-变像管的工作原理、特性及应用

-变像管的工作原理、特性及应用
-变像管的工作原理、特性及应用

变像管的工作原理、特性及应用

光科XXX班,XXX,1302100213

摘要:本文讨论了变像管的工作原理、相关特性和近现代的相关应用,对变像管做了比较详细的介绍。另外也对扫描变像管的基本原理做了基本介绍。变像管是为了扩展人眼视见范围和视见能力而发展起来的,它能探测到人眼不可见的目标辐射信号,又能将目标满意地进行成像,使人眼能看到再现的目标图像。而扫描变像管则是显示讯号随时间变化的过程。

关键词:变像管,扫描变像管,光阴极,电子光学系统,荧光屏,特性

Keywords: image converter, time-scanned image converter ,photocathode, screen, features 1、变像管工作的物理过程

变像管是像管的一种,而像管包括变像管和像增强管两大类。1934年,G.霍尔斯特等人制出第一只红外变像管。其主要功能是完成图像的电磁波谱转换。变像管实现图像的电磁波谱转换是通过三个环节来完成的。首先是将接受的不可见输入辐射图像转换成电子图像;其次是使电子图像获得能量或数量增强,并聚焦成像;第三是将增强的电子图像转换成可见的光学图像。上述三个环节分别由光阴极、电子光学系统和荧光屏完成。这三部分共同封装在一个高真空的管壳内。

图1 变像管成像原理示意图

1.1、辐射图像的光电转换

像管利用外光电效应将输入的辐射图像转换为电子图像,因此像管的输入端面是采用光电发射材料制成的光敏面。该光敏面接收辐射量子产生电子发射。所发射的电子流密度分布正比于入射的辐射通量分布。由此完成辐射图像转换为

电子图像的过程。由于电子发射需要在发射表面有法向电场,所以光敏面应接以负电位。这一光敏面通常称为光阴极。变像管中常用的光阴极是透射型的,即入射辐射从像管的入射端面射进来,所以这类光阴极是半透明的。

外光电效应——其特点包括两方面的内容:

(1)斯托咧托夫定律:当入射光的频率或频谱成分不变时,光电发射体单位时间内发射出的光电子数或饱和光电流G I 与入射光的强度成正比,即:

G I S λ=?Φ

式中,S λ为比例系数,即通常的光电(谱)灵敏度(单位:/A lm μ);Φ为单位时间内照射到光电发射体上的能量(单位:lm )。该定律表明:入射光越强,其产生的光电发射越大。

(2)爱因斯坦定律:光电发射出来的光电子的最大初动能与入射光的频率成正比,与入射光的强度无关,即:

2max max 01()2W mv h v v ==-

式中m 为电子的质量;max v 为光电子的最大初速度;h 为普朗克常数;0v 为截止

频率(或红限频率)。该定律表明:当入射频率低于

0v 时,不论光强如何都不会

产生光电发射。 斯托列夫定律和爱因斯坦定律揭示了光电转换过程的光电转换关系和光谱响应范围。

光阴极进行图像转换的简要物理过程是:当具有能量为hv 的辐射量子入射到半透明的光电子发射体内,与体内电子产生非弹性碰撞而交换能量。当辐射量子的能量大于电子产生跃迁的能量时,电子被激发到受激发态。这些受激电子向真空界面迁移,由于半导体中自由电子数量很少,所以产生自由电子散射的几率很小,只有在迁移中与晶格产生相互作用,由于声子散射而引起少量的能量损失;如果电子在到达真空界面仍有克服电子亲和势的能量,就可以发射到真空中,成为光电发射的电子。对具有负电子亲和势的光阴极,则不需要克服电子亲和势的能量。

由光电发射的斯托列托夫定律刻制,饱和光电发射的光电子流密度与入射辐射通量密度成正比。因此,由入射辐射分布构成的图像可以通过光阴极变换成由光电子流分布构成的图像,这一图像称为光电子图像。

1.2、电子图像的能量增强

变像管中的电子图像通过特定的静电场或电磁复合场获得能量增强。由光阴极的光电发射产生的电子图像,在刚离开光阴极面时是低速运动的电子流,其初速度由爱因斯坦定律所决定。这一低能量的电子图像在静电场或电磁复合场的洛伦兹力作用下得到加速并聚焦到荧光屏上。在到达像面时是高速运动的电子流,能量很大。由此完成了电子图像的能量增强。像管中特定设置的静电场或电磁复合场称之为电子光学系统。由于它具有聚焦电子图像的作用,故又被称之为电子透镜。

像管中常用的电子光学系统有:纵向均匀电场的投影成像系统;轴对称的静电聚焦成像系统;准球对称的静电聚焦成像系统;旋转对称的电磁场复合聚焦成像系统。有些像管中还使用了微通道板,通过电子图像的电子流密度倍增来进行图像增强。

1.3、电子图像的发光显示

变像管输出的是可见光学图像。为把电子图像转换成可见的光学图像,通常采用荧光屏。能将电子动能转换成光能的荧光屏是由发光材料的微晶颗粒沉积而成的薄层。

荧光屏是利用掺杂的晶体磷光体受激发光的物理过程,将电子图像转换为可见的光学图像。掺入微量重金属离子作杂质时(如铜、银等)会有较强的受激发光特性。这是由于杂质的掺入对相邻基质的能态产生微扰而出现了局部能级。由这些局部能级构成了受激发光过程所需要的基态能级。通常称之为发光中心。当变像管中高速电子轰击荧光屏是,晶态磷光体基质中的价带电子受激跃迁到导带,所产生的电子和空穴分别在导带和价带中扩散。当空穴迁移到发光中心的基态能级上时,就相当于发光中心被激发了。而在导带中的受激电子有可能迁移到这一受激的发光中心,产生电子和空穴的复合而放出光子。所发射的光波波长是由发光中心基态与导带的能量差所决定。由于发光中心基态能级的分散,使辐射的波长具有一定的分布,通常掺杂的晶态磷光体的发光光谱呈钟型分布。变像管中常用的荧光屏不仅应该具有高的转换效率,而且它的发射光谱要和眼睛或与之耦合的光阴极的光谱响应相一致。实验证明,荧光屏由高速电子激发发光的亮度除与发光材料的性质有关外,主要取决于入射电子流的密度和加速电压值。

2、扫描变像管的基本原理

原则上讲,扫描变像管技术属于示波技术,这是因为它是用来显示讯号随时间变化的过程。但它又不同于通常的示波技术:通常的示波技术是以加在偏转系统上的电压波形为讯号载体,而扫描变像管则是以电子束为讯号的载体;通常的示波技术只能给出一维的时间信息而没有空间分辨能力,扫描变像管可以同时给

出一维的连续的时间信息和一维的空间信息。

图2 扫描变像管的工作原理

它由光电阴极、加速系统、聚焦系统、偏转系统和荧光屏等部分组成。物镜将瞬态光源A的像成在狭缝上,狭缝取出A的一维空间信息通过中继透镜成像在变像管的光电阴极上。当光电阴极上的狭缝部分被A所发出的光脉冲照明时,这一部分将发射光电子,并且光电子的瞬间发射密度正比于该时刻的光脉冲强度,所产生的光电子脉冲的持续时间就是入射光脉冲的持续时间,因此光电阴极发出的电子脉冲在时空结构上是入射光脉冲的复制品。只要设法测出电子脉冲的时空结构,就可以得到入射光脉冲的时空结构。电子脉冲从阴极上发出,经静电聚焦系统聚焦后,进入偏转系统。偏转系统上加有随时间线性变化的斜坡电压,由于不同时刻进入偏转系统的电子受到不同偏转电压的作用,电子束到达荧光屏时,将沿垂直于狭缝的方向展开,这一方向对应于时间轴,因此可以得到狭缝每一点展开的时间信息。为了保证电子脉冲和斜坡电压的同步,在光路中引入分束器,该分束器将一部分光送入物镜,另一部分光送入PIN管,由于PIN输出的电脉冲经可变延时器适当延时后触发斜坡电压发生器。电子经前面的系统加速度后轰击荧光屏,转换为可见光。荧光屏输出的狭缝扫描图像,一般采用接触照相或CCD 实时读出系统记录。由于电子束比任何机械结构在运动中具有小得多的惯性,而利用超快速开关元件很容易产生瞬变电场所需的电压波形,所以扫描变像管技术可以获得极高的时间分辨率,达到飞秒级别。

3、变像管的特性

变像管是为了扩展人眼视见范围和视见能力而发展起来的,它能探测到人眼不可见的目标辐射信号,又能将目标满意地进行成像,使人眼能看到再现的目标图像。因此,变现管既是一个辐射探测器、放大器,同时又是一个成像器。作为辐射探测器,它应具有高的量子效率和信号放大能力,以提供足够的亮度。这

一性能通常用灵敏度和亮度增益来描述;作为成像器,它必须具有小的图像几何失真,适当的几何放大率,尽可能小的亮度(能量)扩散能力,以提供足够的视角和对比。这些性能通常用畸变、放大率、分辨力及调制传递函数来描述。

3.1、光谱响应特性

光谱响应特性是指变像管的响应能力与入射波长的对应关系。变像管的光谱响应特性实际上是其光阴极的光谱响应特性,它决定了变现管工作的光谱范围。变像管的光谱响应特性通常用光谱响应率、量子效率、光谱特性曲线等来描述,变像管的光谱响应之和称之为积分响应率(或光电灵敏度)。

响应率是像管对全色入射辐射的响应能力,用R 表示,即:

m R R α=

其中: 00()()()P R d P d λλλαλλ∞∞

=

??,

式中,α称为光谱匹配系数,它反映了在像管响应的波长范围内,光源与光阴极,荧光屏与光阴极及荧光屏与人眼光谱光视效率之间在光谱上的吻合程度,如果匹配良好就能获得高的响应度。

3.2、增益特性

变像管输出的图像亮度主要取决于像管本身对辐射能量的变换与增强能力,主要分亮度增益、辐射亮度增益和光通量增益,而亮度增益是最基本的。

变像管的亮度增益即变像管在标准光源照射下,荧光屏上的光出射度M 与入射到光阴极面上的照度v E 之比,即:

L V M

G E =(倍)。

3.3、背景特性

变像管的输出亮度中存在一种非成像的附加亮度,称之为背景(分为暗背景和光致背景)。(关于背景的相关内容在此不做详细讨论。)利用参数:等效背景照度和对比恶化系数来描述背景对变像管图像的对比影响。

(1)等效背景照度:是荧光屏亮度等于暗背景亮度值时光阴极面上的输出

照度值称为等效背景照度。设变像管的亮度增益为L G ,在变像管的光阴极面没有受到照射时,测得荧光屏暗背景亮度为

ab L ,则等效背景照度为: ab

be L L E G π=。

(2)对比恶化系数:背景使像质下降的程度可用对比恶化系数描述,即:

10b

C r C -=。

3.4、成像特性

同样作为图像探测器的变像管应该具有好的成像特性。像管在完成转换与增强的过程中,由于非理想成像,所以输出图像的几何尺寸、形状及亮度分布不能准确地再现输入辐照度分布,而使图像像质下降,这种像质下降主要表现在几何形状及亮度分布的失真,通常用放大率、畸变、分辨力和调制传递函数来描述。

3.4.1、放大率

变像管的放大率m 指的是变像管输出端输出的图像线性尺寸'l 与其对应的

输入端图像的线性尺寸l 之比,即:

'

l m l =,

因此放大率是表征变像管对图像几何尺寸放大或缩小能力的一个性能参数。

3.4.2、畸变

由于变像管采用静电聚焦电子光学系统,它的边缘放大率比近轴放大率大,所以在输出端图像产生畸变,以D 表示畸变程度,即:

0(

1)r m D m =-, 式中,r m 为距光阴极中心特定半径处的放大率;0m 为中心放大率。

3.4.3、分辨力

变像管的分辨力是指高对比度的标准测试图案聚焦在变像管的光阴极面上,通过目视的方法观察荧光屏上每毫米尺度包含的能够分辨开的黑白相间等宽距形条纹的对数。

3.4.3、调制传递函数(略写)

一般通过光学系统的输出像的对比度总比输入像的对比度要差,这个对比度的变化量与空间频率特性有密切的关系。把输出像与输入像的对比度之比成为调制传递函数(Modulation Transfer Function,MTF),即MTF的定义是MTF=输出图像的对比度/输入图像的对比度因为输出图像的对比度总小于输入图像的对比度,所以MTF值介于0~1之间。调制传递函数可用于表示光学系统的特征,MTF 越大,表示系统的成像质量越好。

4、变像管的应用

变像管作为一种电子光学成像器件,具有其它光机式的高速摄影技术难以具有的特点:

(1)变像管高速摄影能够实现波长转换,如果在变像管中选用不同的光电发射体和荧光材料,就可以进行各种不同波段的摄影。变像管的光谱响应范围可以覆盖从红外、可见光、紫外、软硬X射线一直到中子射线的整个光谱范围;

(2)利用增加电子动能或配用电子倍增器(如微通道板等)的方法,就可以实现亮度增强,可以对弱光目标进行拍摄,这一点为变像管高速摄影所独有,是其它高速摄影难以比拟的,目前像增强器的灵敏度可以做到记录单个光子;

(3)拍摄频率高,曝光时间短,由于电场与磁场对电子束的作用极为迅速,变像管的拍摄频率可以达到108-1011;

(4)图像数据可以实现实时输出,由于变像管荧光屏的面积有限,位置固定,对其输出图像可以用CCD相机及计算机进一步的数据处理实现实时读出。

正是由于这一系列特点,变像管高速摄影在核武器研究,受控热核反应研究,非线性光学,激光核聚变等方面具有较大的使用价值。

根据变像管的工作波段可分为:红外变现管、紫外变像管、X射线变现管、γ射线变像管,它们可分别将不可见的红外图像。紫外图像。X射线图像、γ射

线图像转换为可见的光学图像。而按其结构,可分为:近贴式、选通式、电磁复合聚焦式等。

变像管是为了扩展人眼视见范围和视见能力而发展起来的,它能探测到人眼不可见的目标辐射信号,又能将目标满意地进行成像,使人眼能看到再现的目标图像。红外变像管主要用于军事、公安等方面的红外夜视仪器;暗室管理、物理实验、激光器校准和夜间生物活动的观察。紫外变像管主要是和光学显微镜结合起来,用于医学和生物学等方面的研究。X射线像增强器常用在医疗诊断和工业探伤等方面。

参考文献

[1] 邹异松,电真空成像器件及理论分析,北京:国防工业出版社,1989.

[2] 白廷柱,金伟其,光电成像原理与技术,北京:北京理工大学出版社,2005,p122-209

[3] 邹异松,刘玉凤,白廷柱。光电成像原理,北京:北京理工大学出版社,1996,p78-90

[4] 汤定元,糜正瑜等,光电器件概论,上海:上海科学技术文献出版社,1989

[5] Fan H.Y. Theory of Photoelectric Imaging Devices. Plenum Press, New York,1971

[6] Csorba I.P. Image Tubes. Published by the Housard W.Sams&Co.,Inc.,USA.1985

[7] 陈东波,固体成像器件和系统,北京:兵器工业出版社,1991

[8] 赵元,张宗宇,光电信号检测原理与技术,机械工业出版社,2005,p95-102

肖特二极管的工作原理是什么.doc

肖特二极管的工作原理是什么 SBD是肖特基势垒二极管(Schottky Barrier Diode,缩写成SBD)的简称。SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。 肖特基二极管是近年来问世的低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千毫安。这些优良特性是快恢复二极管所无法比拟的。中、小功率肖特基整流二极管大多采用封装形式。 肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。随着电子不断从B扩散到A,B表面电子浓度逐渐降低,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。 典型的肖特基二极管基整流管的内部电路结构是以N型半导体为基片,在上面形成用砷作掺杂剂的N-外延层。阳极使用钼或铝等材料制成阻档层。用二氧化硅(SiO2)来消除边缘区域的电场,提高管子的耐压值。N型基片具有很小的通态电阻,其掺杂浓度较H-层要高100%倍。在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。通过调整结构参数,N型基片和阳极金属之间便形成肖特基势垒,当在肖特基势垒两端加上正向偏压(阳极金属接电源正极,N型基片接电源负极)时,肖特基势垒层变窄,其内阻变小;反之,若在肖特基势垒两端加上反向偏压时,肖特基势垒层则变宽,其内阻变大。 综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别通常将PN结整流管称作结整流管,而把金属-半导管整流管叫作肖特基整流管,近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可节省贵金属,大幅度降低成本,还改善了参数的一致性。 肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,

步进电动机的工作原理与特点

步进电动机的工作原理及特点随着微电子和计算机技术的发展,步进电机的需求量与日俱增,它广泛用于打印机、电动玩具等消费类产品以及数控机床、工业机器人、医疗器械等机电产品中,其在各个国民经济领域都有应用。研究步进电机的控制系统,对提高控制精度和响应速度、节约能源等都具有重要意义。 1 步进电机概述 步进电动机又称脉冲电动机或阶跃电动机,国外一般称为Steppingmotor、Pulse motor或Stepper servo,其应用发展已有约80年的历史。步进电机是一种把电脉冲信号变成直线位移或角位移的控制电机,其位移速度与脉冲频率成正比,位移量与脉冲数成正比。步进电机在结构上也是由定子和转子组成,可以对旋转角度和转动速度进行高精度控制。当电流流过定子绕组时,定子绕组产生一矢量磁场,该矢量场会带动转子旋转一角度,使得转子的一对磁极磁场方向与定子的磁场方向一着该磁场旋转一个角度。因此,控制电机转子旋转实际上就是以一定的规律控制定子绕组的电流来产生旋转的磁场。每来一个脉冲电压,转子就旋转一个步距角,称为一步。根据电压脉冲的分配方式,步进电机各相绕组的电流轮流切换,在供给连续脉冲时,就能一步一步地连续转动,从而使电机旋转。步进电机每转一周的步数相同,在不丢步的情况下运行,其步距误差不会长期积累。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,同时步进电机只有周期性的误差而无累积误差,精度高,步进电动机可以在宽广的频率围通过改变脉冲频率来实现调速、快速起停、正反转控制等,这是步进电动机最突出的优点[1]。 正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电动机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。由于步进电动机能直接接收数字量的输入,所以特别适合于微机控制。 2国外的研究概况 步进电机是国外发明的。中国在文化大革命中已经生产和应用,例如、、、、都生产,而且都在各行业使用,驱动电路所有半导体器件都是完全国产化的,当时是全分立元器件构成的逻辑运算电路,还有电容耦合输入的计数器,触发器,环形分配器。国外在大功率的工业设备驱动上,目前基本不使用大扭矩步进电动机,因为从驱动电路的成本,效率,噪音,加速度,绝对速度,系统惯量与最大扭矩比来比较,比较不划算,还是用直流电动机,加电动机编码器整体技术和经济指标高。一些少数高级的应用,就用空心转杯电机,交流电机。国外在小功率的场合,还使用步进电机,例如一些工业器材,工业生产装备,打印机,复印件,速印机,银行自动柜员机。国外用许多现代的手段将步进电机排挤出驱动应用,除了前面提到的旋转编码器,打印机还使用光电编码带或感应编码带配合直流电动机,实现闭环直线位移控制。国过去是用大力矩步进电动机实现机床数控,有实力的公司现在也采用交流电动机驱动数控机床,在驱动设备的主要差距,是国外对交流电动机的控制理论与工程分析和应用能力强,先进的控制理论作为软件,写在控制器部。 总的来说,步进电机是一种简易的开环控制,对运用者的要求低,不适合在大功率的场合使用。 在卫星、雷达等应用场合,中国在文化大革命后期,就生产了力矩电机,就生产了环形

LED发光二极管工作原理、特性及应用演示教学

LED发光二极管工作原理、特性及应用 半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。 一、半导体发光二极管工作原理、特性及应用 (一)LED发光原理 发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。

理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。 (二)LED的特性 1.极限参数的意义 (1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。 (2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。 (3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 (4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。 2.电参数的意义 (1)光谱分布和峰值波长:某一个发光二极管所发之光并非单一波长,其波长大体按图2所示。由图可见,该发光管所发之光中某一波长λ0的光强最大,该波长为峰值波长。 2)发光强度IV:发光二极管的发光强度通常是指法线(对圆柱形发光管是指其轴线)方向上的发光强度。若在该方向上辐射强度为(1/683)W/sr时,则发光1坎德拉(符号为cd)。由于一般LED的发光二强度小,所以发光强度常用坎德拉(mcd)作单位。 (3)光谱半宽度Δλ:它表示发光管的光谱纯度.是指图3中1/2峰值光强所对应两波长之间隔. (4)半值角θ1/2和视角:θ1/2是指发光强度值为轴向强度值一半的方向与发光轴向(法向)的夹角。半值角的2倍为视角(或称半功率角)。 图3给出的二只不同型号发光二极管发光强度角分布的情况。中垂线(法线)AO的坐标为相对发光强度(即发光强度与最大发光强度的之比)。显然,法线方向上的相对发光强度为1,离开法线方向的角度越大,相对发光强度越小。由此图可以得到半值角或视角值。

晶体管的特性曲线

晶体管的特性曲线 晶体管特性曲线即管子各电极电压与电流的关系曲线,是管子内部载流子运动的外部表现,反映了晶体管的性能,是分析放大电路的依据。为什么要研究特性曲线: (1) 直观地分析管子的工作状态 (2) 合理地选择偏置电路的参数,设计性能良好的电路重点讨论应用最广泛的共发射极接法的特性曲线 1.测量晶体管特性的实验线路 图1 共发射极电路 共发射极电路:发射极是输入回路、输出回路的公共端。如图1所示。 2.输入特性曲线 输入特性曲线是指当集-射极电压U CE为常数时,输入电路( 基极电路)中基极电流I B与基-射极电压U BE之间的关系曲线I B = f (U BE),如图2所示。 图2 3DG100晶体管的输入特性曲线 U CE=0V时,B、E间加正向电压,这时发射结和集电结均为正偏,相当于两个二极管正向并联的特性。 U CE≥1V时,这时集电结反偏,从发射区注入基区的电子绝大部分都漂移到

集电极,只有小部分与空穴复合形成I B。U CE>1V以后,I C增加很少,因此I B 的变化量也很少,可以忽略U CE对I B的影响,即输入特性曲线都重合。 由输入特性曲线可知,和二极管的伏安特性一样,晶体管的输入特性也有一段死区。只有在发射结外接电压大于死区电压时,晶体管才会导通,有电流I B。 晶体管死区电压:硅管0.5V,锗管0.1V。晶体管正常工作时发射结电压:NPN型硅管U BE0.6 ~ 0.7) V PNP型锗管U BE0.2 ~ 0.3) V 3.输出特性曲线 输出特性曲线是指当基极电流I B为常数时,输出电路(集电极电路)中集电极电流I C与集-射极电压U CE之间的关系曲线I C = f (U CE),如图3所示。 变化曲线,所以晶体管的输出特性曲在不同的I B下,可得出不同的I C随U CE 线是一族曲线。下面结合图4共发射极电路来进行分析。 图3 3DG100晶体管的输出特性曲线图4 共发射极电路 晶体管有三种工作状态,因而输出特性曲线分为三个工作区 (1) 放大区 在放大区I C=βI B,也称为线性区,具有恒流特性。在放大区,发射结处于正向偏置、集电结处于反向偏置,晶体管工作于放大状态。 对NPN 型管而言, 应使U BE> 0, U BC< 0,此时,U CE> U BE。 (2) 截止区I B = 0 的曲线以下的区域称为截止区。 I B = 0 时, I C = I CEO(很小)。(I CEO<0.001mA)。对NPN型硅管,当U BE<0.5V 时, 即已开始截止, 为使晶体管可靠截止, 常使U BE≤0。截止时, 集电结也处于反向偏置(U BC≤ 0),此时, I C≈0, U CE≈U CC。 (3) 饱和区当U CE< U BE时,集电结处于正向偏置(U BC> 0),晶体管工作于饱和状态。

功率二极管结构和工作原理

功率二极管结构和工作原理 在本征半导体中掺入P型和N型杂质,其交界处就形成了PN结,在PN结的两端引出两个电极,并在外面装上管壳,就成为半导体二极管。如果一杂质半导体和金属形成整流接触,并在两端引出两个电极,则成为肖特基二极管。 二极管的结构和工作原理: PN结的形成及二极管的单向导电性描述如下: 如下图1所示,对于一块纯净的半导体,如果它的一侧是P区,另一侧为N区,则在P区和N区之间形成一交界面。N区的多子(电子)向P区运动,P区的多子(空穴)向N区运动,这种由于浓度差异而引起的运动称为“扩散运动”。扩散到P区的电子不断地与空穴复合,同时P区的空穴向N区扩散,并与N区中的电子复合。交界面两侧多子复合的结果就出现了由不能移动的带电离子组成的“空间电荷区”。N区一侧出现正离子区,P区一侧出现负离子区,正负离子在交界面两侧形成一个内电场。这个内电场对多子的扩散运动起阻碍作用的同时,又有利于N区的少子(空穴)进入P区,P区的少子(电子)进入N区,这种在内电场作用下少子的运动称为“漂移运动”。扩散运动有助于内电场的加强,内电场的加强将阻碍多子的扩散,而有助于少子的漂移,少子漂移运动的加强又将削弱内电场,又有助于多子的扩散,最终扩散运动和漂移运动必在一定温度下达到动态平衡。即在单位时间内P区扩散到N区的空穴数量等于由P区漂移到N区的自由电子数量,形成彼此大小相等,方向相反的漂移电流和扩散电流,交界面的总电流为零。在动态平衡时,交界面两侧缺少载流子的区域称为“耗尽层“,这就形成了PN结。

如图2所示,当PN结处于正偏,即P区接电源正端,N区接电源负端时,外加电场与PN 结内电场方向相反,内电场被削弱,耗尽层变宽,打破了PN结的平衡状态,使扩散占优势。多子形成的扩散电流通过回路形成很大的正向电流,此时PN结呈现的正向电阻很小,称为“正向导逋”。当PN结上流过的正向电流较小时,二极管的电阻主要是作为基片的低掺杂N区的欧姆电阻,其阻值较高且为常量,因而管压降随正向电流的上升而增加;当PN结上流过的正向电流较大时,注入并积累在低掺杂N区的少子空穴浓度将很大,为了维持半导体电中性条件,其多子浓度也相应大幅度增加,使得其电阻率明显下降,也就是电导率大大增加,这就是电导调制效应。电导调制效应使得PN结在正向电流较大时压降仍然很低,维持在1V左右,所以正向偏置的PN结表现为低阻态,为保护PN结,通常要在回路中串联一个限流电阻。

二极管的基本特性与应用(精)

几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。 当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。 当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平 面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固 地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。 面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流” 电路中。 平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 1、正向特性 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电 压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。 2、反向特性 在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当 二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。 二极管的主要参数 用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数: 1、额定正向工作电流 是指二极管长期连续工作时允许通过的最大正向电流值。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为140左右,锗管为90左右)时,就会使管芯过热而损坏。所以,二极管使用中不要超过二极管额定正向工作电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为1A。 2、最高反向工作电压 加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了最高反向工

常用国产电子管参数

常用国产电子管参数

常用国产电子管参数 参数 类别 典型特性参数极限运用参数 用途备注 参数名称 灯丝阳极 第一 (控 制) 栅压 帘栅 内 阻 互(跨) 导 放 大 系 数 灯丝 最高 阳极 电压 最大 阳极 功耗 帘栅电 压 电 流 电 压 电 流 第 二 栅 压 第 二 栅 流 电压 (大) 电压 (小) 最高 电压 最大 功耗 符号U f I f U a I a U g1U g2Ig 2R i Sμ U f max U f min U a max P a M U g2m ax P g2 max 单位V A V mA V V mA kΩmA — v —V V V W V W 型 号 二

5AR 4 5 1.9 2 × 55 14 8 极 管 ZB 2= 75 n R l =2 k Ω 5Z1P52± 0.2 2× 500 125—————— 5.5 4.51400 6 2—— 5Z2P52± 0.2 2× 400 125—————— 5.5 4.51400 5 0—— 负载 2.7k Ω 5Z3P52± 0.3 2× 500 230—————— 5.5 4.51500115—— 负载 2kΩ 5Z4P52± 0.2 2× 500 122—————— 5.5 4.51300 6 0—— 负载 4.7k Ω

5Z8P52± 0.7 2× 500 400—————— 5.5 4.51700200—— 负载 1kΩ 5Z9P52± 0.3 2× 500 190—————— 5.5 4.51700100—— 负载 2.2k Ω 6Z4 6.30.62× 350 72——————7 5.71000 2 5—— 负载 5.2k Ω 6Z5P6.30.62× 400 70—————— 6.9 5.71100 3 0—— 负载 5.7k Ω 6H Z 6.30.3 2× 150 17——————7 5.74503—— 负载 10k Ω 300 B-98 5 30 45 -60 56 三极 管 300 BC 5 1.2 30 60 -60 5.3

稳压二极管工作原理

稳压二极管工作原理 一、稳压二极管原理及特性 一般三极管都是正向导通,反向截止;加在二极管上的反向电压如果超过二极管的承受能力,二极管就要击穿损毁。但是有一种二极管,它的正向特性与普通二极管相同,而反向特性却比较特殊:当反向电压加到一定程度时,虽然管子呈现击穿状态,通过较大电流,却不损毁,并且这种现象的重复性很好;只要管子处在击穿状态,尽管流过管子的电在变化很大,而管子两端的电压却变化极小起到稳压作用。这种特殊的二极管叫稳压管。 稳压管的型号有2CW、2DW 等系列,它的电路符号如图5-17所示。 稳压管的稳压特性,可用图5一18所示伏安特性曲线很清楚地表示出来。 稳压管是利用反向击多区的稳压特性进行工作的,因此,稳压管在电路中要反向连接。稳压管的反向击穿电压称为稳定电压,不同类型稳压管的稳定电压也不一

样,某一型号的稳压管的稳压值固定在口定范围。例如:2CW11的稳压值是3.2伏到4.5伏,其中某一只管子的稳压值可能是3.5伏,另一只管子则可能是4,2伏。 在实际应用中,如果选择不到稳压值符合需要的稳压管,可以选用稳压值较低的稳压管,然后串联几只硅二极管“枕垫”,把稳定电压提高到所需数值。这是利用硅二极管的正向压降为0.6~0.7伏的特点来进行稳压的。因此,二极管在电路中必须正向连接,这是与稳压管不同的。 稳压管稳压性能的好坏,可以用它的动态电阻r来表示: 显然,对于同样的电流变化量ΔI,稳压管两端的电压变化量ΔU越小,动态电阻越小,稳压管性能就越好。 稳压管的动态电阻是随工作电流变化的,工作电流越大,动态电阻越小。因此,为使稳压效果好,工作电流要选得合适。工作电流选得大些,可以减小动态电阻,但不能超过管子的最大允许电流(或最大耗散功率)。各种型号管子的工作电流和最大允许电流,可以从手册中查到。 稳压管的稳定性能受温度影响,当温度变化时,它的稳定电压也要发生变化,常用稳定电压的温度系数来表示,这种性能例如2CW19型稳压管的稳定电压Uw= 12伏,温度系数为0.095%℃,说明温度每升高1℃,其稳定电压升高11.4毫伏。为提高电路的稳定性能,往往采用适当的温度补偿措施。在稳定性能要求很高时,需使用具有温度补偿的稳压,如2DW7A、2DW7W、2DW7C 等。 二、稳压二极管稳压电路图 由硅稳压管组成的简单稳压电路如图5- l9(a)所示。硅稳压管DW与负载Rfz,并联,R1为限流电阻。

半导体管特性图示仪的使用和晶体管参数测量

半导体管特性图示仪的使用和晶体管参数测量 一、实验目的 1、了解半导体特性图示仪的基本原理 2、学习使用半导体特性图示仪测量晶体管的特性曲线和参数。 二、预习要求 1、阅读本实验的实验原理,了解半导体图示仪的工作原理以及XJ4810 型半导体管图示仪的各旋钮作用。 2、复习晶体二极管、三极管主要参数的定义。 三、实验原理 (一)半导体特性图示仪的基本工作原理 任何一个半导体器件,使用前均应了解其性能,对于晶体三极管,只要知道其输入、输出特性曲线,就不难由曲线求出它的一系列参数,如输入、输出电阻、电流放大倍、漏电流、饱和电压、反向击穿电压等。但如何得到这两组曲线呢?最早是利用图4-1 的伏安法对晶体管进行逐点测试,而后描出曲线,逐点测试法不仅既费时又费力,而而且所得数据不能全面反映被测管的特性,在实际中,广泛采用半导体特性图示仪测量的晶体管输入、输出特性曲线。 图4-1 逐点法测试共射特性曲线的原理线路用半导体特性图示仪测量晶体管的特性曲线和各种直流参量的基本原理是用图4-2(a)中幅度随时间周期性连续变化的扫描电压UCS代替逐点法中的可调电压EC,用图4-2(b)所示的和扫描电压UCS的周期想对应的阶梯电流iB来代替逐点法中可以逐点改变基极电流的可变电压EB,将晶体管的特性曲线直接显示在示波管的荧光屏上,这样一来,荧光屏上光点位置的坐标便代替了逐点法中电压表和电流表的读数。

1、共射输出特性曲线的显示原理 当显示如图4-3 所示的NPN 型晶体管共发射极输出特性曲线时,图示仪内部和被测晶体管之间的连接方式如图4-4 所示. T是被测晶体管,基极接的是阶梯波信号源,由它产生基极阶梯电流ib 集电极扫描电压UCS直接加到示波器(图示仪中相当于示波器的部分,以下同)的X轴输入端,,经X轴放大器放大到示波管水平偏转板上集电极电流ic经取样电阻R得到与ic成正比的电压,UR=ic,R加到示波器的Y轴输入端,经Y轴放大器放大加到垂直偏转板上.子束的偏转角与偏转板上所加电压的大小成正比,所以荧光屏光点水平方向移动距离代表ic的大小,也就是说,荧光屏平面被模拟成了uce-ic 平面. 图4-4 输出特性曲线显示电路输出特性曲线的显示过程如图4-5 所示 当t=0 时, iB =0 ic=0 UCE =0 两对偏转板上的电压均为零,设此时荧光屏上光点的位置为坐标原点。在0-t1,这段时间内,集电极扫描电压UCS 处于第一个正弦半波周期。

齐纳二极管稳压二极管工作原理及主要全参数

齐纳二极管(稳压二极管)工作原理及主要参数 齐纳二极管也叫稳压二极管.一般二极管处于逆向偏压时,若电压超过PIV(逆向峰值电压)值时二极管将受到破坏,这是因为一般二极管在两端的电位差既高之下又要通过大量的电流,此时所产生的功率所衍生的热量足以使二极管烧毁。 齐纳二极管就是专门被设计在崩溃区操作,是一个具有良好的功率散逸装置,可以当做电压参考或定电压组件。若利用齐纳二极管作为电压调节器,将使附载电压保持在Vz附近且几乎唯一定值,不受附载电流或电源上电压变动影响。一般二极管之崩溃电压,在制作时可以随意加以控制,所以一般齐纳二极管之崩电压(Vz)从数伏特至上百伏特都有。一般齐纳二极管在特性表或电路上除了标住Vz外,均会注明Pz也就是齐纳二极管所能承受之做大功率,也可由Pz=Vz*Iz 换算出奇纳二极管可通过最大电流Iz。dz3w上有个在线计算器,电路设计时可以用来计算稳压二极管的相关参数. 齐纳二极管工作原理 齐纳二极管主要工作于逆向偏压区,在二极管工作于逆向偏压区时,当电压未达崩溃电压以前,二极管上并不会有电流产生,但当逆向电压达到崩溃电压时,每一微小电压的增加就会产生相当大的电流,此时二极管两端的电压就会保持于一个变化量相当微小的电压值(几乎等于崩溃电压),下图为齐纳二极管之电压电流曲线,可由此应证上述说明。 齐纳二极管(又叫稳压二极管)它的电路符号是:此二极管是一种直到临界反

向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 在通常情况下,反向偏置的PN结中只有一个很小的电流。这个漏电流一直保持一个常数,直到反向电压超过某个特定的值,超过这个值之后PN结突然开始有大电流导通(图1.15)。这个突然的意义重大的反向导通就是反向击穿,如果没有一些外在的措施来限制电流的话,它可能导致器件的损坏。反向击穿通常设置了固态器件的最大工作电压。然而,如果采取适当的预防措施来限制电流的话,反向击穿的结能作为一个非常稳定的参考电压。 图1.15 PN结二极管的反向击穿。 导致反向击穿的一个机制是avalanche multiplication。考虑一个反向偏置的PN结。耗尽区随着偏置上升而加宽,但还不够快到阻止电场的加强。强大的电场加速了一些载流子以非常高的速度穿过耗尽区。当这些载流子碰撞到晶体中的原子时,他们撞击松的价电子且产生了额外的载流子。因为一个载流子能通过撞击来产生额外的成千上外的载流子就好像一个雪球能产生一场雪崩一样,所以这个过程叫avalanche multiplication。 反向击穿的另一个机制是tunneling。Tunneling是一种量子机制过程,它能使粒子在不管有任何障碍存在时都能移动一小段距离。如果耗尽区足够薄,

二极管入门知识二极管结构和工作原理

二极管入门知识二极管结 构和工作原理 This model paper was revised by the Standardization Office on December 10, 2020

在自然界中,根据材料的导电能力,我们可以将他们划分导体、绝缘体和半导体。常见的导体如铜 和铝、常见的绝缘体如橡胶、塑料等。什么是半导体呢半导体的导电能力介于导体和绝缘体之间,常见的半导体材料有硅(Si)和锗(Ge)。到此,请记住两种半导体材料:硅、锗。因为以后你会 听说硅管、锗管。意思很明显,说明这种二极管或三极管是用硅或锗作为基材的。 半导体硅原子结构图 半导体有几个特性有必要了解一下:热敏性、光敏性和掺杂性; 半导体的热敏性:半导体的导电能力受温度影响较大,当温度升高时,半导体的导电能力大大增强,被称为半导体的热敏性。利用半导体的热敏性可制成热敏元件,在汽车上应用的热敏元件有温度传感器,如水温传感器、进气温度传感器等。 半导体硅的空穴和自由电子示意图 半导体的光敏性:半导体的导体的导电能力随光照的不同而不同。当光照增强时,导电能力增强,称为半导体光敏性。利用光敏性可制成光敏元件。在汽车上应用的光敏元件有汽车自动空调上应用的光照传感器。 半导体的掺杂性:当在导体中掺入少量杂质,半导体的导电性能增加。 什么是本征半导体、P型半导体和N型半导体,有哪些区别 本征半导体:纯净的半导体称为本征半导体。 P型半导体:在本征半导体硅或锗中掺入微量的三价元素硼(B)或镓,就形成P型半导体。 P型半导体示意图-空穴是多数载流子 N型半导体:在本征半导体硅或锗中掺入微量的五价元素磷(P)就形成N型半导体。 N型半导体中自由电子是多数载流子 PN结和二极管 在半导体硅或锗中一部分区域掺入微量的三价元素硼使之成为P型,另一部分区域掺入微量的五价元素磷使之成为N型半导体。在P型和N型半导体的交界处就形成一个PN结。一个PN结就是一个二极管,P区的引线称为阳极,N区的引线称为阴极。 二极管结构图:P区引线成为阳极、N区引线成为阴极 二极管的单向导电性能 二极管具前单向导电性能, (1)正向导通:当PN结加上正向电压,即P区接蓄电池正级,N区接蓄电池负极时,PN结处于导通状态,如图所示,试灯有电流通过,点亮。 二极管正向导通示意图 注意二极管正向导通时存在着电压降,什么意思呢如果蓄电池电压是12V,则试灯上的电压一定小于12V,大约是吧,哪在那里呢在二极管上,这就是二极管的电压降。二极管的电压降取决于二极管采用的是锗管还是硅管:锗管的电压降是左右;而硅管的电压降是左右。如果蓄电池电压低

功率二极管结构和工作原理

功率二极管结构和工作原理 功率二极管结构和工作原理 在本征半导体中掺入P型和N型杂质,其交界处就形成了PN结,在PN结的两端引出两个电极,并在外面装上管壳,就成为半导体二极管。如果一杂质半导体和金属形成整流接触,并在两端引出两个电极,则成为肖特基二极管。 二极管的结构和工作原理: PN结的形成及二极管的单向导电性描述如下:如下图1所示,对于一块纯净的半导体,如果它的一侧是P区,另一侧为N区,则在P区和N 区之间形成

一交界面。N区的多子(电子)向P 区运动,P区的多子(空穴)向N区运动,这种由于浓度差异而引起的运动称为"扩散运动”。扩散到P区的电子不断地与空穴复合,同时P 区的空穴向N区扩散,并与N区中的电子复合交界面两侧多子复合的结果就出现了由不能移动的带电离子组成的“空间电荷区”。N区一侧出现正离子区,P区一侧出现负离子区,正负离子在交界面两侧形成一个内电场。这个内电场对多子的扩散运动起阻碍作用的同时,又有利于N 区的少子(空穴)进入P区,P区的少子(电子)进入N区,这种在内电场作用下少子的运动称为"漂移运动”。扩散运动有助于内电场的加强,内电场的加强将阻碍多子的扩散,而有助于少子的漂移,少子漂移运动的加强又将削弱内电场,又有助于多子的扩散,最终扩散运动和漂移运动必在一定

温度下达到动态平衡。即在单位时间内P区扩散到N 区的空穴数量等于由P区漂移到N区的自由电子数量,形成彼此大小相等,方向相反的漂移电流和扩 散电流,交界面的总电流为 零。在动态平衡时,交界面两侧缺少载流子的区 域称为“耗尽层“,这就形成了PN结。 囹!PN结空间电荷区 如图2所示,当PN结处于正偏,即P区接电源正端,N区接电源负端时,外加电场与PN结内电场方向相反,内电场被削弱,耗尽层变宽,打破了PN 结的平衡状态,使扩散占优势。多子形成的扩散电流通过回路形成很大的正向电流,此时PN结呈现的正向电阻很小,称为“正向导逋”。当PN结上流过

二极管工作原理学习

二级管工作原理(PN结原理)学习 0、小叙闲言 并没有进一步研究一下,今天写下这篇文章,主要是介绍二极管的工作原理,为后面的三极管和MOSFET工作原理的理解打下基础,然后,应该能理解放大器的工作原理,最后也就也能解决上两篇文章提出的问题了。 1、PN结形成 P(Positive)型和N(Negative)型可根据它们的载流子(载流子说得比较学术,其实就是导体里面能流动的带电粒子,为电子或者是空穴,空穴可以看作是带正电的电子)来区分。对半导体材料(一般应该是硅Si)参入不同的杂质,就可以形成P型半导体和N型半导体。P型半导体里面能够流动的粒子是空穴,N型半导体里面能够流动的粒子是电子。它们的结构如下图1所示,对于它们俩如何参杂以形成不同的半导体,我们可没必要再研究下去,

除非你是专门搞半导体材料的。P型半导体中的大红圆是负离子,由于材料的性质,它是不可移动的,而其中的小绿圆(空穴),是可移动的,这一点很重要,请务必记住;同理N型半导体,它里面的大绿圆(正离子)不可自由移动,而小红圆(电子)可自由移动。 图1 P型和N型半导体结构

简单了解了P型半导体和N型半导体之后,我们常说的PN结是如何形成的呢,且看下方图2动图。当P型半导体和N型半导体接合在一起的时候,由于P型半导体中空穴浓度高,而N型半导体中电子浓度高,因此会形成一个扩散运动,P型半导体中空穴会向它浓度低的地方扩散,从而扩散到N型区,N型半导体的电子也会向它浓度低的地方扩散,从而扩散到P型区。这样一来,P型区剩下不能自由移动的负离子,而N型区剩下不能自由移动的正离子,一正一负,在PN结内部形成了一个从左往右的内电场,基本上这个内电场就体现PN结的工作特性。另外有一点要说明的是,PN结只是局部带电,即P型区呈负电,而N型区呈负电,但是它们俩一中和,整体上是呈中性的。

稳压二极管工作原理及故障特点

稳压二极管工作原理及故障特点

稳压二极管工作原理及故障特点 稳压二极管的稳压原理: 稳压二极管的特点就是击穿后,其两端的电压基本保持不变。这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。 稳压二极管在电路中常用“ZD”加数字表示,如:ZD5表示编号为5的稳压管。 故障特点: 稳压二极管的故障主要表现在开路、短路和稳压值不稳定。在这3种故障中,前一种故障表现出电源电压升高;后2种故障表现为电源电压变低到零伏或输出不稳定。 常用稳压二极管的型号及稳压值如下表: 型号 1N4728 1N4729 1N4730 1N4732 1N4733 1N4734 1N4735 1N4744 1N4750 1N4751 1N4761 稳压 值 3.3V 3.6V 3.9V 4.7V 5.1V 5.6V 6.2V 15V 27V 30V 75V 稳压管也是一种晶体二极管,它是利用PN结的击穿区具有稳定电压的特性来工作的。稳压管在稳压设备和一些电子电路中获得广泛的应用。我们把这种类型的二极管称为稳压管,以区别用在整流、检波和其他单向导电场合的二极管。如图画出了稳压管的伏安特性及其符号。

(1)稳定电压Uz Uz就是PN结的击穿电压,它随工作电流和温度的不同而略有变化。对于同一型号的稳压管来说,稳压值有一定的离散性。 (2)稳定电流Iz 稳压管工作时的参考电流值。它通常有一定的范围,即Izmin——Izmax。 (3)动态电阻rz 它是稳压管两端电压变化与电流变化的比值,如上图所示,即这个数值随工作电流的不同而改变。通常工作电流越大,动态电阻越小,稳压性能越好。 (4)电压温度系数它是用来说明稳定电压值受温度变化影响的系数。不同型号的稳压管有不同的稳定电压的温度系数,且有正负之分。稳压值低于4v的稳压管,稳定电压的温度系数为负值;稳压值高于6v的稳压管,其稳定电压的温度系数为正值;介于4V和6V之间的,可能为正,也可能为负。在要求高的场合,可以用两个温度系数相反的管子串联进行补偿(如2DW7)。 (5)额定功耗Pz 前已指出,工作电流越大,动态电阻越小,稳压性能越好,但是最大工作电流受到额定功耗Pz的限制,超过P2将会使稳压管损坏。 选择稳压管时应注意:流过稳压管的电流Iz不能过大,应使Iz≤Izmax,否则会超过稳压管的允许功耗,Iz也不能太小,应使Iz≥Izmin,否则不能稳定输出电压,这样使输入电压和负载电流的变化范围都受到一定限制。下图示出了稳压管工作时的动态等效电路,图中二极管为理想二极管。

稳压二极管原理及应用

什么是稳压二极管稳压二极管(又叫齐纳二极管)它的电路符号是:,稳压二极管是一种用于稳定电压的单PN结二极管。此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件。在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用。 稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 稳压管的应用: 1、浪涌保护电路(如图2):稳压管在准确的电压下击穿,这就使得它可作为限制或保护之元件来使用,因为各种电压的稳压二极管都可以得到,故对于这种应用特别适宜。图中的稳压二极管D是作为过压保护器件。只要电源电压VS超过二极管的稳压值D就导通。使继电器J吸合负载RL就与电源分开。 2、电视机里的过压保护电路(如图3):EC是电视机主供电压,当EC电压过高时,D导通,三极管BG导通,其集电极电位将由原来的高电平(5V)变为低电平,通过待机控制线的控制使电视机进入待机保护状态。 3、电弧抑制电路如图4:在电感线圈上并联接入一只合适的稳压二极管(也可接入一只普通二极管原理一样)的话,当线圈在导通状态切断时,由于其电磁能释放所产生的高压就被二极管所吸收,所以当开关断开时,开关的电弧也就被消除了。这个应用电路在工业上用得比较多,如一些较大功率的电磁吸控制电路就用到 它。

4、串联型稳压电路(如图5):在此电路中。串联稳压管BG的基极被稳压二极管D钳定在13V,那么其发 射极就输出恒定的12V电压了。这个电路在很多场合下都有应用 国产稳压二极管产品的分类 二极管的击穿通常有三种情况,即雪崩击穿、齐纳击穿和热击穿。 (1)雪崩击穿 对于掺杂浓度较低的PN结,结较厚,当外加反向电压高到一定数值时,因外电场过强,使PN结内少数载流子获得很大的动能而直接与原子碰撞,将原子电离,产生新的电子空穴对,由于链锁反应的结果,使少数载流子数目急剧增多,反向电流雪崩式地迅速增大,这种现象叫雪崩击穿。雪崩击穿通常发生在高反压、低掺杂的情况下。 (2)齐纳击穿 对于采用高掺杂(即杂质浓度很大)形成的PN结,由于结很薄(如0.04μm)即使外加电压并不高(如4V),就可产生很强的电场(如)将结内共价键中的价电子拉出来,产生大量的电子一空穴对,使反向电流剧增,这种现象叫齐纳击穿(因齐纳研究而得名)。齐纳击穿一般发生在低反压、高掺杂的情况下。(3)热击穿 在使用二极管的过程中,如由于PN结功耗(反向电流与反向电压之积)过大,使结温升高,电流变大,循环反复的结果,超过PN结的允许功耗,使PN结击穿的现象叫热击穿。热击穿后二极管将发生永久性损坏。

二极管工作原理

二极管工作原理 二极管工作原理(正向导电,反向不导电) 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电常当不存在外加电压时,由于p-n结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。(这也就是导电的原因)当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流。(这也就是不导电的原因)晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电常当不存在外加电压时,由于p-n结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。二极管的类型二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流, 而且性能稳定可靠,多用于开关、脉冲及高频电路中。二极管的导电特性二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 1、正向特性在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。 2、反向特性在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当二极管两端的反向电压增大到某一数文值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。 二极管的主要参数 用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数: 1、额定正向工作电流是指二极管长期连续工作时允许通过的最大正向电流值。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为140左右,锗管为90左右)时,就会使管芯过热而损坏。所以,二极管使用中不要超过二极管额定正向工作电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为1A。

相关文档
最新文档