Xinzhong Chen:Revisiting multimode coupled bridge flutter:some new insights

Xinzhong Chen:Revisiting multimode coupled bridge flutter:some new insights
Xinzhong Chen:Revisiting multimode coupled bridge flutter:some new insights

Revisiting Multimode Coupled Bridge Flutter:

Some New Insights

Xinzhong Chen1and Ahsan Kareem2

Abstract:Better understanding of the bimodal coupled bridge?utter involving fundamental vertical bending and torsional modes offers valuable insight into multimode coupled?utter,which has primarily been the major concern in the design of long span bridges.This paper presents a new framework that provides closed-form expressions for estimating modal characteristics of bimodal coupled bridge systems and for estimating the onset of?utter.Though not intended as a replacement for complex eigenvalue analysis,it provides important physical insight into the role of self-excited forces in modifying bridge dynamics and the evolution of intermodal coupling with increasing wind velocity.The accuracy and effectiveness of this framework are demonstrated through?utter analysis of a cable-stayed bridge.Based on this analysis scheme,the role of bridge structural and aerodynamic characteristics on?utter,which helps to better tailor the structural systems and deck sections for superior?utter performance,is emphasized.Accordingly,guidance on the selection of critical structural modes and the role of different force components in multimode coupled?utter are delineated.The potential signi?cance of the consid-eration of intermodal coupling in predicting torsional?utter is highlighted.Finally,clear insight concerning the role of drag force to bridge ?utter is presented.

DOI:10.1061/?ASCE?0733-9399?2006?132:10?1115?

CE Database subject headings:Flutter;Wind loads;Aerodynamics;Aeroelasticity;Dynamics;Bridges.

Introduction

Flutter instability is primarily one of the major concerns in the design of long span bridges.The?utter analysis that combines a ?nite-element model of the bridge and its aerodynamic character-istics derived from section model wind tunnel tests has played an important role in seeking design solutions for innovative aero-dynamically tailored bridge decks and effective structural sys-tems.The mode-by-mode approach that neglects intermodal aerodynamic coupling has proven its utility in predicting bridge ?utter dominated by the action of a single mode?Scanlan1978?. However,experience shows that bridges with longer spans gener-ally require a multimode coupled analysis framework?e.g.,Jones et al.1998;Chen et al.2000a?.In this context,time domain analysis schemes facilitate consideration of nonlinearities in both structural and aerodynamic characteristics and the in?uence of turbulence on?utter?Diana et al.1999;Chen et al.2000b;Chen and Kareem2003a,b?.

The multimode coupled bridge?utter is often dominated by the aerodynamic coupling of fundamental vertical bending and torsional modes with secondary contributions from other modes ?Chen et al.2000a?.Therefore,better understanding of the bi-modal?utter involving the fundamental vertical bending and tor-sional modes promises to provide valuable insight into multimode coupled?utter.The bimodal coupled?utter has laid a?rm foun-dation for developing spring-supported bridge section model tests in wind tunnels as a valuable tool for?utter prediction.The bimodal?utter analysis is also often performed at preliminary design stages to seek the best solution for superior?utter perfor-mance.A step-by-step iterative analysis framework for the bi-modal coupled?utter was introduced by Matsumoto et al.?1997?and Matsumoto?1999?,which attempted to capture the mecha-nism surrounding the evolution of bridge?utter.

The self-excited lift and pitching moment on a bridge deck caused by vertical and torsional motions have been considered as the most important force components in the prediction of bridge ?utter,whereas the lift force and pitching moment on a bridge deck induced by the lateral motion and drag force have been generally regarded as less important.However,recent experience involving the Akashi Kaikyo Bridge has revealed that the drag force induced by the torsional displacement resulted in a consid-erable level of negative damping at higher wind velocities,which is responsible for the coupled?utter?Miyata et al.1994?.Since then,the need for modeling and measurements of drag force and its potential importance to bridge?utter analysis have received some attention in the literature?e.g.,Jones et al.1998,2002?. However,a fundamental understanding of this behavior has re-mained unclear in the bridge aerodynamics community.

In this paper,a new analysis framework that offers closed-form expressions for estimating bimodal coupled?utter is pre-sented.Its accuracy and effectiveness are demonstrated through the?utter analysis of a cable-stayed bridge.Subsequently,this framework is utilized to emphasize the signi?cance of bridge structural and aerodynamic characteristics on?utter.Based on

1Assistant Professor,Wind Science and Engineering Research Center,

Dept.of Civil Engineering,Texas Tech Univ.,Lubbock,TX79409.

E-mail:xinzhong.chen@https://www.360docs.net/doc/347440531.html,

2Professor,Dept.of Civil and Environmental Engineering and

Geological Sciences,Univ.of Notre Dame,Notre Dame,IN46556.

E-mail:kareem@https://www.360docs.net/doc/347440531.html,

Note.Associate Editor:Nicos Makris.Discussion open until March1,

2007.Separate discussions must be submitted for individual papers.To

extend the closing date by one month,a written request must be?led with

the ASCE Managing Editor.The manuscript for this paper was submitted

for review and possible publication on September7,2004;approved on

February22,2006.This paper is part of the Journal of Engineering

Mechanics,V ol.132,No.10,October1,2006.?ASCE,ISSN0733-

9399/2006/10-1115–1123/$25.00.

JOURNAL OF ENGINEERING MECHANICS?ASCE/OCTOBER2006/1115

this framework,guidance on the selection of critical structural modes and the role of different force components in multimode coupled ?utter are delineated.The potential importance of the consideration of intermodal coupling in predicting torsional ?utter is highlighted.Finally,a clear insight concerning the role of drag force in bridge ?utter is presented.

New Analysis Framework

The bridge deck dynamic displacements in the vertical,lateral,

and torsional directions,i.e.,h ?x ,t ?,p ?x ,t ?,and ??x ,t ?,respec-tively,about its statically displaced position,are expressed as

h ?x ,t ?=

?j

h j ?x ?q j ?t ?;p ?x ,t ?=?j

p j ?x ?q j ?t ?;??x ,t ?=

?j

?j ?x ?q j ?t ?

?1?

where h j ?x ?,p j ?x ?and ?j ?x ??j th mode shapes in each respective

direction;q j ?t ??j th modal coordinate;and x ?spanwise position.The self-excited ?se ?forces per unit length linearized around the statically displaced position,i.e.,lift ?downward ?,drag ?down-wind ?,and pitching moment ?nose up ?,are given as ?e.g.,Scanlan 1978,1993;Chen and Kareem 2002?L se ?t ?=1

2

?U 2?2b ?

?

?

kH 1

*h ˙U +kH 2*b ?˙U +k 2H 3*?+k 2H 4*h b +kH 5

*p ˙U +k 2H 6*p b

?

?2?

D se ?t ?=1

2

?U 2?2b ?

??kP 1*p ˙U +kP 2*b ?˙U +k 2P 3*?+k 2P 4*p b +kP 5*h ˙U +k 2P 6

*h b

?

?3?

M se ?t ?=1

2

?U 2?2b 2?

??

kA 1

*h ˙U +kA 2*b ?˙U +k 2A 3*?+k 2A 4*h b +kA 5*p ˙U +k 2A 6*p b

?

?4?

where ??air density;U ?mean wind velocity;B =2b ?bridge

deck width;k =?b /U ?reduced frequency;??frequency of mo-tion;and H j *,P j *,and A j *

?j =1,2,...,6???utter derivatives that are functions of reduced frequency.

The governing matrix equation of bridge motions in terms of modal coordinates is given by

Mq

¨+Cq ˙+Kq =12?U 2?

A s q +b

U

A d q ˙?

?5?

where M =diag ?m j ?,C =diag ?2m j ?sj ?sj ?and K =diag ?m j ?sj

2

??generalized mass,damping,and stiffness matrices,respectively;m j ,?sj ,and ?sj ?j th modal mass,damping ratio,and frequency;A s and A d ?aerodynamic stiffness and damping matrices,respec-tively,and their elements pertaining to the i and j th modes are given by

A sij =?2k 2??H 4*G h i h j +H 6*G h i p j +bH 3*G h i ?j +P 6*G p i h j +P 4*

G p i p j

+bP 3*G p i ?j +bA 4*G ?i h j +bA 6*G ?i p j +b 2A 3*

G ?i ?j ??6?

A dij =?2k ??H 1*G h i h j +H 5*G h i p j +bH 2*G h i ?j +P 5*G p i h j +P 1*

G p i p j

+bP 2*G p i ?j +bA 1*G ?i h j +bA 5*G ?i p j +b 2A 2*

G ?i ?j ?

?7?

and G r i s j =?span r i ?x ?s j ?x ?dx ?where r ,s =h ,p ,???modal integrals.

The modal frequencies and damping ratios as well as inter-modal coupling of the bridge at a given wind velocity,with the contributions of aerodynamic stiffness and damping terms,can be analyzed through the solution of the following complex eigen-value problem by putting q ?t ?=q 0e ?t :

??2M +?C +K ?q 0e ?t =1

2

?U 2?A s +?ˉ

A d ?q 0e ?t ?8?

where ?=???+i ??1??2;?and ??damping ratio and fre-quency of the complex modal branch of interest;?ˉ=?b /U

=???+i ?1??2

?k ;and i =??1.The ?utter condition is determined by seeking the ?utter onset velocity that corresponds to zero damping.

Now,consider the bimodal coupled case where the bridge is modeled by its fundamental vertical bending and torsional modes,i.e.,h 1?x ? 0,p 1?x ?=0,?1?x ?=0;h 2?x ?=0,p 2?x ? 0,?2?x ? 0;and q 0=?q 10q 20?T ?where T ?matrix transpose operator ?.In this context where the fundamental torsional mode is antisymmetric,the corresponding fundamental bending mode is referred to as the fundamental antisymmetric mode.Otherwise,both are referred to as fundamental symmetric modes.In the ensuing analysis,only the lift and pitching moment caused by the vertical and torsional motions are considered.Accordingly,the aerodynamic matrices are described by

A s =?2k 2?

?

H 4*G h 1h 1bH 3*G h 1?2bA 4*G h 1?2

b 2A 3*G ?2?2?

?9?

A d =?2k ?

?

H 1*G h 1h 1bH 2*G h 1?2bA 1*G h 1?2

b 2A 2*G ?2?2

?

?10?

The aeroelastic bridge system with low level of damping is

considered.Because of low level of damping,the decay or growth of motion has little in?uence on the generation of the self-excited forces,i.e.,A s +?ˉA d ?A s +?ik ?A d .By eliminating the terms involving higher order of damping ratio,i.e.,?2???2?2??i ,2?s 1?s 1??2?s 1?s 1?i and 2?s 2?s 2??2?s 2?s 2?i ,Eq.?8?can be re-written as

???2+i 2?ˉ1?ˉ1?+?ˉ12?q 10e

?t

=?D ?2?H 3*+iH 2*??G ?2?2/G h 1h 1?1/2?bq 20?e

?t

?11?

???2+i 2?ˉ2?ˉ2?+?ˉ22??bq 20?e

?t

=?D ?2?A 4*+iA 1*??G h 1h 1/G ?2?2?1/2bq 10e

?t

?12?

where ?

ˉj and ?ˉj ?j =1,2??frequencies and damping ratios that are in?uenced only by the uncoupled self-excited forces,i.e.,the lift caused by vertical motion and the pitching moment caused by

torsion,associated with H 1*,H 4*,A 2*,and A 3

*

1116/JOURNAL OF ENGINEERING MECHANICS ?ASCE /OCTOBER 2006

?ˉ1=?s1?1????/?s1?2H4*?1/2?13??ˉ1=?s1??s1/?ˉ1??0.5???/?ˉ1?H1*????/?ˉ1??14??ˉ2=?s2?1????/?s2?2A3*?1/2?15??ˉ2=?s2??s2/?ˉ2??0.5???/?ˉ2?A2*????/?ˉ2??16?

and?=?b2/m;?=?b4/I;m=m1/G h

1h1;and I=m2/G?

2

?2=mr2

?effective mass and polar moment of inertia per unit span,respectively;r?radius of gyration of the cross section;

D=G h

1?2/?G h1h1G?2?2?1/2?the similarity factor between the verti-

cal and torsional mode shapes.

When the coupled self-excited forces,i.e.,the lift caused by torsion and the pitching moment caused by vertical motion,asso-ciated with H2*,H3*,A1*,and A4*,are negligibly small,the equations of motion become uncoupled.For this uncoupled system,the modal frequencies and damping ratios are given by?Scanlan 1978?

?10=?s1?1+?H4*??1/2?17?

?10=?s1??s1/?10??0.5?H1*?18?

?20=?s2?1+?A3*??1/2?19?

?20=?s2??s2/?20??0.5?A2*?20?

It is noted that in the case of the uncoupled system,?10=?ˉ1,?ˉ1=0,?20=?ˉ2,and?ˉ2=0.As the?utter derivatives are func-tions of reduced frequency,for the bimodal coupled system,?ˉ1 ?10and?ˉ2 ?20.However,the modal frequencies of the coupled system are generally very close to those of the corresponding uncoupled system at the same wind velocity.In addition,the in?uence of the uncoupled self-excited forces on modal frequencies is not sensitive to the change in reduced frequency.Therefore,?ˉ1??s1?1????ˉ1/?s1?2H4*?1/2=?10and ?ˉ2??s2?1????ˉ2/?s2?2A3*?1/2=?20.

The solutions of Eqs.?11?and?12?lead to the modal frequen-cies,damping ratios,and complex mode shapes for both modal branches.Consider the solution of the vertical mode branch with a frequency?=?1that is closer to?ˉ1than?ˉ2,and damping ratio ?=?1.The amplitude ratio,?,and phase difference between ver-tical and torsional motions,?,as de?ned by bq20/q10=?e i?,can be determined from Eq.?12?as

?=?DR d1???A4*?2+?A1*?2??G h

1h1/G?

2

?2

??1/2?21?

?=tan?1?A1*/A4*??tan?1??2?ˉ2??1/?ˉ2??/?1???1/?ˉ2?2???22?where

R d1=??1/?ˉ2?2??1???1/?ˉ2?2?2+?2?ˉ2??1/?ˉ2??2??1/2?23?By replacing?bq20?with q10?e i?,Eq.?11?becomes

???12+i2?ˉ1?ˉ1?1+?ˉ12???D2?12??e i???q10e?t=0?24?where

??=R d1???H3*?2+?H2*?2???A4*?2+?A4*?2??1/2?25?

??=tan?1?H2*/H3*?+??26?

Eq.?24?can only be satis?ed when the term in the brackets becomes zero,which leads to the closed-form solutions for the frequency and damping ratio of the modal branch as

?1=?s1?1+?H4*+??D2??cos????1/2?27?

?1=?s1??s1/?1??0.5?H1*?0.5??D2??sin???28?Similar expressions can be derived for the torsional modal branch with a frequency?=?2that is closer to?ˉ2than?ˉ1,and damping ratio?=?2.The amplitude ratio,?,and phase difference between vertical and torsional motions,?,as de?ned by q10/?bq20?=?e i?,can be determined from Eq.?11?as

?=?DR d2???H3*?2+?H2*?2??G?

2

?2/G h1h1??1/2?29??=tan?1?H2*/H3*??tan?1??2?ˉ1??2/?ˉ1??/?1???2/?ˉ1?2???30?where

R d2=??2/?ˉ1?2??1???2/?ˉ1?2?2+?2?ˉ1??2/?ˉ1??2??1/2?31?The frequency and damping ratio of this modal branch are given by

?2=?s2?1+?A3*+??D2??cos????1/2?32?

?2=?s2??s2/?2??0.5?A2*?0.5??D2??sin???33?where

??=R d2???H3*?2+?H2*?2???A4*?2+?A1*?2??1/2?34?

??=tan?1?A1*/A4*?+??35?It is noted that the derivation of the preceding closed-form expressions was based only on the assumption of low level of damping.In fact,such an approximation has also been implicitly invoked in the modeling of the self-excited forces and analysis of bridge?utter.Because of the low level of damping,the decay or growth of the deck motion does not in?uence the self-excited forces,which permits characterization of?utter derivatives only in terms of the reduced frequency rather than both the reduced frequency and damping.This assumption has also been routinely made in?utter analysis schemes such as so-called p?k and p methods and conventional complex eigenvalue analysis?e.g., Chen and Kareem2003b?.Therefore,this approximation is by no means restrictive,thus the proposed framework with closed-form expressions is expected to be generally applicable to a variety of bimodal coupled systems.It is also emphasized that at the?utter onset velocity with zero damping,the proposed framework for the ?utter modal branch results in the exact solution as the conven-tional eigenvalue analysis because the invoked approximation vanishes.

As the?utter derivatives are functions of reduced frequency, in the preceding expressions for each modal branch,the?utter derivatives are de?ned at the respective reduced frequency.The in?uence of the coupled self-excited forces on the modal frequen-cies is often negligible,while it tends to separate closely spaced frequencies.The in?uence of damping ratio?on the amplitude ratio and phase difference is often small and even can be ne-glected by simply setting?=0,particularly,in cases where modal frequencies are well separated and the damping ratio is small. Although iterative calculations for both frequencies and damping ratios are required,they converge very fast.The iterative calcu-lations may even be eliminated by inserting respective values

JOURNAL OF ENGINEERING MECHANICS?ASCE/OCTOBER2006/1117

of frequencies and damping ratios obtained at the immediate previous wind velocity for evaluating parameters,like the ?utter derivatives,on the right-hand side of the formulations.It is em-phasized that the proposed framework is not intended to replace the conventional complex eigenvalue analysis framework for the purpose of ?utter analysis.Instead,it offers closed-form analyti-cal solutions that provide clear physical insight as to how self-excited forces change bridge dynamics and to how the intermodal coupling evolves with increasing wind velocity.

Illustration and Discussion

In the following,the accuracy and effectiveness of the proposed framework is demonstrated utilizing a long span cable-stayed

bridge with a center span of about 1000m.The bridge deck width is B =30m.The nondimensional mass and polar moment of iner-tia parameters are ?=0.0139and ?=0.0579.The frequencies of the fundamental vertical bending and torsional modes,i.e.,Modes 3and 13,are 0.2144and 0.5708Hz,respectively.The corre-sponding mode shapes in terms of the bridge deck displacements in three directions are shown in Fig.1.It can be seen that Mode 3is a pure vertical bending mode,and Mode 13is a torsional mode with secondary coupled lateral motion.For these two modes,the modal integrals are G h 1h 1=0.4951,bG h 1p 2=?0.0224,bG h 1?2=0.9767,G p 2p 2=0.0213,and b 2G ?2?2=2.0573.The si-milarity factor of these two modes is D =0.9678,very close to unity,which indicates a high modal similarity in shapes between these two modes.The modal damping ratio for these two modes is assumed to be 0.0032.Only the lift and pitching moment

acting on the bridge deck related to ?utter derivatives H i *,A i *

?i =1,2,3,4?are considered.For comparison,two typical cases,referred to as Cases A and B,corresponding to a slender and a relatively bluff bridge deck section,respectively,are considered.In Case A,the ?utter derivatives are calculated from Theoderson

function.As shown in Fig.2,H 1*,H 3*,H 4*,A 2*?0,and H 2*,A 1*,A 3*

,A 4*?0;in Case B,the ?utter derivatives are measured using a rectangular section with width to height ratio of 5?Matsumoto

et al.1997?.As shown in Fig.3,H 1*,H 3*,H 4*,A 4*?0,H 2*

?0,A 1*?0,and changes to ?0for higher reduced wind velocities and A 2*?0at lower reduced wind velocities,but ?0at higher reduced wind velocities,and A 3*is originally ?0,but changes to ?0as the reduced wind velocity increases.Obviously,Cases A and B,re-spectively,correspond to the cases of coupled ?utter and torsional ?utter.

Fig.4shows the predicted frequencies and damping ratios as well as mode shapes in terms of amplitude ratios and phase dif-ferences for both modal branches in Case A.For the vertical

Fig.1.Bridge mode shapes:?a ?Mode 3;?b ?Mode 10;and ?c ?Mode

13

Fig.2.Flutter derivatives for the slender bridge deck section:?a ?

?utter derivatives H i *?i =1,2,3,4?;?b ??utter derivatives A i *

?i =1,2,3,4

?

Fig.3.Flutter derivatives for the relatively bluff bridge deck section:

?a ??utter derivatives H i *?i =1,2,3,4?;?b ??utter derivatives A i *

?i =1,2,3,4?

sional motion to vertical motion,thus a positive value of phase difference suggests that the vertical motion lags the torsional mo-tion.For the torsional mode branch,the complex mode is de?ned as the ratio of vertical motion to torsional motion,thus a positive value of phase difference suggests that the torsional motion lags the vertical motion.The amplitude ratio is given in terms of the ratio between the vertical and torsional displacements of the bridge deck at the center of the main span so that these are inde-pendent of the mode shape normalization scheme.The solid lines and circles,respectively,show the results of the conventional complex eigenvalue analysis and the proposed framework.Fig.5shows the results for Case B.It can be seen that the proposed framework provides predictions for both branches that show a good agreement with the conventional complex eigenvalue analy-sis.The predicted critical ?utter velocities by both approaches are identical,i.e.,119m/s for Case A and 69.6m/s for Case B.

There are some minor differences between the two approaches in Case A,which only surface at the high wind velocities for the vertical modal branch with high levels of damping where the invoked assumption breaks down.It should be mentioned that the ?utter derivatives are generally experimentally identi?ed for motions with low level of damping ?free vibration method ?or zero damping ?forced vibration method ?.Therefore,the predicted high level of damping even by the conventional eigenvalue analy-sis is equally questionable.

Signi?cance of Bridge Structural and Aerodynamic Characteristics on Flutter

The proposed framework clearly highlights the contributions of different aerodynamic force components to the modi?cations in modal frequencies and damping ratios with changing wind ve-locities.For the example of the torsional modal branch,the terms

?A 3*and ?0.5?A 2*

in Eqs.?32?and ?33?,respectively,represent the in?uences of uncoupled aerodynamic stiffness and damping forces on the frequency and damping.The terms involving ??D 2??sin ??and ?0.5??D 2??cos ??are the respective contri-butions from the coupled aerodynamic forces.Fig.6shows the contributions of different force components to the modal frequen-cies and damping ratios in Case A.It is inferred from Fig.6?a ?that the modi?cation in frequencies is a result of the uncoupled aerodynamic stiffness,while the contribution of coupled aerody-namic forces is quite small.As shown in Fig.6?b ?,the coupled aerodynamic forces result in an increase in the damping of the vertical modal branch.By contrast,as shown in Fig.6?c ?,the coupled forces generate negative damping in the torsional modal branch,which leads to the initiation of coupled ?utter at 119m/s.As A 2*?0,torsional motion generates positive damping and tor-sional ?utter does not exist at the action of the torsional mode alone.The contrasting contributions of the coupled aerodynamic forces to the damping ratios of both modal branches clearly point at an energy transfer between these two branches.

This contrasting behavior is attributed to the difference in

https://www.360docs.net/doc/347440531.html,parison of ?utter analysis for the cable-stayed bridge ?Case A ?:?a ?frequency;?b ?damping ratio;?c ?amplitude ratio;and ?d ?phase

difference

https://www.360docs.net/doc/347440531.html,parison of ?utter analysis for the cable-stayed bridge ?Case B ?:?a ?frequency;?b ?damping ratio;?c ?amplitude ratio;and ?d ?phase

difference

Fig.6.Contributions of different force components to frequencies and damping ratios ?Case A ?:?a ?frequency;?b ?damping ratio ?Mode Branch 3?;and ?c ?damping ratio ?Mode Branch 13?

tical and torsional modal branches,where ??=tan ?1?H 2*/H 3*

?

+tan ?1?A 1*/A 4*???d 1,??=tan ?1?H 2*/H 3*?+tan ?1?A 1*

/A 4*???d 2,?d 1

=tan ?1??2?ˉ2??1/?

ˉ2??/?1???1/?ˉ2?2??,and ?d 2=tan ?1??2?ˉ1??2/?

ˉ1??/?1???2/?ˉ1?2??The angle tan ?1?H 2*/H 3*

?represents the phase difference between the torsional motion and its resulting lift force.The angle

tan ?1?A 1*/A 4*

?represents the phase difference between the vertical motion and its resulting pitching moment.As shown in Figs.7?a

and b ?,tan ?1?H 2*/H 3*

?for both branches at the same wind velocity are very close to each other,although they correspond to different reduced frequencies.Similar observation can also be made for

tan ?1?A 1*/A 4*

?.However,the angles ?d 1and ?d 2,respectively,for the vertical and torsional branches,are considerably different,which are attributed to the distinct values of frequency ratios,i.e.,

?1/?

ˉ1and ?2/?ˉ1.As shown in Fig.7?c ?,for the vertical modal branch,as ?1/?

ˉ2?1,?d 1ranges from 0to ?/2,and approaches zero for a low level of damping ?ˉ2and a small value of frequency

ratio ?1/?

ˉ2.On the other hand,for the torsional modal branch,as ?2/?

ˉ1?1,?d 2ranges from ?/2to ?,and approaches ?for a low level of damping ?ˉ1and a large value of frequency ratio ?2/?

ˉ1.Consequently,the phase differences of coupled motions in both branches,i.e.,?and ?,are between 0and ?/2.Thus,the vertical modal branch is associated with a coupled motion in which tor-sional motion lead vertical motion,while the torsional modal branch corresponds to a coupled motion in which torsional mo-tion lags vertical motion.This type of motion allows the coupled self-excited forces to produce a positive damping to the vertical modal branch as sin ???0,and a negative damping to the tor-sional modal branch as sin ???0.The bimodal coupled ?utter is likely to be initiated from the branch with higher frequency.Fig.8shows the contributions of different force components to damping ratio of the torsional modal branch in Case B.As A 2*becomes a positive value from a negative value with increasing wind velocity,a torsional ?utter exists beyond 69.6m/s even with the involvement of only a single torsional mode.While the contribution of the coupled forces is relatively weak,it reduces the damping and leads to a lower ?utter onset velocity of

64.3m/s.This suggests that the multimode coupled ?utter analy-sis framework is generally required for not only bridges with slender sections but also bridges with relatively bluff sections as has been pointed out in Chen et al.?2000a ?and Jones et al.?2002?.Consideration of intermodal coupling is potentially more signi?cant in the cases of a soft-type ?utter in which negative damping builds up slowly with increasing wind velocity ?Chen and Kareem 2003c ?,and a slight difference in the predicted damping ratio may lead to a notable difference in the predicted critical ?utter velocity.

The proposed framework offered intuitive and valuable insight into the signi?cance of structural and aerodynamic characteristics to coupled bridge ?utter without performing extensive numerical parametric studies,as is often needed in the traditional frame-work.These insights could help in developing design solutions to enhance ?utter performance.For instance,increases in structural mass and torsional frequency,as well as the frequency ratio be-tween the torsional and vertical modes,help to improve ?utter performance.Higher structural damping contributes not only to the increase in the damping of the respective modal branch but also to the reduction of coupled motion and,therefore,is bene?-cial in delaying ?utter.Modi?cation of the structural system can potentially change structural dynamic characteristics including mode shapes,which modify the associated modal integrals and the contributions of aerodynamic forces.The uncoupled self-excited forces due to displacements,i.e.,terms related to H 4

*and A 3*,and in particular A 3

*

,reduce the modal frequencies and thus have unfavorable in?uences on ?utter.The uncoupled self-excited forces due to bridge deck velocities,i.e.,terms related to

H 1*and A 2*,and in particular A 2*

increase the modal damping and thus these are bene?cial to ?utter.The negative damping gener-ated by the coupled forces,i.e.,terms related to H 2*,H 3*,A 1*

,and

A 4*,and in particular the aerodynamic stiffness terms H 3*and A 1*

,is the main contributing source that drives the bridge to coupled ?utter instability.

In order to improve bridge ?utter performance,it is essential to enhance the bene?cial features and reduce the unfavorable contributions to system damping.This can be realized through the introduction of aerodynamically tailored bridge decks and effec-tive structural systems.For example,a streamlined multibox section with properly designed large portions of grating/air gap between individual box sections is often characterized by low static drag force and low aerodynamic forces as compared to a single box section without grating/air gap.This kind of section not only offers higher ?utter performance but also leads to a rela-tively soft-type ?utter.Additional damping devices can be very effective for further enhancing soft-type ?utter behavior ?e.g.,Chen and Kareem 2003c ?.In addition,the modi?cation of the bridge cable system of a suspension bridge not only helps

in

Fig.7.Phase differences due to structural and aerodynamic characteristics ?Case A ?:?a ?vertical modal branch;?b ?torsional modal branch;and ?c ??d 1and ?d

2

Fig.8.Contributions of different force components to damping ratio of Modal Branch 13?Case B ?

1120/JOURNAL OF ENGINEERING MECHANICS ?ASCE /OCTOBER 2006

increasing frequencies,but also has the potential to change mode shapes that could be bene?cial to increasing ?utter velocity.The proposed framework also helps to understand the relative participation of structural modes in a multimode coupled ?utter,which can guide the selection of modes in a ?utter analysis.A mode comprised of large values of coupled aerodynamic stiffness and damping terms with the fundamental torsional mode,which are functions of ?utter derivatives and modal integrals,as shown by Eqs.?6?and ?7?,is more likely to be important for coupled ?utter.Furthermore,this coupling will be enhanced when its damping is low and its frequency is close to the torsional modal frequency.For example,the fundamental vertical bending mode often has a higher similarity in shape with the fundamental tor-sional mode,which leads to larger coupled aerodynamic terms between these two modes.Therefore,the fundamental vertical bending mode is more likely to be coupled with the torsional mode as compared to other higher vertical bending modes whose mode shapes have less similarity with the fundamental torsional mode,although their frequencies may be closer to the torsional modal frequency.Some modes may become locally important at a certain wind velocity range when their frequencies become close to the torsional modal frequency.The modes that are most likely to be excited should be considered in the analysis.The infor-mation concerning modes that play a major role in ?utter not only helps in better understanding multimode coupled bridge ?utter,but it offers equally valuable guidance for design and in-terpretation of wind tunnel studies using full aeroelastic bridge models,which may only be able to replicate a limited number of selective modes of the prototype bridge due to dif?culties in model fabrication.

In?uence of Intermodal Coupling on Torsional Flutter

Fig.9shows the predicted frequencies and damping ratios of Modal Branches 3,10,and 13for the cable-stayed bridge with the bluff deck section ?Case B ?.As shown in Fig.1?b ?,Mode 10is the second symmetric lateral bending mode with coupled motion in torsion.The values of modal integrals of Mode 10are:G p i p i =0.4051,bG p i ?i =0.0019,and b 2G ?i ?i =0.1170.The damping ratio of Mode 10is also assumed to be 0.0032.The results for cases that include and ignore intermodal coupling are compared here.Without the consideration of intermodal coupling,the action of the single Mode 13leads to a torsional ?utter beyond 69.6m/s and the action of the single Mode 10develops a torsional ?utter exceeding 74.3m/s.The aerodynamic damping of Mode 10is very low due to low aerodynamic damping force introduced by A dii =?2k 2?b 2A 3*G ?i ?i as compared to Mode 13.With the consider-ation of intermodal coupling,the curve veering of the frequency and damping loci of Modal Branches 10and 13is observed around 80m/s where these two modal frequencies are close to each other.The curve veering is due to strong interactions of these two modes ?Chen and Kareem 2003d ?.These two modal branches continuously exchange their properties as these experience veer-ing action.As shown in Table 1,at the end of the veering action,Modal Branch 13becomes dominated by structural Mode 10,and Modal Branch 10is dominated by structural Mode 13.Based on Eqs.?6?and ?7?and consideration of only ?utter derivatives

H i *,A i *

,?i =1,2,3,4?,the coupled stiffness and damping terms involving Modes 10and 13are given by A sij =?2k 2?b 2A 3*G ?i ?i and

A dij =?2k 2?b 2A 2*G ?i ?j with b 2

G ?i ?j =?0.4892.Based on the expres-sion for the amplitude ratio,it is clear that the coupling between

Modes 10and 13becomes signi?cant only in the region where their frequencies are close to each other,as indicated in Table 1.This strong intermodal coupling results in a negative peak in the damping loci of Modal Branch 13around 80m/s.The ?utter onset velocities for these two branches are 58.7and 65.9m/s.These results demonstrate the importance of intermodal coupling for the prediction of a torsional bridge ?utter.

In?uence of Drag Force on Flutter

While the self-excited drag force is often neglected in a ?utter analysis,it may have a notable contribution to ?utter in some cases,as observed in the case of the Akashi Kaikyo Bridge ?Miyata et al.1994?.In the following,based on the proposed analysis framework,clear insight into this important issue is offered.

The following discussion focuses on the contribution of drag damping force related to P 1*=?2C D /k ?where C D =0.2?static drag force coef?cient ?.Based on Eqs.?6?and ?7?,the inclusion of P 1*only affects the damping terms involving Modes 10and 13as

Table 1.Amplitude Ratios in Modal Branches

Modal Branch 10

Modal Branch 13U ?m/s ?Mode 10Mode 13Mode 10Mode 1360 1.00.35020.4182 1.070 1.00.55270.6548 1.078 1.00.96990.9921 1.080 1.0 1.1789 1.1378 1.082 1.0 1.3841 1.3225 1.090

1.0

1.9830

2.0711

1.0

Fig.9.In?uence of intermodal coupling on torsional ?utter:?a ?frequency;?b ?damping ratio

JOURNAL OF ENGINEERING MECHANICS ?ASCE /OCTOBER 2006/1121

A dij =?2k 2??P 1*G p i p i +b 2A 2*

G ?i ?i ?.Fig.10?a ?shows the in?uence of the drag force to the damping ratios in which coupling between these modes is not considered.It is noted that while the additional damping associated with the lateral motion is small,it apparently increases the onset velocity of the torsional ?utter initiated from the single Mode 10from 74.3to 86.8m/s.However,it has al-most no in?uence on the torsional ?utter initiated from the single Mode 13.The in?uence of drag force on ?utter becomes negli-gible when the intermodal coupling of these two modes is further considered,as shown in Fig.10?b ?.

This relative signi?cance of different force components/?utter derivatives can be easily clari?ed based on Eqs.?6?and ?7?and the framework presented in this study.The drag force may be-come relatively important such as in the case of soft-type ?utter as demonstrated in Fig.10?a ?for Mode 10.However,the contri-bution of drag force will remain insigni?cant in the cases of hard-type ?utter where aerodynamic damping generated by lift and pitching moment rapidly develops as wind velocity increases,as demonstrated in Fig.10?a ?for Mode 13and in Fig.10?b ?for both Modal Branches 10and 13.It is important to note that the ?utter analysis framework,which offers information concerning changes in modal frequencies and damping ratios and associated mode shapes with increasing wind velocity,provides more valuable in-sight into the physics of multimode coupled ?utter in comparison with the analysis that only focuses on the evaluation of ?utter onset velocity.This information also helps to better understand the multimode coupled buffeting response of the bridge.

The importance of drag force to bridge ?utter as experienced in the Akashi Kaikyo Bridge was as a result of the unique aero-dynamic feature of this bridge with a truss deck section.This bridge experienced large negative angles of attack at the high wind velocity region due to its large static drag force coef?cient.Around this statically displaced position,the lift and pitching moment were small and the attendant aerodynamic damping was low.In contrast,the drag force induced by torsional motion

was relatively large,and its negative damping effect considerably affected the ?utter performance.However,for bridges with deck sections that have low static drag force and large self-excited lift and pitching moment,the contribution of self-excited drag force is likely to be less important.

Concluding Remarks

A new analysis framework that offers closed-form expressions for estimating modal characteristics of bimodal coupled bridge sys-tems and for estimating onset of ?utter was presented.The ?utter analysis of a cable-stayed bridge demonstrated the accuracy and effectiveness of the proposed framework comparable to the conventional framework using numerical complex eigenvalue analysis.The only assumption made in the proposed framework was low level of damping,which has also been implicitly invoked in the modeling of the self-excited forces and analysis of bridge ?utter using conventional numerical approaches.Hence,this as-sumption is by no means restrictive,thus the proposed framework is applicable to a variety of bimodal coupled systems.At the ?utter onset velocity with zero damping,the proposed framework gives the exact solution of ?utter as the conventional eigenvalue analysis because the invoked approximation vanishes.

The proposed framework offered intuitive and valuable insight into the signi?cance of structural and aerodynamic characteristics of coupled bridge ?utter without performing extensive numerical parametric studies as needed in the traditional framework.It clearly pointed to the dominant role of coupled self-excited forces in the generation of negative damping that led to bridge ?utter instability.These insights aided in better understanding the under-lying physics of bridge ?utter and offered better measures for tailoring of bridge deck sections and effective selection of struc-tural systems for superior ?utter performance.

The proposed framework also helped to guide in the selection of critical structural modes in a multimode ?utter analysis.A mode comprised of large values of coupled aerodynamic stiffness and damping terms with the fundamental torsional mode is more likely to be important to bridge ?utter.This intermodal coupling will be enhanced when its damping is low and its frequency is close to the torsional modal frequency.Some modes may become locally important to ?utter at a certain wind velocity region when their frequencies fall close to the torsional mode frequency.The understanding of modes that play a major role in ?utter equally offers valuable information for the design and interpretation of wind tunnel studies using full aeroelastic bridge models where only limited modes of vibration can be physically modeled.

The ?utter analysis of a cable-stayed bridge with a relatively bluff section pointed out the potential importance of intermodal aerodynamic coupling in the prediction of torsional ?utter.The intermodal coupling may meaningfully affect the ?utter onset velocity,particularly,in soft-type ?utter cases where the aero-dynamic damping generated by the lift and pitching moment slowly builds up with increasing wind velocity.This necessitates the use of a multimode coupled analysis framework for the prediction of even torsional ?utter,which has been customarily analyzed by using the traditional mode-by-mode approach.

Clear insight into the signi?cance of different force components/?utter derivatives such as drag force to ?utter was provided.The drag force may become relatively important for soft-type ?utter cases.However,its contribution will remain in-signi?cant for hard-type ?utter cases where aerodynamic damping caused by the self-excited lift and pitching moment rapidly

devel-

Fig.10.In?uence of drag force on ?utter:?a ?damping ratio ?without coupling ?;?b ?damping ratio ?with coupling ?

1122/JOURNAL OF ENGINEERING MECHANICS ?ASCE /OCTOBER 2006

ops as the wind velocity increases.It was emphasized that the ?utter analysis framework that offered information concerning delineation of changes in modal frequencies and damping ratios and associated mode shapes with increasing wind velocity provided more valuable insights into the underlying physics of multimode coupled?utter as compared to the analysis that only focused on the determination of?utter onset velocity.This information also helps to better understand the multimode coupled buffeting response of the bridge. Acknowledgments

The support for this work was provided in part by NSF Grant No.CMS03-24331.This support is gratefully acknowledged. The?rst writer also gratefully acknowledges the support of the new faculty start-up funds provided by Texas Tech University. References

Chen,X.,and Kareem,A.?2002?.“Advances in modeling of aerody-namic forces on bridge decks.”J.Eng.Mech.,128?11?,1193–1205. Chen,X.,and Kareem,A.?2003a?.“Aeroelastic analysis of bridges: Effects of turbulence and aerodynamic nonlinearities.”J.Eng.Mech., 129?8?,885–895.

Chen,X.,and Kareem,A.?2003b?.“New frontiers in aerodynamic tai-loring of long span bridges:An advanced analysis framework.”

J.Wind.Eng.Ind.Aerodyn.,91?12-15?,1511–1528.

Chen,X.,and Kareem,A.?2003c?.“Ef?cacy of tuned mass dampers for bridge?utter control.”J.Struct.Eng.,129?10?,1291–1300. Chen,X.,and Kareem,A.?2003d?.“Curve veering of eigenvalue loci of bridges with aeroelastic effects.”J.Eng.Mech.,129?2?,146–159.Chen,X.,Matsumoto,M.,and Kareem, A.?2000a?.“Aerodynamic coupling effects on?utter and buffeting of bridges.”J.Eng.Mech., 126?1?,17–26.

Chen,X.,Matsumoto,M.,and Kareem,A.?2000b?.“Time domain?utter and buffeting response analysis of bridges.”J.Eng.Mech.,126?1?, 7–16.

Diana,G.,Cheli,F.,Zasso,A.,and Bocciolone,M.?1999?.“Suspension bridge response to turbulent wind:Comparison of new numerical simulation method results with full scale data.”Wind Engineering into the21st century,https://www.360docs.net/doc/347440531.html,rsen,https://www.360docs.net/doc/347440531.html,rose,and F.M.Livesey,eds., Balkema,Rotterdam,The Netherlands,871–878.

Jones,N.P.,Raggett,J.D.,and Ozkan,E.?2002?.“Prediction of cable-supported bridge response to wind:Coupled?utter assessment during retro?t.”J.Wind.Eng.Ind.Aerodyn.,91?12-15?,1445–1464. Jones,N.P.,Scanlan,R.H.,Jain,A.,and Katsuchi,H.?1998?.“Advances ?and challenges?in the prediction of long-span bridge response to wind.”Bridge aerodynamics,https://www.360docs.net/doc/347440531.html,rsen and S.Esdahl,eds.,Balkema, Rotterdam,The Netherlands,59–85.

Matsumoto,M.?1999?.“Recent study on bluff body aerodynamics and its mechanism.”Wind engineering into the21st century,https://www.360docs.net/doc/347440531.html,rsen,

https://www.360docs.net/doc/347440531.html,rose,and F.M.Livesey,eds.,Balkema,Rotterdam,The

Netherlands,67–78.

Matsumoto,M.,Daito,Y.,Yoshizumi,F.,Ichikawa,Y.,and Yabutani, T.?1997?.“Torsional?utter of bluff bodies.”J.Wind.Eng.Ind.Aero-dyn.,69-71?0?,871–882.

Miyata,T.,Tada,K.,Sato,H.,Katsuchi,H.,and Hikami,Y.?1994?.

“New?ndings of coupled?utter in full model wind tunnel tests on the Akashi Kaikyo Bridge.”Proc.,Symp.on Cable-Stayed and Suspen-sion Bridges,Deauville,France,October12–15,163–170. Scanlan,R.H.?1978?.“The action of?exible bridges under wind.

1:Flutter theory.”J.Sound Vib.,60?2?,187–199.

Scanlan,R.H.?1993?.“Problematics in formulation of wind-force models for bridge decks.”J.Eng.Mech.,119?7?,1353–1375.

JOURNAL OF ENGINEERING MECHANICS?ASCE/OCTOBER2006/1123

沪教版高一数学上册1.1 区间的表示方法和集合相关概念 讲义

第一讲:集合与区间的概念及其表示法 知识点一、区间的概念 设 a ,b 是实数,且 a <b ,满足 a ≤x ≤b 的实数 x 的全体,叫做闭区间, 记作 [a ,b ],即,[,]{|}a b x a x b =≤≤。如图: a , b 叫做区间的端点.在数轴上表示一个区间时,若区间包括端点,则端点用实心点表示;若区间不包括端点,则端点用空心点表示. 全体实数也可用区间表示为(-∞,+∞),符号“+∞”读作“正无穷大”,“-∞”读作“负无穷大”,即(,)R =-∞+∞。 知识二、元素与集合:指定对象的全体叫“集合”,简称“集”,用大写英文字母A 、B 、C 等表示,其中的每个对象叫“元素”,用小写英文字母a 、b 、c 表示 1.集合元素的特性: 集合中元素的从属性要明确 反例:大树、好人 集合中元素必须能判定彼此 反例:2,2 集合中元素排列没有顺序 如:{1,2,3}{2,1,3}= 例1、判断下列各组对象能否组成集合: (1)不等式的解; (2)我班中身高较高的同学; (3)直线上所有的点; (4)不大于10且不小于1的奇数。 练习1.给出下列说法: (1)较小的自然数组成一个集合; (2)集合{1,-2,3,π}与集合{π,-2,3,1}是同一个集合; (3)若∈a R ,则a ?Q ; (4)已知集合{x ,y ,z }与集合{1,2,3}是同一个集合,则x =1,y =2,z =3 其中正确说法个数是( ) 例2.集合A 是由元素n 2-n ,n -1和1组成的,其中n ∈Z ,求n 的取值范围。 例3.已知M={2,a,b }N={2a,2,}且M=N ,求a,b 的值 练习2.已知集合M={a,a+d,a+2d},N={a,aq,aq 2},a≠0,且M 与N 中的元素完全相同,求d 和q 的值。 320x +>21y x =-2 b

劳斯莱斯品牌历史介绍

文章要点: 一个贵族与一个天才的偶然相识,产生了劳斯莱斯品牌 劳斯莱斯在创立之初就致力于打造“世界上最好的汽车” 在跌宕起伏的成长历史中,劳斯拉斯那“汽车中的贵族”地位始终没有动摇 “劳斯莱斯是汽车王国雍容高贵的唯一标志。无论她的款式如何老旧,造价多么高昂,至今仍然没有挑战者。”她的创始人在一个世纪以前留给我们的 话,直到今天仍像当年一样正确。作为一个屹立了百年的汽车品牌,劳斯莱斯 在创立之初就致力于打造“世界上最好的汽车”,而到现在它依然如此。它在 世界汽车业界的顶尖地位始终没有动摇过,“汽车中的贵族”不是一句空洞的 口号,它凝聚的是一代代劳斯莱斯人追求完美的信念、标准和坚持。如今,劳 斯莱斯轿车已经成为地位的象征,而车辆的主人也都是有一定身份的人。

劳斯莱斯品牌的两位创始人:亨利·莱斯(左图)与查利·劳斯(右图) 1904年的一天中午,在曼彻斯特Midland酒店的一张餐桌旁,一位41岁的中年人和一个26岁的小伙子轻声交谈着,他们就是Frederick Henry Royce (亨利·莱斯)和Charles Stewart Rolls(查利·劳斯),在旁人眼里这也许只是两位朋友的一顿家常便饭,但他们肯定不会想到,正是这两个人创造了劳斯莱斯品牌,并且一走就是一百年! 1904年:“汽车中的贵族”诞生 贵族与天才的结合创立出象征尊贵的劳斯莱斯品牌 1903年,亨利·莱斯开始打造自己的第一款汽车。他委托铸造厂来制造汽车部件,招来一些车架工匠组装4座车身,并成功制造出第一款2汽缸发动机Royce汽车,排量1800毫升,最大功率仅为10马力。而出身与贵族家庭的劳斯,在一个偶然的机会看到莱斯生产出的2缸发动机汽车,受到极大震撼。这辆车用按钮起动,运行十分平稳流畅,噪音很小,而且不像当时的汽车那样经常出现故障。劳斯一下子就意识到这就是他想要的高质量的汽车,他立即把莱斯的这辆车借到伦敦,并介绍给他的合伙人克劳德·约翰逊。他们在心中暗喜:莱斯先生就是他们发现的将要主宰世界的机械天才。 1904年的圣诞节,劳斯和莱斯正式签署合作协议,双方合作生产可以推向市场的汽车,汽车将由Royce有限公司(该公司是莱斯早年间创造的公司)

品牌的诞生与发展

第一讲品牌的诞生与发展(上) 品牌是商业中的重要概念,是基于品牌的量化管理模式是现代营销发展的重要标志之 一。 在商业领域,品牌思想是企业管理的一个重要思想。品牌管理思想如何在实践中得到贯彻,成为企业盈利和发展的一种重要手段? 我们每天都跟产品和品牌销售打交道,经常也有人讨论品牌的重要性。如果不能够建立一套系统科学的流程,品牌就很难在实践中得以应用。如果一个企业,把品牌思想导入到企业中去,就意味他的营销管理已经从传统进入到了现代。 【案例1】 我们生活中有很多不同类型的女性,年轻的或是中年的女性打扮的是否漂亮与金钱没有关系。一些人拥有很多钱,买的服装都是名牌,但这并不意味着一定能打扮得漂亮。相反,一些买不起名牌服装的女孩子,通过精细打扮却增色不少,非常美丽。所以,一个女孩子的美丽与金钱之间没有紧密的关系。犹如企业的品牌是否拥有知名度、美誉度,与企业的财力之间不存在必然的联系。 一、品牌的诞生 品牌如何诞生如何发展有三个非常重要的故事,分别称为品牌的诞生、品牌经理制的诞生,以及多品牌管理思想的诞生。这三个故事已经有了100 多年的发展历程。通过这三个故事可以帮助我们理解品牌,逐步走进品牌时代的商业社会。 品牌在英文brand 的原意并不是品牌的意思,而是烙在牛马身上的烙印。在古代,人们为了证明牲口的所有权,就在牲口的屁股上打上烙印。所以,在1865 年之前,brand 只是用来指代烙印,根本没有品牌的含义。品牌的诞生就带有了一定的偶然性,同时也是一个必然的过程。 19 世纪60 年代,因为当时没有冰箱,人们为了便于肉类迅速出港运往全国,便把屠宰基地选在了辛辛那提这个港口城市。码头各种各样的货物堆积成山。辛辛那提很快成为了当时全美最大的屠宰基地。很多客商来到辛辛那提不进城就直奔码头将所需之肉装入船舱,立刻运往全国各地。正是在这样的一个产业背景下,相关的肉制品深加工行业得到了迅速的发展,宝洁公司就是在这样一个得风得雨的商业环境中茁壮发展。经过 20 年的发展,1867 年宝洁成为了一家专门生产蜡烛和肥皂的中型企业。 宝洁在品牌的发展过程中有一件轶事。当时宝洁公司跟其他的肉制品企业一样将产品堆在码头上,为了防止产品被风吹雨淋,每堆货物上都盖了帆布。客商在订货的时候,打开帆布查验货物。如果客商认同货物,就把货物运走。但是这样会花费大家很多的时间,偶尔还会遇到一个问题记不清自己的产品在哪里。因为码头

品牌风格介绍

木依坊 MOVEUP强调在浮华、忙碌中,找回自我,以反省的思考去表达真我,避免会盲从,失去本我。 我们独立,对生活充满热爱,面对生活中的挫折能够不屈不挠迎难而上;具有充分的自信、饱满的热情、为理想坚持不懈地奋勇拼搏热爱生活、并将穿着视为个人性格和生活风格的表达的男性和女性。该品牌以这个人群的生活方式作为产品开发和设计的源头,采用棉、麻及天然纤维的面料,结合简洁时尚的设计,搭配出多种舒适款式来体味生活、享受心情。独立,个性的设计主题是该品牌向世界表达的声音。 圣妮 “SHINY CRYSTAL”源至于西班牙·巴伦西亚自治区著名的旅游城市·阿利坎特Alicante。产品以体现时尚、前卫、低调、奢华而著称,更因“SHINY CRYSTAL”带有一种放荡不羁、追逐财富、崇尚自由精神的波西尼亚风格,而深受社会名媛所追捧。Juan胡安家族早期主要以经营纺织品为主,Juan·Carmen胡安·卡门在接手家族企业后创建了“SHINY CRYSTAL”这个品牌。后随设计师MS. AMELIE到来,公司的产品继而涉足皮具、饰品、太阳眼镜等多个时尚领域,使“SHINY CRYSTAL”成为一个多元化品牌。 2009年经过施华洛世奇(SWAROVSKI)公司介绍将“SHINY CRYSTAL”引进中国,并在2010年7月注册“杭州圣妮工艺品有限公司”。在产品的设计上秉承“SHINY CRYSTAL”独特的时尚设计理念,糅合“天使之泪”施华洛世奇的水晶材质,再结合精湛的珠宝制作工艺。使“SHINY CRYSTAL”成为一个不仅注重外观细节,更是一个奢华的,无时无刻不在昭示着自己独特魅力的饰品时尚领导品牌。 MISS TEEN MISS TEEN品牌的主形象为一个可爱兼具形象气质的主流美丽女孩的肖像,她既代表了亚霖服饰这一年龄层作为主服务群体的重视,也代表公司旗下各品牌的健康、阳光、可爱、梦幻、带卡通色彩的正面形象。 DILI DILI品牌价值主张是展现女人在事业和生活上游刃有余的姿态,即拥有独立自立的创造力,又充满激情和感情爱与被爱的感染力,核心目标消费群体25-30岁,现在都市时尚白领丽人,事业踌躇满志,生活激情迸发,突显理性和感性交织魅力的新女性。 德达利 与繁杂的首饰不同,它成为潮人装备中不可或缺的元素,太阳镜前卫而时

最新区间的概念(教学设计)

区间的概念 【教学目标】 1. 理解区间的概念,掌握用区间表示不等式解集的方法,并能在数轴上表示出来. 2. 通过教学,渗透数形结合的思想和由一般到特殊的辩证唯物主义观点. 3. 培养学生合作交流的意识和乐于探究的良好思维品质,让学生从数学学习活动中获得成功的体验,树立自信心. 【教学重点】 用区间表示数集. 【教学难点】 对无穷区间的理解. 【教学方法】 本节课主要采用数形结合法与讲练结合法.通过不等式介绍闭区间的有关概念,并与学生一起在数轴上表示两种不同的区间,学生类比得出其它区间的记法.在此基础上引导学生用区间表示不等式的解集,为学习用区间法求不等式组的解集打下坚实的基础.【教学过程】

新课区间不包括端点,则端点用空心点表示. 全体实数也可用区间表示为(-∞,+∞),符 号“+∞”读作“正无穷大”,“-∞”读作“负无 穷大”. 例1用区间记法表示下列不等式的解集: (1) 9≤x≤10;(2) x≤0.4. 解(1) [9,10];(2) (-∞,0.4]. 练习1用区间记法表示下列不等式的解集, 并在数轴上表示这些区间: (1) -2≤x≤3;(2) -3<x≤4; (3) -2≤x<3;(4) -3<x<4; (5) x>3;(6) x≤4. 例2用集合的性质描述法表示下列区间: (1) (-4,0);(2) (-8,7]. 解(1) {x | -4<x<0};(2) {x | -8<x≤7}. 练习2用集合的性质描述法表示下列区间, 并在数轴上表示这些区间: (1) [-1,2);(2) [3,1]. 例3在数轴上表示集合{x|x<-2或x≥1}. 解如图所示. 用表格呈现相应的 区间,便于学生对比记 忆. 教师强调“∞”只是 一种符号,不是具体的 数,不能进行运算. 学生在教师的指导 下,得出结论,师生共 同总结规律. 学生抢答,巩固区 间知识. 学生代表板演,其 它学生练习,相互评价. 了铺垫. 学生理解无 穷区间有些难 度,教师要强调 “∞”只是一种 符号,并结合数 轴多加练习。 三个例题 之间,穿插类似 的练习题组,使 学生掌握不等 式记法,区间记 法,数轴表示三 者之间的相互 转化.逐层深 入,及时练习, 使学生熟悉区 间的应用. x 01 -1 -2

纪梵希 品牌介绍

顶级奢侈品牌(七)——纪梵希 1952年,纪梵希这个品牌在法国正式诞生,它是以其创始人,第一位首席设计师休伯特·德·纪梵希(hubert de givenchy)命名的,而它的标记则是4个“g”字母的变形组合。几十年来,这一品牌一直保持着“优雅的风格”,在时装界几乎成了“优雅”的代名词。而纪梵希本人在任何场合出现总是一副儒雅气度和爽洁不俗的外形,因而被誉为“时装界的绅士”,直到1955年7月11日纪梵希在他的最后一次高级时装发布会后宣告退这台展示会是空前的,也是令人难忘的,“时尚、简洁、女性化”——人们在他塑造的活泼而优雅的女性形象中重温了这一品牌多年来的风格本质。 以华贵典雅的产品风格享誉时尚界三十余年的Givenchy,一直是时装界中的翘楚 Givenchy的4G标志分别代表古典 Genteel 优雅 Grace 愉悦 Gaiety 以及Givenchy,这是当初法国设计大师Hubert de Givenchy创立Givenchy时所赋予的品牌精神时至今日,虽历经不同的设计师,但Givenchy的4G精神却未曾变动过 要看Givenchy的设计,可从经典美女郝黛莉赫本身上反映出来 Givenchy与郝黛莉赫本相识于1953年,从单纯的主顾关系,因为相互欣赏彼此的才华而进展成好朋友随后四十年的时间里,Givenchy不但为赫本设计日常衣饰,同时也负责设计赫本在电影中所穿的服装,包括《罗马假日》《珠光宝气》《甜姐儿》与《偷龙转凤》等。而1957年推出的L lnterdit香水更是特别为赫本设计的 Givenchy那种华贵典雅的风格,或多或少是其个性的反映爽朗谦和,再加上法国人的浪漫深情,令Givenchy赢得"服装界彬彬绅士"的美誉他曾说:"真正的美是来自对传统的尊重,以及对古典主义的仰慕",这句话也准确地描绘出他是一个完美主义者,也是其设计的精髓。 纪梵希的创立人Hubert de Givenchy于1927年出生在法国诺曼第Beauvais的一个艺术世家 1952年2月2日Givenchy首度在巴黎推出个人作品发布会,在这场以白色棉布为主,辅以典雅刺绣与华丽珠饰的时装展中,他的创意才华令在场人士吃惊不已,同时也奠定了Givenchy在时装界的尊崇形象 1957年,Givenchy设立了另一家公司les Parfums Givenchy,同时推出两种香水L Interdit与De 此后,Givenchy 名下的产品也陆续开发扩充:1959年推出第一支男性香水Monsieur de Givenchy 1968年,纪梵希成衣系列上市 1975年推出男装系列Givenchy Gentleman 1989年,Givenchy Beaute彩妆系列与Swisscare pour Givenchy护肤系列上市 1988年,Givenchy被法国的LVMH集团收购,但Givenchy本人仍主持品牌时装的设计工作,直至1995年退休。 Givenchy退休后,英国设计师John Galliano Alexander McQueen Julien Macdonald相继担任Gienchy 的设计工作,将Givenchy传统的精神发挥到了极致此外,再加上彩妆产品的创意总监Olivier Echaudernaison的专业妆点,更是让Givenchy成为流行舞台上最耀眼的一颗星星。

品牌介绍模板

品牌介绍模板 植物医生品牌是植物护肤专家,口碑传播是植物医生的信仰,他们把客户的口碑视为最好的广告。植物医生从世界各地的原生态植物种植地收集产品原料,对产品的高品质有着近乎苛刻的追求,依循草本疗法和芳香疗法的标准制造,全线产品均通过皮肤安全测试,并保证不添加转基因成分。植物医生具有极强的环保意识和社会责任感,推行空瓶回收,相继资助了中国红十字基金会、污染受害者法律帮助中心热线等,还发起了植物医生奖学金资助贫困大学生。 品牌信息 品牌名称:植物医生 英文名称:DR PLANT 品牌使命:我们用自然的植物为您带来更多的美丽 品牌定位:为您量肤现配,已有上千家店面 品牌理念:植物护肤、口碑传播、公益事业 品牌理念 植物护肤——NATURAL 我们相信植物具备为肌肤带来健康美丽的神奇力量; 我们倡导植物护肤; 我们尊重呵护植物世界。 口碑传播——WORDOF MOUTH 口碑传播是我们的信仰; 我们以合理的价格与消费者交换产品和服务; 我们不将庞大的媒体广告费用摊牌给消费者; 顾客的口碑是我们最好的广告。 公益事业——PUBLICWELFARE 人文关怀精神是我们品牌发展的基石; 我们全力支持和倡导环保;

我们在经营品牌的同时热心社会公益事业。 品牌故事 植物医生(DR PLANT)一直以来为爱美的女性提供量肤现配式的服务。早在1994年,就根据每个人皮肤的细微差别和个人愿望,现场将半成品的植物成分配制成个性化产品,顾客在现场就可以看到适合自己的、独一无二的护肤品的诞生过程。由于充分考虑了顾客皮肤的实际情况,又精心找到每种植物的神奇力量,配制出真正适合不同肤质的产品,植物医生(DR PLANT)赢得了广大消费者的信任。口碑传播是植物医生(DR PLANT)的信仰,我们把客户的口碑视为最好的广告。植物医生(DR PLANT)从世界各地的原生态植物种植地收集产品原料,对产品的高品质有着近乎苛刻的追求,依循草本疗法和芳香疗法的标准制造,全线产品均通过皮肤安全测试,并保证不添加转基因成分。植物医生(DR PLANT)具有极强的环保意识和社会责任感,推行空瓶回收,相继资助了中国红十字基金会、污染受害者法律帮助中心热线等,还发起了植物医生奖学金资助贫困大学生。 品牌荣誉 品牌历史 2012年3月,植物医生荣获网络最佳口碑传播奖。 2012年3月,植物医生正式加入美国NRF组织。 2012年2月,确认品牌理念为:植物护肤,口碑传播,公益事业。 2011年12月,植物医生同样出资8万元,援助西安建筑科技大学8名优秀特困生,每人奖学金1万元。 2011年11月,植物医生同样出资5万元,援助北京工商大学5名优秀特困生,每人奖学金1万元。 2011年11月,植物医生出资5万元,援助河北民族师范学院5名优秀特困生,每人奖学金1万元。 2011年,植物医生荣获中国化妆品蓝玫奖,2011年度口碑大奖。 2010年12月,植物医生出资8万元,援助西安建筑科技大学8名优秀特困生,每人获得奖学金1万元。 2010年11月,植物医生出资5万元,援助北京工商大学5名优秀特困生,每人获奖学金1万元。 2010年7月22日,植物医生荣获“2010中国化妆品品牌传播创新大奖——最佳店面设计”

区间概念教案

区间的概念教学设计

新课 新课 设a,b 是实数,且a<b. 满足a≤x≤b 的实数x 的全体,叫做闭区 间,记作 [a,b],如图. a,b 叫做区间的端点.在数轴上表示一个区 间时,若区间包括端点,则端点用实心点表示;若 区间不包括端点,则端点用空心点表示. 全体实数也可用区间表示为(-∞,+∞),符 号“+∞”读作“正无穷大”,“-∞”读作“负无 穷大”. 例 1 用区间表示不等式 3x>2+4x 的解集, 并在数轴上表示出来。 解:解不等式 3x>2+4x 得: x< -2 所以用区间表示不等式的解集是 (-∞,-2) 在数轴上表示如图 练一练:用区间表示不等式 4x>2x+4的解 集,并在数轴上表示出来。 教师讲解闭区间, 开区间的概念,记法和 图示,学生类比得出半 开半闭区间的概念,记 法和图示. 用表格呈现相应的 区间,便于学生对比记 忆. 教师强调“∞”只是 一种符号,不是具体的 数,不能进行运算. 学生在教师的指导 下,得出结论,师生共 同总结规律. 学生抢答,巩固区 间知识. 学生代表板演,其 教师只讲 两种区间,给学 生提供了类比、 想象的空间,为 后续学习做好 了铺垫. 学生理解无 穷区间有些难 度,教师要强调 “∞”只是一种 符号,并结合数 轴多加练习。 三个例题 之间,穿插类似 的练习题组,使 学生掌握不等 式记法,区间记 法,数轴表示三 者之间的相互 转化.逐层深 入,及时练习,

例2 已知集合A=( 0 ,3 ),集合B=[ -1, 2 ],求 A∩B ,A∪B 。 解:两个集合的数轴表示如图所示: 察图形知: A∩B = ( 0 ,2 ] A∪B = [ -1 ,3 ) 练一练 1、已知集合A=[ -3 ,4 ],集合B=[ 1, 6 ],求 A∩B ,A∪B 。: 它学生练习,相互评价. 同桌之间讨论,完 成练习. 使学生熟悉区 间的应用. 小 结 填制表格: 集合区间区间名称数轴表示 {x|a<x<b} {x|a≤x≤b} {x|a≤x<b} {x|a<x≤b} 集合区间数轴表示 {x | x>a } {x | x<a } {x | x≥a } {x | x≤a} 师生共同完成表格.通过表格 归纳本节知识, 有利于学生将 本节知识条理 化,便于记忆。作业布置

劳斯莱斯品牌历史介绍

汽车之家品牌历史] “劳斯莱斯是汽车王国雍容高贵的唯一标志。无论她的款式如何老旧,造价多么高昂,至今仍然没有挑战者。”她的创始人在一个世纪以前留给我们的话,直到今天仍像当年一样正确。作为一个屹立了百年的汽车品牌,劳斯莱斯在创立之初就致力于打造“世界上最好的汽车”,而到现在它依然如此。它在世界汽车业界的顶尖地位始终没有动摇过,“汽车中的贵族”不是一句空洞的口号,它凝聚的是一代代劳斯莱斯人追求完美的信念、标准和坚持。如今,劳斯莱斯轿车已经成为地位的象征,而车辆的主人也都是有一定身份的人。 劳斯莱斯品牌的两位创始人:亨利·莱斯(左图)与查利·劳 斯(右图)

1904年的一天中午,在曼彻斯特Midland酒店的一张餐桌旁,一位41岁的中年人和一个26岁的小伙子轻声交谈着,他们就是Frederick Henry Royce(亨利·莱斯)和Charles Stewart Rolls(查利·劳斯),在旁人眼里这也许只是两位朋友的一顿家常便饭,但他们肯定不会想到,正是这两个人创造了劳斯莱斯品牌,并且一走就是一百年! 1904年:“汽车中的贵族”诞生 贵族与天才的结合创立出象征尊贵的劳斯莱斯品牌 1903年,亨利·莱斯开始打造自己的第一款汽车。他委托铸造厂来制造汽车部件,招来一些车架工匠组装4座车身,并成功制造出第一款2汽缸发动机Royce汽车,排量1800毫升,最大功率仅为10马力。而出身与贵族家庭的劳斯,在一个偶然的机会看到莱斯生产出的2缸发动机汽车,受到极大震撼。这辆车用按钮起动,运行十分平稳流畅,噪音很小,而且不像当时的汽车那样经常出现故障。劳斯一下子就意识到这就是他想要的高质量的汽车,他立即把莱斯的这辆车借到伦敦,并介绍给他的合伙人克劳德·约翰逊。他们在心中暗喜:莱斯先生就是他们发现的将要主宰世界的机械天才。

高一数学教案:2.1.2函数-区间的概念及求定义域的方法

课 题:2.1.2函数-区间的概念及求定义域的方法 教学目的: 1.能够正确理解和使用“区间”、“无穷大”等记号;掌握分式函数、根式函数定义域的求法,掌握求函数解析式的思想方法; 2.培养抽象概括能力和分析解决问题的能力; 教学重点:“区间”、“无穷大”的概念,定义域的求法 教学难点:正确求分式函数、根式函数定义域 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 函数的三要素是:定义域、值域和定义域到值域的对应法则;对应法则是函数的核心(它规定了x 和y 之间的某种关系),定义域是函数的重要组成部分(对应法则相同而定义域不同的映射就是两个不同的函数);定义域和对应法则一经确定,值域就随之确定 前面我们已经学习了函数的概念,,今天我们来学习区间的概念和记号 二、讲解新课: 1.区间的概念和记号 在研究函数时 ,常常用到区间的概念,它是数学中常用的述语和符号. 设a,b ∈R ,且aa ,x ≤b ,x

品牌诞生背景

CLOT ——潮流品牌推广策略分析 姓名:张皎 学号:21 专业:电子商务

目录 一、clot-品牌档案 (3) 1.1.品牌创始人介绍 (3) 1.2.clot-品牌档案 (3) 1.3. clot-品牌简介 (3) 1.4. 自创品牌C L O T的发展历史 (4) 1.5.clot-品牌特点 (5) 1.6.实体店内设计 (5) 二、CLOT推广策略分析 2.1.已有的推广策略 (5) 2.1.1线上策略: (5) 2.1.2线下策略: (9) 三、有关CLOT的网络营销建议 (12) 四.结语 (12)

一、clot-品牌档案 1.品牌创始人介绍 陈冠希 陈冠希曾是港台地区知名艺人,于1999年正式于香港娱乐圈崭露头角,曾拍摄多部电影,发过多张专辑,其抢眼的外型和本身对于演艺事业的用心,使得他在非常短的时间之内汇集所有的话题与人气,迅速成为新生代的超人气小天王。2007年底,因与多名女明星的自拍艳照被神秘人士公布,成为沸沸扬扬的“艳照门”事件舆论核心人物,并为之宣布退出香港娱乐圈,从而转向好莱坞发展,虽然事业不见起色,但依然是公众关注的对象。 2.clot-品牌档案 名称:Clot 创建年代:2003年 创建人:陈冠希(EDISON) Clot潮流店铺:ACU、JUICE 3. clot-品牌简介 EDISON陈冠希2003年创办了自己的服装品牌CLOT,并自己参与服装的设计、用料等各个方面,成为中国第一潮牌,并在世界上都有一定的影响力。CLOT是一个LIFESTYLE 的公司,创作服装,包括CLOT品牌服装以及在香港的JUICE店铺、策划PARTY、帮助香港一些公司做consultant,例如NIKE、PEPSI…、更包括CLOT自己的音乐,现成员包括:陈冠希、MC仁、陈奂仁、DJTommy、厨房仔、恭硕良等一起,CLOT是一个FAMIL Y,是一个不可分开的家庭。而他的店铺JUICE也成为香港游客的一旅游胜地CLOT也经常会与一些其他大品牌生产合作产品,像LEVI'S,NIKE,PEPSI等品牌。2010年1月陈冠希与

如何撰写品牌介绍

爱得堡——首家轻奢华时尚男鞋品牌介绍 时尚不是对浮于表面的潮流、概念的追逐,而是有独特的审美品味和自我界定; 奢华不是高高在上的仰望、膜拜的姿态,而是拒绝罪恶与浪费的真实的内心。 在满目奢华的时尚之路上,一路行走太快,以至于忘记了最真实的风景;一路寻找繁华,却恰恰跌入繁华的陷阱。于是,在这个愈来愈追求心灵的自由及喧嚣后的平静的年代,轻度奢华的概念脱颖而出。随之应运而生的,则是轻奢华的领导者——爱得堡。 不执著于世事的浮躁,更不刻意追求所谓的奢侈,从始至终,以低调的华丽游走于时尚的潮流中,坚守自我,爱得堡,从不曾改变。 爱得堡,亦是百变,在时尚的变奏中,捕捉到每一丝顶尖的潮流元素,赋予生活中恒定的价值,印证你独特的品味。 隐匿是奢华的糖衣,低调是尊贵的内涵,每个人心中都有一座爱得堡,他淡然的屹立在风起云涌的时尚界,享受自己的一份云淡风轻,散发着轻奢华的美好韵味。

爱得堡,一个专注于高端男鞋的时尚品牌,一个将奢华以低调的方式完美演绎的品牌。爱得堡,从诞生之日起便始终保持着积极的态度,用奢华的态度拒绝平庸的生活,用低调的方式演绎高高在上的时尚,让男人的尊贵魅力,真正始于足下。 再现传统手工制鞋工艺的经典,融入国际潮流前沿的时尚元素,设计严谨而不拘束,打造高端品质的精品,这就是爱得堡。高品位从来无需张扬,这是一种生活态度,是一种人生的智慧,更是一种极具内涵的时尚,每一双鞋都在用特立独行的方式诉说着全新的轻奢华主义,满足男人们对流行时尚、生活品位的喜爱与追求。

做优质男人,拥有精致生活,在现代时尚中,爱得堡全心全意打造专属成功男性的“3G”生活 GRUPS——顽童 个性T恤,英伦牛仔,时刻充满活力,浑身散发时尚。爱新奇,爱冒险,喜欢台球,酷爱飙车,偶尔相约几位驴友来次履行,永远猜不到下一秒要做什么,生活中永远不缺乏想象。 色彩斑斓、桀骜不羁、勇于探索、充满活力,在大男人旗号的掩护下,每个男人心底都有许多小机灵,爱得堡,挖掘男人心底最原始、最幽默的领域。Grups尽显大顽童主义,打破世俗,重新定义游戏规则,赋予你最具娱乐精神的时尚。 GUY'S——伙伴 干净的衬衫,随意的休闲裤,简单、精炼是他们的代言词,平凡而亲切是他们独有的气息。他们的生活看似一成不成,却偶尔有些小情趣,翻阅下书架的书籍、自己动手现磨咖啡、周末相约安静垂钓……日子简单而温馨。 爱得堡相信,男人的世界不只是,叱咤风云的抱负、智慧与坚毅,更有温柔浪漫的关爱、包容与诙谐。人性化的Guy's,中规中矩,却不失随意与浪漫。中庸之道,或许不那么强烈,但却纯粹。将男性内敛的魅力演绎到极致,沉稳而大气。 GENTLEMAN——绅士 西装革履,举止优雅,浑身散发低调而迷人的香气,一举一动都精致如画。

十个品牌介绍

一、榭飞雍 品牌概念:Chevignon France(法国榭飞雍)是来自法国的复古潮牌。1979年,法国经典皮革专家Guy Azoulay,从空军飞行元素撷取设计灵感,并以自己的偶像飞行员Charles Chevignon为品牌命名,Chevignon的法式空军风潮便由巴黎开始席卷全球。 品牌定位:Chevignon以复刻经典诠释对时尚复古风的独特见解,Chevignon空军皮外套为时尚界打开了新的视野。 Chevignon将空军服中的自由率性和冒险精神融入潮流服饰,受 50 年代军事元素和空军的bomber jacket 影响,空军皮外套一直是Chevignon的品牌标志,只选用最讲究、最出色的优质小羊皮,一直是超越流行的经典设计。 Chevignon几乎就是法国丹宁的代名词,以五十年代的法国文化风格为蓝图,每一条Vintage 57复古牛仔裤都采用源自日本和意大利的高档面料,以法国传统的丹宁布制作方法制成,经典的剪裁、挺括的衬里和独特的洗水技术都体现了精致的法国复古精神。

二、蒙克莱 品牌概念:蒙克莱(Moncler)是一家总部位于法国格勒诺布尔专门从事生产户外运动装备的著名品牌。Moncler品牌名来自于小镇Monestier de Clermon的缩写。Moncler的故事开始于第二次世界大战期间,品牌具有传奇历史,时至今日,Moncler在户外羽绒服业界中,成为首屈一指的国际顶尖品牌。 Moncler的品牌Logo是M字母与一只公鸡的组合。Moncler品牌下面分:“Moncler Gamme Rouge”和“Moncler Gamme Bleu”两个秀场品牌,“Moncler Gamme Rouge”是女装秀场品牌,创意总监为Giambattista Valli,在巴黎时装周上举办展示;“Moncler Gamme Bleu”是男装秀场品牌,在米兰男装周上举办展示。 品牌定位:经典系列——经久不衰的 Moncler经典系列年年被翻新又翻新,洗尽铅华后闪闪发光。对于喜欢休闲、既定穿衣风格的人来说,经典款永远是最佳的选择,没有太多浮夸的设计,规整的防风帽,前袋,侧袋收口都没有很大的改

函数区间的概念及求定义域的方法

课题:2.1.2函数-区间地概念及求定义域地方法教学目地: 1.能够正确理解和使用“区间”、“无穷大”等记号;掌握分式函数、根式函数定义域地求法,掌握求函数解析式地思想方法; 2.培养抽象概括能力和分析解决问题地能力; 教学重点:“区间”、“无穷大”地概念,定义域地求法 教学难点:正确求分式函数、根式函数定义域 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 函数地三要素是:定义域、值域和定义域到值域地对应法则;对应法则是函数地核心(它规定了x和y之间地某种关系),定义域是函数地重要组成部分(对应法则相同而定义域不同地映射就是两个不同地函数);定义域和对应法则一经确定,值域就随之确定 前面我们已经学习了函数地概念,,今天我们来学习区间地概念和记号 二、讲解新课: 1.区间地概念和记号 在研究函数时,常常用到区间地概念,它是数学中常用地述语和符号. 设a,b∈R ,且a

这样实数集R 也可用区间表示为(-,+),“”读作“无穷大”,“-”读作“负无穷大”,“+∞”读作“正无穷大”.还可把满足x ≥a,x>a,x ≤b,x=

品牌介绍文案

Armani/阿玛尼乔治?阿玛尼(Giorgio Armani)与1975年创立于意大利米兰。乔治?阿玛尼(Giorgio Armani) 先生设计的时装优雅含蓄,大方简洁,做工考究, 集中代表了意大利时装的风格,以使用新型面料及优良制作而闻名。他 打破阳刚与阴柔的界线,引领女装迈向中性风格。 Bally/巴利巴利(Bally) 是一个经营了160多年的经典瑞士奢侈品品牌。以鞋靴起家的巴利(Bally) 至今已发展出皮包、时装、饰品等。在众多的名牌世家中, BALL Y可称是独树一帜的一家。 Prada/普拉达创始人Mario·Prada(马里奥·普拉达)于1913年在意大利米兰的市中心创办了首家prada精品店,所设计的时尚而品质卓越的手袋、旅行箱、 皮质配件及化妆箱等系列产品,得到了来自皇室和上流社会的宠爱和追 捧。Prada的每个系列都充满了令人兴奋和意外的元素,而这些只是证明 了Miuccia赋予品牌无穷尽的想象力和创造力。 Bottega Veneta/宝缇嘉意大利编织豪门Bottega V eneta由意大利莫尔泰杜(Moltedo)家族于1966年在意大利Vicenza设立总部,取名为宝缇嘉(Bottega Veneta),现改名“葆蝶家”,意为VENETA工坊,。独家的皮革梭织法让BOTTEGA VENETA在70年代发光发热,成为知名的顶级名牌。 Fendi/芬迪Fendi最早作为皮革世家起家,品牌于1925年创立于罗马,专门生产高品质毛皮制品?Fendi的设计特色在于其创意十足、精致考究、新颖独到, 最出名的莫过于It Bag“Fendi baguette”芬迪长面包棍手袋。其后公司 逐渐发展壮大,经营范围扩大,甚至开发了珠宝、男用香水等,但芬迪 (Fendi) 品牌仍以其毛皮类服装在世界时装界享有盛誉。 GUCCI/古奇由Guccio Gucci创立的GUCCI王国于1921年创建于意大利的佛罗伦萨,产品涵盖服装、皮包皮鞋、手表、家饰品、宠物用品、丝巾与领带,更 在1975年推出古驰香水产品。GUCCI一直以生产高档豪华的产品著名。 无论是鞋、包还是服装,都以“身份与财富之象征”品牌形象成为富有 的上流社会的消费宠儿。 Saint Laurent/圣罗兰上世纪60年代,执时装界牛耳的Yves Saint Laurent先生,用巴黎左岸最具创新、时尚的独特风情,开创了色彩缤纷、浪漫高雅的Yves Saint Laurent 时代。他永久地改变了女性的着装规则——他创举性地引进了曾是男士专属的西裤套装、狩猎外套和燕尾服到女装领域。品牌的旗舰产品至今仍然是昂贵的高级时装,产品中包括时装,香水、饰品、鞋帽,、护肤化妆品及香烟等。 Ferragamo/菲拉格慕创造力、激情和韧性是Ferragamo家族恒久不变的价值观。创始人Salvatore Ferragamo先生异常关注质量和细节,他赢得了"明星御用皮鞋匠"的称号。Salvatore Ferragamo的设计风格华贵典雅,实用性和款式并重,以传统手工设计和款式,在世界各地奢侈品界享用美誉。Salvatore Ferragamo的鞋履制作坚信--舒适与流行是不相矛盾的,这也一直是这个品牌的设计核心概念,同时兼顾健康和时髦。随着时尚圈的新趋势,Ferragamo逐渐顺应潮流,品牌更呈现年轻化并受人青睐。 BURBERRY/巴宝莉拥有150多年历史的巴宝莉(BURBERRY)是英国国宝级品牌,具有浓厚英伦文化,长久以来成为奢华、品质、创新以及永恒经典的代名词,其多层次的产品系列满足了不同年龄和性别消费者需求。品牌于1901年创作的骑士商标成为家喻户晓的标志,其次1924年创作的BURBERRY格纹亦成为BURBERRY的经典代表图案。BURBERRY带有一股英国传统

品牌介绍怎么写

品牌介绍怎么写 篇一:品牌介绍模板 品牌介绍模板 植物医生品牌是植物护肤专家,口碑传播是植物医生的信仰,他们把客户的口碑视为最好的广告。植物医生从世界各地的原生态植物种植地收集产品原料,对产品的高品质有着近乎苛刻的追求,依循草本疗法和芳香疗法的标准制造,全线产品均通过皮肤安全测试,并保证不添加转基因成分。植物医生具有极强的环保意识和社会责任感,推行空瓶回收,相继资助了中国红十字基金会、污染受害者法律帮助中心热线等,还发起了植物医生奖学金资助贫困大学生。 品牌信息 品牌名称:植物医生 英文名称:DR PLANT 品牌使命:我们用自然的植物为您带来更多的美丽 品牌定位:为您量肤现配,已有上千家店面 品牌理念:植物护肤、口碑传播、公益事业 品牌理念 植物护肤——NATURAL 我们相信植物具备为肌肤带来健康美丽的神奇力量; 我们倡导植物护肤; 我们尊重呵护植物世界。

口碑传播——WORDOF MOUTH 口碑传播是我们的信仰; 我们以合理的价格与消费者交换产品和服务; 我们不将庞大的媒体广告费用摊牌给消费者; 顾客的口碑是我们最好的广告。 公益事业——PUBLICWELFARE 人文关怀精神是我们品牌发展的基石; 我们全力支持和倡导环保; 我们在经营品牌的同时热心社会公益事业。 品牌故事 植物医生(DR PLANT)一直以来为爱美的女性提供量肤现配式的服务。早在1994年,就根据每个人皮肤的细微差别和个人愿望,现场将半成品的植物成分配制成个性化产品,顾客在现场就可以看到适合自己的、独一无二的护肤品的诞生过程。由于充分考虑了顾客皮肤的实际情况,又精心找到每种植物的神奇力量,配制出真正适合不同肤质的产品,植物医生(DR PLANT)赢得了广大消费者的信任。口碑传播是植物医生(DR PLANT)的信仰,我们把客户的口碑视为最好的广告。植物医生(DR PLANT)从世界各地的原生态植物种植地收集产品原料,对产品的高品质有着近乎苛刻的追求,依循草本疗法和芳香疗法的标准制造,全线产品均通过皮肤安全测试,并保证不添加转基因成分。植物医生(DR PLANT)具有极强的环保意识和社会责任感,推行空瓶回收,相继资助了中国红十字基金会、污染受害者法律帮助

高中数学教案——函数-区间的概念及求定义域的方法

课题:2.1.2函数-区间的概念及求定义域的方法 教学目的: 1.能够正确理解和使用“区间”、“无穷大”等记号;掌握分式函数、根式函数定义域的求法,掌握求函数解析式的思想方法; 2.培养抽象概括能力和分析解决问题的能力; 教学重点:“区间”、“无穷大”的概念,定义域的求法 教学难点:正确求分式函数、根式函数定义域 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 函数的三要素是:定义域、值域和定义域到值域的对应法则;对应法则是函数的核心(它规定了x和y之间的某种关系),定义域是函数的重要组成部分(对应法则相同而定义域不同的映射就是两个不同的函数);定义域和对应法则一经确定,值域就随之确定 前面我们已经学习了函数的概念,,今天我们来学习区间的概念和记号二、讲解新课: 1.区间的概念和记号 在研究函数时,常常用到区间的概念,它是数学中常用的述语和符号. 设a,b∈R ,且a

这样实数集R 也可用区间表示为(-,+),“”读作“无穷大”,“-”读作“负无穷大”,“+∞”读作“正无穷大”.还可把满足x ≥a ,x>a ,x ≤b ,x=