A generalized Finite element method for the simulation of 3D dynamic crack propagation

A generalized Finite element method for the simulation of 3D dynamic crack propagation
A generalized Finite element method for the simulation of 3D dynamic crack propagation

A generalized ?nite element method for the simulation of three-dimensional dynamic crack propagation

C.A.Duarte *,O.N.Hamzeh,T.J.Liszka,W.W.Tworzydlo

COMCO Inc.,7800Shoal Creek Blvd.,Suite 290E,Austin,TX 78757,USA

Received 2February 2000

Abstract

This paper is aimed at presenting a partition of unity method for the simulation of three-dimensional dynamic crack propagation.The method is a variation of the partition of unity ?nite element method and hp -cloud method.In the context of crack simulation,this method allows for modeling of arbitrary dynamic crack propagation without any remeshing of the domain.In the proposed method,the approximation spaces are constructed using a partition of unity (PU)and local enrichment functions.The PU is provided by a combination of Shepard and ?nite element partitions of unity.This combination of PUs allows the inclusion of arbitrary crack ge-ometry in a model without any modi?cation of the initial discretization.It also avoids the problems associated with the integration of moving least squares or conventional Shepard partitions of unity used in several meshless methods.The local enrichment functions can be polynomials or customized functions.These functions can ef?ciently approximate the singular ?elds around crack fronts.The crack propagation is modeled by modifying the partition of unity along the crack surface and does not require continuous remeshings or mappings of solutions between consecutive meshes as the crack propagates.In contrast with the boundary element method,the proposed method can be applied to any class of problems solvable by the classical ?nite element method.In addition,the proposed method can be implemented into most ?nite element data bases.Several numerical examples demonstrating the main features and computational ef?ciency of the proposed method for dynamic crack propagation are presented.ó2001Elsevier Science B.V.All rights reserved.

1.Introduction

This paper is aimed at presenting a partition of unity (PU)method tailored for three-dimensional crack simulations.The importance and di culty of such simulations is reˉected by the number of approaches that have been proposed over the past decades.Most of the techniques proposed so far are restricted to stationary cracks or to cracks propagating in two-dimensional manifolds.A survey of methods available can be found in [21,32].In addition,many of the techniques aimed at modeling three-dimensional crack propagation are restricted to planar crack con?gurations [9]or require considerable intervention of the analyst during the simulation process.Among the most versatile and promising techniques for simulation of arbitrary crack propagation in three dimensions are:(i)The boundary element method (BEM)is a very appealing approach to solve this class of problems because it leads to a reduced dimensionality.Examples of BEMs for three-dimensional crack propagation can be found in [18,19,24,45].The main drawbacks of this approach are those inherent to the https://www.360docs.net/doc/318734661.html,ly,they are di cult to be extended to nonlinear problems and can be quite computationally expensive;(ii)?nite element methods with local remeshing around the crack front [8,28,41],while versatile,are quite complex and cannot be implemented

https://www.360docs.net/doc/318734661.html,/locate/cma

Comput.Methods Appl.Mech.Engrg.190(2001)2227±2262

*

Corresponding author.Tel.:+1-512-467-0618;fax:+1-512-467-1382.E-mail address:armando@https://www.360docs.net/doc/318734661.html, (C.A.Duarte).

0045-7825/01/$-see front matter ó2001Elsevier Science B.V.All rights reserved.PII:S 0045-7825(00)00233-4

2228 C.A.Duarte et al./Comput.Methods Appl.Mech.Engrg.190(2001)2227±2262

in most existing?nite element data structures.The continuous remeshing and projections between successive meshes are also a drawback of this approach;(iii)the element free Galerkin method [4±6,20,21,37],the hp-cloud method[13±15,33,35],the reproducing kernel particle method[25]are examples of the so-called meshless methods.Krysl and Belytschko[20,21]have recently shown that the highˉexibility of these methods can be exploited to model arbitrary crack propagation in three-dimensional spaces.Nonetheless the highˉexibility of these methods comes at a substantial computational cost.Moreover,they cannot be implemented into existing?nite element data structures.

This paper presents a PU method aimed at modeling crack propagation in a three-dimensional space. This method uses the same PU framework used in hp-cloud[13,14],partition of unity?nite element (PUFEM)[2,29]and generalized?nite element method(GFEM)[12,39].The key difference between these methods and the method presented here is in the choice of the partition of unity.Here,the PU is provided by a combination of Shepard[22,38]and?nite element partitions of unity.This PU allows the inclusion of arbitrary crack geometry in a model without any modi?cation of the initial discretization. We call this partition of unity a?nite element-Shepard partition of unity.This choice of PU also avoids the problem of integration associated with the use of moving least squares or conventional Shepard partitions of unity which are used in several meshless methods[6,26,31].Although the PU used in the method proposed in this paper differs from that used in the GFEM presented in[12,39],we believe that it is appropriate to refer to method developed here as GFEM.This is justi?ed by the fundamental simi-larities of the two methods and because the method presented here can also be interpreted as a variation or generalization of the classical?nite element method.Therefore we refer to the PU method proposed here as GFEM.

This paper is organized as follows.In Section2,the formulation of generalized?nite element approxi-mations is presented.This includes the de?nition of the FE-Shepard PU used over cracked elements,the de?nition of generalized?nite element(GFE)shape functions and modeling of the crack front using customized functions.Sections3and4describe the crack mechanics and physics used in the study.In Section5,the computational engine used to represent the crack surface and the boundary of the domain and their interaction is brieˉy described.Several numerical examples are presented in Section6.Finally,in Section7,major conclusions of this study are given.

2.Formulation of generalized?nite element approximations for3D crack modeling

We begin this section by reviewing the concept of PU.

Let X be an open domain in R n Y n 1Y2Y3and T N an open covering of X consisting of N supports x a (often called clouds)with centers at x a Y a 1Y F F F Y N,i.e.,

N

x a Y

T N f x a g N a 1Y"X&

a 1

where the over bar indicates closure of a set.

The basic building blocks of any PU approximation are a set of functions u a de?ned on the supports x a Y a 1Y F F F Y N,and having the following property:

u a P C s0 x a Y s P0Y16a6N Y

u a x 1V x P X X

a

The?rst property implies that the functions u a Y a 1Y F F F Y N,are non-zero only over the supports x a Y a 1Y F F F Y N.The functions u a are called a PU subordinate to the open covering T N.Examples of partitions of unity are Lagrangian?nite elements,moving least squares and Shepard functions[14,22].In the current work,two types of PUs are utilized:Finite element PU and a version modi?ed for cracked elements.

2.1.Finite element partition of unity

The case of a ?nite element partition of unity (FEPU)over non-cracked elements is brieˉy discussed in this section.The case of elements intersecting the crack surface is discussed in Sections 2.3and 2.7.

In the case of a FEPU,the support (cloud)x c is simply the union of the ?nite elements sharing a vertex node x c (see,for example,[29,34]and Fig.1).The PU function u c is equal to the usual global ?nite element shape function N c associated with a vertex node x c .

Let s be a ?nite element with nodes x b Y b P I s ,where I s is an index set and let x x Y y Y z P "s

.In this work,we restrict ourselves to the case of linear Lagrangian FEPU and perform p -enrichments using the technique presented in Section 2.4.Let N b be linear shape functions associated with nodes x b Y b P I s .

Then,from the de?nition of N b ,there exist constants a x b Y a y b Y a z

b Y b P I s ,such that V x P "s

,

b P I s

N b x 1Y 1

b P I s

a x

b N b x x Y 2

b P I s

a y

b N b x y Y 3

b P I s

a z

b N b x z X

4

These basic properties of the ?nite element partition of unity are used in subsequent sections.2.2.Shepard partition of unity

The construction of a PU using the so-called Shepard formula [23,38]is reviewed in this section.

Let W a X R n 3R denote a weighting function with compact support x a that belongs to the space C s

x a Y s P 0.Suppose that such weighting function is built at every cloud x a Y a 1Y F F F Y N .Then the PU functions u a associated with the clouds x a ,a 1Y F F F Y N ,is de?ned

by

Fig.1.Clouds x a ,x b and x c for a ?nite element mesh with a crack.Polynomials of di ering degree p a ,p b and p c can be associated with nodes at x a ,x b and x c so as to produce non-uniform p approximations.

C.A.Duarte et al./Comput.Methods Appl.Mech.Engrg.190(2001)2227±22622229

u a x W a x

b

W b x Y b P f c j W c x 0g 5

which are known as Shepard functions [23,38].

Consider now the case in which the weighting functions W a are taken as the global linear ?nite element shape functions N a associated with node x a Y a 1Y F F F Y N .Let s be a ?nite element with nodes x b Y b P I s

where I s is an index set.The only non-zero PU functions at x P "s

are given by u b x N b x

c P I s N c x

N b x

1 N b x Y

b P I s

since the ?nite element shape functions form a PU.Therefore,it is not necessary to use the Shepard formula

to build the PU when the weighting functions are taken as global ?nite element shape functions.However,as demonstrated next,the above formula is the key to build a PU when the ?nite element s is severed by a crack.

2.3.Construction of a discontinuous partition of unity

In this section,a technique to modify a ?nite element partition of unity over elements cut by a crack surface is described.The PU is modi?ed such that a discontinuity in the displacement ?eld across the crack surface is created.The PU is modi?ed only for elements cut by the crack.Elsewhere,a ?nite element partition of unity,as described in Section 2.1,is used.The technique allows for elements to be arbitrarily cut by the crack surface without any mesh modi?cation.Over cracked elements,the PU is built using the Shepard formula (5)and ?nite element shape functions as weighting functions in combination with the visibility criteria [5,6].This PU is denoted by FE-Shepard PU.The technique is ?rst presented in a general setting followed by several illustrative examples in a two-dimensional manifold.

Let s be a ?nite element with nodes x b Y b P I s ,where I s is an index set.Let N b Y b P I s ,denote a linear ?nite element shape functions for element s .In the visibility criteria,the crack surface is considered opaque.At a given point x P s ,a weighting function N a used in (5)is taken as non-zero if and only if the segment x àx a connecting x and x a does not intersect the crack surface.This criteria was originally introduced by Belytschko et al.[5,6]to model cracks in the element free Galerkin method and has since been used in several other meshless methods.Let I vis s x &I s denote the index set for all weighting functions that are non-zero at point x P s ac-cording to the visibility criteria,i.e.,

I vis s x c P I s j x èàx c crack surface Y éX 6 Note that this set may be di erent for each point inside an element.

The FE-Shepard partition of unity for an element s with nodes x b Y b P I s is de?ned by

u b x N b x c P I vis s x N c x if b P I vis s x Y 0if b P I vis s x X

V

`X 7

The de?nition above is valid for any type of ?nite elements and in any dimension.The discontinuity in the

FE-Shepard PU is created by the fact that two points located at opposite sides of the crack surface use di erent sets of weighting functions to build the PU.The index set I vis s is distinct at these points although they may be geometrically very close to each other.Several illustrative examples are given below using the discretization depicted in Fig.2.

For elements that do not intersect the crack surface,the FE-Shepard PU is provided by linear ?nite element shape functions.For example,at any point x P s 1shown in Fig.2we have

I vis s 1 x I s 1 f 1Y 2Y 5Y 6g X

2230 C.A.Duarte et al./Comput.Methods Appl.Mech.Engrg.190(2001)2227±2262

Therefore,the PU is given by

u 1 x N 1Y

u 2 x N 2Y

u 5 x N 5Y

u 6 x N 6X

The FE-Shepard formula (7)can also be used to build the PU but,in this case,the results are trivial

u a x

N a x

N 1 x N 2 x N 5 x N 6 x

N a x Y

a 1Y 2Y 5Y 6X

Consider now the case of the element s 2shown in Fig.2.At point y P s 2,according to the visibility criteria,the only non-zero weighting functions are N 6and N 7,since the segments y àx 10 and y àx 11 intersect the crack surface.That is

I vis s 2 y f 6Y 7g X

The PU at y P s 2is then given by

u 6 y N 6 y

N 6 y N 7 y

Y

u 7 y

N 7 y

N 6 y N 7 y

Y

u 10 y 0Y

u 11 y 0X

Note that

u 6 y u 7 y

N 6 y N 7 y

N 6 y N 7 y

1X

Therefore,the functions u 6and u 7,as de?ned above,constitute a PU.At point z P s 2

I vis s 2 z f 10Y 11g and the PU is given by

u 10 z

N 10 z

N 10 z N 11 z

Y

u 11 z

N 11 z

N 10 z N 11 z

Y

u 6 z 0Y

u 7 z 0X

Therefore,the FE-Shepard PU as de?ned above is discontinuous across the crack surface .

As another example,consider the case of the element s 3with nodes x 5Y x 6Y x 9and x 10as depicted in Fig.2.At point r P s

3

Fig.2.Example of discretization cut by a crack.

C.A.Duarte et al./Comput.Methods Appl.Mech.Engrg.190(2001)2227±22622231

I vis s 3 r f 5Y 6Y 9g and the PU is given by

u 5 r

N 5 r

N 5 r N 6 r N 9 r Y

u 6 r

N 6 r

N 5 r N 6 r N 9 r

u 9 r N 9 r

N 5 r N 6 r N 9 r

Y

u 10 r 0X

At point s P s 3

I vis s 3 s f 10g and the PU is given by

u 10 s

N 10 s

N 10 s

1Y u 5 s u 6 s u 9 s 0X

Let us now show that the FE-Shepard PU is continuous at the boundary between cracked and non-cracked elements.

Let s 1and s 2be a cracked and a non-cracked element,respectively.Let t P "s

1 "s 2.Suppose that the elements share a face in three dimensions or an edge in two dimensions.Let I s 1 s 2denote the index set of the nodes along this common face/edge.Note that

I vis s 1 t 'I s 1 s 2

since s 2is not cracked (which implies that the crack does not intersect the face/edge "s 1 "s 2).In addition,

N a t 0if a P I s 2 àI s 1 s 2 or a P I vis

s 1 t àI s 1 s 2

V t P "s 1 "s 2since the only non-zero FE shape functions along a face/edge are those associated with nodes on the face/

edge.Therefore,the face/edge shape functions must form a PU.Then,for any b P I s 1 s 2,

u b j s 1 t N b t

c P I vis s

1

t N c t N b t

c P I s 1

s 2

N c t N b t Y u b j s 2 t N b t X

Consider,as an example,the point t located at the boundary between elements s 2and s 6,shown in Fig.2.In

this case,

I s 2 s 6 f 10Y 11g I vis s 2 t X

Consider the PU function u 10associated with node x 10.If this function is computed from element s 2we have

u 10j s 2 t

N 10 t

1011 N 10 t X

If the function u 10is computed from element s 6we have

u 10j s 6 t

N 10 t

N 10 t N 11 t N 13 t N 14 t

N 10 t X

Therefore u 10j s 2 t u 10j s 6 t and the function u 10is continuous at t .

2232 C.A.Duarte et al./Comput.Methods Appl.Mech.Engrg.190(2001)2227±2262

The FE-Shepard PU de?ned in (7)allows arbitrary cut of the ?nite element mesh by the crack surface.Therefore,from the view point of modeling crack propagation,this technique enjoys all the ˉexibility of the so-called meshless methods.The computational cost of FE-Shepard PU over cracked elements is only marginally higher than usual ?nite element shape functions.For non-cracked elements this PU degenerates to the usual FEPU.In contrast,the computational cost of moving least squares functions,which are used in several meshless methods,is orders of magnitude higher than usual ?nite element shape functions,espe-cially in three-dimensional settings (see [15]for a comparison).

The FE-Shepard PU functions (7)are,in general,rational polynomials which are non-zero only over part of a cracked element.Therefore special care must be taken to numerically integrate these functions over cracked elements.In our current implementation,higher-order Simpson rule is used for cracked elements.More e cient approaches,however,can be used.One possibility is to use an integration mesh over cracked elements that follows the crack boundaries.This mesh can easily be generated since it is used only for integration/visualization purposes and does not have to conform with neighboring elements.In the case of non-cracked elements,standard Gaussian quadrature can be used.

All the computations can be carried out at the element level as in standard ?nite element codes.And,importantly,the numerical integration of FE and FE-Shepard PU can be done very e ciently since the intersections of these functions coincide with the integration domains.This is in clear contrast with meshless methods based on moving least squares functions where the integration of the sti ness and mass matrices is computationally expensive.

Linear combination of FE-Shepard functions cannot,in general,reproduce linear polynomials.That is,properties (2)±(4)do not hold for the PU associated with elements intersecting the crack surface.In Section 2.4,we present a technique to hierarchically add shape functions to cracked elements such that the resulting GFEM approximation can reproduce linear or higher-order polynomials.

2.3.1.FE-Shepard PU for elements at the crack front

Let us consider more closely the case of elements that contain the crack front.The same technique described above to build the FE-Shepard PU can be used at these elements.Consider,for example,point y in element s with nodes x 5Y x 6Y x 8and x 9as depicted in Fig.3.According to (7),the PU is given by

u 5 y

N 5 y

N 5 y N 6 y Y

u 6 y

N 6 y

N 5 y N 6 y Y

u 8 y 0Y

u 9 y 0X

Consider now point z P s ,at the other side of the crack surface.Here,the PU is given by u 8 z

N 8 z

89Y

u 9 z

N 9 z

89Y

u 5 z 0Y

u 6 z 0X

The PU is therefore discontinuous along the crack

surface.

Fig.3.Construction of a FE-Shepard PU for an element at the crack front using the visibility criteria.

C.A.Duarte et al./Comput.Methods Appl.Mech.Engrg.190(2001)2227±22622233

Consider now points r and s P s as depicted in Fig.4.Eq.(7)gives u 8 s N 8 s

N 5 z N 6 z N 8 z N 9 z

N 8 s 0

while

u 8 r 0

since the segment r àx 8 intersects the crack surface.Therefore,the visibility criteria leads to spurious lines/surfaces of discontinuities inside the elements at the crack front.This problem is intrinsic to the visibility criteria and it appears in all meshless methods that use it to model crack surfaces [4,13,36].In spite of this drawback,the visibility criteria is the favorite technique to model cracks in the context of meshless methods,probably because of its ˉexibility and relative ease of implementation in any dimension.Also,numerical experiments demonstrate that in spite of the spurious discontinuities intro-duced,the visibility criteria allows the computation of accurate stress intensity factors (see Section 6and [5,20,21]).

Another technique to model the crack front is presented in Section 2.7.This technique is based on the wrap-around (WA)algorithm [13,15]and the use of customized functions.In contrast to the visibility criteria,the WA criteria does not introduce spurious discontinuities.2.4.Generalized ?nite element shape functions:the family F p N

The construction of the so-called generalized ?nite element or cloud shape functions is based on the following observation:

Let f L i g i P I denote a set of functions which can approximate well,in an appropriate norm k ák E ,the solution u of a boundary value problem posed on a domain X .Therefore,there exists u hp P span f L i g given by

u hp

i P I

u i L i Y where I denotes an index set,such that

k u hp àu k E ` Y

(1X

Now consider the following set of so-called cloud or generalized ?nite element (GFE)shape functions ,de?ned as

/a i X u a L i Y

a 1Y F F F Y N Y i P I

Y

Fig.4.Spurious discontinuity on a FE-Shepard PU created by the visibility criteria.

2234 C.A.Duarte et al./Comput.Methods Appl.Mech.Engrg.190(2001)2227±2262

where u a Y a 1Y F F F Y N constitute a PU (of any type)subordinate to an open covering T N of X .Then,it is not di cult to show that linear combinations of these shape functions can also approximate well the function u

a

i

u i /a i

a

i

u i u a L i a

u a i

u i L i a

u a u hp u hp a

u a u hp X 8 Note that:

(i)The shape functions /a i Y a 1Y F F F Y N Y i P I ,are non-zero only over the support of the function u a ,i.e.,the cloud x a .

(ii)Linear combination of GFE shape functions can reproduce the approximation u hp to the function u .(iii)The functions L i Y i P I ,can be chosen with great freedom.The most straightforward choice is poly-nomial functions since they can approximate well smooth functions.However,for many classes of prob-lems including the case of fracture mechanics problems,there are better choices.This case is discussed in detail in Section 2.5.

In this section,GFE shape functions are de?ned in an n -dimensional setting using the idea outlined above.Let the functions u a Y a 1Y F F F Y N ,denote a FE or FE-Shepard PU subordinate to the open covering

T N f x a g N

a 1of a domain X &R n Y n 1Y 2Y 3.Here,N is the number of vertex nodes in the ?nite element mesh.The cloud x a is the union of the ?nite elements sharing the vertex node x a ,regardless if the element is cracked or not (cf.Fig.1).

Let v a x a span f L i a g i P I a denote local spaces de?ned on x a Y a 1Y F F F Y N ,where I a Y a 1Y F F F Y N ,are index sets and L i a denote local approximation functions de?ned over the cloud x a .Possible choices for these functions are discussed below.

GFE (known also as cloud)shape functions of degree p are de?ned by

F p N /a i è u a L i a j a 1Y F F F Y N Y i P I a é

X 9 Let I c denote the index set of the nodes x a that belong to cracked elements.For this set of nodes,we

enforce that

P p x a &v a x a Y

p P 1a P I c Y

where P p denotes the space of polynomials of degree less than or equal to p .For all other nodes,it is only required that

P p à1 x a &v a x a Y

p P 1a P I c X

The above requirements guarantee that linear combination of the GFE shape functions over any element (cracked or not)can reproduce polynomials of degree p .The proof follows the same arguments used in (8)and is presented in details in [12].

The GFE shape functions can then be used in combination with,e.g.,a Galerkin method to solve any class of boundary value problem solvable by the ?nite element method.We call this approach the GFEM.The implementation of the method is essentially the same as in standard ?nite element codes,the main di erence being the de?nition of the shape functions given in (9).The FE and FE-Shepard partitions of unity avoid the problem of integration associated with moving least squares PU built on circles or spheres.This type of PU is used in several meshless methods.Here,the integrations can be e ciently performed with the aid of the so-called master elements since the intersections of the global GFE shape functions coincide with the integration domains.Therefore,the GFEM can use existing infrastructure and algorithms for the classical ?nite element method.In the context of crack modeling,the GFEM allows arbitrary cut of the ?nite element mesh by the crack surface while being computationally e cient.The computational cost of GFE shape functions over cracked elements is only marginally higher than usual ?nite element shape functions.For non-cracked elements the computational cost of GFE shape functions is basically the same as ?nite element shape functions of the same polynomial order.

There is considerable freedom in the choice of the local spaces v a .The most obvious choice for a basis of v a is polynomial functions which can approximate well smooth functions.In this case,the GFEM over non-cracked elements is essentially identical to the classical FEM.Some important di erences do exist though

C.A.Duarte et al./Comput.Methods Appl.Mech.Engrg.190(2001)2227±22622235

[11,12].There are many situations in which the solution of a boundary value problem is not a smooth function.In these situations,the use of polynomials to build the approximation space,as in the FEM,may be far from optimal and may lead to poor approximations of the solution u unless carefully designed meshes are used.In the GFEM,we can use any a priori knowledge about the solution to make better choices for the local spaces v a.This is the case of fracture mechanics problems.The construction of these so-called customized GFE shape functions over cracked elements is discussed in Section2.5.

2.5.Customized GFE shape functions for a crack in3D

The construction of customized GFE shape functions for a crack in a three-dimensional space is sum-marized in this section.This is a special case of the formulation presented by Duarte et al.[12]which deals with a convex edge of arbitrary angle.

Consider a crack embedded in a three-dimensional body as depicted in Fig.5.Both a local Cartesian coordinate system n Y g Y f and a cylindrical coordinate system r Y h Y f H are associated with the crack at origin O x Y O y Y O z .

The displacement?eld u r Y h Y f H in the neighborhood of a straight crack front far from its ends can be written as[42,43]

u r Y h Y f H

u n r Y h

u g r Y h

u f r Y h

V

`

X

W

a

Y

I

j 1

A 1 j

u 1 n j

u 1 g j

V

b`

b X

W

b a

b Y

P

T R A 2

j

u 2 n j

u 2 g j

V

b`

b X

W

b a

b Y A

3

j

u 3 f j

V

`

X

W

a

Y

Q

U S Y 10

where r Y h Y f H are the cylindrical coordinates relative to the system shown in Fig.5,u n r Y h ,u g r Y h and u f r Y h are Cartesian components of u in the n-,g-and f-directions,respectively.

Assuming that the crack boundary is traction-free and neglecting body forces,the functions u 1 n j,u 1 g j,u 2 n j, u 2 g j are given by[42,43]

u 1 n j r Y h r k j

2G

j

h n

àQ 1 j k j 1

i

cos k j hàk j cos k jà2 h

o

Y

u 2 n j r Y h r k j

2G

j

h n

àQ 2 j k j 1

i

sin k j hàk j sin k jà2 h

o

Y

u 1 g j r Y h r k j

2G

j

h n

Q 1 j k j 1

i

sin k j h k j sin k jà2 h

o

Y

u 2 g j r Y h àr k j

2G

j

h n

Q 2 j k j 1

i

cos k j h k j cos k jà2 h

o

Y

Fig.5.Coordinate systems associated with an edge in3D space.

2236 C.A.Duarte et al./Comput.Methods Appl.Mech.Engrg.190(2001)2227±2262

where the eigenvalues k j are k 1 1a 2Y k j j 1 a 2Y j P 2.The material constant j 3à4m and G E a 2 1 m ,where E is Young's modulus and m is Poisson's ratio.

The parameters Q 1 j and Q 2

j are given by

Q 1

j

à1Y j 3Y 5Y 7Y F F F Y àK j Y j 1Y 2Y 4Y 6Y F F F Y

&

Q 2

j

à1Y j 1Y 2Y 4Y 6Y F F F Y àK j Y j 3Y 5Y 7Y F F F Y

&

where K j k j à1 a k j 1 .

Assuming that the crack boundary is traction-free,body forces are negligible,and crack front is straight,

the functions u 3

f j are given by [42]

u 3

f j

r k 3

j 2G

sin k 3 j h Y

j 1Y 3Y 5Y F F F Y r k 3

j 2G

cos k 3 j h Y

j 2Y 4Y 6Y F F F Y

V b `b X where k 3

j j a 2Y j P 1.

Prior to employing the above functions to build customized GFE shape functions,they ?rst have to be transformed to the physical coordinates x x Y y Y z .The transformation method is described in [12].Let

u 1

x 1Y

u 1

y 1Y

u 3

z 1Y

u 2

x 1Y

u 2

y 1Y

u 3

z 2

11

denote the result of such transformation applied to u 1

n 1,u 1

g 1,u 3

f 1,u 2

n 1,u 2

g 1,u 3

f 2,respectively.

The construction of customized GFE shape functions using singular functions then follows the same approach as in the case of polynomial type shape functions.Here,the singular functions from (11)take the role of the basis functions L i a de?ned in Section 2.4and are multiplied by the PU functions u a associated with nodes near a crack front.The customized GFE shape functions used in the computations of Section 6are built as

u a ?u 1 x 1Y u 1 y 1Y u 3 z 1Y u 2 x 1Y u 2 y 1Y u 3

z 2n o X

12

Here,a is the index of a ?nite element vertex node near a crack front in 3D.Note that not necessarily the same set of singular functions is used at all enriched nodes.As discussed in Section 5,the crack front is modeled as a piecewise linear object.Therefore the orientation of the local coordinate systems used to build the customized functions (see Fig.5)changes along the crack front.

The customized functions u 1 xj ,u 1 yj ,u 3 zj ,u 2 xj ,u 2

yj de?ned above are presented here as a simple illustrative example and,as such,they are limited to the special case of piecewise linear crack fronts.It also assumes that the crack surface near the crack front is ˉat.More general types of customized functions,built ana-lytically as above or perhaps numerically,can be used without any change to the de?nition of the cus-tomized GFE shape functions.The GFEM does not require the availability of customized functions to be able to model a crack.As shown in Section 2.3,the crack can be modeled through proper construction of the PU.Nonetheless,if customized functions are available,they can considerably improve the accuracy of the method and,as shown in the next section,they can also be used to model the crack front without the spurious discontinuities created by the visibility criteria.

The enrichment of the elements near the crack front with singular functions brings up the issue of nu-merical integration.In this investigation,our main goal is to analyze the e ectiveness of this type of en-richment and,for simplicity,we use a high-order quadrature rule in the elements with singular functions.We adopt the Simpson rule with 10points in each direction for the case of hexahedral elements.Integration of the singular functions can,of course,be implemented in a much more e cient way.Adaptive integration schemes,such as the one proposed in [40],can be used.

C.A.Duarte et al./Comput.Methods Appl.Mech.Engrg.190(2001)2227±22622237

2.6.Examples of GFE shape functions

In this section,GFE shape functions for cracked and non-cracked elements are presented using de?nition (9).The issue of linear dependence of these functions and how to solve the resulting system of equations is discussed in[12,39].

Let s&R3be a?nite element with nodes x b,b P I s,where I s is an index set.The case of elements in one-or two-dimensional spaces is analogous.

2.6.1.Quadratic GFE shape functions for a non-cracked element

Quadratic GFE shape functions for a non-cracked element s are given by

S p 2s X u b?1Y xàx b

h b

Y

yày b

h b

Y

zàz b

h b

&'

Y b P I s Y 13 where u b is a standard linear Lagrangian FEPU,x b x b Y y b Y z b are the coordinates of node b and h b is the diameter of the largest?nite element sharing the node b.Details are described in[12].It can be shown that the shape functions de?ned above are complete of degree two[12].

2.6.2.Linear GFE shape functions for a cracked element

Here,we consider the case in which an element s c with nodes x b P I s

c is fully or partially severe

d by the

crack surface.The PU over this element is given by the FE-Shepard formula(7).Linear combination of these functions cannot,in general,reproduce linear polynomials although in many cases,depending on how the crack surface is located within the element,some linear monomials can still be reproduced.For sim-plicity,and taking into account that the number of cracked elements is much smaller than the total number of elements,we prefer to assume that the PU over cracked elements can reproduce only a constant. Therefore,the PU has to be enriched with linear polynomials in order to guarantee that the GFE shape functions over cracked elements are complete of degree one

S p 1s

c X u b?1Y

xàx b

h b

Y

yày b

h b

Y

zàz b

h b

&'

Y b P I s

c

X 14

The only di erence between(13)and the above is in the de?nition of the PU u b.

2.6.

3.Linear GFE shape functions for a cracked element enriched with customized shape functions Customized GFE shape functions as those de?ned in(12)can be added to the shape functions of ele-ments containing the crack front.A linear cracked element enriched with functions(12)has the following shape functions

S p 1Y?s c X u b?1Y

xàx b

h b

Y

yày b

h b

Y

zàz b

h b

Y u 1 x1Y u 1 y1Y u 3 z1Y u 2 x1Y u 2 y1Y u 3 z2

&'

Y b P I s X 15

2.7.Crack front modeling using WA approach and customized functions

In this section,another technique to model the crack at elements intersecting the crack front is presented. The technique is based on the WA algorithm[13,15]and the use of customized functions like those de?ned in Section2.5.In contrast with the technique based on the visibility criteria,the WA criteria does not introduce spurious discontinuities.

From the de?nition of the GFE shape functions given in(9)it is observed that if the functions L i a are discontinuous,the resulting GFE shape functions are also discontinuous.The crack can therefore be modeled by simply multiplying a standard FEPU(or any other PU)by appropriate customized functions that can accurately represent the displacement?eld near the crack(not only at the crack front).This ap-proach has been successfully used by Duarte and Oden[15,33,35]in two dimensions.It is also essentially the same technique used in[40]to model holes and inclusions in elastic plates.More recently,Belytschko et al.[3,10,30]have applied this approach to propagating cracks in two dimensions.They have also pro-2238 C.A.Duarte et al./Comput.Methods Appl.Mech.Engrg.190(2001)2227±2262

posed several variations for the functions L i a including discontinuous step functions and near crack tip assymptotic ?elds.Suppose now that such customized functions are available at least near the crack front.Then,customized GFE shape functions can be used for elements near the crack front and the de?nition of the FE-Shepard PU given in (7)can be modi?ed such that no spurious discontinuity is created.

The FE-Shepard PU is de?ned as follows in the case of WA algorithm.First,all nodes belonging to elements that intersect the crack front are marked as wrap-around nodes .Then,instead of the index set de?ned in (6),the following is used at a point x belonging to ?nite element s

I wa s x c P I s j x èàx c crack surface Y or x c is a wrap-around node éX 16 The FE-Shepard PU for an element s with nodes x b Y b P I s is then de?ned as

u b x N b x c P I wa s x N c x if b P I wa s x Y 0if b P I wa s x X

V

`X 17

For elements at the crack front it is as if the crack does not exist since all nodes of the element are marked as

WA nodes then,

I wa s x I s

V x P s X

In this case,the crack front is modeled by customized shape functions as those de?ned in (12).In addition to rendering a discontinuous ?eld at the crack front,these GFE shape functions allow accurate approxi-mation of the solution without any mesh modi?cations.For elements that have a neighboring element at the crack front,the crack is modeled by a combination of the visibility algorithm and the customized shape functions.But in this case case,no spurious discontinuities are created.In the case of other cracked ele-ments,the crack is modeled solely by the visibility algorithm.Here again,no spurious discontinuities are created.

As an example consider the element s depicted in Fig.6.At point r P s ,we have

I wa s r I s f 5Y 6Y 8Y 9g X

In the same ?gure,at point t P "s

we have I wa "s t I "s

f 4Y 5Y 7Y 8

g X While for point z P "s

,I wa "s

z f 5Y 8g

X Fig.6.Modeling the crack front using the WA algorithm.

C.A.Duarte et al./Comput.Methods Appl.Mech.Engrg.190(2001)2227±22622239

3.Extraction of stress intensity factors:the least squares ?t method

Once the solution is obtained at some time step,the amount and direction of crack propagation over the next time increment can be predicted.The crack front is represented as a series of straight line segments connected at vertices.The stress intensity factors (SIFs)are calculated at the vertex points along the crack front.Fig.7represents ˉowchart of the computer program PHLEXcrack TM used for this study with the fracture dynamics process implemented in it.

The least squares ?t method is used for the calculations of SIFs.In this method,the SIFs are obtained by minimizing the errors among the discretized stresses calculated from the solution and their asymptotic values.The method has produced accurate results in ?nite element settings.In this work,it has been ex-tended to be used with the three-dimensional dynamic GFE model used.De?ne the least-squares functional as

J K l M

y àáX r h à

àr Y r h àr áy Y M I ±III and l 1Y F F F Y l max

Y Fig.7.Flowchart of PHLEXcrack TM .

2240 C.A.Duarte et al./Comput.Methods Appl.Mech.Engrg.190(2001)2227±2262

where K l

M is the l th stress intensity factor associated with mode M at vertex y .The inner product Y y is de?ned as

u Y v y N spl a 1

m j 1

m i 1

u i x a D à1

ij v j x a 23W a y Y

and (see Fig.8)

u f u 1Y u 2Y F F F Y u m g Y v f v 1Y v 2Y F F F Y v m g are any two vectors in R m ,

r h x is the discretized stress vector at point x ,r x X III M I l max l 1K l M F l

M x ??is the asymptotic stress vector,

F l M x f l M r g l

M h are the asymptotic functions,y is the position vector of a vertex on the crack front,x a is the position vector of a sampling point,

N spl is the number of sampling points in a domain centered at y ,

D à1P R m ?R m is the inverse of an auxiliary matrix D .Appropriate choices for D are the material sti -ness matrix or the identity matrix,and

W a y P R X is a weighting function associated with sampling point x a and is given by

W a y

1

k y àx a k p R m

Y

where p is typically 3±6X

Stress intensity factors K l

M

are found by minimizing the least-squares functional:o J

o K l

M

0Y M I ±III Y l 1Y F F F Y l max X

This leads to the following system of equations:

III M I q max q 1

K q

M F q M Y F l M H àáy r h Y F l M H àáy Y

M H I ±III Y l 1Y F F F Y l max X

If only the ?rst terms (l 1)of the three modes are used,the three corresponding K s are found by solving:

F 1I Y F 1I y F 1I Y F 1II y F 1I Y F 1III y F 1II Y F 1I y F 1II Y F 1II y F 1II Y F 1III y F 1III Y F 1I y F 1III Y F 1II y F 1III Y F 1III y P T R Q U S K 1I K 1

II

K 1III V `X W a Y r h Y F 1I y r h Y F 1II y r h Y F 1III y

V b `b X W b a b Y

X Fig.8.Domain used for the least squares ?t method.

C.A.Duarte et al./Comput.Methods Appl.Mech.Engrg.190(2001)2227±22622241

The domain used for the least squares ?t method is a cylinder centered at the vertex with its axis along the tangent of the crack front at that vertex.The dimensions of the cylinder and the number of sampling points in the r Y h ,and z directions are input data.In addition,one can choose the type of the D matrix and the weight p .

4.Crack evolution models

SIFs calculated above are used to determine whether the crack will advance or not,and the amount and direction of propagation,if any.The front is then advanced to its new position,the crack surface is ex-tended,and the numerical model is updated accordingly.

Crack propagation quantities are calculated based on some physical models.Crack physics,however,are not well known,especially so for three-dimensional problems.Therefore,fracture models usually make extensive use of plane strain physics models.In this work,two physical models have been used.4.1.The Freund model [16,20,37]

In this model,direction of crack growth in the plane normal to the crack front is given by

h 2tan

à11K I II H d V `X àsign K II K I II

2 8s I e W a Y 18

for K II 0,and h 0for K II 0.In the equation above,h is measured with respect to the forward vector

n 1.Vector n 1is the crack front forward normal vector;it lies along the intersection of the planes normal and tangent to the front at the vertex (see Fig.9).

It was assumed that mode-III does not a ect crack direction;it only a ects crack speed.The term sign K II in Eq.(18)above is to guarantee a positive stress intensity factor along the direction given by h .It also corresponds to the direction normal to the maximum hoop stress.

The current energy release rate of a stationary crack is calculated at every vertex as

G 0

K 2I Y equiv E K 2III 2l

Y where

K I Y equiv K I cos 3 h a 2 à3

2

K II cos h a 2 sin h

Y

Fig.9.Local unit vectors at crack vertex.

2242 C.A.Duarte et al./Comput.Methods Appl.Mech.Engrg.190(2001)2227±2262

where l is the shear modulus,and E?is the e ective Young's modulus.For plane strain,E?is given by

E?

E

1àm2

Y

where E is Young's modulus and m is Poisson's ratio.Crack will propagate at a vertex if

G 0 b G crit Y 19 where G crit is the critical energy release rate given by

G crit K2I D a

E

%

K2

I D

E

and K I D is the dynamic fracture toughness in a pure mode-I crack(in general a function of crack speed, a); it is approximated by the constant value K I D which is given as a material property.

The speed at which the crack will propagate at a vertex( a)is then calculated by solving for the roots of the quadratic equation

W 2à W 1 Cà1

C

0Y

where C G 0 a G crit P1,W c R a c lim b1,and a a c R61.c lim is the limiting crack speed(

4b1b2à 1 b22 2 0Y

where

b21 1à

c R

c d

2

c d

2

dilatational wave speed

j 1

jà1

r

l

q

r

in plane strain

3

Y

b22 1à

c R

c s

2

c s

shear wave speed

l

q

r

in plane strain

Y

and j Kosolov constant 3à4m(for plane strain).

In the above,l is the shear modulus and q is the mass density.

4.2.Prescribed velocity model

In this model,the propagation angle is calculated using Eq.(18)above,and the propagation criteria is given by Eq.(19).The crack speed,however,is calculated according to a pre-de?ned function.This function is given as an input data.The function is usually a piecewise linear function of time that can take into account for instance the initial time needed for stress waves to reach the crack front.

5.Representation of the crack surface

The representation of the crack surface in the proposed method is completely independent of the mesh used.In our present implementation,the crack surface is represented as a set ofˉat triangles as shown in, for example,Figs.11(a),13(b)and27.The crack front is represented by straight line segments connecting the nodes of the triangles along the front.This model of the crack surface is the same used by[21].The representation of the outer skin of the body is also required by the``crack geometric engine'',i.e.,the part of the code that handles the crack representation.Figs.11(a)and27show examples of the representation of the other skin of a body.They are as simple as possible and can be composed of several types of geometric entities.The geometric engine handles queries about intersection of segments with the crack surface,

C.A.Duarte et al./Comput.Methods Appl.Mech.Engrg.190(2001)2227±22622243

distance of a point from the crack surface,orientation of normal and tangent vectors along the crack surface,etc.The geometric engine also updates the crack surface after each crack advancement.It auto-matically re?nes the triangles at the crack front in order to ensure a geometrically precise representation of the crack surface.This can easily be implemented since the triangulation of the crack surface does not have to constitute a valid ?nite element mesh.The geometric engine uses the representation of the outer skin of the body in order to handle surface breaking cracks and cracks intersecting the boundary.

6.Numerical examples

GFEM presented previously is used in this section to solve several illustrative examples.In all examples,the stress intensity factors are computed using the least squares ?t method presented in Section 3.6.1.Single crack with mode-I solution under static loading

The edge-cracked panel illustrated in Fig.10(a)is analyzed in this section using the GFEM.The fol-lowing parameters are assumed in the computations:h b 1.0,a 0.5,distributed tractions r 1X 0and uniform thickness t 0.1.The material is assumed to be linearly elastic with E 1000X 0and m 0X 3.The domain is discretized using the hexahedral mesh shown in Fig.10(b).There are 961elements in the mesh.A state of plane strain is modeled by constraining the displacement in the z -direction at z 0and z t .The representation of the crack surface is shown in Fig.11(a).It is composed of four triangles and two edge elements (used to identify the crack front).These triangles are used only for the geometric rep-resentation of the crack surface.There are no degrees of freedom associated with them.The stress intensity factors reported for this problem are computed at x 0X 5Y 1X 0Y 0X 05 which is a point at the crack front located at the middle plane of the body.The geometric de?nition of the outer skin of the domain (shown

in

Fig.10.Single edge-noth test specimen and GFEM discretization.

2244 C.A.Duarte et al./Comput.Methods Appl.Mech.Engrg.190(2001)2227±2262

Fig.11(a))is also given as input data for the crack geometric engine.The base vectors of the coordinate system associated with singular functions used at the crack front are also displayed in Fig.11(a).The base vectors and corresponding singular functions are computed completely automatically using the geometric engine.This functionality is specially important during dynamic crack propagation simulations or when the geometries of the domain or crack surface are not so trivial as in this example.

Fig.11(b)shows a closer look at the discretization near the crack front.It can be observed that the crack surface does not respect the element boundaries ±It can arbitrarily cut the elements in the mesh .The nodes carrying singular degrees of freedom are represented by diamond-shaped dots.The singular functions used at these nodes are those presented in Section 2.5.Whenever they are used,only the nodes of the elements that contain the crack front are enriched with these singular shape functions (in this example,there is only one element at the crack front).The enrichment of the elements at the crack front with appropriate singular functions is done automatically using the geometric engine to construct appropriate coordinate systems at the crack front.

The computed values of K I and of the strain energy,U ,for several discretizations are shown in Tables 1and 2.In the tables,Neq denotes the number of equations associated with a particular discretization.The crack is modeled using a FE-Shepard PU as de?ned in Section 2.3or 2.7.In the ?rst case,the discontinuity in the displacement ?eld is modeled using the visibility algorithm in combination or not with singular functions.The results using this approach are shown in Table 1.In the second case,the WA approach in combination with singular functions at the crack front is used.The results using this approach are shown in Table 2.In both cases,p -enrichment is done using the family of functions F p N de?ned in Section 2.4.The notation p 1 p x Y 1 p y Y 1 p z 1 p x Y p y Y p z is used to denote the polynomial order of the approxi-mation over non-cracked elements.The ``1's''indicating the linear order of the functions de?ning the PU (linear hexahedral ?nite element shape functions in this case)and p x Y p y Y p z denote the degrees of the polynomial basis functions L i a in the x Y y Y z directions,respectively.The functions L i a are de?ned in Section 2.4.If only the PU is used,we have p 1 0Y 1 0Y 1 0 1 0.A quadratic approximation in the plane XY and linear in the z -direction is denoted by p 1 1Y 1 1Y 1 0 1 1Y 1Y 0 .For cracked elements,the polynomial degree of the approximation is denoted by p c 0 p x Y 0 p y Y 0 p z 0 p x Y p y Y p z .

The

Fig.11.Crack representation.

C.A.Duarte et al./Comput.Methods Appl.Mech.Engrg.190(2001)2227±22622245

``0's''indicating that,in general,the functions de?ning the PU over cracked elements can only represent a constant function.A quadratic approximation in the plane XY and linear in the z -direction over cracked elements (fully or partially cracked)is denoted by p c 0 2Y 0 2Y 0 1 0 2Y 2Y 1 .

The stress intensity factors are computed using the least squares ?t method presented in Section 3.The following parameters are used in all computations presented in this section:

·Dimensions of the extraction domain:d 0X 4Y 1X 0Y 0X 05 ,which represents a cylinder of radius 0.4and length 0.05.

·Number of integration points in the r Y h and z directions:n 10Y 20Y 1 ,respectively.·Type of weighting matrix D :identity matrix ·Power of the weighting functions:6.

It was observed from numerical experiments on this and other examples that the choice of the matrix D (material or identity)does not have tangible e ects on the calculated values of the stress intensity factors.In addition,di erent values for the power of the weighting function were tested.A value in the range of [3±6]was observed to be su cient.

As a reference,the value of K I computed by Tada et al.[44]using a boundary technique is used.The value K Tada I 3X 54259reported in [44]has an error smaller than 0.5%.

The discretizations Vis-1,Vis-3and Vis-5do not use singular functions at the crack front while the discretizations Vis-2,Vis-4and Vis-6do.All `Vis'discretizations use the visibility approach to build the PU over cracked elements as described in Section 2.3.It can be observed from Table 1that the use of singular functions gives a noticeable improvement on the computed stress intensity factors while the increase in the number of degrees of freedom is only marginal (less than one percent in the case of the discretization Vis-5).In contrast,the p -enrichment of the cracked elements (discretizations Vis-1and Vis-3)gives little im-provement on the computed K I .Nonetheless,the enrichment does improve the computed strain energy by about 3%.This behavior indicates that the technique used to compute the stress intensity factor is not optimal since,optimally,the computed stress intensity factors must converge at the same rate as the computed strain energy [42,43].

The discretizations WA-1,WA-2and WA-3use singular functions in combination with the WA tech-nique to build the PU over cracked elements as described in Section https://www.360docs.net/doc/318734661.html,paring the results for the discretizations Vis-2with WA-1or Vis-4with WA-2,it can be observed that,for the same number of degrees of freedom,the WA approach gives better results for the stress intensity factors than the visibility approach.This is in spite of the fact that the discretizations using WA have a smaller strain energy than the

Table 1

GFEM using the partition of unity de?ned in Section 2.3.The stress intensity factor is computed at (0.5,1.0,0.05)a

Discr p 1 p c 0 Sing Fn Neq U ?104K I K I a K Tada I Vis-1(0,0,0)(1,1,1)No 6756 2.27136 3.23870.91422Vis-2(0,0,0)(1,1,1)Yes 6900 2.32941 3.37410.95244Vis-3(0,0,0)(2,2,1)No 7776 2.33848 3.24950.91727Vis-4(0,0,0)(2,2,1)Yes 7920 2.36701 3.39380.95800Vis-5(1,1,0)(2,2,1)No 19656 2.38643 3.43390.96932Vis-6

(1,1,0)

(2,2,1)

Yes

19800

2.42281

3.4584

0.97623

a

``Discr''stands for discretization,``Sing Fn''stands for singular functions at the crack front,``Neq''stands for number of equations and U stands for strain energy.

Table 2

GFEM using the partition of unity de?ned in Section 2.7.The stress intensity factor is computed at 0X 5Y 1X 0Y 0X 05 Discr p 1 p c 0 Sing Fn Neq U ?104K I K I a K Tada I WA-1(0,0,0)(1,1,1)Yes 6900 2.22465 3.38860.95653WA-2(0,0,0)(2,2,1)Yes 7920 2.25596 3.42280.96618WA-3

(1,1,0)

(2,2,1)

Yes

19800

2.29396

3.3431

0.94369

2246 C.A.Duarte et al./Comput.Methods Appl.Mech.Engrg.190(2001)2227±2262

有机化学规律总结

有机化学规律总结 一.有机物组成和结构的规律 1.在烃类中,烷烃CnH2n+2随分子中碳原子的增多,其含碳量增大;炔烃、二烯烃、苯的同系物随着碳原子增加,其含碳量减少;烯烃、环烷烃的含碳量为常数(85.71%)2.一个特定的烃分子中有多少种结构的氢原子,一般来说其一卤代物就有多少种同分异构体. 3.最简式相同的有机物,不论以何种比例混合,其元素的质量分数为常数.例:m克葡萄糖,n克甲醛,x克乙酸,y克甲酸甲酯,混合后,求混合物碳的质量分数. 4.烃及烃的含氧衍生物中,氢原子个数一定为偶数. 6.常见有机物中最简式同为"CH"的有乙炔、苯、苯乙烯;同为“CH2”的为单烯烃和环烷烃; 7、烃类的熔、沸点变化规律 (1)有机物一般为分子晶体,在有机物同系物中,随碳原子数增加,相对分子质量增大,分子间作用力增大,熔、沸点逐渐升高。如:气态烃:CxHy x≤4 (2)分子式相同的烃,支链越多,熔、沸点越低。如沸点: 正戊烷(36.07℃)>异戊烷(27.9℃)>新戊烷(9.5℃) (3)苯的同系物,熔沸点。邻位>间位>对位, 如沸点: 邻二甲苯(144.4℃)>间二甲苯(139.1℃)>对二甲苯(138.4℃) 二.有机物燃烧规律 1.有机物燃烧通式:CxHy+(x+y/4)O2 xCO2+y/2H2O 2、烃(CXHY)完全燃烧前后物质的量的变化 (1)当Y=4时,反应前后物质的量相等。若同温同压下,100℃以上时,反应前后体积不变。 (2)当Y〈4时,燃烧后生成物分子数小于反应物分子总数。 (3)当Y〉4时,燃烧后生成物分子数大于反应物分子总数。 3、若分子为CnH2n、CnH2nO 或CnH2nO2时,其完全燃烧时生成CO2和H2O的物质的量之比为1:1。 4、若有机物在足量的氧气里完全燃烧,其所耗氧气物质的量与燃烧后生成CO2的物质的量相当,则有机物分子组成中氢与氧原子数比为2:1. 5、等质量的烃完全燃烧时,耗氧量决定于氢元素的含量,它越高,耗氧量越高,如甲烷耗氧量最高。 6、最简式相同的有机物,不论以何种比例混合,只要混合物的质量一定,它们完全燃烧后生成CO2总量为常数。 7.不同的有机物完全燃烧时,若生成CO2和H2O的质量比相同,则它们分子中碳与氢的原子个数也相同。 8、烃CXHY燃烧后体积变化规律 (1)当100℃以上,水为气态,若烃中H数或混合烃中平均H数小于4时,体积减小,1体积烃减少(1-Y/4)体积,若有a体积烃,则减少(1-Y/4)a 即△V=(1-Y/4)a 若烃中H数或混合烃中平均H数等于4时,△V=0。 若烃中H数或混合烃中平均H数大于4时,气体体积增大。1体积烃增大(Y/4-1)体积,若有a体积烃增大(Y/4-1)a体积,即 △V=(Y/4-1)a (2)当生成的水被浓H2SO4吸收或水蒸汽冷却为液体时。气体的体积会减少,每体积烃减少(1+Y/4)体积,若有a体积烃,则减少(1+Y/4)a体积即:△V=(1+Y/4)a 三、有机物的水溶性和密度大小规律

国际化学核查常用词汇表

“十二五”规划12th Five-Year Plan 《关于禁止发展、生产和储存细菌(生物)及毒素武器和销毁此种武器的公约》(于1972年4月10日在伦敦、莫斯科和华盛顿签订)Prohibition of the Development, Production and Stockpiling of Bacteriological (Biological) and Toxin Weapons and on Their Destruction, (signed at London, Moscow and Washington on 10 April 1972) 《关于禁止在战争中使用窒息性、毒性或其他气体和细菌作战方法的议定书》(1925年《日内瓦议定书》)的原则和目标the principles and objectives of the Protocol for the Prohibition of the Use in War of Asphyxiating, Poisonous or Other Gases, and of Bacteriological Methods of Warfare, signed at Geneva on 17 June 1925 (the Geneva Protocol of 1925) 《联合国宪章》的宗旨和原则purposes and principles of the Charter of the United Nations 《维也纳外交关系公约》Vienna Convention on Diplomatic Relations ?根据本公约进行规定活动的视察组成员应免纳外交代表根据《维也纳外交关系公约》第34条所免纳的一切捐税。The members of the inspection team carrying out prescribed activities pursuant to this Convention shall be accorded the exemption from dues and taxes accorded to diplomatic agents pursuant to Article 34 of the Vienna Convention on Diplomatic Relations. 1, 3-二(2-氯乙硫基)正丙烷1,3-Bis (2-chloroethylthio)-n-propane 1, 4-二(2-氯乙硫基)正丁烷1,4-Bis (2-chloroethylthio)-n-butane 1, 5-二(2-氯乙硫基)正戊烷1,5-Bis (2-chloroethylthio)-n-pentane 1925年《日内瓦议定书》规定的义务obligations assumed under the Geneva Protocol of 1925 2,2-二苯基-2-羟基乙酸2,2-Diphenyl-2-hydroxyacetic acid 2-氯乙基氯甲基硫醚2-Chloroethylchloromethylsulfide atmospheric storage tank BZ:二苯乙醇酸-3-奎宁环酯BZ: 3-Quinuclidinyl benzilate DCS(分散控制系统、集散控制系统) distributed control system DF:甲基膦酰二氟DF: Methylphosphonyldifluoride flash drum HN1:N, N-二(2-氯乙基)乙胺HN1: Bis(2-chloroethyl)ethylamine HN2:N, N-二(2-氯乙基)甲胺HN2: Bis(2-chloroethyl)methylamine HN3:三(2-氯乙基)胺HN3: Tris(2-chloroethyl)amine O形环O-ring PFIB: 1,1,3,3,3 - 五氟-2-三氟甲基-1-丙烯PFIB:1,3,3,3-Pentafluoro-2-(trifluoromethyl)-1-propene pump (for firefighting water) QL:甲基亚膦酸乙基-2-二异丙氨基乙酯QL O-Ethyl O-2-diisopropylaminoethyl methylphosphonite slide valve U-V组合坡口combination U and V groove U形螺栓U-bolt U形弯管“U” bend VX(甲基硫代膦酸乙基-S-2-二异丙氨基乙酯)VX (O-Ethyl -2-diisopropylaminoethyl methyl phosphonothiolate) V形坡口V groove V型混合机V-type mixer X形坡口double V groove Y型粗滤器Y-type strainer γ射线照相Gamma radiography 安(培)Ampere (A) 安瓶ampule 安全safety 安全标志safety mark 安全等级safety class 安全防护装置safety protection device 安全连锁safety interlock (SI) 安全喷淋洗眼器safe spray eye wash 安全设施safety device 安全完整性等级safety integrity level (SIL) 安全卫生safety & health 安全系数margin of safety; safety coefficient; safety factor; coefficient of safety 安全仪表系统safety instrumented system (SIS) 安全照明safety lighting 安慰剂dummy drug ?他们对第二组用了安慰剂(无任何作用的药)。For the second group they used dummy drug. 安装erection; installation 氨氮ammonia-nitrogen (NH4+-N) 氨分离器ammonia separator 氨分缩器ammonia partial condenser 氨解ammonolysis 氨冷冻剂ammonia refrigerant 氨冷凝器ammonia condenser 氨冷器ammonia chiller 氨气ammonia gas 氨收集器ammonia accumulator 氨树脂amino resin 氨吸收制冷ammonia absorption refrigeration 鞍座saddle ?固定鞍座fixed saddle ?滑动鞍座sliding saddle 按国际惯例in line (accordance) with internationally accepted practices; compatible with established international practices; in accordance with international practice 胺吸磷:硫代磷酸二乙基-S-2-二乙氨基乙酯及相应烷基化盐或质子化盐Amiton: O,O-Diethyl S-[2-(diethylamino)ethyl] Phosphorothiolate and corresponding alkylated or protonated salts 奥氏体不锈钢Austenitic stainless steel 板框压滤器plate-and-fram filter press 板式输送机slat type conveyor 半成品semi-manufactured goods; semi- finished products; semi-finished goods semi-processed goods 半径radius (R) 半模拟盘(屏)semi-graphic panel 半贫液semi-lean solution 半衰期half-life; half-life period 半自动程序控制器semi-automatic sequence controller 1

基础化学常用英语词汇汇总

基础化学常用英语词汇汇总

基础化学常用英语词汇380条 1. The Ideal-Gas Equation 理想气体状态方程 2. Partial Pressures 分压 3. Real Gases: Deviation from Ideal Behavior 真实气体:对理想气体行为的偏离 4. The van der Waals Equation 范德华方程 5. System and Surroundings 系统与环境 6. State and State Functions 状态与状态函数 7. Process 过程 8. Phase 相 9. The First Law of Thermodynamics 热力学第一定律 10. Heat and Work 热与功 11. Endothermic and Exothermic Processes 吸热与发热过程 12. Enthalpies of Reactions 反应热 13. Hess’s Law 盖斯定律 14. Enthalpies of Formation 生成焓 15. Reaction Rates 反应速率 16. Reaction Order 反应级数 17. Rate Constants 速率常数 18. Activation Energy 活化能 19. The Arrhenius Equation 阿累尼乌斯方程 20. Reaction Mechanisms 反应机理 21. Homogeneous Catalysis 均相催化剂 22. Heterogeneous Catalysis 非均相催化剂 23. Enzymes 酶 24. The Equilibrium Constant 平衡常数 25. the Direction of Reaction 反应方向 26. Le Chatelier’s Principle 列·沙特列原理

化学词汇表

SA T II 化学词汇表 Part 1 foundation chemistry 基础化学 Chapter 1 acid 酸 apparatus 仪器,装置 aqueous solution水溶液 arrangement of electrons 电子排列 assumption 假设 atom 原子 atomic mass原子量 atomic number 原子序数 atomic radius原子半径 atomic structure 原子结构 be composed of 由……组成 bombard ment 撞击 boundary 界限 cathode rays 阴极射线 cathode-ray os cilloscope (C.R.O) 阴极电子示波器ceramic 陶器 charge-clouds 电子云 charge-to-mass ratio(e/m) 质荷比 chemical behaviour 化学行为 chemical property化学性质 clockwise顺时针方向的 compound 化合物 configuration 构型 copper 铜 correspond to 相似 corrosive 腐蚀 d-block elements d 区元素 deflect 使偏向,使转向 derive from 源于 deuterium (D)氘 diffuse mixture 扩散混合物 distance effect 距离效应? distil 蒸馏 distinguish 区别 distribution 分布 doubly charged(2+) ion正二价离子 dye 染料 effect of electric current in solutions 电流在溶液里的影响electrical charge电荷 electrical field 电场

有机化学规律方法总结

有机化学规律方法总结 第一:有机化学中的方法规律 1.有机物同分异构体的书写方法 〖碳链异构的书写方法〗以己烷( )为例,共五种同分异构体(氢原子省略) (1)先直链、一条线 (2)摘一碳、挂中间、往边移、不到端 (3)摘两碳、二甲基、同邻间、不重复、要写全 如果碳链更长,还可以摘两碳、三碳,先甲基,后乙基…… 〖取代基位置异构的书写方法〗 1、对称法(等效氢法) a、同一碳原子上的氢原子是等效的; b、同一碳原子所连甲基上的氢原子是等效的; c、处于镜面对称位置上的氢原子是等效的 2、换元法 详解:同分异构体书写规律:遵循对称性、有序性原则,一般按照下列顺序书写:官能团类型异构;碳链异构;官能团或取代基位置异构;立体异构(较少涉及)口诀:主链长到短,支链整到散,位置心到边,排布对邻间 2.有机物类型异构大全

3.常见有机物的分离提纯方法

4.常见有机物的检验与鉴别

第二:有机化学知识点总结 1.需水浴加热的反应有:(1)、银镜反应(2)、乙酸乙酯的水解(3)苯的硝化(4)糖的水解(5)、酚醛树脂的制取(6)固体溶解度的测定凡是在不高于100℃的条件下反应,均可用水浴加热,其优点:温度变化平稳,不会大起大落,有利于反应的进行。 2.需用温度计的实验有:(1)、实验室制乙烯(170℃)(2)、蒸馏(3)、固体溶解度的测定(4)、乙酸乙酯的水解(70-80℃)(5)、中和热的测定(6)制硝基苯(50-60℃) 〔说明〕:(1)凡需要准确控制温度者均需用温度计。(2)注意温度计水银球的位置。 3.能与Na反应的有机物有:醇、酚、羧酸等——凡含羟基的化合物。

化学英语单词汇总

LESSON11NEUTRALIZATION–ACIDSREACTWITHBASES 中和——酸碱反应 生词 neutralization [,nju:tr?lai'zei??n,li'z-] n.[化学]中和;[化学]中和作用;中立状态 Drano Drano是一个排水管清洁剂的品牌,主要成分是氢氧化钠。 《绯闻女孩》-YouarenotusingBlairassexualDrano. lye [lai] n.碱液vt.用碱液洗涤;sodalye:氢氧化钠 oven ['?v?n] n.炉,灶;烤炉,烤箱 Sodiumchloride chloride ['kl?:raid] n.氯化物 add [?d] vi.加; vinegar ['viniɡ?] n.醋 hydrochloric [,haidr?u'kl?rik] adj.氯化氢的,盐酸的 chapter ['t??pt?] n.章; recognize ['rek?ɡnaiz] vt.认出,识别;承认vi.确认,承认;具结 shortcut ['??:tk?t] n.捷径;被切短的东西;快捷键 -desktopshortcut:桌面快捷方式;桌面捷径 beneath [bi'ni:θ]prep.在…之下adv.在下方 literally ['lit?r?li] adv.照字面地;逐字地 coefficient [,k?ui'fi??nt] n.[数]系数;率;协同因素adj.合作的;共同作用的calcium ['k?lsi?m] n.[化学]钙 electriccharge n.电荷(等于charge,electricity);电费 assimpleamanneraspossible attachedto 附属于;系于;爱慕 incontactwith 接触;与…有联系

化学词汇组词规律

英语化学词汇的组词规律 1.化学元素(Chemical elements) A—音译transliteration 锂lithium 镁magnesium 硒selenium 氦helium 锰manganese 钡barium 氟fluorine 钛titanium 铀uranium 氖neon 镍nickel 钙calcium B—意译transcribe or free translation 氧铝溴 氢hydrogen 硅silicon 钾potassium 碳carbon 磷phosphorus 汞mercury 氮nitrogen 硫sulphur(sulfur) 钠sodium C—意音兼译translation by meaning and pronunciation 碘iodine 氯chlorine 砷arsenic 2.化学基团chemical groups 各种元素element的原子atom组合成分子molecule,按性质可以把分子分为不同的原子团radicle,分子中这些具有相对独特性质的原子团,称为官能团functional group,或范围更广一点,称作化学基团chemical group. propylene 丁/四butyl butane butanol butylene butyne butanone 戊/五pentyl pentane pentanol pentylene戊二烯 pentene 戊烯 pentyne pentanone 己/六hexyl hexane hexanol hexylene hexyne hexanone 庚/七heptyl heptane heptanol heptylene heptyne heptanone 辛/八octyl octane octanol octylene octyne octanone 壬/九nonyl nonane nonanol nonylene nonyne nonanone 癸/十decatyl decane decanol decylene decyne decanone 说明:-ol表示醇羟基,-an与烷有关,表示是饱和状态,-en与烯有关,有不饱和的意义,相应的饱和状态的羟基即醇-anol,不饱和状态的羟基即酚-enol。在结构较为复杂的醇类化合物中,常常只用-ol;酮-one是相当于用氧o替换了烯-ene中的一个碳,二者均为不饱和结构。 ether(醚),ester(酯),只要在化学基后加上这两个词,就获得了两组英文词。例如:甲醚methyl ether,甲酯methyl ester。 3.化合物类别及化学官能团Classes of compounds and functional groups 化合物类别 烃hydrocarbon 酚hydroxybenzene/phenol 胺amine 烷alkane 醚ether 亚胺imine 烯alkene 酮ketone 腈nitrile 炔alkyne 醛aldehyde 亚砜sulfoxide 苯benzene 酸acid 砜sulfone 醇alcohol 酐anhydride 碱alkali/base 官能团 烷基alkyl 羟基hydroxyl 羰基carbonyl

有机化学基础知识点归纳

有机化学知识要点总结 一、有机化学基础知识归纳 1、常温下为气体的有机物: ①烃:分子中碳原子数n≤4(特例:),一般:n≤16为液态,n>16为固态。 ②烃的衍生物:甲醛、一氯甲烷。 2、烃的同系物中,随分子中碳原子数的增加,熔、沸点逐渐_ _____,密度增大。同分异构 体中,支链越多,熔、沸点____________。 3、气味。无味—甲烷、乙炔(常因混有PH3、AsH3而带有臭味) 稍有气味—乙烯特殊气味—苯及同系物、萘、石油、苯酚刺激性—--甲醛、甲酸、乙酸、乙醛香味—----乙醇、低级酯 甜味—----乙二醇、丙三醇、蔗糖、葡萄糖苦杏仁味—硝基苯 4、密度比水大的液体有机物有:溴乙烷、溴苯、硝基苯、四氯化碳等。 5、密度比水小的液体有机物有:烃、苯及苯的同系物、大多数酯、一氯烷烃。 6、不溶于水的有机物有:烃、卤代烃、酯、淀粉、纤维素。 苯酚:常温时水溶性不大,但高于65℃时可以与水以任意比互溶。 可溶于水的物质:分子中碳原子数小于、等于3的低级醇、醛、酮、羧酸等 7、特殊的用途:甲苯、苯酚、甘油、纤维素能制备炸药;乙二醇可用作防冻液;甲醛的水溶 液可用来消毒、杀菌、浸制生物标本;葡萄糖或醛类物质可用于制镜业。 8、能与Na反应放出氢气的物质有:醇、酚、羧酸、葡萄糖、氨基酸、苯磺酸等含羟基的 化合物。 9、显酸性的有机物有:含有酚羟基和羧基的化合物。 10、能发生水解反应的物质有:卤代烃、酯(油脂)、二糖、多糖、蛋白质(肽)、盐。 11、能与NaOH溶液发生反应的有机物: (1)酚;(2)羧酸;(3)卤代烃(NaOH水溶液:水解;NaOH醇溶液:消去) (4)酯:(水解,不加热反应慢,加热反应快);(5)蛋白质(水解) 12、遇石蕊试液显红色或与Na2C03、NaHC03溶液反应产生CO2:羧酸类。 13、与Na2CO3溶液反应但无CO2气体放出:酚; 14、常温下能溶解Cu(OH)2:羧酸; 15、既能与酸又能与碱反应的有机物:具有酸、碱双官能团的有机物(氨基酸、蛋白质等) 16、羧酸酸性强弱: 17、能发生银镜反应或与新制的Cu(OH)2悬浊液共热产生红色沉淀的物质有:醛、甲酸、 甲酸盐、甲酸酯、葡萄糖、麦芽糖等凡含醛基的物质。 18、能使高锰酸钾酸性溶液褪色的物质有: (1)含有碳碳双键、碳碳叁键的烃和烃的衍生物、苯的同系物 (2)含有羟基的化合物如醇和酚类物质

化学常用英语词汇

化学常用英语词汇 1.TheIdeal-GasEquation理想气体状态方程 2.PartialPressures分压 3.RealGases:DeviationfromIdealBehavior真实气体:对理想气体行为的偏离 4.ThevanderWaalsEquation范德华方程 5.SystemandSurroundings系统与环境 6.StateandStateFunctions状态与状态函数 7.Process过程 8.Phase相 9.TheFirstLawofThermodynamics热力学第一定律 10.HeatandWork热与功 11.EndothermicandExothermicProcesses吸热与发热过程 12.EnthalpiesofReactions反应热 13.Hess’sLaw盖斯定律 14.EnthalpiesofFormation生成焓 15.ReactionRates反应速率 16.ReactionOrder反应级数 17.RateConstants速率常数 18.ActivationEnergy活化能 19.TheArrheniusEquation阿累尼乌斯方程 20.ReactionMechanisms(机制)反应机理 21.HomogeneousCatalysi(s catalysis英[k?'t?l?s?s]n.催化作用)均相催化剂 22.HeterogeneousCatalysis非均相催化剂 23.Enzymes酶 24.TheEquilibriumConstant平衡常数 25.theDirectionofReaction反应方向 26.LeChatelier’sPrinciple列沙特列原理 27.EffectsofVolume,Pressure,TemperatureChangesandCatalys体ts积,压力,温度变化以及催化剂的影响

化学化工常用词汇Word版

Atoms,Elements and Ions atom 原子 element 元素 ion 离子 anion 阴离子 cation 阳离子 electron 电子 neutral 中性的 proton 质子 atomic nucleus 原子核 nucleon 核子 nuclide symbol 核素符号 nuclide 核素 isotope 同位素 alpha particle 粒子 alpha ray 射线 beta particle 粒子 anode 阳级,正极 cathode 阴极 atomic mass unit 原子质量单位 element symbol 元素符号 atomic number 原子序数 atomic weight 原子量 mass number 质量数 atomic theory 原子理论 brownian motion 布朗运动 cathode ray 阴极射线 chemical change 化学变化,化学反应 compound 化合物 deuterium 氘 electric charge 电荷 heavy water 重水 isotopic abundance 同位素的丰度 natural abundance 自然丰度 isotopic mass 同位素质量 law of conservation of mass 物质守恒定律,物质不灭定律 law of definite proportions 确定化定律 law of multiple proportions 整比定律 mass spectrometer 质谱仪 mass spectrometry 质谱学,质谱测量,质谱分析 mass spectrum 质谱(复数形式:mass spectra) nuclear binding energy 核能量 radioactivity 放射能 X–ray spectrum X射线光谱(复数形式:X-ray spectra)

化学化工相关词汇整理

表2-1 中英文对照

CC

表8-1 中英文对照 常用玻璃仪器英文表示 adapter 接液管广口瓶air condenser 空气冷凝管beaker 烧杯boiling flask 烧瓶 boiling flask-3-neck 三口烧瓶burette clamp 滴定管夹 burette stand 滴定架台Busher funnel 布氏漏斗Claisen distilling head 减压蒸馏头 condenser-Allihn type 球型冷凝管 condenser-west tube 直型冷凝管

crucible tongs 坩埚钳 crucible with cover 带盖的坩埚distilling head 蒸馏头 distilling tube 蒸馏管 Erlenmeyer flask 锥型瓶evaporating dish (porcelain) 瓷蒸发皿filter flask(suction flask) 抽滤瓶florence flask 平底烧瓶fractionating column 分馏柱 Geiser burette (stopcock) 酸氏滴定管graduated cylinder 量筒 Hirsch funnel 赫氏漏斗 long-stem funnel 长颈漏斗medicine dropper 滴管 Mohr burette for use with pinchcock 碱氏滴定管 Mohr measuring pipette 量液管mortar 研钵 pestle 研杵 pinch clamp 弹簧节流夹 plastic squeeze bottle 塑料洗瓶reducing bush 大变小转换接头rubber pipette bulb 吸耳球 screw clamp 螺旋夹 separatory funnel 分液漏斗stemless funnel 无颈漏斗 test tube holder 试管夹 test tube 试管 Thiele melting point tube 提勒熔点管transfer pipette 移液管 tripod 三角架 volumetric flask 容量瓶 watch glass 表皿 wide-mouth bottle 广口瓶 【分享】有机物英语单词后缀表 有机物英语单词后缀表 -acetal 缩醇 acid 酸 -al 醛 alcohol 醇 -aldehyde 醛 -aldechydic acid 醛酸

化学常用英文单词

Bunsen burner 本生灯 product 化学反应产物 flask 烧瓶 apparatus 设备 PH indicator PH值指示剂,氢离子(浓度的)负指数指示剂 matrass 卵形瓶 litmus 石蕊 litmus paper 石蕊试纸 graduate, graduated flask 量筒,量杯 reagent 试剂 test tube 试管 burette 滴定管 retort 曲颈甑 still 蒸馏釜 cupel 烤钵 crucible pot, melting pot 坩埚 pipette 吸液管 filter 滤管 stirring rod 搅拌棒 element 元素 body 物体 compound 化合物 atom 原子 gram atom 克原子 atomic weight 原子量 atomic number 原子数 atomic mass 原子质量 molecule 分子 electrolyte 电解质 ion 离子 anion 阴离子 cation 阳离子 electron 电子 isotope 同位素 isomer 同分异物现象 polymer 聚合物 symbol 复合 radical 基 structural formula 分子式 valence, valency 价 monovalent 单价 bivalent 二价 halogen 成盐元素bond 原子的聚合mixture 混合combination 合成作用compound 合成物alloy 合金 metal 金属metalloid 非金属Actinium(Ac) 锕Aluminium(Al) 铝Americium(Am) 镅Antimony(Sb) 锑Argon(Ar) 氩Arsenic(As) 砷Astatine(At) 砹Barium(Ba) 钡Berkelium(Bk) 锫Beryllium(Be) 铍Bismuth(Bi) 铋Boron(B) 硼Bromine(Br) 溴Cadmium(Cd) 镉Caesium(Cs) 铯Calcium(Ca) 钙Californium(Cf) 锎Carbon(C) 碳Cerium(Ce) 铈Chlorine(Cl) 氯Chromium(Cr) 铬Cobalt(Co) 钴Copper(Cu) 铜Curium(Cm) 锔Dysprosium(Dy) 镝Einsteinium(Es) 锿Erbium(Er) 铒Europium(Eu) 铕Fermium(Fm) 镄Fluorine(F) 氟Francium(Fr) 钫Gadolinium(Gd) 钆Gallium(Ga) 镓Germanium(Ge) 锗Gold(Au) 金Hafnium(Hf) 铪Helium(He) 氦

有机化学必背44条规律

有机化学必背44条规律 1.聚集状态 (1)烃:碳原子数小于或等于4的烃都是气体。(新戊烷是气体,沸点:9.5℃) 烷烃:C1~C4为气体,C5~C16为液体,C17以上为固体。 烯烃:C2~C4为气体,C5~C18为液体,C19以上为固体。 苯的同系物多数为液体,和苯一样有特殊的香味,其蒸气有毒。但对二甲苯为固体。 环丙烷、环丁烷为气体,环戊烷为液体,高级同系物为固体。 (2)烃的衍生物:CH3Cl、CH2=CHCl、C2H5Cl、HCHO、CH3Br等为气体。 饱和一元醇中,C1~C4为酒味液体,C17以上为固体。 饱和一元羧酸中,C1~C3为具有强烈酸味和刺激性的流动液体,C4~C9为具有无色无臭的油状液体,C10以上为石蜡状固体。 硝基化合物中,一硝基化合物为高沸点液体,其余为结晶固体。 酚类、饱和高级脂肪酸、二元羧酸、芳香酸、脂肪、糖类、氨基酸及萘等为固体。 不饱和脂肪酸(如油酸)为液体。 2.一些有机物的沸点: 3.溶解性 (1)难溶于水:烃类、卤代烃、酯、硝基化合物、高级脂肪酸、多糖、高分子化合物等。 (2)溶于水:低级醇、醛、羧酸、单糖、二糖、氨基酸、丙酮、某些蛋白质溶于水。 (3)与水互溶:乙炔、乙醚微溶于水。常温下,苯酚微溶于水,70℃以上与水

互溶。 (4)难溶于水、且比水轻:烷烃、烯烃、炔烃、C n H n+1Cl、汽油、乙醚、苯(0.8765 g / cm3)、甲苯(0.8669 g / cm3)、二甲苯、环己烷、乙酸乙酯(0.9003 g / cm3)、油酸及低级酯类、油。 (5)难溶于水、且比水重:溴甲烷(1.6755 g / cm3)、溴乙烷(1.4604 g / cm3)、溴苯(1.495 g / cm3)、CCl4、硝基苯、多氯代烃、溴代烃等。 4.最简式相同的 (1)CH:乙炔(C2H2)、(C4H4)、苯(C6H6)、立方烷(C8H8) CH2:烯烃(C2H4)、环烷烃(C n H2n) CH2O:甲醛(CH2O)。乙酸和甲酸甲酯(C2H4O2)、乳酸(C3H6O3)、葡萄糖和果糖(C6H10O6) C6H10O5(葡萄糖单元):淀粉和纤维素[(C6H10O5)n] C∶H=1∶1的有:乙炔、苯、苯乙烯、苯酚等; C∶H=1∶2的有:甲醛、乙酸、甲酸甲酯、葡萄糖、果糖、单烯烃、环烷烃等; C∶H=1∶4的有:甲烷、甲醇、尿素等。 (2)最简式相同的,所含元素的百分含量不变。最简式相同的有机物,无论多少种,以何种比例混合,混合物中元素质量比值相同。要注意:①含有n个碳原子的饱和一元醛或酮与含有2n个碳原子的饱和一元羧酸和酯具有相同的最简式;②含有n个碳原子的炔烃与含有3n个碳原子的苯及其同系物具有相同的最简式。 (3)最简式相同的有机物,当组成混合物时,只要质量一定,无论以任何配比混合,完全燃烧后,生成CO2的量一定,耗O2量相同。 (4)等质量的最简式相同的化合物燃烧时耗氧量相同。 (5)具有相同的相对分子质量的有机物为:①含有n个碳原子的醇或醚与含有(n-1)个碳原子的同类型羧酸和酯。②含有n个碳原子的烷烃与含有(n-1)个碳原子的饱和一元醛或酮。此规律用于同分异构体的推断。 M得整数商由相对分子质量求有机物的分子式(设烃的相对分子质量为M)① 12 M的余数为0或和余数,商为可能的最大碳原子数,余数为最小氢原子数。② 12 碳原子数≥6时,将碳原子数依次减少一个,每减少一个碳原子即增加12个氢原子,直到饱和为止。 5.(单)烯烃的特点

(完整版)化学专业英语常用词汇

☆常用: ppm: parts per million ppb: parts per billion pH: potential of hydrogen 1. 化合物的命名:规则:金属(或某些非金属)元素+阴离子名称 (1)MgCl2 magnesium [m?ɡ’ni:zj ?m] chloride (2)NaNO2 sodium nitrite [‘naitrait] (3)KNO3 potassium[p ?’t?si ?m] nitrate [‘naitreit] (4)硝酸 nitric acid (5)NaHCO3 sodium hydrogen carbonate 练习: ? FeBr2 ? (NH4)2SO4 ? NH4H2PO4

?KMnO4 ?亚硫酸 ?sulfurous acid ?H2S ?NO 2 有机物命名 ?Hydrocarbon ?{Aliphatic hydrocarbon; Aromatic Hydrocarbon} ?Aliphatic hydrocarbon (脂肪烃) ?{Alkane (烷); Alkene(烯); Alkyne(炔)} ?Alcohol 醇 ?Aldehyde 醛 ?Ketone [‘ki:t?un] 酮 ?Carboxylic acid 羧酸 ?Aromatic hydrocarbon(芳香烃) ?{benzene (苯) hydroxybenzene(酚) quinone(醌) 无机物中关于数字的写法 mono-, di-, tri-, tetra-, penta- hexa-, hepta-, octa-, nona-, deca- 一,二,三,四,五,六,七,八,九,十 有机物中关于数字的写法 meth-, eth-, prop-, but-, pent-, hex-, 甲乙丙丁戊已 hept-, oct-, non-, dec-, cyclo-, poly- 庚辛壬葵环聚 练习 ?甲烷乙炔 ?丙酮丁醇 ?戊烷己烯 ?庚醛辛烷 ?2-甲基壬酸 3,5-二乙基癸醇

化学专业词汇

普通化学术语中英文对照表原子atom 原子核nucleus 质子proton 中子neutron 电子electron(abbr.e) 离子ion[an] 阳离子cation 阴离子anion 分子molecular[mlekjl] 单质element 化合物compound 纯净物puresubstance/chemicalsubstance 混合物mixture 相对原子质量relativeatomicmass(abbr.Ar) 相对分子质量relativemolecularmass(abbr.Mr) 化学式量relativeformulamass 物质的量amountofsubstance 阿伏加德罗常数Avogadroconstant(abbr.NA) 摩尔mole 摩尔质量molarmass 实验式/最简式/经验式empiricalformula 气体摩尔体积molarvolume 阿伏加德罗定律Avogadro’sLaw 溶液solution 溶解dissolve 浓度concentration 质量/体积分数mass/volumeconcentration 浓缩concentrate 稀释dilute 蒸馏distillation 萃取extraction 化学反应方程式chemicalequation 反应物reactant 生成物product 固体solid 液体liquid 气体gaseous

溶液aqueous 配平balance 化学计量学stoichiometry 酸acid 碱 base/alkali(referstosolublebases)盐salt 酸式盐acidsalt 离子方程式ionicequation 结晶水waterofcrystallisation 水合的hydrated 无水的anhydrous 滴定titration 指示剂indicator 氧化数oxidationnumber 氧化还原反应redoxreaction 氧化反应oxidationreaction 还原反应reductionreaction 歧化反应disproportionationreaction 归中反应 comproportionation(symproportiona tion) reaction 氧化剂oxidisingagent 还原剂reducingagent 电子层(壳)(electron)shell 电离能ionisationenergy(abbr..) 第一,第二,第三等电离能 first,second,third,etc.ionisation energy(abbr.1st,2nd,3rd,etc..) 电子亲和能 electronaffinityenergy(abbr..) 屏蔽效应electronicshielding(screening) 原子轨道atomicorbital 电子云electroncloud 电子亚层sub-shell 能层layer 能级energylevel 电子排布electronconfiguration 电子云重叠shelloverlap 洪特规则Hund’srule 泡利原理Pauliexclusionprinciple

高考状元必备笔记_高中有机化学规律总结

高中有机化学规律总结 高中化学 2011-04-05 19:26 一、综观近几年来的高考有机化学试题中有关有机物组成和结构部分的题型,其共同特点是通过题给某一有机物的化学式(或式量),结合该有机物性质,对该有机物的结构进行发散性的思维和推理,从而考查“对微观结构的一定想象力”。为此,必须对有机物的化学式(或式量)具有一定的结构化处理的本领,才能从根本上提高自身的“空间想象能力”。 1.式量相等下的化学式的相互转化关系 一定式量的有机物若要保持式量不变,可采用以下方法 (1) 若少1个碳原子,则增加12个氢原子。 (2) 若少1个碳原子,4个氢原子,则增加1个氧原子。 (3) 若少4个碳原子,则增加3个氧原子。 2.有机物化学式结构化的处理方法 若用C n H m O z (m≤2n+2,z≥0,m、n?N,z属非负整数)表示烃或烃的含氧衍生 O z(z≥0)相比较,若少于两个H原子,则相当于原有机物物,则可将其与C n H 2n+2 中有一个C=C,不难发现,有机物C n H m O z分子结构中C=C数目为个,然后以双键为基准进行以下处理 (1) 一个C=C相当于一个环。 (2) 一个碳碳叁键相当于二个碳碳双键或一个碳碳双键和一个环。 (3) 一个苯环相当于四个碳碳双键或两个碳碳叁键或其它(见(2))。 (4) 一个羰基相当于一个碳碳双键。 二、有机物结构的推断是高考常见的题型,学习时要掌握以下规律 1.不饱和键数目的确定

(1) 有机物与H 2(或X 2 )完全加成时,若物质的量之比为1∶1,则该有机物 含有一个双键;1∶2时,则该有机物含有一个叁键或两个双键;1∶3时,则该有机物含有三个双键或一个苯环或其它等价形式。 (2) 由不饱和度确定有机物的大致结构 对于烃类物质C n H m,其不饱和度W= ① C=CW=1; ②CoCW=2; ③环W=1; ④苯W=4; ⑤萘W=7; ⑥复杂的环烃的不饱和度等于打开碳碳键形成开链化合物的数目。 2.符合一定碳、氢之比的有机物 C∶H=1∶1的有乙炔、苯、苯乙烯、苯酚等; C∶H=1∶2的有甲醛、乙酸、甲酸甲酯、葡萄糖、果糖、单烯烃、环烷烃等; C∶H=1∶4的有甲烷、甲醇、尿素等。 近几年有关推测有机物结构的试题,有这样几种题型 1.根据加成及其衍变关系推断 这类题目的特点是通过有机物的性质推断其结构。解此类题目的依据是烃、醇、醛、羧酸、酯的化学性质,通过知识串联,综合推理,得出有机物的 结构简式。具体方法是① 以加成反应判断有机物结构,用H 2、Br 2 等的量确定 分子中不饱和键类型(双键或叁键)和数目;或以碳的四价及加成产物的结构确定不饱和键位置。② 根据有机物的衍变关系推断有机物的结构,要找出衍变关系中的突破口,然后逐层推导得出结论。 2.根据高聚物(或单体)确定单体(或高聚物) 这类题目在前几年高考题中经常出现,其解题依据是加聚反应和缩聚反应原理。方法是按照加聚反应或缩聚反应原理,由高分子的键节,采用逆向思维,反推单体的结构。由加聚反应得到的高分子求单体,只要知道这个高分子

相关文档
最新文档