气象观测业务质量综合考核工作由综合观测司、预报与网络司共同组织,中国气象局气象探测中心、国家气象信息中心和国家卫星气象中心具体实施。 第八条考核结果由综合观测司、各省(区、市)气象局观测业务管理部门根据考核周期及时进行通报。 考核结果可作为省(区、市)气象局推荐和评选优秀集体和个人的重要依据,同时也可作为评价设备质量的依据。第九条本办法由中国气象局综合观测司负责解释。各省(区、市)气象局可在本办法基础上制定本省(区、市)的实施细则。 第十条本办法自2017年1月1日起执行,《地面气象观测质量考核办法(试行)》(气测函〔2013〕312号)、《地面高空气象观测业务综合质量考核办法(试行)》(气测函〔2014〕201号)同时废止。《综合气象观测系统仪器装备运行状况通报办法》

土壤水分的测定

土壤水分的测定 测定土壤水分是为了了解土壤水分状况,以作为土壤水分管理,如确定灌溉定额的依据。在分析工作中,由于分析结果一般是以烘干土为基础表示的,也需要测定湿土或风干土的水分含量,以便进行分析结果的换算。 一、测定方法 土壤水分的测定方法很多,实验室一般采用酒精烘烤法、酒精烧失法和烘干法。野外则可采用简易的排水称重法(定容称量法)。 (一)酒精烘烤法 1、原理:土壤加入酒精,在l05℃—110℃下烘烤时可以加速水分蒸发,大大缩短烘烤时间,又不致于因有机质的烧失而造成误差。 2、操作步骤 ①取已烘干的铝盒称重为W1(克)。 ②加土壤约5克平铺于盒底,称重为W2(克)。 ③用皮头吸管滴加酒精,便土样充分湿润,放入烘箱中,在105℃—110℃条件下烘烤30分钟,取出冷却称重为W3(克)。 3、结果计算 W2-W3 土壤水分含量(%)=—————×100 W3-W1 土壤分析一般以烘干土计重,但分析时又以湿土或风干土称重,故需进行换算,计算公式为:应称取的湿土或风干土样重=所需烘干土样重×(1+水分%) (二)酒精烧失速测法 1、原理:酒精可与水分互溶,并在燃烧时使水分蒸发。土壤烧后损失的重量即为土壤含水量。 2、操作步骤: ①取铝盒称重为W l(克)。 ②取湿土约10克(尽量避免混入根系和石砾等杂物)与铝盒一起称重为W2(克)。 ③加酒精于铝盒中,至土面全部浸没即可,稍加振摇,使土样与酒精混合,点燃酒精,待燃烧将尽,用小玻棒来回拨动土样,助其燃烧(但过早拨动土样会造成土样毛孔闭塞,降

低水分蒸发速度),熄火后再加酒精3毫升燃烧,如此进行2—3次,直至土样烧干为止。 ④冷却后称重为W3(克)。 3、结果计算同前 (三)烘干法 1、原理:将土样置于105℃±2℃的烘箱中烘至恒重,即可使其所含水分(包括吸湿水)全部蒸发殆尽以此求算土壤水分含量。在此温度下,有机质一般不致大量分解损失影响测定结果。 2、操作步骤 ①取干燥铝盒称重为W1(克)。 ②加土样约5克于铝盒中称重为W2(克)。 ③将铝盒放入烘箱,在105℃一110℃下烘烤6小时,一般可达恒重,取出放人干燥器内,冷却20分钟可称重。必要时,如前法再烘1小时,取出冷却后称重,两次称重之差不得超过0.05克,取最低一次计算。 注:质地较轻的土壤,烘烤时间可以缩短,即5—6小时。 3、结果计算同前 二、思考题 1、列出实验数据,计算土壤水分含量。 2、在烘干土样时,为什么温度不能超过110℃?含有机质多的土样为什么不能采用酒精烧失法?

土壤水份和植物组织含水量的测定

土壤水份和植物组织含水量的测定 实验的目的与要求: 通过对植物和土壤水分的测定来学习和使用烘干法水分测定仪,掌握实验和实习的技巧,了解一定的实习的规则! 通过对实习数据的比较,以及结合自身的知识来分析土壤和植物组织含水量的关系,了解水分对植物生长的影响,了解土壤中水分对植物生长的影响。 结合生态学的知识来分析土壤和植物含水量受整个生态系统的影响。 实验的主要内容: 记录实验地的周围环境的各种生态环境因素,如温度,风向,湿度。 测量土壤和植物组织含水量值,在不同的环境下测量对比,同一环境下不同物种的值。 记录实验测量的数据值,分析得出结论。 实习的主要工具: 1.烘干法水分测定仪(LSH-100A型): 最大秤量:100g 实际标尺分度值:1mg 准确度级别:2级 水分测量允许误差:±0.2%(样品≥2克) 水分含量测定可读性:0.01% 测量水分范围:0~100% 加热源:卤素灯(环型400W) 温控精度:±1℃ 加热温度设定:室温~160℃(以1℃调整) 时间设定:0~180min(以1min调整) 测量方法:手动、自动 操作温度范围:10~30℃ 电源及功耗:AC220V±22V 50Hz 420W 秤盘尺寸:¢100mm 外壳尺寸:360mm×250mm×270mm 净重:7kg 实验用剪刀、小袋子 实验原理: 首先对同一环境下的不同生长情况的高山榕进行水分的测定,记录数据并比较,然后对不同环境下的不同株池杉进行水分的测定,在数据中得出结论。用烘干法测定仪进行含水量的测定,使用小塑料袋来装实验品以防止植物叶子和土壤水分的蒸发。 实验的步骤: 首先进行样本的采样,在学校的马路边分别进行不同生长情况高山榕叶子的取样,然后再树下进行土壤的取样。在昭阳湖旁不同地方生长情况相同的池杉的叶子和土壤的进行取样。将取来的样品装入袋中,并做好标签。 预热烘干法测定仪后,将取来的样品放入烘干仪中保持5-8分钟,待屏幕中的数值稳定后进行数据的记录。 对数据进行整理分析和讨论,得出结论。 实验的结果:

土壤含水量的测定(烘干法)

土壤含水量的测定(烘干法) 进行土壤水分含量的测定有两个目的: 一是为了解田间土壤的实际含水状况,以便及时进行灌溉、保墒或排水,以保证作物的正常生长;或联系作物长相、长势及耕栽培措施,总结丰产的水肥条件;或联系苗情症状,为诊断提供依据。 二是风干土样水分的测定,为各项分析结果计算的基础。前一种田间土壤的实际含水量测定,目前测定的方法很多,所用仪器也不同,在土壤物理分析中有详细介绍,这里指的是风干土样水分的测定。 风干土中水分含量受大气中相对湿度的影响。它不是土壤的一种固定成分,在计算土壤各种成分时不包括水分。因此,一般不用风干土作为计算的基础,而用烘干土作为计算的基础。分析时一般都用风干土,计算时就必须根据水分含量换算成烘干土。 测定时把土样放在105~110℃的烘箱中烘至恒重,则失去的质量为水分质量,即可计算土壤水分百分数。在此温度下土壤吸着水被蒸发,而结构水不致破坏,土壤有机质也不致分解。下面引用国家标准《土壤水分测定法》。 2.3.1适用范围 本标准用于测定除石膏性土壤和有机土(含有机质20%以上的土壤)以外的各类土壤的水分含量。 2.3.2方法原理 土壤样品在105±2℃烘至恒重时的失重,即为土壤样品所含水分的质量。 2.3.3仪器设备 ①土钻;②土壤筛: xx1mm;③铝盒:

小型直径约40mm,高约20mm;大型直径约55mm,高约28mm;④分析天平: 感量为 0.001g和 0.01g;⑤小型电热恒温烘箱;⑥干燥器: xx变色硅胶或无水氯化钙。 2.3.4试样的选取和制备 2.3. 4.1风干土样选取有代表性的风干土壤样品,压碎,通过1mm筛,混合均匀后备用。 2.3. 4.2新鲜土样在田间用土钻取有代表性的新鲜土样,刮去土钻中的上部浮土,将土钻中部所需深度处的土壤约20g,捏碎后迅速装入已知准确质量的大型铝盒内,盖紧,装入木箱或其他容器,带回室内,将铝盒外表擦拭干净,立即称重,尽早测定水分。 2.3.5测定步骤 2.3. 5.1风干土样水分的测定将铝盒在105℃恒温箱中烘烤约2h,移入干燥器内冷却至室温,称重,准确到至 0.001g。用角勺将风干土样拌匀,舀取约5g,均匀地平铺在铝盒中,盖好,称重,准确至 0.001g。将铝盒盖揭开,放在盒底下,置于已预热至105±2℃的烘箱中烘烤6h。取出,盖好,移入干燥器内冷却至室温(约需20min),立即称重。风干土样水分的测定应做两份平行测定。

土壤含水量测定方法小结

土壤含水量测定方法小结 1,烘干称重; 这个不多说了。准确度最高,但测定得到的是质量含 水量,与其他方法所得数据进行比较是注意换算。 2,中子仪; 技术比较成熟,准确性极高,是烘干法以外的第二标 准方法。 但是中子仪测定需要安装套管,理论上可达任何深度,设备昂贵,投入很大。中子射线对操作者身体有损害,严格来说需要相关证件才可以操作。无法测定表层土 壤。 3,电阻法; 一般使用石膏块作为介质埋设地下,石膏块中埋设两根导线,导线之间的石膏成分组成电阻,石膏块电阻与土壤含水量相关。石膏块制作简单,哪怕进口的成品成本也是非常低廉,可以作很多重复,可以不破坏土壤在田间连续自动监测。存在问题,石膏块滞后时间较长,所以不可能用来做移动式测定和自动灌溉系统。石膏块只适合用于非盐碱土壤中,同时石膏块不适合使用直流电(文献查得,表示怀疑,因为所有的石膏块读书表都是用干电池作为电源),测定受土壤类型影响很大,标定结果会随时间改变,达到一定年 限后,石膏会逐渐溶解到土壤中。 4,TDR(Time Domain Reflectometry) TDR有两种时域反射仪和时域延迟,两者均简称TDR。TDR技术是当前土壤水分测定装置的主流原理,可以连续、快速、准确测量。可以测量土壤表层含

水量。一般的TDR原理的设备响应时间约10-20秒,适合移动测量和定点监测。测定结果受盐度影响很小,TDR缺点是电路比较复杂,设备较昂贵。 5,FDR(Frequency Domain Reflectometry)几乎具有TDR的所有优点,探头形状非常灵活。比较夸张的甚至可以放在做成犁状放在拖拉机后面运动中 测量。FDR相对TDR需要更少的校正工作。 TDR和FDR同样有一个缺点,当探头附近的土壤有空洞或者水分含量非常不均匀时,会影响测定结果。 非常奇怪的是,基于FDR原理的往往是低端的仪器设备,根据笔者实际使用经验,FDR技术可能在精度上存在瓶颈,经常在5%的误差左右,写文章时候数据基本上不好用。

土壤环境监测技术规范方案

土壤环境监测技术规范 土壤环境监测技术规范包括土壤环境监测的布点采样、样品制备、分析方法、结果表征、资料统计和质量评价等技术内容。 一、准备工作 主要准备工具,器材,用具等。 二、布点采样 样品由随机采集的一些个体所组成,个体之间存在差异。为了达到采集的监测样品具有好的代表性,必须避免一切主观因素,使组成总体的个体有同样的机会被选入样品,即组成样品的个体应当是随机地取自总体。另一方面,在一组需要相互之间进行比较的样品应当有同样的个体组成,否则样本大的个体所组成的样品,其代表性会大于样本少的个体组成的样品。所以“随机”和“等量”是决定样品具有同等代表性的重要条件。 1.布点方法 1)简单随机 将监测单元分成网格,每个网格编上号码,决定采样点样品数后,随机抽取规定的样品数的样品,其样本号码对应的网格号,即为采样点。随机数 的获得可以利用掷骰子、抽签、查随机数表的方法。关于随机数骰子的使用 方法可见GB10111《利用随机数骰子进行随机抽样的办法》。简单随机布点 是一种完全不带主观限制条件的布点方法。 2)分块随机 根据收集的资料,如果监测区域内的土壤有明显的几种类型,则可将区域分成几块,每块内污染物较均匀,块间的差异较明显。将每块作为一个监 测单元,在每个监测单元内再随机布点。在正确分块的前提下,分块布点的 代表性比简单随机布点好,如果分块不正确,分块布点的效果可能会适得其 反。 3)系统随机 将监测区域分成面积相等的几部分(网格划分),每网格内布设一采样点,这种布点称为系统随机布点。如果区域内土壤污染物含量变化较大,系

统随机布点比简单随机布点所采样品的代表性要好。 2.基础样品数量 1)由均方差和绝对偏差计算样品数 用下列公式可计算所需的样品数: N=t2s2/D2 式中:N 为样品数; t 为选定置信水平(土壤环境监测一般选定为95%)一定自由度下的t 值(附录A); s2 为均方差,可从先前的其它研究或者从极差R(s2=(R/4)2)估计; D 为可接受的绝对偏差。 2)由变异系数和相对偏差计算样品数 N=t2s2/D2 可变为:N=t2CV2/m2 式中:N 为样品数; t 为选定置信水平(土壤环境监测一般选定为95%)一定自由度下的t 值(附录A); CV 为变异系数(%),可从先前的其它研究资料中估计; m 为可接受的相对偏差(%),土壤环境监测一般限定为20%~30% 。 没有历史资料的地区、土壤变异程度不太大的地区,一般CV 可用10%~30%粗略估计,有效磷和有效钾变异系数CV 可取50%。 3.布点数量 土壤监测的布点数量要满足样本容量的基本要求,即上述由均方差和绝对偏差、变异系数和相对偏差计算样品数是样品数的下限数值,实际工作中土壤布点数量还要根据调查目的、调查精度和调查区域环境状况等因素确定。 一般要求每个监测单元最少设3 个点。 区域土壤环境调查按调查的精度不同可从2.5km、5km、10km、20km、40km 中选择网距网格布点,区域内的网格结点数即为土壤采样点数量。

自动土壤水分观测数据传输格式及传输方案

自动土壤水分观测数据传输格式及传输方案

自动土壤水分观测数据传输格式及传输方案 中国气象局综合观测司预报网络司 2009.8

目录 1上传文件命名规则 (1) 1.1单站文件命名规则 (1) 1.2多站文件命名规则 (1) 1.3上传文件名说明 (2) 2 上传时间规定 (7) 2.1数据上传原则 (7) 2.2数据上传时间规定 (8) 3 上传数据格式 (9) 3.1 自动土壤水分观测站上传数据格式 (9) 3.2 省级打包上传格式 (14) 3.3 作物名称编码表 (15)

自动土壤水分观测数据传输格式及传输方案 为规范自动土壤水分观测和资料传输业务,确保自动土壤水分观测资料及时、高效地收集、共享和应用,制定本数据传输格式及传输方案。 1上传文件命名规则 自动土壤水分观测站上传文件是指自动土壤水分观测站上传至省级气象通信部门或国家气象信息中心的数据文件。 自动土壤水分观测站上传文件包括单站文件命名和多站文件命名两种规则。 1.1单站文件命名规则 单站自动土壤水分观测站上传文件命名方式为: Z_ AGME_I_IIiii_yyyymmddhhMMss_O_ASM-F TM[-CCx].txt 1.2多站文件命名规则 多站自动土壤水分观测站上传文件命名方式为(通过省级或国家级打包的文件):

Z_ AGME_C_CCCC_yyyymmddhhMMss_O_AS M-FTM.txt 1.3上传文件名说明 (1)文件名称各段说明 Z:固定代码,表示文件为国内交换的资料。 AGME:固定代码,表示农业气象资料。 I:固定代码,指示其后字段代码为测站区站号。 IIiii:测站区站号。区站号使用规则见1.3(2) C:固定代码,指示其后字段编码为编报台字母代号。 CCCC:编报台字母代号,详见1.3.3编报台站代码表。 yyyymmddhhMMss:文件生成时间“年月日时分秒”(UTC,国际时)。其中,yyyy为年,4位;mm为月,2位;dd为日,2位;hh为小时,2位;MM分钟,2位;ss为秒,2位。在年月日时分秒中,若位数不足时,高位补“0”。例如:

土壤水分遥感监测方法进展

第!"卷, 第#期中国农业资源与区划$%&’!",(%’#,))*+,*-!..*年.+月/%0123&%4567238917:0&;013&<=>%01:=>32?<=97%23&@&322729/02=,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!..*?技术方法? 土壤水分遥感监测方法进展 邓辉,周清波 (中国农科院资源区划所,北京A ...B A )摘要该文全面地回顾了目前国内外遥感监测土壤水分的方法和研究进展,比较和评价了热惯量法、微 波法、热红外法、距平植被指数法、植被缺水指数法、植被供水指数法等方法的优缺点和应用范围,并对 土壤水分遥感监测方法的发展趋势进行了分析和展望。关键词旱情监测土壤水分热惯量法微波法植被缺水指数方法回顾收稿日期:!..#,.#,#.邓辉为硕士生周清波为研究员 一、引言 干旱(农业干旱)是指:作物生长过程中因供水不足,阻碍作物的正常生长而发生的水量供应不平衡现象,即农田土壤含水量降低到影响农作物的正常生长发育。干旱是我国农业的一大威胁,在各种自然灾 害中造成的损失列为首位。据统计,我国农业自然灾害的近+.C 是干旱造成的,每年有近"D .万6E !耕地受旱减产,占播种面积的"’B +C ,按减产#.C !".C 的轻灾计算,每年直接经济损失达*亿!D 亿元。探讨一套客观、动态、实时的土壤水分监测方法,对于各级政府和领导及时了解旱情程度和分布,采取有效的防、抗措施,科学的指导农业生产,具有重要意义。 传统的旱情监测方法,主要是根据有限的旱情测量站点测定土壤水分含量来监测土壤水分。经典的土壤水分测量方法主要有称重法、中子水分探测法、快速烘干法、电阻法、F G <法(时域反射)等,因采样速度慢而且花费大量人力物力,范围有限。传统方法难以满足实时、大范围监测的需要。随着遥感技术的迅速发展,多时相、多光谱、高光谱遥感数据反映了大面积的地表信息,这些信息从定位、定量方面反映了土壤水分状况。 二、监测土壤水分的方法和进展 (一)热惯量法 水分有较大的热容量和热传导率使较湿的土壤具有较大的热惯量,而这一热惯量可由光学遥感监测地表温度的变化得到。热惯量法也是国内研究较多的一种方法。 国外:H 3;>%2等人[A ,!](A -D A ,A -D *)最早应用了热模型;A -D B 年热容量制图卫星(I 5JJ )发射 成功,随后具有较高分辨率的F K >F 6=1E 3&K 2=1;7,3,即

土壤含水量测量实验报告

土壤水分的测定实验 一、实验目的 1、了解土壤的实际含水情况,以便适时灌排,保证植物生长对水分的需求。 2、风干土样水分的测定,是各项分析结果计算的基础。土壤水分含量的多少,直接影响土壤的固、液、气三相比例,以及土壤的适耕性和植物的生长发育。 二、实验原理 土壤水分大致分为化学结合水、吸湿水和自由水三类。自由水是可供植物自由利用的有效水和多余水,可以通过土壤在空气中自然风干的方法从土壤中释放出来;吸湿水是土壤颗粒表面被分子张力所吸附的单分子水层,只有在105-110℃下才能摆脱土壤颗粒表面分子力的吸附,以气态的形式释放出来,由于土粒对水汽分子的这种吸附力高达成千上万个大气压,所以这层水分子是定向排列,而且排列紧密,水分不能自由移动,也没有溶解能力,属于无效水;而化学结合水因为参与了粘土矿物晶格的组成,所以是以OH-的形式存在的,要在600--700℃时才能脱离土粒的作用而释放出来。 土壤含水量的测定方法很多,如烘干法、酒精燃烧法和中子测量法等,其中烘干法是目前国际上土壤水分测定的标准方法,虽然需要采集土样,并且干燥时间较长但是因为它比较准确,且便于大批测定,故为常用的方法。 将土壤样品放在105℃±2℃的烘箱中烘至恒重,求出土壤失水重量占烘干重量的百分数。在此温度下,包括吸湿水(土粒表面从空气中吸取活动力强的水汽分子而成的一种水分)在内的所有水分烘掉,而一般土壤有机质不致分解。 三、实验器材 铝盒、烘箱、干燥器、天平、小铲子、小刀。 四、实验步骤 1、在室内将铝盒编号并称重,重量记为W0 。 2、用已知重量的铝盒在天平上称取欲测土样15—20克,称量铝盒与新鲜土壤样

自动土壤水分观测规范标准

.\ 自动土壤水分观测规范 (试行) 中国气象局综合观测司

前言 自动土壤水分观测规范分八个章节,包括:自动土壤水分观测的基本任务、观测方法、技术要求以及观测记录的处理方法,观测仪器的工作原理、安装、操作、维护与田间标定方法等内容。 本规范既对自动土壤水分观测仪器生产厂家的设备生产、安装、维护、标校等提出具体要求,又规范台站对仪器的使用方法、明确仪器在标校过程中进行人工对比观测取土的要求,目的是为了使安装在作物地段和固定地段的自动土壤水分观测仪能够顺利投入业务化运行,为农业气象干旱监测服务,发挥项目建设效益。 本规范适用于利用频域反射法(FDR:Frequancy Domain Reflection)原理来测定土壤体积含水量的自动土壤水分观测仪。 本规范由中国气象局综合观测司组织、中国气象局气象探测中心编写,国家气象中心、河南省气象局、湖北省气象局等单位参与了编写工作。

目录 前言 ................................................................... I 第1章总则 .. (1) 第2章观测的一般要求 (1) 2.1 观测场地 (1) 2.1.1观测地段 (1) 2.1.2选址 (1) 2.1.3场地建设 (2) 2.1.4仪器布设 (2) 2.1.5地段描述与记载 (2) 2.1.6土壤水文、物理特性的测定 (3) 2.2 时制、日界和对时 (3) 2.3 计算项目 (3) 2.4 仪器性能要求 (3) 2.4.1总体要求 (3) 2.4.2传感器性能要求 (3) 第3章观测仪器 (4) 3.1系统结构及工作原理 (4) 3.1.1系统结构 (4) 3.1.2工作原理 (4) 3.2硬件 (4) 3.2.1传感器 (4) 3.2.2数据采集器 (5) 3.2.3系统电源 (5) 3.2.4通信接口与通讯模块 (6) 3.2.5微机 (6) 3.3软件 (6) 3.3.1采集软件 (6) 3.3.2业务软件 (6) 3.4主要功能 (6) 3.4.1初始化功能 (6) 3.4.2数据采集功能 (6) 3.4.3数据处理功能 (6) 3.4.4数据存储功能 (7) 3.4.5数据传输功能 (7) 3.4.6系统管理功能 (7)

测量土壤含水量的方法汇总

测量土壤含水量的方法有哪些 土壤水分是指由地面向下至地下水面(浅水面)以上的土壤层中的水分,它能够供给 作物生产,是农业生产的必要条件,也是土壤肥力的重要组成部分。在农业生产种植中,对土壤水分进行有效的监测,有利于及时了解土壤的肥力状况,为合理施肥、科 学灌溉、加强土壤环境管理起到重要作用。 目前,用于监测土壤含水量的方法很多种,但归纳起来主要有以下几大类: (1)烘干法:又称重量测定法,即取土样放入烘箱,烘干至恒重。此时土壤水分中自由态水以蒸汽形式全部散失掉,再称重量从而获得土壤水分含量。烘干法还有红外法、酒精燃烧法和烤炉法等一些快速测定法。 (2)中子仪法:将中子源埋入待测土壤中,中子源不断发射快中子,快中子进入土壤介质与各种原子离子相碰撞,快中子损失能量,从而使其慢化。当快中子与氢原子碰 撞时,损失能量最大,更易于慢化,土壤中水分含量越高,氢原子就越多,从而慢中

子云密度就越大。中子仪测定水分就是通过测定慢中子云的密度与水分子间的函数关系来确定土壤中的水分含量。 (3)γ射线法:与中子仪类似,γ射线透射法利用放射源137Cs放射出γ线,用探头接收γ射线透过土体后的能量,与土壤水分含量换算得到。 (4)土壤水分传感器法:目前采用的传感器多种多样,有陶瓷水分传感器,电解质水分传感器、高分子传感器、压阻水分传感器、光敏水分传感器、微波法水分传感器、电容式水分传感器等等。 (5)时域反射法:即TDR(Time Domain Reflectometry)法,它是依据电磁波在土壤介质中传播时,其传导常数如速度的衰减取决于土壤的性质,特别是取决于土壤中含水量和电导率。 (6)频域反射法:即FDR(Frequency Domain Reflectometry)法,该系统是通过测量电解质常量的变化量测量土壤的水分体积含量,这些变化转变为与土壤湿度成比例的毫伏信号。

11.王立忠5xiu---盆栽植物土壤水分监测及自动浇灌系统

盆栽植物土壤水分监测及自动浇灌系统设计 王立忠,蒋宁,程礼邦,段佳敏 (吉林师范大学 信息技术学院 吉林 四平 136000) 摘 要:基于单片机设计了一种能够根据土壤湿度进行自动控制,并带显示功能的盆栽植物浇灌系统。单片机根据土壤湿度传感器采集的信号对湿度进行自动控制。根据植物的需要设定湿度的下限和上限,在湿度高于上限值时不进行浇灌。若湿度低于下限值,通过传感器发出缺水信号,根据不同的情况来驱动水泵进行适当的浇水。浇水装置采用滴灌方法,有助于土壤对于水分的吸收和浇灌的均匀。通过定时器定时自动检测土壤湿度, 确保及时为植物提供充足的水分,从而为盆栽植物的生长提供一个良好的环境。 关键词:盆栽植物;自动灌溉;单片机;湿度传感器 中图分类号:TP342 文献标识码:A 0引言 目前,盆栽植物作为一种绿色、天然、健康的植物,就成了人们追求高品质生活的首选,但随着社会的高速发展和生活节奏的加快,人们的生活越来越忙碌,因加班、出差、早起及各种各样繁杂的事情经常会将“照顾”盆栽植物的事忘在脑后。该款装置将花土水分监测和浇灌实现自动化,提高了植物的科学浇灌的同时也减轻了人们的“负担”。克服了传统的人工给盆栽植物浇水带来的局限性[1-2]。装置不同于普通浇灌装置,根据不同植物对水分要求和灌溉时间的要求进行设定,可以在长时间“无人”情况下自动检测花土湿度,并根据花卉对湿度要求进行自动滴灌。盆栽植物土壤水分监测及自动浇灌系统基于单片机控制,再配合土壤湿度检测电路探测盆栽植物所在的土壤环境,由于传统的人工浇水具有不定时性和不均匀性,所以我们采用滴灌技术。本系统采用独立的节能电源设计,避免停电的问题。具有节水、节电、省时、环保等特点。 1系统方案设计 整个系统由土壤湿度传感器模块、单片机采集控制及信号输出电路模块(单片机、数据处理及显示模块)、水泵及供水模块、电源管理模块5个主要部分组成。系统构造框图如图1所示。 单片机模块 电源管理模块土壤湿度传感器模块 给水及灌溉 模块 数据处理及显示模块 图1系统框架图 系统的工作原理:土壤湿度检测模块来完成对盆栽植物土壤湿度的采集,单片机采集控 收稿日期:2014-10-10 基金项目:国家自然科学基金项目(61305082);吉林师范大学第十二批大学 科研基金项目(12234,12235) 第一作者简介:王立忠(1970-),男,吉林省四平市人,现为吉林师范大学信息技术学院副教授,硕士,硕士生导师。研究方向:电子技术.

土壤环境监测技术规范考试题共8页

《土壤环境监测技术规范》(HJ/T 166-2004) 考试题 一、填空题 1.《土壤环境监测技术规范》(HJ/T 166-2004)中——是指用于种植各种粮食作蔬菜、水果、纤维和糖料作物、油料作物及农区森林、花卉、药材、草料等作物的农业用地土壤。 2.《土壤环境监测技术规范》(HJ/T166-2004)中规定在农田耕作层采集若干点的等量耕作层土壤并经混合均匀后的土壤样品,组成混合样的分点数要在——个。 3.《土壤环境监测技术规范》(HJ/T 166-2004)中规定了土壤采样工具主要包、、、、 以及适合特殊采样要求的工具等。 4.《土壤环境监测技术规范》( HJ/T 166-2004)中规定了土壤样品运输过程中严防样品的、、 、对光敏感的样品应有避光外包装。 5.《土壤环境监测技术规范》( HJ/T 166-2004)中规定土壤样品风干时采用、放置。 6.《土壤环境监测技术规范》( HJ/T 166-2004)中规定已制备合格土壤样品主要有、或三种包装容器,规格视量而定。 7.《土壤环境监测技术规范》(HJ/T 166-2004)中规定测试项目需要新鲜样品的土样,采集后用可密封的聚乙烯或玻璃容器在℃以下避光保存,样品要充满容器。 第 1 页

8.《土壤环境监测技术规范》(HJ/T166-2004)中规定每批 土壤样品每个项目分析时均须做平行样品;当个样品以下时,平行样不少于1个。 9.《土壤环境监测技术规范》( HJ/T166-2004)中规定 是直接用土壤样品或模拟土壤样品制得的一种固体物质。 10.《土壤环境监测技术规范> (HJ/T 166-2004)中土壤环境监测的误差由、、三部分组成。 二、判断题 1.《土壤环境监测技术规范》( HJ/T166-2004)适用于全国区域土壤背景、农田土壤环境、建设项目土壤环境评价等类型的监测,但不适用于土壤污染事故监测。( ) 答案:( ) 2.《土壤环境监测技术规范》(HJ/T 166—2004)规定在风干室将土样放置于风干盘中,摊成2~3cm的薄层,适时地压碎、翻动,拣出碎石、砂砾、植物残体。( ) 答案:( ) 3.《土壤环境监测技术规范》(HJ/T 166-2004)规定土壤制样工具每处理一份样后抹(洗)干净,严防交叉污染。( ) 答案:( ) 4. 《土壤环境监测技术规范》(HJ/T 166-2004) 规定土壤环境质量评价一般以单项污染指数主,指数小污染轻,指数大污染则重。( ) 答案:( ) 第 2 页

自动土壤水分观测规范

自动土壤水分观测规范 (试行) 中国气象局综合观测司

前言 自动土壤水分观测规范分八个章节,包括:自动土壤水分观测的基本任务、观测方法、技术要求以及观测记录的处理方法,观测仪器的工作原理、安装、操作、维护与田间标定方法等内容。 本规范既对自动土壤水分观测仪器生产厂家的设备生产、安装、维护、标校等提出具体要求,又规范台站对仪器的使用方法、明确仪器在标校过程中进行人工对比观测取土的要求,目的是为了使安装在作物地段和固定地段的自动土壤水分观测仪能够顺利投入业务化运行,为农业气象干旱监测服务,发挥项目建设效益。 本规范适用于利用频域反射法(FDR:Frequancy Domain Reflection)原理来测定土壤体积含水量的自动土壤水分观测仪。 本规范由中国气象局综合观测司组织、中国气象局气象探测中心编写,国家气象中心、河南省气象局、湖北省气象局等单位参与了编写工作。

目录 前言 ........................................................................................................................................ I 第1章总则 .. (1) 第2章观测的一般要求 (1) 2.1 观测场地 (1) 2.1.1观测地段 (1) 2.1.2选址 (1) 2.1.3场地建设 (2) 2.1.4仪器布设 (2) 2.1.5地段描述与记载 (2) 2.1.6土壤水文、物理特性的测定 (3) 2.2 时制、日界和对时 (3) 2.3 计算项目 (3) 2.4 仪器性能要求 (3) 2.4.1总体要求 (3) 2.4.2传感器性能要求 (3) 第3章观测仪器 (4) 3.1系统结构及工作原理 (4) 3.1.1系统结构 (4) 3.1.2工作原理 (4) 3.2硬件 (4) 3.2.1传感器 (4) 3.2.2数据采集器 (5) 3.2.3系统电源 (5) 3.2.4通信接口与通讯模块 (6) 3.2.5微机 (6) 3.3软件 (6) 3.3.1采集软件 (6) 3.3.2业务软件 (6) 3.4主要功能 (6) 3.4.1初始化功能 (6) 3.4.2数据采集功能 (6) 3.4.3数据处理功能 (6) 3.4.4数据存储功能 (7) 3.4.5数据传输功能 (7) 3.4.6系统管理功能 (7)

土壤水分的遥感监测

土壤水分的遥感监测 摘要:针对日益严重的全球干旱问题,本文从水分监测领域出发进行研究。从国内外各种研究方法的比较及传统方法和遥感监测方法的比较中突出遥感监测的优越性。从遥感监测的各种方法分述,对比出气各自适用的范围和优缺点。联系实际和GIS技术的发展,提出该技术的进步空间。 一、研究土壤水分监测的意义 近百年来全球变化最突出的特征就是气候的显著变暖,这种气候变化会使有些地区极端天气与气候事件如干旱、洪涝、沙尘暴等的频率与强度加强增加。中国气候变暖最明显的地区在西北、华北和东北地区,特别是西北变暖的强度高于全国平均值,使得夏季干旱化和暖冬比较突出。新世纪以来尤为明显:2000年多省干旱面积大,达4054万公顷,受灾面积6.09亿亩,成灾面积4.02亿亩。建国以来可能是最为严重的干旱。 2003年江南和华南、西南部分地区江南和华南、西南部分地区发生严重伏秋连旱,其中湖南、江西、浙江、福建、广东等省部分地区发生了伏秋冬连旱,旱情严重。 2004年我国南方遭受53年来罕见干旱,造成经济损失40多亿元,720多万人出现了饮水困难。 2005年华南南部、云南严重秋冬春连旱,云南发生近50年来少见严重初春旱。 2006年重庆旱灾达百年一遇,全市伏旱日数普遍在53天以上,12区县超过58天。直接经济损失71.55亿元,农作物受旱面积1979.34万亩,815万人饮水困难。 2007年全国22个省全国耕地受旱面积2.24亿亩,897万人、752万头牲畜发生临时性饮水困难。中央财政先后下达特大抗旱补助费2.23亿元。 2008年云南连续近三个月干旱,云南省农作物受灾面积现达1500多万亩。仅昆明山区就有近1.9万公顷农作物受旱,13多万人饮水困难。 2009年华北、黄淮等15个省市连续3个多月,华北、黄淮、西北、江淮等

土壤含水量测量方法

土壤含水量测量方法 ( 1 )称重法(Gravimetric) 也称烘干法,这是唯一可以直接测量土壤水分方法,也是目前国际上的标准方法。用土钻采取土样,用0.1g 精度的天平称取土样的重量,记作土样的湿重 M,在 105℃的烘箱内将土样烘 6~8 小时至恒重,然后测定烘干土样,记作土样的干重 Ms 土壤含水量=(烘干前铝盒及土样质量-烘干后铝盒及土样质 量)/(烘干后铝盒及土样质量-烘干空铝盒质量)*100% ( 2 )张力计法(Tensiometer) 也称负压计法,它测量的是土壤水吸力测量原理如下:当陶土头插入被测土壤后,管内自由水通过多孔陶土壁与土壤水接触,经过交换后达到水势平衡,此时,从张力计读到的数值就是土壤水(陶土头处)的吸力值,也即为忽略重力势后的基质势的值,然后根据土壤含水率与基质势之间的关系(土壤水特征曲线)就可以确定出土壤的含水率 ( 3 ) 电阻法(Electricalresistance) 多孔介质的导电能力是同它的含水量以及介电常数有关的,如果忽略含盐的影响,水分含量和其电阻间是有确定关系的电阻法是将两个电极埋入土壤中,然后测出两个电极之间的电阻。但是在这种情况下,电极与土壤的接触电阻有可能比土壤的电阻大得多。因此采用将电极嵌入多孔渗水介质(石膏、尼龙、玻璃纤维等)中形成电阻块以解决这个问题 ( 4 ) 中子法(Neutronscattering) 中子法就是用中子仪测定土壤含水率中子仪的组成主要包括:一个快中子源,一个慢中子检测器,监测土壤散射的慢中子通量的计数器及屏蔽匣,测试用硬管等。快中子源在土壤中不断地放射出穿透力很强的快中子,当它和氢原子核碰撞时,损失能量最大,转化为慢中子(热中子),热中子在介质中扩散的同时被介质吸收,所以在探头周围,很快的形成了持常密度的慢中子云

土壤含水量的测定实验报告书

1. 实验二 土壤含水量的测定 (烘干法与酒精燃烧法) 一、目的意义 进行土壤含水量的测定有两个目的:一是为了解田间土壤的实际含水情况,以便及时进行播种、灌排、保墒措施,以保证作物的正常生长;或联系作物长相长势及耕作栽培措施,总结丰产的水肥条件。二是风干土样水分的测定,是各项分析结果计算的基础。 土壤含水量的测定方法很多,如烘干法、酒精燃烧法和中子测量法等,其中烘干法是目前国际上土壤水分测定的标准方法,虽然需要采集土样,并且干燥时间较长但是因为它比较准确,且便于大批测定,故为常用的方法。 二、土壤自然含水量的测定 土壤自然含水量是指田间土壤中实际的含水量,它随时在变化之中,不是一个常数。土壤自然含水量测定的方法,介绍烘干法和酒精燃烧法。 (一)烘干法 1.方法原理 将土壤样品放在105℃±2℃的烘箱中烘至恒重,求出土壤失水重量占烘干重量的百分数。在此温度下,包括吸湿水(土粒表面从空气中吸取活动力强的水汽分子而成的一种水分)在内的所有水分烘掉,而一般土壤有机质不致分解。 2.操作步骤 (1)将铝盒擦净,烘干冷却,在1/100天平上称重,并记下铝盒号码(A )。 (2)在田间取有代表性的土样(0~20cm )20g 左右,迅速装入铝盒中,盖好盒盖,带回室内(注意铝盒不可倒置,以免样品撒落),在天平上称重(B ),每个样品至少重复测3份。 (3)将打开盖子的铝盒(盖子放在铝盒旁侧或盖子平放在盒下),放人105℃±2℃的恒温箱中烘6~8小时。 (4)待烘箱温度下降至50℃左右时,盖好盖子,置铝盒于干燥器中30分钟左右,冷却至室温,称重(C ),如无干燥器,亦可将盖好的铝盒放在磁盘或木盘中,待至不烫手时称重。 (5)然后,启开盒盖,再烘4小时,冷却后称重,一直到前后两次称重相差不超过1%时为止(C )。 3.结果计算 土壤含水量(%)= 100A C C B ?-- 式中:A — 铝盒重(g ) B — 铝盒加湿土重(g ) C — 铝盒加烘干土重(g ) 4.注意事项 (1)烘箱温度以105℃±2℃为宜,温度过高,土壤有机质易碳化逸失。在烘箱中,一

相关文档
最新文档