教学插件8: 微分方程模型:药物在体内的分布与扩散模型

教学插件8:  微分方程模型:药物在体内的分布与扩散模型
教学插件8:  微分方程模型:药物在体内的分布与扩散模型

§5.3 药物在体内的分布与排除

一、问题(背景)

药物进入机体随血液输送到各器官中,不断被吸收、分布、代谢,最终排出。

血药浓度:药物在血液中的浓度,称为血药浓度,即:每单位体积中药物含量(mg或微克)。例如:毫克/毫升

血药浓度随时间和空间(机体各部分)而变化。

血药浓度影响药物疗效:

血药浓度低:达不到治疗效果;

血药浓度高:引起药物中毒,或副作用,或造成浪费。

因此,要研究药物在体内分布、吸收和排除的动态过程,及这些过程与药理反应间的定量关系,对剂量配置、处方设计(药元素)、新药限制等,药理学及临床医学都是有重要的指导意义和应用价值,这些问题的研究,即:药物动力学。

即研究:给药方案与血药浓度扩散之间的关系:药物随时间的变化关系。

二、分析简化:

将一个机体分为若干个房室,假定每个房屋内药物呈均匀分布:即血药浓度是常数,不同房室之间,按一定规律进行药物转移。

一个机体要分为几个房室要依据:①不同药物的吸收、分布、排除具体情况确定;②所要求的精确度而决定。例如:二室模型将机体分为:血液丰富的中心室,(如:心、肺、肝、肾等)和血液贫乏的周边态(如肌肉组织等)。

以上简化的研究结果:在一定条件下,由临床试验证明是正确的,并被药理学和医学所接受。

三:假定:以二室模型为例,研究结果可推广到多室模型。

1.机体分为中心室(Ⅰ类)和周边室(Ⅱ类),并假定两个室的容积(即血液容剂/或药物分布的容积)在过程中不变。在每个房屋内血液浓度均匀分布,即为常数。

2.药物在一室向另一室的转移速度及向体外的排除速率与该室的血药浓度成正比:即:血药浓度大,则转移速度和排除速度快,

血药浓度小,则转移速度和排除速度慢。

3.只有中心室与体外有药物交换,即从体外进入中心室,又从中心室排出体外,与药 0(f 四、量化

111(), (), C t x t V 表示第Ⅰ室血药浓度、药量、容积;

222(), (), C t x t V 表示第Ⅱ室血药浓度、药量、容积,

12k ,药物由Ⅰ室转移到Ⅱ室的转移速度系数

21k ,药物由Ⅱ室转移到Ⅰ室的转移速度系数

13k ,药物由Ⅰ室转移到体外的排除速度系数

0()f t :给药速度

0D :给药剂量 (0t =时的初始值)

以上一级速度系数ij k 为常数时的房室模型,称乳突状模型。

五、建模:

药量:12(), ()x t x t 满足的微分方程为:

112113121202121212()()()()()

()()()

x t k x t k x t k x t f t x t k x t k x t =--++??=-?

又 ()() 1,2, i i i x t V c t i ==∴ 代入上式,得:

2

11213121201

11

21212122

()()()()()/()()()

V C t k k C t k C t f t V V V C t k C t k C t V ?=-+++????=-??

此为一阶带系数线性非齐次常微分方程组:其对应齐次方程。

通解为:

111222()()t t t t C t A e B e C t A e B e

αβαβ----?=+??=+?? 其中, αβ由方程组:1221132113k k k k k αβαβ+=+-??=?

确定。 为求出非齐方程(*)的通解:需依非齐次项 0()f t 和初始条件来决定,为此需考虑:以下几种不同的给药方式:

七、模型求解与解的分析:

1.快速静脉注射:(静脉注射)

2.恒速静脉滴注;(吊针)

3.口服或肌肉注射;(肌肉注射)

1.快速静脉注射:

即:在0t =时,将剂量0D 的药物输入中心室,于是有:

0121

()0, (0), (0)0D f t C C V ===

于是(*)为齐次方程,其解为:

101222()()()

()t

t

t t C t Ae Be D k C t e e V αβαββα---

-?=+??=-?-?

其中:

02102111()

()

, ()()

D k D k A B V V αββαβα--==--

, αβ 由 122113

2113

k k k k k αβαβ+=++??=? 确定。

分析:当t →∞时,12()0

()

0C t C t →→

2.快速静脉滴注:

当静脉滴注的速度为0k 时,0()f t 和初始条件为:

则: 00120211213121211121212122(), (0)0, (0)0()()()()()()()()f t k c c f t V c t k k c t k c t V V V C t k c t k C t V ===????=-+++????????=-?

??? 其特解:

01111311302222113211

1211213112132121212212 ()(), (0)(0)0 ()(), t t t t k C t A e B e k V k k C t A e B e k k V A B C C V k k V k k A A B B k V k V αβαβαβ----?=++???=++???==?+-+-?==??

由初始条件确定 由上式:12(), ()C t C t 的表达式可知:

①当t →∞时,则血药浓度12(), ()C t C t 将趋于第3项;

②实际上不可能 t →∞,当t T =时停止滴注,则12(), ()C t C t 在t T >时将按指数整体衰减并趋于0

3.口服或肌肉注射:

相当于在药物进入中心室之前,先有一个将药物吸收入血液的过程,因而可简化为有一个吸收室:

0()x t :为吸收室的药量(t 时刻)

01k :为药物由吸收室进入中心室的转移速率系数。

于是有:

(给药方式剂量)给药速率:0010()()f t k x t =

0D :为0t =时给药量,即 0(0)D x =

于是,0()x t 满足:

0001000

()()()(0)x t f t k x t x D =-=-??=? ∴ 有 0100()k t x t D e -=

故有:给药速度为:

010010001()()k t f t k x t D k e -==

于是,药物由中心室向周边室传送的血药浓度由方程组(*)可确定:

0211213121211121212122

()()()()()()()()f t V C t k k C t k C t V V V C t k C t k C t V ?=-+++????=-?? (*) 其初始条件:12(0)(0)0C C ==,且

010001()k t f t D k e -=

由上述非齐次方程组的通解可得:

011()k t t t C t Ae Be Ee αβ---=++

其中:①, αβ由方程 1221132113k k k k k αβαβ+=++??

=? ②01,k αβ≠

③A ,B ,E 由初始条件 12(0)(0)0C C ==确定

模型校正及讨论:

Remark :参数确定问题:

由前面讨论要计算血药浓度,12(), ()C t C t 的变化规律,需要已知参数: 01122113, , , k k k k (血药转移速度系数)

12, V V (房室容积)

0D ,

(给药量)等 然而在实际应用中正好相反:即通过对()i G t 的测量确定药理学和临床医学最重要的参

确定正解

反 解

数,如:转移速度系数:01122113, , , k k k k ,特别是排除速度系数,13k 的解。此即是:微分方程问题的反解:即参数讨论问题。

由 0ij i k v D ?? ? ? ??? ()i C t

下面以快速静脉注射给药方式下的参数估计解:

模型参数估计解:

快速静脉注射给药方式方程中:

001012() ()0 (0); (0)0

f t D C D V C ?=??=???=?给药速度非齐次项中心室血药浓度为给药量 方程的解为:

021111221130212113101222()(),()() ()()()()t t t t D k C t Ae Be A V k k k D k B k k V D k C t e e V αβαβαβααββαββαβα----?-=+=?-??+=++?-=??=-???=-?-?

问题是:先注射给药量0D ,由中心室取样血药浓度:1()i C t 来确定 ij k ,可分以下步骤来完成:

(i )由01, ()i D C t 确定出, , , A B αβ(由1()C t 表达式确定)

(ii )再确定ij k (由1221132113 k k k k k αβαβ+=++??=?

确定)

, ; , A B αβ,

①由1()t t C t Ae Be αβ--=+可知:αβ≠,于是

不妨令 αβ<,于是当t 充分大时有1()C t 的近似式:(当t T >时) 或者,即: 111()()()t

t C t Ae C t Ae C t αα--≈=+ l n 1()l n C t A t

α=- 于是可用取样数据:i t 和1()i C t ,通过最小二乘法来确定未知变量ln A 和α,从而得到:

A 和α

②上面由最小二乘法可算出, A α,因而在理论上可计算出1()C t ,近似 1()t C t Ae α-=——理论上计算出的1()C t 的近似值 (即在t T →时略去 1

()C t 之后的近似值,但在t T <(充分大的T )时, ()C

t 就不能略去,因此在t T <时应有 11()()t

C t Ae C t α-=+,即:实际数据应有:(在t T <时, 1()C t 不可略去。)

11()()t C t Ae C t α-=+

而略去的误差部分 1()C t 由 1()t t C t Ae Be αβ--=+ 可知: 1()t

C t Be β-=

因而有: 11()()t

C t C t Ae α-=-

即: 11()()t

t C t C t Ae Be αβ--=-=

故有: 11()()i i t t i i C t C t Ae Be αβ--=-=

故有: 1l n ()l n l n [()]l n i t

i i i C t B t C t A e B B t

αβ-=-?-=- 而可由一系列的i t 和 1()i C t ,再由最小二乘法可计算出β和ln B 及B 最后得系数模型

1()t

t C t Ae Be αβ--=+, 其中,,,,A B αβ为已知数

122113,,ij k k k k =,

10

22

() ()()()t t

t t C t Ae Be D C t e e V αβαββα----?=+??=-?-? ,,,A B αβ均已知。

当 0t →时,12()0

()0C t C t →→ 血药浓度 0→

即进入中心室的药物全部被排除

故有: 01311131100

()()D k V C t dt k V C t dt ∞∞

==??

而1()C t 由

1()t t C t Ae Be αβ--=+

013110

()D k V C t dt ∞

∴=??

1310

13100131131131()[()()][]

00[]t t

t t

t t k V Ae Be dt

A B k V e d t e d t t t A B k V e e t t A

B

A B k V k V αβαβαβαβαβαββααβαβ∞

--∞∞

----=+=-+

---=∞=∞

=+==--??

+

=+= ???

???

0131 (

)D k V A αβ

βαβ∴=+ 其中 01, , , , ,D V A B αβ已知,故13k 可确定。

又 2113 k k αβ=

2113

k k αβ

∴= 13, , k αβ已知

又 122113 k k k αβ+=++

1221131321 () , , , k k k k k αβαβ∴=+--均已知

由此即生成了:

由血药浓度的测量数据1()i C t 确定

转移速度系数1221, k k 及排除速度系数13k

构模技巧思考:

将问题简化为二室和多室模型(大胆简化,合理假定) 模型应用中的参数估计方法:①最小二乘法(回归分析)

②分 误差估计

常微分方程在数学建模中的应用.

微分方程应用 1 引言 常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题. 因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用. 2 数学模型简介 通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助. 建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节. 3 常微分方程模型 3.1 常微分方程的简介

微分方程建模案例

第五章微分方程建模案例 微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学涵。微分方程建模包括常微分方程建模、偏微分方程建模、差分方程建模及其各种类型的方程组建模。微分方程建模对于许多实际问题的解决是一种极有效的数学手段,对于现实世界的变化,人们关注的往往是其变化速度、加速度以及所处位置随时间的发展规律,其规律一般可以用微分方程或方程组表示,微分方程建模适用的领域比较广,涉及到生活中的诸多行业,其中的连续模型适用于常微分方程和偏微分方程及其方程组建模,离散模型适用于差分方程及其方程组建模。本章主要介绍几个简单的用微分方程建立的模型,让读者一窥方程的应用。下面简要介绍利用方程知识建立数学模型的几种方法: 1.利用题目本身给出的或隐含的等量关系建立微分方程模型 这就需要我们仔细分析题目,明确题意,找出其中的等量关系,建立数学模 型。 例如在光学里面,旋转抛物面能将放在焦点处的光源经镜面反射后成为平行光线,为了证明具有这一性质的曲线只有抛物线,我们就是利用了题目中隐含的条件——入射角等于反射角来建立微分方程模型的。 2.从一些已知的基本定律或基本公式出发建立微分方程模型

我们要熟悉一些常用的基本定律、基本公式。例如从几何观点看,曲线 y y(x)上某点的切线斜率即函数y y(x)在该点的导数;力学中的牛顿第二运 动定律:F ma ,其中加速度a 就是位移对时间的二阶导数,也是速度对时间 的一阶导数等等。从这些知识出发我们可以建立相应的微分方程模型。 例如在动力学中,如何保证高空跳伞者的安全问题。对于高空下落的物体, 我们可以利用牛顿第二运动定律建立其微分方程模型, 设物体质量为m ,空气阻 力 系数为k ,在速度不太大的情况下,空气阻力近似与速度的平方成正比;设时 刻t 时物体的下落速度为v ,初始条件:v (o ) 0.由牛顿第二运动定律建立其微 分方程模型: 求解模型可得: 体在地面上的投影面积。根据极限速度求解式子,在m,, 一定时,要求落地速 度w 不是很大时,我们可以确定出s 来,从而设计出保证跳伞者安全的降落伞的 直径大小来 3?利用导数的定义建立微分方程模型 dv m 一 dt mg kv 2 ? k(exp[2t 由上式可知,当t 其中,阻力系数k 1) 时,物体具有极限速度: lim v t mg :k , s , 为与物体形状有关的常数, 为介质密度,s 为物 、mg(exp[2t 1)

第二章动力学系统的微分方程模型

第二章:动力学系统的微分方程模型 利用计算机进行仿真时,一般情况下要给出系统的数学模型,因此有必要掌握一定的建立数学模型的方法。在动力学系统中,大多数情况下可以使用微分方程来表示系统的动态特性,也可以通过微分方程可以将原来的系统简化为状态方程或者差分方程模型等。在这一章中,重点介绍建系统动态问题的微分方程的基本理论和方法。 在实际工程中,一般把系统分为两种类型,一是连续系统;其数学模型一般是高阶微分方程;另一种是离散系统,它的数学模型是差分方程。 §2.1 动力学系统统基本元件 任何机械系统都是由机械元件组成的,在机械系统中有3种类型的基本机械元件:惯性元件、弹性元件和阻尼元件。 1 惯性元件:惯性元件是指具有质量或转动惯量的元件,惯量可以定义为使加速度(或角加速度)产生单位变化所需要的力(或力矩)。 惯量(质量)= ) 加速度(力(2 /) s m N 惯量(转动惯量)= ) 角加速度(力矩(2/) s rad m N ? 2 弹性元件:它在外力或外力偶作用下可以产生变形的元件,这种元件可以通过外力做功来储存能量。按变形性质可以分为线性元件和非线性元件,通常等效成一弹簧来表示。 对于线性弹簧元件,弹簧中所受到的力与位移成正比,比例常数为弹簧刚度k 。 x k F ?= 这里k 称为弹簧刚度,x ?是弹簧相对于原长的变形量,弹性力的方向总是指向弹 簧的原长位移,出了弹簧和受力之间是线性关系以外,还有所谓硬弹簧和软弹簧,它们的受力和弹簧变形之间的关系是一非线性关系。 3 阻尼元件:这种元件是以吸收能量以其它形式消耗能量,而不储存能量,可以形象的表示为一个活塞在一个充满流体介质的油缸中运动。阻尼力通常表示为: α x c R = 阻尼力的方向总是速度方向相反。当1=α,为线性阻尼模型。否则为非线性阻 尼模型。应注意当α等于偶数情况时,要将阻尼力表示为: ||1--=αx x c R 这里的“-”表示与速度方向相反

第三章-微分方程模型

微分方程模型 1.1微分方程模型简介 对于现实世界的变化,人们关注的往往是变量之间的变化率,或者变化速度、加速度以 及所处的位置随时间的发展规律,之中的规律一般可以写成一个(偏)微分方程或方程组。 所以实际问题中,有大批的问题可以用微分方程来建立数学模型,涉及的领域包括物理学、 化学、天文学、生物学、力学、政治、经济、军事、人口、资源等等。微分方程建模是数学 建模的重要方法,因为许多实际问题的数学描述将导致求解微分方程的定解问题。把形形色 色的实际问题化成微分方程的定解问题,大体上可以按以下几步: 1?、根据实际要求确定要研究的量(自变量、未知函数、必要的参数等)并确定坐标系; 2?、找出这些量所满足的基本规律(物理的、几何的、化学的或生物学的等等); 3?、运用这些规律列出方程和定解条件。 2.1微分方程模型运用实例 例1:发射卫星为什么用三级火箭 采用运载火箭把人造卫星发射到高空轨道上运行,为什么不能用一级火箭而必须用多级 火箭系统? 下面通过建立运载火箭有关的数学模型来回答上述问题。 火箭是一个复杂的系统,为了使问题简单明了,我们只从动力系统和整体结构上分析, 并且假设引擎是足够强大的。 首先解决第一个问题:为什么不能用一级火箭发射人造卫星,下面用三个数学模型回答 这个问题: (1 )卫星进入600km高空轨道时,火箭必须的最低速度。 首先将问题理想化,假设: (i)卫星轨道是以地球中心为圆心的某个平面上的圆周,卫星在此轨道上以地球引力作为向心力绕地球作平面匀速圆周运动; (ii )地球是固定于空间中的一个均匀球体,其质量集中于球心; iii)其它星球对卫星的引力忽略不计。 建模与求解:设地球半径为R,质量为M ;卫星轨道半径为r,卫星质量为m。 根据假设(")和(iii),卫星只受到地球的引力,由牛顿万有引力定律可知其引力大小为 GMm F— (1) r 其中G为引力常数。 为消去常数G,把卫星放在地球表面,则由(1)式得 GMm 亠m2 mg 2 或GM 二R g R 再代入(1)式,得

3.1 微分方程模型的建模步骤

第3章微分方程模型 3.1 微分方程模型的建模步骤 在自然科学以及工程、经济、医学、体育、生物、社会等学科中的许多系统,有时很难找到该系统有关变量之间的直接关系——函数表达式,但却容易找到这些变量和它们的微小增量或变化率之间的关系式,这时往往采用微分关系式来描述该系统——即建立微分方程模型。我们以一个例子来说明建立微分方程模型的基本步骤。 例1 某人的食量是10467(焦/天),其中5038(焦/天)用于基本的新陈代谢(即自动消耗)。在健身训练中,他所消耗的热量大约是69(焦/公斤?天)乘以他的体重(公斤)。假设以脂肪形式贮藏的热量100%地有效,而1公斤脂肪含热量41868(焦)。试研究此人的体重随时间变化的规律。 模型分析 在问题中并未出现“变化率”、“导数”这样的关键词,但要寻找的是体重(记为W )关于时间t 的 函数。如果我们把体重W 看作是时间t 的连续可微函数,我们就能找到一个含有的dt dW 微分方程。 模型假设 1.以)(t W 表示t 时刻某人的体重,并设一天开始时人的体重为0W 。 2.体重的变化是一个渐变的过程。因此可认为 )(t W 是关于t 连续而且充分光滑的。 3.体重的变化等于输入与输出之差,其中输入是指扣除了基本新陈代谢之后的净食量吸收;输出就是进行健身训练时的消耗。 模型建立 问题中所涉及的时间仅仅是“每天”,由此,对于“每天” 体重的变化=输入-输出。 由于考虑的是体重随时间的变化情况,因此,可得 体重的变化/天=输入/天—输出/天。 代入具体的数值,得 输入/天 = 10467(焦/天)—5038(焦/天)=5429(焦/天), 输出/天 = 69(焦/公斤?天)×W (公斤)= 69W (焦/天)。 体重的变化/天=t W ??(公斤/天)dt dW t =→?0 考虑单位的匹配,利用 “公斤/天=公斤焦天 焦/41868 /”, 可建立如下微分方程模型

第五章微分方程模型

第五章 微分方程模型 、 某人每天由饮食获取10467焦热量,其中5038焦用于新陈代谢,此外每公斤体重需支付69焦热量作为运动消耗,其余热量则转化为脂肪,已知以脂肪形式贮存的热量利用率为100%,每公斤脂肪含热量41868焦,问此人的体重如何随时间而变化 解: 设此人的体重为w ,则根据题意有,每天获取的热量,减去新陈代谢,减去运动消耗的热量,剩余的按利用率100% 转化为脂肪,即有下列等式成立: 1046750386941868 w dw dt --= 经化简有: 232313956139565429()41868t t w e t e c - =-?+ 假设此人现在的体重为0w ,则此人的体重随时间的变化如下: 2323139561395605429()41868t t w e t e w - =-?+ 、 生活在阿拉斯加海滨的鲑鱼服从Malthus 增长模型)(003.0)(t p dt t dp = 其中t 以分钟计。在0=t 时一群鲨鱼来到此水域定居,开始捕食鲑鱼。鲨鱼捕杀鲑鱼的速率是)(001.02t p ,其中)(t p 是t 时刻鲑鱼总数。此外,由于在它们周围出现意外情况,平均每分钟有条鲑鱼离开此水域。 (1)考虑到两种因素,试修正Malthus 模型。 (2)假设在0=t 是存在100万条鲑鱼,试求鲑鱼总数 )(t p ,并问∞→t 时会发生什么情况 解:

(1),由题可知, 在考虑两种因素后,修正后的Malthus 模型如下: 2()0.003()0.001()0.002dp t p t p t dt =-- (2),假设在0t = 时,存在100万条鲑鱼,即(0)1000000p = ,解下列初值问题 2()0.003()0.001()0.002(0)1000000 dp t p t p t dt p ?=--???=? 解得 0.0010.0012999998()11000001t t ae p t a ae --+==-其中 当t →∞ 时,2p →。 、 根据罗瑟福的放射性衰变定律,放射性物质衰变的速度与现存的放射性物质的原子数成正比,比例系数成为衰变系数,试建立放射性物质衰变的数学模型。若已知某放射性物质经时间21T 放射物质的原子下降至原来的一半(21T 称为该物质的半衰期)试决定其衰变系数。 解: 假设初始时刻该放射性物质的原子数位0N ,在时间t 时,该放射性物质的原子个数为N ,设衰变系数为k ,则有下列微分方程: 0,(0)dN kN N N dt =-= 解得 0()kt N t N e =

微分方程模型和应用

微分方程模型 应用和计算
华南理工大学理学院数学系 刘深泉教授

典型微分方程模型
? Malthus人口模型 ? Logistic模型 ? 新产品推广模型 ? 两物种竞争模型 ? 正规战-游击战模型 ? Lotka-Volterra模型 ? 海洋种群生态学 ? 多物种相互作用和变化

马尔萨斯(Malthus)指数人口模型
假设人口增长率r是常数
1 N
dN dt
=r

dN dt
= rN
特点:种群数量翻一番的时间固定
马尔萨斯模型的预报结果, 1961年世界人口30.6 (3.06×109) 人口增长率2%,每35年增加一倍。
1700年至1961的260年人口数量 人口数量每34.6年增加一倍,
两者也几乎相同。

Logisitic模型
dN = r N (1- N )
dt
Nmax
N(t0) = N0
模型检验 Logistic模型效果如何呢? 克朗皮克(Crombic)人工饲养小谷虫的实验。 数学家高斯(E·F·Gauss)做原生物草履虫实验,都和 Logistic曲线吻合。

Logistic模型描述种群增长
高斯把5只草履虫放进盛有0.5cm3营养液的小试管,开始时草履 虫以每天230.9%的速率增长,此后增长速度不断减慢,到第五
天达到最大量375个,实验数据与r=2.309,a=0.006157, N(0)=5的Logistic曲线:
N(t)=1+7347e5-2.309t

微分方程模型

数学建模学习辅导 第三章 微分方程模型 本章重点: 车间空气清洁问题、减肥问题、单种群增长问题与多物种相互作用问题等数学模型的建立过程与所使用的方法 复习要求: 1.进一步理解建模基本方法与基本建模过程,掌握平衡原理与微元法在建模中的用法. 所谓平衡原理是指自然界的任何物质在其变化的过程中一定受到某种平衡关系的支配.注意发掘实际问题中的平衡原理是从物质运动机理的角度组建数学模型的一个关键问题.就象中学的数学应用题中等量关系的发现是建立方程的关键一样. 微元法是指在组建对象随着时间或空间连续变化的动态模型时,经常考虑它在时间或空间的微小单元变化情况,这是因为在这些微元上的平衡关系比较简单,而且容易使用微分学的手段进行处理.这类模型基本上是以微分方程的形式给出的. 例1 设警方对司机饮酒后驾车时血液中酒精含量的规定为不超过80%(mg/ml). 现有一起交通事故,在事故发生3个小时后,测得司机血液中酒精含量是56%(mg/ml), 又过两个小时后, 测得其酒精含量降为40%(mg/ml),试判断: 事故发生时,司机是否违反了酒精含量的规定? 解:模型建立 设)(t x 为时刻t 的血液中酒精的浓度, 则依平衡原理时间间隔],[t t t ?+内, 酒精浓度的改变量 t t x x ??∝?)(, 即 t t kx t x t t x ?-=-?+)()()( 其中k >0为比例常数, 式前负号表示浓度随时间的推移是递减的, 遍除以t ?, 并令0→?t , 则得到 ,d d kx t x -= 且满足40)5(,56)3(==x x 以及0)0(x x =. 模型求解 容易求得通解为kt c t x -=e )(, 代入0)0(x x =,得到 kt x t x -=e )(0 则)0(0x x =为所求. 又由,40)5(,56)3(==x x 代入0)0(x x =可得 17.04056e 40e 56e 25030=?=????==--k x x k k k 将17.0=k 代入得 25.93e 5656e 17.03017 .030≈?=?=??-x x >80

常微分课后答案解析第二章

第一章 绪论 §1、1 微分方程:某些物理过程的数学模型 §1、2 基本概念 习题1、2 1.指出下面微分方程的阶数,并回答方程就是否线性的: (1) y x dx dy -=24; (2)0122 2 2=+??? ??-xy dx dy dx y d ; (3)0322 =-+?? ? ??y dx dy x dx dy ; (4)x xy dx dy dx y d x sin 352 2=+-; (5) 02cos =++x y dx dy ; (6)x e dx y d y =+??? ? ??22sin . 解 (1)一阶线性微分方程; (2)二阶非线性微分方程; (3)一阶非线性微分方程; (4)二阶线性微分方程; (5)一阶非线性微分方程; (6)二阶非线性微分方程. 2.试验证下面函数均为方程022 2=+y dx y d ω的解,这里0>ω就是常数. (1)x y ωcos =; (2)11(cos C x C y ω=就是任意常数); (3)x y ωsin =; (4)22(sin C x C y ω=就是任意常数); (5)2121,(sin cos C C x C x C y ωω+=就是任意常数); (6)B A B x A y ,()sin(+=ω就是任意常数). 解 (1)y x dx y d x dx dy 2 222cos ,sin ωωωωω-=-=-=,所以022 2=+y dx y d ω,故

x y ωcos =为方程的解. (2)y x C y x C y 2 2 11cos , sin ωωωωω-=-=''-=',所以022 2=+y dx y d ω,故x C y ωcos 1=为方程的解. (3)y x dx y d x dx dy 2222sin ,cos ωωωωω-=-==,所以02 2 2=+y dx y d ω,故x y ωsin =为方程的解. (4)y x C y x C y 2 2 22sin , cos ωωωωω-=-=''=',所以022 2=+y dx y d ω,故x C y ωsin 2=为方程的解. (5)y x C x C y x C x C y 2222121sin cos , cos sin ωωωωωωωωω-=--=''+-=',所 以02 2 2=+y dx y d ω,故x C x C y ωωsin cos 21+=为方程的解. (6)y B x A y B x A y 2 2 )sin(, )cos(ωωωωω-=+-=''+=',故0222=+y dx y d ω,因 此)sin(B x A y +=ω为方程的解. 3.验证下列各函数就是相应微分方程的解: (1)x x y sin = ,x y y x cos =+'; (2)212x C y -+=,x xy y x 2)1(2 =+'-(C 就是任意常数); (3)x Ce y =,02=+'-''y y y (C 就是任意常数); (4)x e y =,x x x e ye y e y 2212-=-+'-; (5)x y sin =,0cos sin sin 22 2 =-+-+'x x x y y y ; (6)x y 1- =,12 22++='xy y x y x ; (7)12 +=x y ,x y x y y 2)1(2 2 ++-='; (8))()(x f x g y = ,) () ()()(2x f x g y x g x f y '-'='.

常微分课后答案解析第二章

第一章 绪论 §1.1 微分方程:某些物理过程的数学模型 §1.2 基本概念 习题1.2 1.指出下面微分方程的阶数,并回答方程是否线性的: (1) y x dx dy -=24; (2)0122 2 2=+??? ??-xy dx dy dx y d ; (3)0322 =-+? ? ? ??y dx dy x dx dy ; (4)x xy dx dy dx y d x sin 352 2=+-; (5) 02cos =++x y dx dy ; (6)x e dx y d y =+??? ? ??22sin . 解 (1)一阶线性微分方程; (2)二阶非线性微分方程; (3)一阶非线性微分方程; (4)二阶线性微分方程; (5)一阶非线性微分方程; (6)二阶非线性微分方程. 2.试验证下面函数均为方程02 2 2=+y dx y d ω的解,这里0>ω是常数. (1)x y ωcos =; (2)11(cos C x C y ω=是任意常数); (3)x y ωsin =; (4)22(sin C x C y ω=是任意常数); (5)2121,(sin cos C C x C x C y ωω+=是任意常数); (6)B A B x A y ,()sin(+=ω是任意常数).

解 (1)y x dx y d x dx dy 2222cos ,sin ωωωωω-=-=-=,所以02 2 2=+y dx y d ω,故x y ωcos =为方程的解. (2)y x C y x C y 2 2 11cos , sin ωωωωω-=-=''-=',所以0222=+y dx y d ω,故 x C y ωcos 1=为方程的解. (3)y x dx y d x dx dy 2 222sin ,cos ωωωωω-=-==,所以022 2=+y dx y d ω,故x y ωsin =为方程的解. (4)y x C y x C y 2 2 22sin , cos ωωωωω-=-=''=',所以022 2=+y dx y d ω,故x C y ωsin 2=为方程的解. (5)y x C x C y x C x C y 2222121sin cos , cos sin ωωωωωωωωω-=--=''+-=', 所以022 2=+y dx y d ω,故x C x C y ωωsin cos 21+=为方程的解. (6)y B x A y B x A y 2 2 )sin(, )cos(ωωωωω-=+-=''+=',故02 2 2=+y dx y d ω,因此)sin(B x A y +=ω为方程的解. 3.验证下列各函数是相应微分方程的解: (1)x x y sin = ,x y y x cos =+'; (2)212x C y -+=,x xy y x 2)1(2 =+'-(C 是任意常数); (3)x Ce y =,02=+'-''y y y (C 是任意常数); (4)x e y =,x x x e ye y e y 2212-=-+'-; (5)x y sin =,0cos sin sin 22 2 =-+-+'x x x y y y ; (6)x y 1- =,12 22++='xy y x y x ; (7)12 +=x y ,x y x y y 2)1(2 2 ++-=';

常微分方程在数学建模中的应用

北方民族大学学士学位论文 论文题目:常微分方程在数学建模中的应用 院(部)名称:信息与计算科学学院 学生姓名:马木沙 专业:信计学号:20093490 指导教师姓名:魏波 论文提交时间: 论文答辩时间: 学位授予时间: 北方民族大学教务处制

摘要 本文利用常微分方程和数学建模二者之间的联系,了解微分方程的一般理论、微分方程解的存在惟一性、微分方程的稳定性问题、通过几个典型的数学模型如:人口模型、减肥的数学模型、化工车间通风模型、传染病的传播模型及定性分析等例子来体现微分方程在数学建模中的应用. 用数学理论解决实际生活中的问题.微分方程的出现以及运用微分方程在数学建模中的应用,就是为了更好地使更多的人理解并运用数学理论,更好的解决实际生活中的问题.努力在各个领域利用并渗透数学知识的广泛运用. 关键词:常微分方程,数学建模,数学模型

Abstract In this paper, ordinary differential equations and mathematical modeling contact between the two, understand the general theory of differential equations, stability problems of the existence and uniqueness of differential equations, differential equations, several typical mathematical models such as: demographic model,example of the mathematical model of weight loss, chemical plant ventilation model, spread of infectious diseases, model and qualitative analysis to reflect the application of differential equations in mathematical modeling. found that the application of mathematical theory to study and solve problems in the actual process of the emergence of ordinary differential equations andOrdinary Differential Equations in Mathematical Modeling widely used, in order to better enable ordinary people to understand and use mathematical theory, solving real-world problems. sublimation theory by the knowledge-based transformation to the ability to type, highlight the differential equationsand differential equations in mathematical modeling efforts made outstanding and significant contribution in various fields. Keywords: ordinary differential equations, mathematical modeling, mathematical model.

微分方程模型建模实例

微分方程模型建模实例 1.一个半球状雪堆,其体积融化的速率与半球面面积S成正比,比例系数k > 0。设融化中雪堆始终保持半球状,初始半径为R且3小时中融化了总体积的7/8,问雪堆全部融化还需要多长时间? 2.从致冰厂购买了一块立方体的冰块,在运输途中发现,第一小时大约融化了1/4 (1)求冰块全部融化要多长时间(设气温不变) (2)如运输时间需要2.5小时,问:运输途中冰块大约会融化掉多少? 3.一展开角为α的圆锥形漏斗内盛着高度为H的水,设漏斗底部的孔足够大(表面张力不计),试求漏斗中的水流光需要多少时间? 4.容器甲的温度为60度,将其内的温度计移入容器乙内,设十分钟后温度计读数为70度,又过十分钟后温度计读数为76度,试求容器乙内的温度。 5.一块加过热的金属块初始时比室温高70度,20分钟测得它比室温高60度,问:(1)2小时后金属块比室温高多少?(2)多少时间后,金属块比室温高10度? 6.设初始时容器里盛放着含净盐10千克的盐水100升,现对其以每分钟3升的速率注入清水,容器内装有搅拌器能将溶液迅时搅拌均匀,并同时以每分钟2升的速率放出盐水,求1小时后容器里的盐水中还含有多少净盐? 7.某伞降兵跳伞时的总质量为100公斤(含武器装备),降落伞张开前的空气阻力为0.5v,该伞降兵的初始下落速度为0,经8秒钟后降落伞打开,降落 伞打开后的空气阻力约为0.6 试球给伞降兵下落的速度v(t),并求其下落的极限速度。 8. 1988年8月5日英国人Mike McCarthy创建了一项最低开伞的跳伞纪录,它从比萨斜塔上跳下,到离地179英尺时才打开降落伞,试求他落地时的速度。 9.证明对数螺线r=A 上任一处的切线与极径的夹角的正切为一常 数,()

第二章 微 分 方 程 模 型.

第二章 微 分 方 程 模 型 建立微分方程模型就是把物理、化学、生物科学、工程科学和社会科学中的规律和原理用含有待定函数的导数或微分的数学关系式表示出来。这一章我们由浅入深地介绍一些微分方程模型。 2.1 简单模型 例1 物体在空气中的下落与特技跳伞问题 假设质量为m 的物体在空气中下落,空气阻力与物体的速度平方成正比,阻尼系数为k (>0),求物体的运动规律。 解 所谓运动规律即下落距离与时间的关系,如图2.1.1, 建立坐标系。设x 为物体下落的距离,于是物体下落的速度为 dx v dt =, 加速度为 22d x a dt =, 根据牛顿第二定律F ma =,可以列出微分方程 2 22d x d x m k m g d t d t ?? =-+ ???, (2.1.1) 负号表示阻力方向与速度方向相反。 例2 单摆的自由振动问题。 如图2.1.2 为一个单摆,上端固定在O 点,M 为一质量为m 的质点,摆杆OM 之长为L (摆杆的质量忽略不计)。单摆的平衡位置为铅垂线'OO 。将质点M 拉开,使OM 与'OO 成一个角度0θ,然后放手任其自由运动,试求摆杆OM 和铅垂线'OO 的夹角θ与时间t 的关系。 解 将重力分解为径向力F 与切向力T ,T 的大小为sin mg θ,M 的切向加速 度为22d a L dt θ =,于是,由牛顿第二定律,列出微分方程 22s i n d m a m L m g dt θ θ== , 即 22s i n d g dt L θθ=-, (2.1.2)

设初始时刻0t =,摆杆的初始位置为0θ,初始角速度为0,则单摆的运动规律的研究就化为微分方程的初值问题 ()()22 00' 0s i n ,,0.t t d g dt L t t θθθθθ==?=-??? =??=??? (2.1.3) 图2.1.1 图2.1.2 例3 考古和地质学中文物和化石年代的测定问题。 考古、地质学等方面的专家常用14C (碳14)来估计文物或化石的年代。它们的依据是,宇宙射线不断轰击大气层,使之产生中子,中子与氧气作用生成具有放射性的14C 。这种放射性碳可以氧化成二氧化碳。二氧化碳被植物所吸收,而动物又以植物为食物,于是放射性碳就被带到各种动植物体内。由于14C 是放射性的,无论存在于空气中或生物体内它都在不断衰变,活着的生物通过新陈代谢不断地摄取14C ,使得生物体内的14C 与空气中的14C 有相同的百分含量。生物体死后它停止摄取14C ,因而尸体内的14C 由于不断衰变而不断减少。碳定年代法就是根据14C 的衰变减少量的变化情况来判定生物的死亡时间的。 基本假设 (1)现代生物体中14C 的衰变速度与古代生物体中14C 的衰变速度相同(依据是地球周围大气中14C 的百分含量可认为基本不变,即宇宙射线照射大气层的强度自古至今基本不变); (2)14C 的衰变速度与该时刻14C 的含量成正比(这条假设的根据来自于原子物理学理论)。 下面用微分方程建模。 设在时刻t (年)生物体中14C 的存量为()x t ,由假设(2)知

差微分方程 数学建模经典案例

差分方程作业题 黄冈职业技术学院 宋进健 胡敏 熊梦颖 1.一对年轻夫妇准备购买一套住房,但缺少资金近6万元。假设它们每月可有节余900元,且有如下的两种选择: (1)使用银行贷款60000元。月利率0.01,贷款期25年=300个月; (2) 到某借贷公司借贷60000元,月利率0.01,22年还清。只要(i )每半个月还316元,(ii) 预付三个月的款。 你能帮他们做出明智的选择吗? 模型假设: (1)银行及借贷公司在贷款期限内利率不变; (2)不考虑物价变化和经济等因素从而影响利率; (3)银行利息按复利计算且单位时间可任意缩短至时间变量连续性变化 建立模型: 对第一种情况有: 设n 年期贷款月利率为r ,共贷款 元,贷款后第k 个月时欠款余额为 元,月还款m 元。 模型求解: 由MATLAB 得出结果m=631.9345 建立模型: 对第二种情况有: 设n 年期贷款半月利率为r ,共贷款A 0元,贷款后第k 个月时欠款余额为A k 元,半月还款m 元。 模型求解: ()() 011 1,k k k r A A r m k N r +-=+-∈1 0)1()1(300 300 300 -= ?=++r r A A r m N k m r A A k K ∈-+=+,) 1(1 N k m r A A k K ∈-+=+,) 1(1 ()() 011 1,k k k r A A r m k N r +-=+-∈1 0)1()1(528 528 528 -= ?=++r r A A r m A k A 0

由MATLAB 得出结果m= 313.0038 模型分析:由第一种方式计算m=631.9345小于月节余额900元,能够承受月还款;由第二种方式计算m= 313.0038小于借贷公司要求没半个月还款316元,如果按照借贷公司要求则每月还款为632元大于第一种还款方式631.9345元,故选择第一种还款方式。 2. 在一城市的某商业区内,有两家有名的快餐店“肯德基”分店和“麦当劳”分 店。据统计每年“肯德基”保有其上一年老顾客的1/3,而另外的2/3顾客转移到“麦当劳”;每年“麦当劳”保有其上一年的老顾客的1/2,而另外的1/2顾客转移到“肯德基”。 用二维向量X k =[x k y k ]T 表示两个快餐店市场分配的情况,初始的市场分配为X 0 = [200 200]T 如果有矩阵L 存在,使得 X k +1 = LX k ,则称 L 为状态转移矩阵。 (1) 写出X k =[x k y k ]T 和X k+1=[x k +1 y k +1]T 的递推关系式,以及状态转移矩阵L 。 (2) 根据递推关系计算近几年的市场分配情况; 模型假设: (1) 当前的肯德基和麦当劳的市场份额继续不变。 (2) 肯德基和麦当劳不推出优惠活动和新的经营计划。 模型建立: 初始的市场分配数量为:200,2000 0==y x 以一年为一时间段,则某时刻两个快餐店的顾客数量可用向量] ,[1 1y x T X =表 示。用向量] ,[y x X k k T k =表示第K 年两个快餐店顾客数量分布。 ??? ????+ = + = ++x y y y x x k k k k k k 3 22 121311 1 模型求解: 故X k =[x k y k ]T 和X k+1=[x k +1 y k +1]T 的递推关系式为??? ? ?? ? + =+ =++x y y y x x k k k k k k 3 221 21311 1,状 态转移矩阵?????? ? ???? ???=3221213 1 L 由初始数据计算近几年的市场分配情况,MATLAB 程序如下:

第2章习题解答

习题解答 1. 系统的微分方程为()4()2()x t x t u t '=-+,其中()u t 是幅度为1,角频率为1rad/s 的方波输入信号,试建立系统的Simulink 模型并进行仿真。 解:用积分器直接构造求解微分方程的模型 由原微分方程()4()2()x t x t u t '=-+可知 x '经积分模块作用就得x ,而x 经代数运算又产生x ',据此可以建立系统模型并仿真,实现建模与仿真步骤如下。 ⑴利用Simulink 模块库中的基本模块,不难建立系统模型,如题图1所示。 题图1 求解微分方程的模型 模型中各个模块说明如下。 ①()u t 输入模块:它的参数设置如题图1(a)所示,模块名称由原来的Pulse Generrator 改为()u t 。 题图1(a) ()u t 输入模块的参数设置

②Gs 增益模块:增益参数Gain 设置为2。 ③求和模块:其图标形状Icon shape 选择rectangular ,符号列表Lisl of signs 设置为+-。 ④积分模块:参数不需改变。 ⑤G 1增益模块:增益参数设置为4,它的方向旋转可借助Format 菜单中的Rotate Block 命令实现。 ⑥Scope 示波器:在示波器参数设置窗口选择Data history 页,选中其中的Save data to workspace 复选框。这将使送入示波器的数据同时被保存在MA TLAB 工作空间的默认名为ScopeData 的结构矩阵或矩阵中。 ⑵设置系统仿真参数。单击模型编辑窗口Simulation 菜单中的Configuration Parameters 选项,打开仿真参数设置对话框,选择Solver 选项,把仿真的停止时间Sto ptime 设置为20。 ⑶仿真操作。双击示波器图标,打开示波器窗口。选择模型编辑窗口中Simulation 菜单中的Stan 命令,就可在示波器窗口中看到仿真结果的变化曲线,如题图1(b)所示。 题图1(b) 仿真结果 2. 建立使用阶跃信号为输入信号,经过传递函数为1 5.01 s 的一阶系统的Simulink 模型并进行仿真。要求:⑴查看其输出波形在示波器上的显示;⑵修改仿真参数Max step size 为2、Min step size 为1,在示波器上查看波形;⑶修改示波器Y 坐标轴范围为0~2,横坐标范围为0~15,查看波形。 解:⑴①利用Simulink 模块库中的基本模块,不难建立系统模型,如题图2所示。 题图2 一阶系统的Simulink 模型 模型中各个模块说明如下。 ()u t 输入模块:它的step time 被设置为0,模块名称由原来的step 改为()u t 。 Transfer Fon 传递函数模块:在Denominator coefficient 文本框中定义分母多项式系数向量为[0.5 1]。

微分方程在几类实际问题中的应用

毕业设计(论文) 题目名称:微分方程在几类实际问题中的应用院系名称:理学院 班级:数学102 学号:201000134223 学生姓名:陈博先 指导教师:宋长明 2014年 6 月

论文编号:201000134223 微分方程在几类实际问题中的应用Application of Differential Equation in Several Practical Problems 院系名称:理学院 班级:数学102 学号:201000134223 学生姓名:陈博先 指导教师:宋长明 2014年6 月

摘要 在数学上,物质运动和其变化规律是用函数关系进行描述的,但是实际问题中常常不能直接写出反应相应规律的函数,却比较容易建立起这些变量与它们的导数之间的关系式,即微分方程.只有一个自变量的微分方程即为常微分方程,简称为微分方程. 本文讨论的是微分方程在实际问题中的应用.微分方程在各个学科领域都可以发挥出其数学优势,将微分方程理论和实际问题结合起来,便可建立实际问题的模型.本文在介绍微分方程应用背景的基础上,结合微分方程的概念性质,利用归纳总结的方法探讨了常微分方程在物理问题、生物问题、军事问题、经济问题和医学问题等“现实生活”中问题的应用,同时结合相应实例进行分析.从这些应用问题中,我们可以看出:微分方程,它确实是数学联系实际的一个活跃分支. 关键词:微分方程;实际问题;应用;数学模型

Abstract In mathematics, the motion of matter and its change rule are described by the relationship of function. But for practical problems , compared with writing the reaction of the corresponding rules directly, establishing the relationship between these variables and their derivatives named differential equation becomes relatively easy. Only a variable of differential equation is called ordinary differential equation, for short differential equation. In this paper, we discuss the application about differential equations in the actual problems. Differential equation can perform its mathematical advantage in various https://www.360docs.net/doc/337577367.html,bining differential equation theory and practical problems, we can establish the model of the actual problems.Based on the application background of differential equation and combined with the concept and nature of differential equation,this paper discussed the application of ordinary differential equation in the field of physics,biology,military,economic and medicine,and so on,with the method of summarizing. From these applications,we can see that differential equation is really a active branch of connetting math and practical problems. Keywords: differential equations;the actual problem;application;mathematical model

相关文档
最新文档