粗糙度参数RzRmax、Rt、R3z、RPc等的定义及测量

粗糙度参数RzRmax、Rt、R3z、RPc等的定义及测量
粗糙度参数RzRmax、Rt、R3z、RPc等的定义及测量

表面粗糙度参数Rz、Rmax、Rt、R3z、RPc等的

测量

在GB/T3505-2000《产品几何技术规范表面结构轮廓法表面结构术语、定义及参数》中定义了表面粗糙度幅度参数(纵坐标平均值)R a、R q、R sk、R ku和间距参数、混合参数等,虽然该标准等效采用了ISO4287:1997《几何产品规范(GPS)表面特征:轮廓法表面结构的术语、定义及参数》,但这些参数远远不能满足我国目前工业生产的需要,特别是在涉外产品中常常会提出一

些非标的表面粗糙度参数的技术要求,例如R max(DIN EN ISO 4287)、RP c(prEN 10049)、R3z(Daimler Benz Standard 31007)等。这些参数的正确测量直接影响产品符合性的判断,因此生产部

门对这些参数的准确测量都有迫切的需求。同时,对这些参数

的正确认识及理解能有效地指导生产过程,在使产品技术指标

满足要求的同时可有效降低生产成本。

笔者在实际工作中经常会为一些厂家测量这样的参数,如发

动机冷凝管内表面的R max、R t等参数、轴类零件的RP c参数。现结合实例对这些参数的定义和测量方法作一些说明,以供参考。

一、参数的定义

1.参数R z(GB/T3505-2000)

在一个取样长度lr内,最大轮廓峰高和最大轮廓谷深之和的高度如图1所示。

图1 参数R z示意图

这里R z的定义和GB/T3505-1983《表面粗糙度术语表面及其参数》中的定义已经完全不同。GB/T3505-1983中R z符号曾用于指示“不平度的十点高度”。正在使用中的一些表面粗糙度测量仪器大多只能测量以前的参数R z。因此,采用现行的技术文件和图样时必须小心慎重,因为用不同类型的仪器按不同的规定计算所取得的结果之间的差别,并不都是非常微小而可忽略的。

2.参数R max(DIN EN ISO 4287)

参数R max与参数R zi之间有些关系,因此首先介绍R zi的定义。R zi的定义为,在一个取样长度lr内最高峰和最低谷之间的垂直距离。

R max的定义为在评定长度lc内R zi的最大值(在DIN EN ISO 4288中,R max的符号为R z1max),其示意图如图2所示。

图2 参数R max示意图

3.参数R t(GB/T3505-2000)

参数R t的定义为评定长度内最大的峰谷垂直距离,如图3所示。

图3 参数R t示意图

4.参数R3z(Daimler Benz Standard 31007)

R3zi的定义为,粗糙度轮廓上一个取样长度lr内第3高的轮廓峰和第3高的轮廓谷之间的垂直距离,如图4所示。

图4 参数R3z示意图

R3z是5个连续取样长度上粗糙度深度R3zi的平均值。

5.参数RP c(prEN 10049)

参数RP c的定义为单位长度内连续穿过规定的上轮廓截止线c1和下轮廓截止线c2的粗糙度轮廓元素的数量。在使用中取c1等于c2,它们间的距离也叫做带宽(Bandwidth)或Peak Count Level。通常会取它们位于中线(Mean Line)或平行于中线指定的另外的直线的两侧,如图5所示。

图5 参数RP c示意图

三、测量使用的仪器

测量使用的仪器为英国某公司生产的粗糙度仪。该仪器采用的是触针式测量方法,其粗糙度参数的测量误差为2%,具有分析评定25个参数R、22个参数P、23个参数W、12个参数R&W 和7个参数R k的能力。此外,对同一测量数据可以进行多次不同参数的分析评定,而不需要多次测量。

四、参数

R max、R t、R3z的测量

参数R max、R t、R3z的测量同测量参数R a一样,都需要使仪器的探针在被测表面上扫描规定的长度,从而得到表面轮廓。表面轮廓经滤波器滤波后得到原始轮廓,用规定的方式对原始轮

廓进行分析就得到对应的参数。

它们的评定与R a的评定类似,滤波器、取样长度lc等评定条件的选取都对评定结果有明显的改变。笔者使用的滤波器是

2CR-PC。而取样长度lc的选取由于没有明确的规定,工作中可选用与参数R a同样的取样长度lc,这也是广泛采用的方式。图6为使用粗糙度仪对某钢管内表面进行测量后得到的粗糙度轮廓,表1为该粗糙度轮廓各粗糙度参数的测量结果。

图6 某钢管内表面粗糙度轮廓

由表1的测量结果可以看出,R t>R max>R z>R3z,这与前面介绍的这些参数定义的含义是一致的。

表1 某钢管内表面粗糙度参数测量结果

五、参数

RP c的测量

R max、R t、R3z等这些参数的评定过程不再涉及其他条件的设定,所以对它们的评定相对简单。而参数RP c的评定稍显复杂一些,其评定过程还需要设定3个条件,分别为参考类型、高度、带宽。其中参考类型和高度是配合在一起的,笔者使用“平均值以上的高度”,且高度为“0”,也就是以中线为中心,上下各半个带宽。而带宽的大小就依靠产品的技术要求了,表2即为一个技术要求的实例。该要求分别对7个带宽每英寸长度内的峰值数量都提出了要求。

表2 参数RP c技术要求实例

分别在带宽中设定所要求的数值,然后计算机将依照设定的条件对粗糙度轮廓进行分析计算,从而得到所需的参数RP c数值。表3为通过设定不同条件后对图7分析后得到的参数RP c,图7为包含29个评定长度的粗糙度轮廓。

图7 某轴类零件的外表面粗糙度轮廓

表3 某轴类零件的外表面粗糙度RP c参数测量结果实例

六、结束语

表面粗糙度可用具有不同定义的多种参数进行评定,前面涉及的仅仅为几个比较常见的参数。虽然有些参数在我国的国标

中并未定义,但由于这些参数在国外已大量使用,使得我们的制造部门不得不在对外贸易中面对对方设置的贸易壁垒。开展此类参数的测量可为生产和研究部门的研制提供有力的技术支持,对打破技术性贸易壁垒也起到巨大的作用。

粗糙度的评定参数

一、表面粗糙度及原因 表面粗糙度:是一种微观几何形状误差又称微观不平度。 表面粗糙度的产生原因:在加工过程中,刀具和零件表面间产生磨擦、高频振动及切削时在工作表面上留下的微观痕迹。 对评定参数的基本要求: (1)正确、充分反映表面微观几何形状特征; (2)具有定量的结果; (3)测量方便。 二、评定参数: 国标从水平和高度两方向各规定了三个评定参数:三个基本参数(水平),三个附加的评定参数(高度) 2.1、取样长度L、评定长度L、轮廓中线m 2.2、6个评定参数: 3个基本、3个附加 2.1.1取样长度l:用于判别和测量表面粗糙度时所规定的一段基准线长度。 量取方向:它在轮廓总的走向上。 目的:限制和削弱表面波度对表面粗糙度测量结果的影响。(几何滤波) 选择原则: 5λ≤l≤λp /3

2.1.2评定长度L :评定轮廓所必须的一段长度,它包括一个或数个取样长度。 目的:为充分合理地反映某一表面的粗糙度特征。(加工表面有着不同程度的不均匀性)。 选择原则:一般按五个取样长度来确定。 2.1.3轮廓中线m:是评定表面粗糙度数值的基准线。具有几何轮廓形状与被测表面几何形状一致,并将被测轮廓加以划分的线。类型有: (1)最小二乘中线:使轮廓上各点的轮廓偏转距y(在测量方向上轮廓上的点至基准线的距离)的平方和为最小的基准线。 (2)算术平均中线:在取样长度范围内,划分实际轮廓为上、下两部分,且使上下两部分面积相等的线。

2.2.1轮廓算术平均偏差Ra :在取样长度L 内,轮廓偏转距绝对值的算术平均值。 2.2.2微观不平度十点高度:在取样长度内五个最大的轮廓峰高的平均值与五个最大的轮廓谷深的平均值之和,如图所示。用公式表示为: 在取样长度内,也可从平行于轮廓中线m 的任意一根线算起,计算被测轮廓的五个最高点(峰)到五个最低点(谷)之间的平均距离 2.2.3轮廓最大高度:在取样长度内,轮廓峰顶线和轮廓谷底线之间的距离,如图 2.3表面粗糙度的三个水平参数:轮廓微观不平度的平均间距Sm 、轮廓单峰平均间距S 、轮廓支承长度率 tp R z (...)(...)h h h h h h 24101395+++-+++R y y y p v =+max max

表面粗糙度参数的定义

所有参数的定义依据ISO 4287—1997标准. 其中蓝色部分为最常用的参数。 Ra----轮廓的算术平均偏差(在取样长度内,被测实际轮廓上各点至轮廓中线距离绝对 值的平均值) Rz----粗糙度最大峰-谷高度(在轮廓取样长度内的最大峰-谷高度) Rz(JIS)--微观不平度十点平均高度(该参数也成为ISO试点高度参数,在取样长度内, 五个最大的轮廓峰和五个最大轮廓谷之间的平均高度差) Rv----最大的谷值(在取样长度内,从轮廓中线到最低的谷值) Rt----轮廓最大的高度(在取样长度内,轮廓最大的峰到最大的谷值之和,即 Rt=Rp+Rv) R3y—粗糙度峰-谷高度(R3y是靠计算在每一个取样长度中,三个最高的峰与三个最深 的谷之间的最小距离值:然后R3y是在取样长度内,找出这些值的最大制。建议至少用五个取样长度来评定) R3z—平均峰-谷高度(R3z是在整个评价长度上,在每一个取样长度上的三个最高的峰 和三个最深的谷之间的垂直距离的平均值) Rp----最大的峰值(在取样长度内,在平均线以上的轮廓的最大高度) Rc—轮廓要素的粗糙度平均高度(在取样长度内,轮廓要素的高度的平均值) Rda—粗糙度算术平均倾斜Slop(在取样长度内,轮廓变化速率的绝对值的算术平均) Rdq—粗糙度均方根倾斜 Rku—粗糙度峰度—概率密度函数 Rlo—粗糙度被测的轮廓长度(在评价长度内,轮廓表面的被测长度,是测针在测量期间,划过表面峰谷的总长度) Rmr—粗糙度材料比曲线 Rpc—粗糙度峰计数 Rsm—粗糙度轮廓要素的平均宽度(在取样长度内,轮廓要素之间在平均线的平均间距) Rvo—粗糙度测定体积的油保持力 Rs—粗糙度局部峰的平均间距 Rq—均方根粗糙度 RHSC—粗糙度高点计数 编辑本段粗糙度仪的技术标准和检定规程 标准: 国家标准:JJF 1105-2003触针式表面粗糙度测量仪校准规范 美国标准: ASTM-D4414/B 检定规程: JJG-2018-89表面粗糙度仪检定规程

表面粗糙度符号及意义 (1)

表面粗糙度符号及意义表面粗糙度高度参数的标注 符号意义及说明 R a R z、R y 代号意义 代号 意义 基本符号,表示表面可用任何方法获得。当不加注粗糙度参数值或有关说明(例如:表面处理、局部热处理状况等)时,仅适用于简化代号标注 用任何方法 获得的表面粗 糙度,R a的上限 值为3.2μm 用任何方法获 得的表面粗糙 度,R y的上限值 为3.2μm 用去除材料 方法获得的表 面粗糙度,R a 的上限值为3.2 μm 用不去除材料 方法获得的表面 粗糙度,R z的上 限值为200μm 基本符号加一 短划,表示表面是用去除材料的方法获得。例如:车、铣、钻、磨、剪、切、抛光、腐蚀、电火花加工、气剖等 用不去除材 料方法获得的 表面粗糙度,R a 的上限值为3.2 μm 用去除材料方 法获得的表面粗 糙度,R z的上限 值为3.2μm,下 限值为1.6μm 基本符号加一 小圆,表示表面是用不去除材料的方法获得。例如:铸、锻、冲压变形、热轧、冷轧、粉末冶金等。或者是用于保持原供应状况的表面(包括保持上道工序的状况) 用去除材料 方法获得的表 面粗糖度,R a 的上限值为3.2 μm,R a的下限 值为1.6μm 用去除材料方 法获得的表面粗 糙度,R a的上限 值为3.2μm,R y 的上限值为12.5 μm 用任何方法 获得的表面粗 糙度,R a的最大 值为3.2μm 用任何方法获 得的表面粗糙 度,R y的最大值 为3.2μm 在上述三个符 号的长边上均可加一横线,用于标注有关参数和说明 用去除材料 方法获得的表 面粗糙度,R a 的最大值为3.2 μm 用不去除材料 方法获得的表面 粗糙度,R y的最 大值为200μm

表面粗糙度符号及数值说明[1]

表面粗糙度符号及其标注说明 粗糙度是衡量零件表面粗糙程度的参数,它反映的是零件表面微观的几何形状误差,必须借助放大镜等进行测量。它是由于零件加工过程中刀具与加工表面之间的摩擦、挤压以及加工时的高频振动等方面的原因造成的。表面粗糙度对零件的工作精度、耐磨性、密封性、耐蚀性以及零件之间的配合都有着直接的影响。 粗糙度的评定常用轮廓算术平均偏差Ra、轮廓最大高度Ry、微观不平度十点高度Rz三个参数表示。数值越小,零件的表面越光滑,数值越大零件的表面越粗糙。 1、轮廓算术平均偏差Ra 取样长度:取样长度是指具有粗糙度几何特征的一段长度,在取样长度内应该具有几个波峰和波谷。测量时可选5倍的取样长度作为测量长度进行测量。 Ra是指在取样长度内,轮廓偏距绝对值的算术平均值,可以表示为:

关于表面粗糙度的数值和表面特征、获得方法、应用举例请参见下表。 从上图中也可以看出,粗糙度参数的数值.基本上成倍数的关系。标注时应当选用这些数值,不能选用其他的数值。 2、轮廓最大高度Ry 3、轮廓不平度十点高度Rz

标注 2.1代号及意义 粗糙度代号可以分为:符号,粗糙度项目及数值。 常用标注参数是Ra, 标注Ra时Ra可以省略,标注Rz和Ry时,在粗糙度数值前加对应的符号Rz和Ry。 2.2 标注原则 1)、在同一图样上每一表面只注一次粗糙度代号,且应注在可见轮廓线、尺寸界线、引出线或它们的延长线上,并尽可能靠近有关尺寸线。 2)、当零件的大部分表面具有相同的粗糙度要求时,对其中使用最多的一种,代(符)号,可统一注在图纸的右上角。并加注“其余”二字。 3)、在不同方向的表面上标注时,代号中的数字及符号的方向必须下图的规

表面光洁度等级与表面粗糙度高度参数推荐转换表

表面光洁度等级与表面粗糙度高度参数推荐转换表 表面光洁度等级与表面粗糙度高度参数推荐转换表(一) 表面光洁度(GB1031-68) 级别代 号 Ra Rz ▽ 1 >40 ∽80 um > 160 ∽320 um ▽ 2 >20 ∽40 um > 80 ∽160 um ▽ 3 >10 ∽20 um > 40 ∽80 um ▽ 4 >5 ∽10 um > 20 ∽40 um ▽ 5 > ∽5 um > 10 ∽20 um ▽ 6 > ∽ um > ∽10 um ▽ 7 > ∽ um > ∽ um ▽ 8 > ∽ um > ∽ um ▽ 9 > ∽ um > ∽ um ▽ 10 > ∽ um > ∽ um ▽ 11 > ∽ um > ∽ um ▽ 12 > ∽ um > ∽ um ▽ 13 > ∽ um > ∽ um ▽ 14 ≤ um≤ um

表面光洁度等级与表面粗糙度高度参数推荐转换表(二) 表面粗糙度(GB1031-83) 级别代号Ra Rz ⅠⅡⅢ ▽ 1 50um 100um 80um 3 2 0um ▽ 2 25um 50um 40um 1 60um ▽ 3 25um 20um 80um ▽ 4 10um 40um ▽ 5 5um 20um ▽ 6 10um ▽ 7 ▽ 8 ▽ 9 um ▽ 10 ▽ 11 ▽12 ▽13 um ▽14

表面粗糙度值的选用 表面粗糙度值的选用实例 使用时代TR200粗糙度仪测量时需要选定取样长度,这又牵涉到被测工件本身的粗糙度范围,摘编本表就是希望对此有帮助。

不可辨夹具定位元件和钻套的主要表面,曲轴和凸轮轴等高速转动的轴颈;工作时受交变应力的重要零件;中型机床(提高精度)滑动导轨面和/P5级滚动轴承配合的表面 极光表面 暗光泽面 精密机床主轴锥孔,顶尖圆锥面,高 精度齿轮工作表面;和/P4级滚动轴 承配合的表面;液压油缸和柱塞的表 面;曲轮、凸轮轴的工作表面等 亮光泽面 精密机床主轴箱与套筒配合的孔;仪 器中承受摩擦的表面,如导轨、槽面 等;液压传动用孔的表面,阀的工作 表面,汽缸内表面,活塞销的表面镜状光泽表面 特别精密的滚动轴承套圈滚道,钢球 及滚子表面;量仪中的中等精度间隙 配合零件的工作表面;工作量规的测 量表面;摩擦离合器的摩擦表面等 表面光洁度&表面粗糙度 (2010-06-12 17:40:53) 转载 标签:分类:机械知识

粗糙度参数解说(doc)

参数解说 介绍 参数概述 表面纹理可由与一定的纹理特性相关的参数来量化。这些参数可按测量的特点类型,被分成几组类型。 它们是: Amplitude(幅值) Spacing(间距) Hybrid(混合) R&W(R+W) Aspheric(非球面) 曲线及相关参数 Rk 参数 影响表面粗糙度的数字评估是三个特性长度。 它们是: 取样长度,也被称为Cut-Off Length 评价长度,也被称为Assessment Length或Data Length 横向移动长度 另外,屏幕上的帮助工具,以一个容易阅读的Exploring Surface Texture(表面形貌浏览)文本描述,其主题详细包括了什么是表面形貌及为什么必需测量它。该文本包括用Form Talysurf仪器提供通常的表面形貌背景信息和测量仪器的特殊测针类型。它也给出了参数的有用信息:它们的来历和使用。对进一步更深的表面评论及其测量,可从Taylor Hobson的手册Precision 2中得到。 幅值参数 这些是测量在轮廓(Z轴)的垂直位移。 这类参数包括:

未滤波参数滤波的粗糙度参数滤波的波纹度参数 间距参数 这些参数是沿表面(X轴)对不规则间距的测量,而与不规则的幅值无关。 这类参数包括 未滤波参数滤波的粗糙度参数滤波的波纹度参数 混合参数 指与表面不规则的幅值参数和间距参数都有关的参数(Z轴和X轴),或者规定了一个量,如面积或体积,被称作Hybrid(混合)参数。 这类参数包括: 未滤波参数滤波的粗糙度参数滤波的波纹度参数 曲线及相关参数

这些参数是沿表面(X轴)对不规则间距的测量,而与不规则的幅值无关。这类参数包括: 原始轮廓 轮廓高度幅值曲线 Pc Pmr Pmr(c) 滤波的粗糙度 轮廓高度幅值曲线 Rc Rmr Rmr(c) 滤波的波纹度 轮廓高度幅值曲线 Wc Wmr Wmr(c) R加W 参数 这些参数与R和W参数相关,被定义在标准BS ISO 12085:1996里面。 这些分析包括: Pt R AR Rx SR SAR SW SAW Wte W AW Wx 非球面分析参数 这些参数与非球面形状的特殊分析有关。 这些分析包括: Fig Ra Rt Smx Smn Tilt Xp

粗糙度仪参数对比

粗糙度仪Rmr(C)RM Rk、Rpk、Rvk 的参数对比 粗糙度仪Rmr(C)RM Rk、Rpk、Rvk 随着制造业界对粗糙度这一质量指标认识的不断深化,用於表面微观形状误差定量表述的粗糙度评定参数也日趋丰富和多样化,目的是能够更有针对性地描述微观高低起伏的不同形态和程度对产品有关功能的影响。 必须指出,在这一点上,各个工业化国家和国际标准化组织(ISO)都制定了相应的标准来加以规范,并在很大程度上趋於一致。 而那些从事研制和生产粗糙度测量仪的知名专业厂商,也及时纷纷推出适应、具备各种评定参数检测能力的新颖仪器,也促使用户对其产品提出了更高要求,或是在对产品实施改进之後能予以有效监控。 以上这一连串的过程,真正体现了现代化制造业界的一种技术进步,其间,相应的技术标准则起了推波助澜的积极作用。 传统评定参数的局限性 1.何为传统的粗糙度评定参数? 粗糙度仪Rmr(C)RMRk、Rpk、Rvk 按几何特性,粗糙度评定参数可分为:高度(有时也称为“振幅”)、间距和形状(有时也称为“材料比例”)等三类。 在国家标准GB/T1031-95中,规定了3个高度、2个间距和1个形状共6项评定参数:轮廓算术平均偏差Ra、微观不平度10点高度Rz、轮廓最大高度Ry(高度类);轮廓微观不平度平均间距Sm、单峰平均间距S(间距类)以及轮廓支承长度率tp(形状类)。 该标准还明确说明,三项高度参数是主要的。事实上,多年来最为国内制造业界熟悉、并广泛应用於对工件表面粗糙度进行评定的,也确实是振幅类参数,尤其是其中的Ra、Rz。

若作一番比较,Ry由於只由取样长度内两点的高度信息所决定,其代表性较差, 而相比之下Ra的代表性显然是最好的。 但对於工件的有些功能性来讲,如疲劳强度,Ry和Rz就要比Ra更易於反映,故 近年来Rz的出现在增多。 2. 传统方式的局限性 尽管如此,随着对产品质量要求的不断提高,上述传统的粗糙度评定参数的局限性也越来越多地暴露了出来。 图1中,a、b两个表面有着完全不同的微观结构,但按照评定参数Ra、Rz和Ry (即Rt)所规定的采样和资料处理方式,对表面a和表面b测量後获得的数值都 是一样的,从而会得出表面粗糙度的评定结果相同的结论。 图1 传统评定参数的局限性(1) 这显然很不合理,因为图1a的表面微观结构明显容易磨损,故此时若仍用传统的 粗糙度评定参数,就难以做出正确的、切合实际的评价。 类似地,轮廓算术平均偏差Ra的采样和资料处理方式虽然代表性最好,也会造成 把表面微观形态特征完全不同的被评定表面测得很接近的结果,如图2。 图2 传统评定参数的局限性(2) 虽然,在国家标准GB/T1031中也列入了非主要评定参数的“轮廓支承长度率tp”,作为一种形状、也即材料比例参数,能够完善对工件表面微观结构的评定,但产品、零部件的功能性要求是各式各样的,为了对表面的一些微观特性有更加直观、更有针对性的揭示和反映,近年来出现了众多的粗糙度评定参数,并由相应的标准加以规范。 负荷曲线与缸孔内壁的粗糙度评定 粗糙度仪Rmr(C)RMRk、Rpk、Rvk 1.负荷曲线的定义

表面粗糙度参数

第4章表面粗糙度 概述 在机械加工过程中,由于切削会留下切痕,切削过程中切屑分离时的塑性变形,工艺系统中的高频振动,刀具和已加工表面的磨擦等等原因,会使被加工零件的表面产生许多微小的峰谷,这些微小峰谷的高低程度和间距状况就称为表面粗糙度。 一、表面粗糙度的实质 表面粗糙度是一种微观的几何形状误差,通常按波距的大小分为:波距≤1mm的属表面粗糙度; 波距在1~10mm间的属表面波度; 波距>10mm的属于形状误差。 二、表面粗糙度对零件使用性能的影响 1.对摩擦和磨损的影响 一般地,表面越粗糙,则摩擦阻力越大,零件的磨损也越快。 2.对配合性能的影响 表面越粗糙,配合性能越容易改变,稳定性越差。 3. 对疲劳强度的影响 当零件承受交变载荷时,由于应力集中的影响,疲劳强度就会降低,表面越粗糙,越容易产生疲劳裂纹和破坏。

4.对接触刚度的影响 表面越粗糙,实际承载面积越小,接触刚度越低。 5.对耐腐蚀性的影响 表面越粗糙,越容易腐蚀生锈。 此外,表面粗糙度还影响结合的密封性,产品的外观,表面涂层的质量,表面的反射能力等等,所以要给予充分的重视。 表面粗糙度的评定 一.基本术语 1.轮廓滤波器把轮廓分成长波和短波成分的滤波器。 2.λ滤波器确定粗糙度与波纹度成分之间相交界限的滤波器。 3.取样长度用以判别具有表面粗糙度特征的一段基准线长度。 规定和选取取样长度的目的是为了限制和削弱表面波纹度对表面粗糙度测量结果的影响。推荐的取样长度值见表4-1。在取样 长度内一般应包含五个以上的轮廓峰和轮廓谷。 4.评定长度评定表面粗糙度时所必须的一段基准线长度。 为了充分合理地反映表面的特性,一般取ln =5l。 5.轮廓中线m 用以评定表面粗糙度值的基准线。

表面粗糙度对照表

参数的情况列表如下,如有问题,由时代公司负责解释。本表还适用于公司TR1系列粗糙度仪。修改后可测量参数的总数没有变化,仍为13个参数,只是显示在不同的标准中,也就是说:时代粗糙度仪产品参数:涵盖新旧标准参数!(详

表面粗糙度有Ra,Rz,Ry 之分,据GB 3505摘录: 表面粗糙度参数及其数值(Surface Roughness Parameters and their Values)常用的3个分别

是: 轮廓算数平均偏差(Ra)--arithmetical mean deviation of the profile; 微观不平度十点高度(Rz)--the point height of irregularities; 轮廓最大高度(Ry)--maximum height of the profile。 Ra--在取样长度L内轮廓偏距绝对值的算术平均值。 Rz--在取样长度内5个最大的轮廓峰高的平均值与5个最大的轮廓谷深的平均值之和。 Ry--在取样长度L内轮廓峰顶线和轮廓谷底线之间的距离。 如果图面没标注粗糙度选用Ra /Rz /Ry 的情况下默认为Ra。 表面粗糙度是指加工表面具有的较小间距和微小峰谷不平度。其两波峰或两波谷之间的距离(波距)很小(在1mm以下),用肉眼是难以区别的,因此它属于微观几何形状误差。表面粗糙度越小,则表面越光滑。表面粗糙度的大小,对机械零件的使用性能有很大的影响,主要表现在以下几个方面: ①表面粗糙度影响零件的耐磨性。表面越粗糙,配合表面间的有效接触面积越小,压强越大,磨损就越快。 ②表面粗糙度影响配合性质的稳定性。对间隙配合来说,表面越粗糙,就越易磨损,使工作过程中间隙逐渐增大;对过盈配合来说,由于装配时将微观凸峰挤平,减小了实际有效过盈,降低了联结强度。 ③表面粗糙度影响零件的疲劳强度。粗糙零件的表面存在较大的波谷,它们像尖角缺口和裂纹一样,对应力集中很敏感,从而影响零件的疲劳强度。 ④表面粗糙度影响零件的抗腐蚀性。粗糙的表面,易使腐蚀性气体或液体通过表面的微观凹谷渗入到金属内层,造成表面腐蚀。 ⑤表面粗糙度影响零件的密封性。粗糙的表面之间无法严密地贴合,气体或液体通过接触面间的缝隙渗漏。 此外,表面粗糙度对零件的外观、测量精度也有影响。 粗糙度:0.012、0.025、0.050、0.100、0.20、0.40、0.80、1.6、3.2、6.3、12.5、25、50、100 6.3:半精加工表面。用于不生要的零件的非配合表面,如支柱、轴、、支架、外壳、衬套、盖等的端面;螺钉、螺栓各螺母的自由表面;不要求定心和配合特性的表面,如螺栓孔、螺钉通孔、铆钉孔等;飞轮、带轮、离合器、联轴节、凸轮、偏心轮的侧面;平键及键槽上下面、花键非定心表面、齿顶圆表面;所有轴和孔的退刀槽;不重要的连接配合表面;犁铧、犁侧板、深耕铲等零件的摩擦工作面;插秧爪面等。1、外观的光滑与摩擦是一个矛盾问题,总的来说,既要光滑美观,又要有相当的摩擦,以方便安装,以下是常见的一些粗糙度数值: 2、粗糙度0.8以下:抛光 3、粗糙度0.8:用磨床加工的面 4、粗糙度1.6—3.2:车床、铣床加工面 5、粗糙度3.2—12.5:一般性的常规加工 6、一般而言,既要光滑美观,又要有相当的摩擦,以方便安装的话,粗糙度0.8可以,既显得美观高档,手感也可以的 7、如果手拧部分需要减低等级的话也可以的,建议选择粗糙度1.6—3.2,但是,好看吗?会不会影响外观的美感呢? 8、如果需要重视手拧的功能,最好是做滚花处理,滚花有“直纹”和“网纹”两种,图纸上的标注:网纹0.8(用箭头指明需要滚花的部位,再写上文字)

表面粗糙度参数总结

Summary of Surface Finish Parameters Table 1. Primary surface finish parameters.

Figure 1. Measurement of Average Roughness, Ra, and RMS Roughness, Rq. there being a surface point at a certain height. If one were to draw a line at a particular height the ADF would be proportional to the number of times the surface profile crosses the line. The Material Ratio Curve (also known as the Bearing Ratio Curve, Bearing Area Curve, or the Abbott-Firestone Curve) is the integral of the ADF from above the surface to the height of interest. This is the total percentage of material above a certain height.

Measurement of Material Ratio This measurement is also known as Bearing Ratio, and its symbol is t p . The Material ratio is usually defined at X% at a slice depth c. Depth c is measured from a reference. This reference can be defined as T the highest peak T a lower value that excludes outlying peaks (sometimes this is written as a reference %, which is the t p at the height C ref ) T the mean, with c being defined as above or below the mean. If you imagine slicing through the peaks on the surface at a particular depth, t p is the ratio of the total length of the flat “mesas” you would produce to the sampling length. This is illustrated in Figure 3. 1. If you grind to a depth c, t p is the percentage of the surface available to support a perfectly flat load 2. Ratio of lengths: Add up all lengths with material beneath them in the measurement length, L; divide the sum of these lengths by L to obtain the ratio. 3. Intersection of the line at height c with the Material Ratio Curve (see also Figure 2). References The following have additional information and more details: 1. Surface Metrology Guide , Precision Devices. Inc. 2. Surface Texture Parameters , Mahr 3. ASME B46.1 (1995) specification mean C ref C t p =19%

表面粗糙度参数

第4章表面粗糙度 4.1 概述 在机械加工过程中,由于切削会留下切痕,切削过程中切屑分离时的塑性变形,工艺系统中的高频振动,刀具和已加工表面的磨擦等等原因,会使被加工零件的表面产生许多微小的峰谷,这些微小峰谷的高低程度和间距状况就称为表面粗糙度。 一、表面粗糙度的实质 表面粗糙度是一种微观的几何形状误差,通常按波距的大小分为:波距w 1mm的属表面粗糙度; 波距在1~10mm间的属表面波度; 波距〉10mm的属于形状误差。 atEir 二、表面粗糙度对零件使用性能的影响 1?对摩擦和磨损的影响 一般地,表面越粗糙,则摩擦阻力越大,零件的磨损也越快。 2.对配合性能的影响 表面越粗糙,配合性能越容易改变,稳定性越差。 3.对疲劳强度的影响 当零件承受交变载荷时,由于应力集中的影响,疲劳强度就会降低,表面越粗糙,越容易产生疲劳裂纹和破坏。 4?对接触刚度的影响表面越粗糙,实际承载面积越小,接触刚度越低。 5?对耐腐蚀性的影响表面越粗糙,越容易腐蚀生锈。 此外,表面粗糙度还影响结合的密封性,产品的外观,表面涂层的质量,表面的反射能力等等,所以要给予充分的重视。 4.2表面粗糙度的评定 一.基本术语 1?轮廓滤波器把轮廓分成长波和短波成分的滤波器

2. 入滤波器 确定粗糙度与波纹度成分之间相交界限的滤波 3?取样长度用以判别具有表面粗糙度特征的一段基准线长 度。 规定和选取取样长度的目的是为了限制和削弱表面波纹度对 表面粗 糙度测量结果的影响。推荐的取样长度值见表4-1。在取样 长度内一般应包含五个以上的轮廓峰和轮廓谷。 4?评定长度 评定表面粗糙度时所必须的一段基准线长度。 为了充 分合理地反映表面的特性,一般取 In =51。 5?轮廓中线m 用以评定表面粗糙度值的基准线。 ⑴轮廓的最小二乘中线 具有几何轮廓形状并划分轮廓的基 准线。在取样长度范围内,使被测轮廓线上的各点至该线的偏距 的平方和为最小。即: ⑵轮廓的算术平均中线 在取样长度内,将实际轮廓划分为 F 两部 分,并使上、下两部分的面积相等的基准线。即:齢走向 x 二、评定参数(GB/T 3505-2000) 1?与高度特性有关的参数: ⑴轮廓的算术平均偏差Ra 在取样长度内,被测轮廓上各点 至轮廓 中线偏距绝对值的算术平均值。即: Ra 参数能充分反映表面微观几何形状高度方面的特性,并且 所用 仪器(电动轮廓仪)的测量比较简便,因此是 GB 推荐的首 选评定参数。图样上标注的参数多为Ra 。如X 表示Ra w 3.2 m 4*****^ J 一.押 l ■ tr — 2 In lr 0 Z i 2 dx = min 上、 Isas 1 lr Ra = l7 0 Z X dx 或近似为: Z i Ra = F1+F3+…+F2 n-1二F2+F4+…+F2n

粗糙度全参数解说

粗糙度参数解说 介绍 参数概述 表面纹理可由与一定的纹理特性相关的参数来量化。这些参数可按测量的特点类型,被分成几组类型。 它们是: Amplitude(幅值) Spacing(间距) Hybrid(混合) R&W(R+W) Aspheric(非球面) 曲线及相关参数 Rk 参数 影响表面粗糙度的数字评估是三个特性长度。 它们是: 取样长度,也被称为Cut-Off Length 评价长度,也被称为Assessment Length或Data Length 横向移动长度 另外,屏幕上的帮助工具,以一个容易阅读的Exploring Surface Texture(表面形貌浏览)文本描述,其主题详细包括了什么是表面形貌及为什么必需测量它。该文本包括用Form Talysurf仪器提供通常的表面形貌背景信息和测量仪器的特殊测针类型。它也给出了参数的有用信息:它们的来历和使用。对进一步更深的表面评论及其测量,可从Taylor Hobson的手册Precision 2中得到。 幅值参数 这些是测量在轮廓(Z轴)的垂直位移。 这类参数包括: 未滤波参数滤波的粗糙度参数滤波的波纹度参数

间距参数 这些参数是沿表面(X轴)对不规则间距的测量,而与不规则的幅值无关。 这类参数包括 未滤波参数滤波的粗糙度参数滤波的波纹度参数 混合参数 指与表面不规则的幅值参数和间距参数都有关的参数(Z轴和X轴),或者规定了一个量,如面积或体积,被称作Hybrid(混合)参数。 这类参数包括: 未滤波参数滤波的粗糙度参数滤波的波纹度参数 曲线及相关参数 这些参数是沿表面(X轴)对不规则间距的测量,而与不规则的幅值无关。 这类参数包括: 原始轮廓 轮廓高度幅值曲线 Pc Pmr Pmr(c) 滤波的粗糙度 轮廓高度幅值曲线 Rc Rmr Rmr(c)

表面粗糙度参数Rz

表面粗糙度参数Rz、Rmax、Rt、R3z、RPc等的 测量 甘晓川张瑜刘娜石作德谷荣凤 在GB/T3505-2000《产品几何技术规范表面结构轮廓法表面结构术语、定义及参数》中定义了表面粗糙度幅度参数(纵坐标平均值)R a、R q、R sk、R ku和间距参数、混合参数等,虽然该标准等效采用了ISO4287:1997《几何产品规范(GPS)表面特征:轮廓法表面结构的术语、定义及参数》,但这些参数远远不能满足我国目前工业生产的需要,特别是在涉外产品中常常会提出一 些非标的表面粗糙度参数的技术要求,例如R max(DIN EN ISO 4287)、RP c(prEN 10049)、R3z(Daimler Benz Standard 31007)等。这些参数的正确测量直接影响产品符合性的判断,因此生产部 门对这些参数的准确测量都有迫切的需求。同时,对这些参数 的正确认识及理解能有效地指导生产过程,在使产品技术指标 满足要求的同时可有效降低生产成本。 笔者在实际工作中经常会为一些厂家测量这样的参数,如发 动机冷凝管内表面的R max、R t等参数、轴类零件的RP c参数。现结合实例对这些参数的定义和测量方法作一些说明,以供参考。 一、参数的定义 1.参数R z(GB/T3505-2000) 在一个取样长度lr内,最大轮廓峰高和最大轮廓谷深之和的高度如图1所示。

图1 参数R z示意图 这里R z的定义和GB/T3505-1983《表面粗糙度术语表面及其参数》中的定义已经完全不同。GB/T3505-1983中R z符号曾用于指示“不平度的十点高度”。正在使用中的一些表面粗糙度测量仪器大多只能测量以前的参数R z。因此,采用现行的技术文件和图样时必须小心慎重,因为用不同类型的仪器按不同的规定计算所取得的结果之间的差别,并不都是非常微小而可忽略的。 2.参数R max(DIN EN ISO 4287) 参数R max与参数R zi之间有些关系,因此首先介绍R zi的定义。R zi的定义为,在一个取样长度lr内最高峰和最低谷之间的垂直距离。 R max的定义为在评定长度lc内R zi的最大值(在DIN EN ISO 4288中,R max的符号为R z1max),其示意图如图2所示。 图2 参数R max示意图

表面粗糙度符号及数值说明

表面粗糙度符号及其标注说明 粗糙度就是衡量零件表面粗糙程度得参数,它反映得就是零件表面微观得几何形状误差,必须借助放大镜等进行测量。它就是由于零件加工过程中刀具与加工表面之间得摩擦、挤压以及加工时得高频振动等方面得原因造成得。表面粗糙度对零件得工作精度、耐磨性、密封性、耐蚀性以及零件之间得配合都有着直接得影响、 粗糙度得评定常用轮廓算术平均偏差Ra、轮廓最大高度Ry、微观不平度十点高度Rz三个参数表示。数值越小,零件得表面越光滑,数值越大零件得表面越粗糙。 1、轮廓算术平均偏差Ra 取样长度:取样长度就是指具有粗糙度几何特征得一段长度,在取样长度内应该具有几个波峰与波谷。测量时可选5倍得取样长度作为测量长度进行测量。 Ra就是指在取样长度内,轮廓偏距绝对值得算术平均值,可以表示为: 关于表面粗糙度得数值与表面特征、获得方法、应用举例请参见下表、

从上图中也可以瞧出,粗糙度参数得数值、基本上成倍数得关系。标注时应当选用这些数值,不能选用其她得数值。 2、轮廓最大高度Ry 3、轮廓不平度十点高度Rz

标注 2、1代号及意义 粗糙度代号可以分为:符号,粗糙度项目及数值、 常用标注参数就是Ra, 标注Ra时Ra可以省略,标注Rz与Ry时,在粗糙度数值前加对应得符号Rz与Ry。 2。2标注原则 1)、在同一图样上每一表面只注一次粗糙度代号,且应注在可见轮廓线、尺寸界线、引出线或它们得延长线上,并尽可能靠近有关尺寸线、 2)、当零件得大部分表面具有相同得粗糙度要求时,对其中使用最多得一种,代(符)号,可统一注在图纸得右上角。并加注“其余”二字。 3)、在不同方向得表面上标注时,代号中得数字及符号得方向必须下图得规定

粗糙度参数解说

介绍 参数概述 表面纹理可由与一定的纹理特性相关的参数来量化。这些参数可按测量的特点类 型,被分 成几组类型。 它们是: Am pl itude (幅值) Spacing (间距) Hybrid (混合) R&W R+ W Aspheric (非球面) 曲线及相关参数 Rk 参数 影响表面粗糙度的数字评估是三个特性长度。 它们是: * ■ * 另外, 形貌浏 览)文本描述,其主题详细包括了什么是表面形貌及为什么必需测量它。 该文本包括用 Form Talysurf 仪器提供通常的表面形貌背景信息和测量仪器的特 殊测针类型。它也给出 了参数的有用信息:它们的来历和使用。 对进一步更深的 表面评论及其测量,可从Taylor Hobs on 的手册P recision 2中得到。 幅值参数 这些参数是沿表面(X 轴)对不规则间距的测量,而与不规则的幅值无关。 这类 参数包括: 原始轮廓 轮廓高度幅值曲线 参数解说 取样长度,也被称为Cut-Off Length 评价长度,也被称为 Assessment Length 或Data Length 横向移动长度 屏幕上的帮助工具,以一个容易阅读的Exploring Surface Texture (表面 这些是测量在轮廓 这类参数包括: 未 滤波参数 (Z 轴)的垂直位移。 滤波的粗糙度参数 滤波的波纹度参数 间距参数 这些参数是沿表面 这类参数包括 未滤波参数 (X 轴)对不规则间距的测量,而与不规则的幅值无关。 滤波的粗糙度参数 滤波的波纹度参数 混合参数 指与表面不规则的幅值参数和间距参数都有关的参数(Z 轴和X 轴),或者规定了 一个量, 如面积或体积,被称作 Hybrid (混合)参数。 这类参数包括: 未滤波参数 滤波的粗糙度参数 滤波的波纹度参数 曲线及相关参数

表面粗糙度对照表

国内表面光洁度与表面粗糙度Ra、Rz数值换算表(单位:μm)

另附:粗糙度仪新旧标准参数变化对照表现将TR200粗糙度仪依据新标准更改参数的情况列表如下,如有问题,由时代公司负责解释。本表还适用于公司TR1系列粗糙度仪。修改后可测量参数的总数没有变化,仍为13个参数,只是显示在不同的标准中,也就是说:时代粗糙度仪产品参数:涵盖新旧标准参数!(详见表)

另附:表面粗糙度国际标准加工方法 表面粗糙度参数及其数值(Surface Roughness Parameters and their Values)常用的3个分别是:轮廓算数平均偏差(Ra)--arithmetical mean deviation of the profile; 微观不平度十点高度(Rz)--the point height of irregularities; 轮廓最大高度(Ry)--maximum height of the profile。

Ra--在取样长度L内轮廓偏距绝对值的算术平均值。 Rz--在取样长度内5个最大的轮廓峰高的平均值与5个最大的轮廓谷深的平均值之和。 Ry--在取样长度L内轮廓峰顶线和轮廓谷底线之间的距离。 如果图面没标注粗糙度选用Ra /Rz /Ry 的情况下默认为Ra。 表面粗糙度是指加工表面具有的较小间距和微小峰谷不平度。其两波峰或两波谷之间的距离(波距)很小(在

1mm以下),用肉眼是难以区别的,因此它属于微观几何形状误差。表面粗糙度越小,则表面越光滑。表面粗糙度的大小,对机械零件的使用性能有很大的影响,主要表现在以下几个方面: ①表面粗糙度影响零件的耐磨性。表面越粗糙,配合表面间的有效接触面积越小,压强越大,磨损就越快。 ②表面粗糙度影响配合性质的稳定性。对间隙配合来说,表面越粗糙,就越易磨损,使工作过程中间隙逐渐增大;对过盈配合来说,由于装配时将微观凸峰挤平,减小了实际有效过盈,降低了联结强度。 ③表面粗糙度影响零件的疲劳强度。粗糙零件的表面存在较大的波谷,它们像尖角缺口和裂纹一样,对应力集中很敏感,从而影响零件的疲劳强度。 ④表面粗糙度影响零件的抗腐蚀性。粗糙的表面,易使腐蚀性气体或液体通过表面的微观凹谷渗入到金属内层,造成表面腐蚀。 ⑤表面粗糙度影响零件的密封性。粗糙的表面之间无法严密地贴合,气体或液体通过接触面间的缝隙渗漏。 此外,表面粗糙度对零件的外观、测量精度也有影响。 粗糙度:0.012、0.025、0.050、0.100、0.20、0.40、0.80、1.6、3.2、6.3、12.5、25、50、100 6.3:半精加工表面。用于不生要的零件的非配合表面,如支柱、轴、、支架、外壳、衬套、盖等的端面;螺钉、螺栓各螺母的自由表面;不要求定心和配合特性的表面,如螺栓孔、螺钉通孔、铆钉孔等;飞轮、带轮、离合器、联轴节、凸轮、偏心轮的侧面;平键及键槽上下面、花键非定心表面、齿顶圆表面;所有轴和孔的退刀槽;不重要的连接配合表面;犁铧、犁侧板、深耕铲等零件的摩擦工作面;插秧爪面等。1、外观的光滑与摩擦是一个矛盾问题,总的来说,既要光滑美观,又要有相当的摩擦, 以方便安装,以下是常见的一些粗糙度数值: 2、粗糙度0.8以下:抛光 3、粗糙度0.8:用磨床加工的面 4、粗糙度1.6—3.2:车床、铣床加工面 5、粗糙度3.2—12.5:一般性的常规加工 6、一般而言,既要光滑美观,又要有相当的摩擦,以方便安装的话,粗糙度0.8可以,既显得美观高档,手感也可以的 7、如果手拧部分需要减低等级的话也可以的,建议选择粗糙度1.6—3.2,但是,好看吗?会不会影响外观的美感呢? 8、如果需要重视手拧的功能,最好是做滚花处理,滚花有“直纹”和“网纹”两种,图纸上的标注:网纹0.8(用箭头指明需要滚花的部位,再写上文字) 如有侵权请联系告知删除,感谢你们的配合!

2D粗糙度参数(中文)

2D粗糙度参数 一、振幅参数(峰值和谷值) 1、粗糙度轮廓的最大高度(Rz) 粗糙度轮廓图 如图所示,在一个取样长度(即一个波纹轮廓采取样)上,Rz为该轮廓上最大轮廓峰值Zp与最大轮廓谷值Zv之和。 轮廓峰:剖面曲线的平均线上方部分(波纹轮廓视角:材料的截面轮廓); 轮廓谷:剖面曲线的平均线上方部分(波纹轮廓视角:材料的截面轮廓)。 ?Pz:原始轮廓的最高值; ?Wz:滤后波纹轮廓的最高值。 POINT-以上参数常用于色泽与光泽、表面强度,表面处理性,摩擦力,电接触电阻等的评价。 2、粗糙度轮廓的最大轮廓峰高(Rp)

粗糙度轮廓图 如图所示,在一个取样长度(即一个波纹轮廓采取样)上,Zp为该轮廓曲线上的最大峰值。 ?Pp:原始轮廓的最大峰值; ?Wp:滤后波纹轮廓的最大峰值。 POINT-以上参数用于摩擦力,电接触电阻的评价。 3、粗糙度轮廓的最大轮廓谷值(Rv) 粗糙度轮廓图 如图所示,在一个取样长度(即一个波纹轮廓采取样)上,Zv为该轮廓曲线上的最大轮廓谷值。 ?Pv:原始轮廓的最大轮廓谷值; ?Wv:滤后波纹轮廓最大轮廓值。

POINT-以上参数用于评价表面强度和耐腐蚀性。 4、粗糙度原始轮廓的平均高度(Rc) 粗糙度轮廓图 如图所示,在一个取样长度(即一个波纹轮廓采取样)上,Zt为该轮廓曲线上的平均高度。 Zti高度取值:相邻的轮廓峰与轮廓谷; 使用最小波长以及峰(谷深)高进行过滤曲线,最小峰值为1/10Rz,最小波长为1/100采样长度。 ?Pc:原始轮廓的平均高度; ?Wc:滤后波纹轮廓的平均高度。 POINT-以上参数常用于评价高级感、粘合性能、摩擦力。

表面粗糙度参数

表面度参数Rz、Rmax、Rt、R3z、RPc等的测量甘晓川张瑜刘娜石作德谷荣凤 在GB/T3505-2000《产品几何技术规范表面结构轮廓法表面结构术语、定义及参数》中定义了表面粗糙度幅度参数(纵坐标平均值)R a、R q、R sk、R ku和间距参数、混合参数等,虽然该标准等效采用了ISO4287:1997《几何产品规范(GPS)表面特征:轮廓法表面结构的术语、定义及参数》,但这些参数远远不能满足我国目前工业生产的需要,特别是在涉外产品中常常会提出一 些非标的表面粗糙度参数的技术要求,例如R max(DIN EN ISO 4287)、RP c(prEN 10049)、R3z(Daimler Benz Standard 31007)等。这些参数的正确测量直接影响产品符合性的判断,因此生产部 门对这些参数的准确测量都有迫切的需求。同时,对这些参数 的正确认识及理解能有效地指导生产过程,在使产品技术指标 满足要求的同时可有效降低生产成本。 笔者在实际工作中经常会为一些厂家测量这样的参数,如发 动机冷凝管内表面的R max、R t等参数、轴类零件的RP c参数。现结合实例对这些参数的定义和测量方法作一些说明,以供参考。 一、参数的定义 1.参数R z(GB/T3505-2000) 在一个取样长度lr内,最大轮廓峰高和最大轮廓谷深之和的高度如图1所示。

图1 参数R z示意图 这里R z的定义和GB/T3505-1983《表面粗糙度术语表面及其参数》中的定义已经完全不同。GB/T3505-1983中R z符号曾用于指示“不平度的十点高度”。正在使用中的一些表面粗糙度测量仪器大多只能测量以前的参数R z。因此,采用现行的技术文件和图样时必须小心慎重,因为用不同类型的仪器按不同的规定计算所取得的结果之间的差别,并不都是非常微小而可忽略的。 2.参数R max(DIN EN ISO 4287) 参数R max与参数R zi之间有些关系,因此首先介绍R zi的定义。 R zi的定义为,在一个取样长度lr内最高峰和最低谷之间的垂直距离。 R max的定义为在评定长度lc内R zi的最大值(在DIN EN ISO 4288中,R max的符号为R z1max),其示意图如图2所示。

相关文档
最新文档