物理竞赛专题一:整体法

物理竞赛专题一:整体法
物理竞赛专题一:整体法

高中奥林匹克物理竞赛解题方法

一、整体法

方法简介

整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运用整体思维可以产生不同凡响的效果,显现“变”的魅力,把物理问题变繁为简、变难为易。

赛题精讲

例1:如图1—1所示,人和车的质量分别为m 和M ,

人用水平力F 拉绳子,图中两端绳子均处于水平方向,

不计滑轮质量及摩擦,若人和车保持相对静止,且

水平地面是光滑的,则车的加速度为 .

解析:要求车的加速度,似乎需将车隔离出来才 能求解,事实上,人和车保持相对静止,即人和车有相同的加速度,所以可将人和车看做一个整体,对整体用牛顿第二定律求解即可.

将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力.在竖直方向重力与支持力平衡,水平方向绳的拉力为2F ,所以有:

2F=(M+m)a ,解得:

m

M F a +=2 例2 用轻质细线把两个质量未知的小球悬挂起来,如图

1—2所示,今对小球a 持续施加一个向左偏下30°的恒力,并 对小球b 持续施加一个向右偏上30°的同样大

小的恒力,最后达到平衡,表示平衡状态的图可能是 ( )

解析 表示平衡状态的图是哪一个,关键是要求出两条轻质细绳对小球a 和小球b 的拉力的方向,只要拉力方向求出后,。图就确定了。

先以小球a 、b 及连线组成的系统为研究对象,系统共受五个力的作用,即两个重力(m a +m b )g ,作用在两个小球上的恒力F a 、F b 和上端细线对系统的拉力T 1.因为系统处于平衡

状态,所受合力必为零,由于F a 、F b 大小相等,方向相反,可以抵消,而(m a +m b )g 的方向竖直向下,所以悬线对系统的拉力T 1的方向必然竖直向上.再以b 球为研究对象,b 球在重力m b g 、恒力F b 和连线拉力T 2三个力的作用下处于平衡状态,已知恒力向右偏上30°,重力竖直向下,所以平衡时连线拉力T 2的方向必与恒力F b 和重力m b g 的合力方向相反,如图所示,故应选A.

例3 有一个直角架AOB ,OA 水平放置,表面粗糙,OB 竖直向下,表面光滑,OA 上套有小环P ,OB 上套有小环Q ,两个环的质量均为m ,两环间由一根质量可忽略、不何伸长的细绳相连,并在某一位置平衡,如图1—4所示.现将P 环向左移动一段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态相比,OA 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是 ( )

A .N 不变,T 变大

B .N 不变,T 变小

C .N 变大,T 变小

D .N 变大,T 变大

解析 先把P 、Q 看成一个整体,受力如图1—4—甲所示,

则绳对两环的拉力为内力,不必考虑,又因OB 杆光滑,则杆在

竖直方向上对Q 无力的作用,所以整体在竖直方向上只受重力和

OA 杆对它的支持力,所以N 不变,始终等于P 、Q 的重力之和。

再以Q 为研究对象,因OB 杆光滑,所以细绳拉力的竖直分量等

于Q 环的重力,当P 环向左移动一段距离后,发现细绳和竖直方向

夹角a 变小,所以在细绳拉力的竖直分量不变的情况下,拉力T 应变小.由以上分析可知应选

B.

例4 如图1—5所示,质量为M 的劈块,

其左右劈面的倾角分别为θ1=30°、θ2=45°,

质量分别为m 1=3kg 和m 2=2.0kg 的两物块,

同时分别从左右劈面的顶端从静止开始下滑,

劈块始终与水平面保持相对静止,各相互接触 面之间的动摩擦因数均为μ=0.20,求两物块下

滑过程中(m 1和m 2均未达到底端)劈块受到地面的摩擦力。(g=10m/s 2)

解析 选M 、m 1和m 2构成的整体为研究对象,把在相同时间内,M 保持静止、m 1和m 2分别以不同的加速度下滑三个过程视为一个整体过程来研究。根据各种性质的力产生的条件,在水平方向,整体除受到地面的静摩擦力外,不可能再受到其他力;如果受到静摩擦力,那么此力便是整体在水平方向受到的合外力。

根据系统牛顿第二定律,取水平向左的方向为正方向,则有 ( ) F 合x=Ma ′+m 1a 1x -m 2a 2x

其中a ′、a 1x 和a 2x 分别为M 、m 1和m 2在水平方向的加速度的大小,而a ′=0, a 1x =g(sin30°-μcos30°)·cos30°

a 2x = g(sin45°-μcos45°)·cos45°

F 合=m 1g(sin30°-μcos30°)·cos30°-m 2g(sin45°-μcos45°)·cos45° ∴2

2)223.022(100.223)232.021

(103?-??-??-?? =-2.3N

负号表示整体在水平方向受到的合外力的方向与选定的正方向相反.所以劈块受到地面的摩擦力的大小为2.3N ,方向水平向右.

例5 如图1—6所示,质量为M 的平板小车放在倾角为θ的光滑斜面上(斜面固定),一质量为m 的人在车上沿平板向下运动时,车恰好静止,求人的加速度.

解析 以人、车整体为研究对象,根据系统牛顿运动定律求解。如图1—6—甲,由系统牛顿第二定律得:

(M+m)gsin θ=ma

解得人的加速度为a=θsin )(g m

m M + 例6 如图1—7所示,质量M=10kg 的木块

ABC 静置 于粗糙的水平地面上,滑动摩擦因数

μ=0.02,在木块的倾角θ为30°的斜面上,有

一质量m=1.0kg 的物块静止开始沿斜面下滑,

当滑行路程s=1.4m 时,其速度v=1.4m/s ,在

这个过程中木块没有动,求地面对木块的摩擦

力的大小和方向.(重力加速度取g=10/s 2)

解析 物块m 由静止开始沿木块的斜面下滑,受重力、弹力、摩擦力,在这三个恒力的作用下做匀加速直线运动,由运动学公式可以求出下滑的加速度,物块m 是处于不平衡状态,说明木块M 一定受到地面给它的摩察力,其大小、方向可根据力的平衡条件求解。此题也可以将物块m 、木块M 视为一个整体,根据系统的牛顿第二定律求解。

由运动学公式得物块m 沿斜面下滑的加速度:

图1—8乙 ./7.02222202s m s

v s v v a t t ==-= 以m 和M 为研究对象,受力如图1—7—甲所示。由系统的牛顿第二定律可解得地面对木块M 的摩擦力为f=macos θ=0.61N ,方向水平向左.

例7 有一轻质木板AB 长为L ,A 端用铰链固定在竖直墙上,另一端用水平轻绳CB 拉住。板上依次放着A 、B 、C 三个圆柱体,半径均为r ,重均为G ,木板与墙的夹角为θ,如图1—8所示,不计一切摩擦,求BC 绳上的张力。

解析 以木板为研究对象,木板处于力矩平衡状态,若分别以圆柱体A 、B 、C 为研究对象,求A 、B 、C 对木板的压力,非常麻烦,且容易出错。若将A 、B 、C 整体作为研究对象,则会使问题简单化。

以A 、B 、C 整体为研究对象,整体受

到重力3G 、木板的支持力F 和墙对整体的

支持力F N ,其中重力的方向竖直向下,如

图1—8—甲所示。合重力经过圆柱B 的轴

心,墙的支持力F N 垂直于墙面,并经过圆

柱C 的轴心,木板给的支持力F 垂直于木

板。由于整体处于平衡状态,此三力不平

行必共点,即木板给的支持力F 必然过合

重力墙的支持力F N 的交点.

根据共点力平衡的条件:∑F=0,可得:F=3G/sin θ.

由几何关系可求出F 的力臂 L=2rsin 2θ+r/sin θ+r ·cot θ

以木板为研究对象,受力如图1—8—乙所示,选A 点

为转轴,根据力矩平衡条件∑M=0,有:

F ·L=T ·Lcos θ 即θθ

θθθcos sin )cot sin /1sin 2(32??=++L T Gr 解得绳CB 的能力:)cos sin cos 1tan 2(32θ

θθθ?++=L Gr T 例8 质量为1.0kg 的小球从高20m 处自由下落到软垫上,反弹后上升的最大高度为5.0m ,小球与软垫接触的时间为1.0s ,在接触时间内小球受合力的冲量大小为(空气阻力不

图1—9 计,取g=10m/s 2)

( )

A .10N ·s

B .20N ·s

C .30N ·s

D .40N ·s

解析 小球从静止释放后,经下落、接触软垫、

反弹上升三个过程后到达最高点。动量没有变化,初、

末动量均为零,如图1—9所示。这时不要分开过程

求解,而是要把小球运动的三个过程作为一个整体来

求解。

设小球与软垫接触时间内小球受到合力的冲量大

小为I ,下落高度为H 1,下落时间为t 1,接触反弹上

升的高度为H 2,上升的时间为t 2,则以竖直向上为正方向,根据动量定理得: s

N gH gH I g H t g H t mgt I t mg ?=+====-+-3022(220

)(212

21

121故而

答案C

例9 总质量为M 的列车以匀速率v 0在平直轨道上行驶,各车厢受的阻力都是车重的k 倍,而与车速无关.某时刻列车后部质量为m 的车厢脱钩,而机车的牵引力不变,则脱钩的车厢刚停下的瞬间,前面列车的速度是多少?

解析 此题求脱钩的车厢刚停下的瞬间,前面列车的速度,就机车来说,在车厢脱钩后,开始做匀加速直线运动,而脱钩后的车厢做匀减速运动,由此可见,求机车的速度可用匀变速直线运动公式和牛顿第二定律求解.

现在若把整个列车当作一个整体,整个列车在脱钩前后所受合外力都为零,所以整个列车动量守恒,因而可用动量守恒定律求解.

根据动量守恒定律,得:

Mv 0=(M -m)V V=Mv 0/(M -m)

即脱钩的车厢刚停下的瞬间,前面列车的速度为Mv 0/(M -m).

【说明】显然此题用整体法以列车整体为研究对象,应用动量守恒定律求解比用运动学公式和牛顿第二定律求简单、快速.

例10 总质量为M 的列车沿水平直轨道匀速前进,其末节车厢质量为m ,中途脱钩,司机发觉时,机车已走了距离L ,于是立即关闭油门,撤去牵引力,设运动中阻力与质量成正比,机车的牵引力是恒定的,求,当列车两部分 都静止时,它们的距离是多少?

解析 本题若分别以机车和末节车厢为研究对象用运动学、牛顿第二定律求解,比较复杂,若以整体为研究对象,研究整个过程,则比较简单。

假设末节车厢刚脱钩时,机车就撤去牵引力,则机车与末节车厢同时减速,因为阻力与质量成正比,减速过程中它们的加速度相同,所以同时停止,它们之间无位移差。事实是机车多走了距离L 才关闭油门,相应的牵引力对机车多做了FL 的功,这就要求机车相对于末节车厢多走一段距离△S ,依靠摩擦力做功,将因牵引力多做功而增加的动能消耗掉,使机车与末节车厢最后达到相同的静止状态。所以有:

FL=f ·△S

其中F=μMg, f=μ(M -m)g

代入上式得两部分都静止时,它们之间的距离:△S=ML/(M -m)

例11 如图1—10所示,细绳绕过两个定滑轮A 和B ,在两端各挂 个重为P 的物体,现在A 、B 的中点C 处挂一个重为Q 的小球,Q<2P ,求小球可能下降的最大距离h.已知AB 的长为2L ,不讲滑轮和绳之间的摩擦力及绳的质量.

解析 选小球Q 和两重物P 构成的整体为研究对象,该整体的速率从零开始逐渐增为最大,紧接着从最大又逐渐减小为零(此时小球下降的距离最大为h ),如图1—10—甲。在整过程中,只有重力做功,机械能守恒。

因重为Q 的小球可能下降的最大距离为h ,所以重为P 的两物体分别上升的最大距离均为.22L L h -+

考虑到整体初、末位置的速率均为零,故根据机械能守恒定律知,重为Q 的小球重力势能的减少量等于重为P 的两个物体重力势能的增加量,即

)(222L L h P Qh --= 从而解得22224)

8(2P Q Q Q P PL h ---=

例12 如图1—11所示,三个带电小

球质量相等,均静止在光滑的水平面上,若

只释放A 球,它有加速度a A =1m/s 2,方向向

右;若只释放B 球,它有加速度a B =3m/s 2,方

向向左;若只释放C 球,求C 的加速度a C . 解析 只释放一个球与同时释放三个球时,每球所受的库仑力相同.而若同时释放三个球,则三球组成的系统所受合外力为0,由此根据系统牛顿运动定律求解.

把A 、B 、C 三个小球看成一个整体,根据系统牛顿运动定律知,系统沿水平方向所受合外力等于系统内各物体沿水平方向产生加速度所需力的代数和,由此可得:

ma A +ma B +ma C =0

规定向右为正方向,可解得C 球的加速度:

a C =-(a A +a B )=-(1-3)=2m/s

方向水平向右:

例13 如图1—12所示,内有a 、b 两个

光滑活塞的圆柱形金属容器,其底面固定在水

平地板上,活塞将容器分为A 、B 两部分,两

部分中均盛有温度相同的同种理想气体,平

衡时,A 、B 气体柱的高度分别为h A =10cm,

h B =20cm , 两活塞的重力均忽略不计,活塞

的横截面积S=1.0×10-3m 2. 现用竖直向上的

力F 拉活塞a, 使其缓慢地向上移动△h=3.0cm ,时,活塞

a 、

b 均恰好处于静止状态,环境温度保护不变,求: (1)活塞a 、b 均处于静止平衡时拉力F 多大?

(2)活塞a 向上移动 3.0cm 的过程中,活塞b 移动了多少?(外界大气压强为)p 0=1.0×105Pa)

解析 针对题设特点,A 、B 为同温度、同种理想气体,可选A 、B 两部分气体构成的整体为研究对象,并把两部分气体在一同时间内分别做等温变化的过程视为同一整体过程来研究。

(1)根据波意耳定律,p 1V 1=p 2V 2得:p 0(10+20)S=p ′(10+20+3.0)S ′

从而解得整体末态的压强为p ′=11

10p 0 再以活塞a 为研究对象,其受力分析如图1—12甲所示,因活塞a 处于平衡状态,故有F+p ′S=p 0S

从而解得拉力

F=(p 0-p ′)S=(p 0-1110p 0)S=111p 0S=11

1×1.0×105×1.0×10-3=9.1N (2)因初态A 、B 两气体的压强相同,温度相同,

分子密度相同,末态两气体的压强相同,温度相同,分

子密度相同,故部分气体体积变化跟整体气体体积变

化之比,必然跟原来它们的体积成正比,即

B

A B B h h h h h +=?? 所以活塞b 移动的距离cm h h h h h B A B B 0.20.320

1020=?+=??+=? 例14 一个质量可不计的活塞将一定量

的理想气体封闭在上端开口的直立圆筒形气缸

内,活塞上堆放着铁砂,如图1—13所示,

最初活塞搁置在气缸内壁的固定卡环上,气

体柱的高度为H 0,压强等于大气压强p 0。现

对气体缓慢加热,当气体温度升高了△T=60K 时, 活塞(及铁砂)开始离开卡环而上升。继续加热直到气柱高度为H 1=1.5H 0.此后,在维持温度不变的条件下逐渐取走铁砂,直到铁砂全部取走时,气柱高度变为H 2=1.8H 0,求此时气体的

温度。(不计活塞与气缸之间的摩擦)

解析 气缸内气体的状态变化可分为三个过程:等容变化→等压变化→等温变化;因为气体的初态压强等于大气压p 0,最后铁砂全部取走后气体的压强也等于大气压p 0,所以从整状态变化来看可相当于一个等压变化,故将这三个过程当作一个研究过程。 根据盖·吕萨克定律:2

210T S H T S H = ① 再隔离气体的状态变化过程,从活塞开始离开卡环到把温度升到H 1时,气体做等压变化,有:2

110T S H T T S H =?+ ② 解①、②两式代入为数据可得:T 2=540K

例15 一根对称的“∧”形玻璃管置于

竖直平面内,管所有空间有竖直向上的匀强电

场,带正电的小球在管内从A 点由静止开始运

动,且与管壁的动摩擦因数为μ,小球在B 端 与管作用时无能量损失,管与水平面间夹角为θ,AB 长L ,如图1—14所示,求从A 开始,小球运动的总路程是多少?(设小球受的电场力大于重力)

解析 小球小球从A 端开始运动后共受四个力作用,电场力为qE 、重力mg 、管壁 支持力N 、摩擦力f ,由于在起始点A 小球处于不平衡状态,因此在斜管上任何位置都是不平衡的,小球将做在“∧”管内做往复运动,最后停在B 处。若以整个运动过程为研究对象,将使问题简化。

以小球为研究对象,受力如图1—14甲

所示,由于电场力和重力做功与路径无关,

而摩擦力做功与路径有关,设小球运动的

总路程为s ,由动能定理得:

qELsin θ-mgLsin θ-fs=0 ① 又因为f=μN ②

N=(qE -mg)cos θ 所以由以上三式联立可解得小球运动的总路程:μθ

tan L s = ③

例16 两根相距d=0.20m 的平行金属长

导轨固定在同一水平面内,并处于竖直方向的

匀强磁场中,磁场的磁感应强度B=0.2T ,导轨

上面横放着两条金属细杆,构成矩形回路,每 条金属细杆的电阻为r=0.25Ω,回路中其余部

分的电阻可不计。已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s ,如图1—15所示。不计导轨上的摩擦。

(1)求作用于每条金属细杆的拉力的大小;

(2)求两金属细杆在间距增加0.40m 的滑动过程中共产生的热量。

解析 本题是电磁感应问题,以两条细杆组成的回路整体为研究对象,从力的角度看,细杆匀速移动,拉力跟安培力大小相等。从能量的角度看,外力做功全部转化为电能,电又全部转化为内能。根据导线切割磁感线产生感应电动势公式得:ε总=2BLv 从而回路电流r

Blv I 22= 由于匀速运动,细杆拉力F=F 安=N r

v l B BIl 222102.3-?== 根据能量守恒有:J Fs Fvt Pt Q 21028.12-?====

即共产生的热量为1.28-10-

2J.

例17 两金属杆ab 和cd 长均为l ,

电阻均为R ,质量分别为M 和m, M>m.

用两根质量和电阻均可忽略的不可伸长的

柔软导线将它们连成闭合回路,并悬挂在

水平、光滑、不导电的圆棒两侧.两金属杆

都处在水平位置,如图1—16所示.整个装置处在一与回路平面相垂直的匀强磁场中,磁感应强度为B 。若金属杆ab 正好匀速向下运动,求运动的速度.

解析 本题属电磁感应的平衡问题,确定绳上的拉力,可选两杆整体为研究对,确定感应电流可选整个回路为研究对象,确定安培力可选一根杆为研究对象。设匀强磁场垂直回路平面向外,绳对杆的拉力为T ,以两杆为研究对象,受力如1—16甲所示。因两杆匀速移

动,由整体平衡条件得:

4T=(M+m)g

对整个回路由欧姆定律和法拉第电磁感应 定律得:R

BlV I 22= ② 对ab 杆,由于杆做匀速运动,受力平衡:

02=-+Mg T BIl ③ 联立①②③三式解得:222)(l

B gR m M v -=

图1—17 图1—18

针对训练

1.质量为m 的小猫,静止于很长的质量为M 的吊杆上,如图1—17所示。在吊杆上端悬线

断开的同时,小猫往上爬,若猫的高度不变,求吊杆的加速度。(设吊杆下端离地面足够高)

2.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中,若把在空中下落的过程称为过程I ,

进入泥潭直到停止的过程称为过程II ,则 ( )

A .过程I 中钢珠动量的改变量等于它重力的冲量

B .过程II 中阻力的冲量的大小等于全过程中重力冲量的大小

C .过程II 中钢珠克服阻力所做的功等于过程I 与过程II 中钢珠所减少的重力势能之和

D .过程II 中损失的机械能等于过程I 中钢珠所增加的动能

3.质量为m 的运动员站在质量为m/2的均匀长板AB 的中点,板位于水平面上,可绕通过

B 点的水平轴转动,板的A 端系有轻绳,轻绳的另一端绕过两个定滑轮后,握在运动员手中。当运动员用力拉绳时,滑轮两侧的绳子都保持在竖直方向,如图1—18所示。要使板的A 端离开地面,运动员作用于绳子的最小拉力是 。

4.如图1—19,一质量为M 的长木板静止在光滑水平桌面上。一质

量为m 的小滑块以水平速度0v 从长木板的一端开始在木板上滑

动,直到离开木板。滑块刚离开木板时的速度为3/0v 。若把该木

板固定在水平桌面上,其他条件相同,求滑决离开木板时的速度为v 。

5.如图1—20所示为一个横截面为半圆,半径为R 的光滑圆柱,一根不可伸长的细绳两端

分别系着小球A 、B ,且B A m m 2=,由图示位置从静止开始释放A 球,当小球B 达到半圆的顶点时,求线的张力对小球A 所做的功。

6.如图1—21所示,AB 和CD 为两个斜面,其上部足够长,下部分别与一光滑圆弧面相切,

EH 为整个轨道的对称轴,圆弧所对圆心角为120°,半径为2m ,某物体在离弧底H 高h=4m 处以V 0=6m/s 沿斜面运动,物体与斜面的摩擦系数04.0=μ,求物体在AB 与CD 两斜面上(圆弧除外)运动的总路程。(取g=10m/s 2)

7.如图1—22所示,水平转盘绕竖直轴OO ′转动,两木块质量分别为M 与m ,到轴线的距

离分别是L 1和L 2,它们与转盘间的最大静摩擦力为其重力的μ倍,当两木块用水平细绳连接在一起随圆盘一起转动并不发生滑动时,转盘最大角速度可能是多少?

8.如图2—23所示,一质量为M ,长为l 的长方形木板B ,放在光滑的水平地面上,在其右

端放一质量为m 的小木块,且m

9.如图1—24所示,A 、B 是体积相同的气缸,B 内有一导热的、

可在气缸内无摩擦滑动的、体积不计的活塞C 、D 为不导热的

阀门。起初,阀门关闭,A 内装有压强P 1=2.0×105Pa ,温度

T 1=300K 的氮气。B 内装有压强P 2=1.0×105Pa ,温度T 2=600K

的氧气。阀门打开后,活塞C 向右移动,最后达到平衡。以V 1 和V 2分别表示平衡后氮气和氧气的体积,则V 1 : V 2= 。(假定氧气和氮气均为理想气体,并与外界无热交换,连接气体的管道体积可忽略)

10.用销钉固定的活塞把水平放置的容器分隔成A 、B 两部分,其体

积之比V A : V B =2 : 1,如图1—25所示。起初A 中有温度为127℃,

压强为1.8×105Pa 的空气,B 中有温度27℃,压强为1.2×105Pa 的

空气。拔出销钉,使活塞可以无摩擦地移动(不漏气)。由于容器 缓慢导热,最后气体都变成室温27℃,活塞也停住,求最后A 中气体的压强。

11.如图1—26所示,A 、B 、C 三个容器内装有同种气体,

已知V A =V B =2L ,V C =1L ,T A =T B =T C =300K ,阀门D 关

闭时p A =3atm ,p B =p C =1atm 。若将D 打开,A 中气体向

B 、

C 迁移(迁移过程中温度不变),当容器A 中气体压

强降为atm P a 2='时,关闭D ;然后分别给B 、C 加热,

使B 中气体温度维持K T b 400=',C 中气体温度维持K T c 600=',求此时B 、C 两容器内气体的压强(连通三容器的细管容积不计)。

12.如图1—27所示,两个截面相同的圆柱形容器,右边容器高为H ,上端封闭,左边容器

上端是一个可以在容器内无摩擦滑动的活塞。两容

器由装有阀门的极细管道相连,容器、活塞和细

管都是绝热的。开始时,阀门关闭,左边容器中

装有热力学温度为T 0的单原子理想气体,平衡时

活塞到容器底的距离为H ,右边容器内为真空。现 将阀门缓慢打开,活塞便缓慢下降,直至系统达到平衡,求此时左边容器中活塞的高度和缸内气体的温度。[提示:一摩尔单原子理想气体的内能为(3/2)RT ,其中R 为摩尔气体常量,T 为气体的热力学温度]

13.如图1—28所示,静止在光滑水平面上已经充电的平行板电容器

的极板距离为d ,在板上开个小孔,电容器固定在一绝缘底座上,

总质量为M ,有一个质量为m 的带正电的小铅丸对准小孔水平向

左运动(重力不计),铅丸进入电容器后,距左极板的最小距离为

d/2,求此时电容器已移动的距离。

14.一个质量为m ,带有电量-q 的小物体,

可在水平轨道OX 上运动, O 端有一与轨

道垂直的固定墙壁,轨道处于匀强电场中,

场强大小为E ,方向沿OX 正方向,如图

1—29所示,小物体以初速0v 从0x

点沿Ox 运动时,受到大小不变的摩擦力f 的作用,且qE f <;设小物体与墙碰撞时不

损失机械能,且电量保持不变,求它在停止运动前所通过的总路程s 。

15.如图1—30所示,一条长为L 的细线,上端固定,下端拴一质量为m 的带电小球。将它

置于一匀强电场中,电场强度大小为E ,方向是水平的,已知当细线离开竖直位置的偏角为α时,小球处于平衡。求:

(1)小球带何种电荷?小球所带的电量;

(2)如果使细线的偏角由α增大到φ,然后将小球由静止开始释放,则φ应为多大,才

能使在细线到达竖直位置时小球的速度刚好为零?

16.把6只相同的电灯泡分别接成如图1—31所示的甲乙两种电路,两电路均加上U 等于

12V 的恒定电压,分别调节变阻器R 1和R 2,使6只灯泡均能正常工作,这时甲乙两种电路消耗的总功率分别为P 1和P 2,试找出两者之间的关系。

17.如图1—32所示,在竖直方向的x 、y 坐标系中,在x 轴上方

有一个有界的水平向右的匀强电场,场强为E ,x 轴的下方有

一个向里的匀强磁场,场强为B 。现从A 自由释放一个带电量

为-q 、质量为m 的小球,小球从B 点进入电场,从C 点进入

磁场,从D 点开始做水平方向的匀速直线运动。已知A 、B 、C

点的坐标分别为(0,y 1)、(0,y 2)、(-x ,0),求D 点的纵坐标y 3。

答案:

1.g M

m )1(+ 2.ABC 3.mg 2

1 4.M

M m t +430

5.-0.19m A gR

6.290m 7.12)(mL ML g

m M ++μ 8.mgl W m M ml

s μ=+=2

9.4:1 10.1.3×105Pa 11.2.5atm 12.05752T T H h == 13.M

md 4 14.f

mv qEx 22200+ 15.(1)正电 αtan E

mg c =

(2)αφ2= 16.P 1=2P 2 17.)21(12223x mg qE y q B g m y ---=

2016年大学物理竞赛辅导安排 .doc

2016年大学物理竞赛辅导安排 该辅导以选修课《大学物理竞赛习题课》的形式进行,共16学时,只允许参加第三十三届全国部分地区大学生物理竞赛(2016年12月11日在清华/北大举行)的同学选修,课程主要对大学物理的所有知识点进行串讲,同时讲解近几年的大学物理竞赛题。 课程具体内容安排如下: 《大学物理竞赛习题课》的考试内容为课堂讲授内容,题型为选择题和填空题,只有参加考试(12月2日)的学生才有该课程的成绩。 大学物理课程组 2016年10月24日 辽宁机电职业技术学院

2016年单独招生考试语文考试大纲 一、命题指导思想 根据高职院校对新生文化素质的要求,语文科目考试注重考查考生对高中语文基础知识、基本技能的掌握程度,以及考生进入高职院校继续学习所必需的语文能力,以便更好地与职业教育对接。 二、考核目标与要求 本科目考查考生识记、理解、分析综合、鉴赏评价、表达应用和探究六种能力,这六种能力表现为六个层级。 A.识记:指识别和记忆,是最基本的能力层级。 B.理解:指领会并能作简单的解释,是在识记基础上高一级的能力层级。 C.分析综合:指分解剖析和归纳整理,是在识记和理解的基础上进一步提高了的能力层级。 D.鉴赏评价:指对阅读材料的鉴别、赏析和评说,是以识记、理解和分析综合为基础,在阅读方面发展了的能力层级。 E.表达应用:指对语文知识和能力的运用,是以识记、理解和分析综合为基础,在表达方面发展了的能力层级。 F.探究:指对某些问题进行探讨,有见解、有发现、有创新,是在识记、理解、分析综合的基础上发展了的能力层级。 对A、B、C、D、E、F六个能力层级均可有难易不同的考查。 三、考试内容、要求及分值 按照高中课程标准规定的必修课程中阅读与鉴赏、表达与交流两个目标的“语文1”至“语文5”五个模块,选修课程中诗歌与散文、小说与戏剧、新闻与传记、语言文字应用、文化论著研读五个系列,组成必考内容和选考内容。必考和选考均可有难易不同的考查。 必考内容 必考内容及相应的能力层级如下: (一)现代文阅读 阅读一般论述类文章。 1.理解B (1)理解文中重要概念的含义 (2)理解文中重要句子的含意 2.分析综合C (1)筛选并整合文中的信息 (2)分析文章结构,把握文章思路 (3)归纳内容要点,概括中心意思 (4)分析概括作者在文中的观点态度 (二)古代诗文阅读 阅读浅易的古代诗文。 1.识记A

物理竞赛热学专题40题刷题练习(带答案详解)

物理竞赛热学专题40题刷题练习(带答案详解) 1.潜水艇的贮气筒与水箱相连,当贮气筒中的空气压入水箱后,水箱便排出水,使潜水艇浮起。某潜水艇贮气简的容积是2m 3,其上的气压表显示内部贮有压强为2×107Pa 的压缩空气,在一次潜到海底作业后的上浮操作中利用简内的压缩空气将水箱中体积为10m 3水排出了潜水艇的水箱,此时气压表显示筒内剩余空气的压强是9.5×106pa ,设在排水过程中压缩空气的温度不变,试估算此潜水艇所在海底位置的深度。 设想让压强p 1=2× 107Pa 、体积V 1=2m 3的压缩空气都变成压强p 2=9.5×106Pa 压缩气体,其体积为V 2,根据玻-马定律则有 p 1V 1=p 2V 2 排水过程中排出压强p 2=9.5× 106Pa 的压缩空气的体积 221V V V '=-, 设潜水艇所在处水的压强为p 3,则压强p 2=9.5×106Pa 、体积为2V '的压缩空气,变成压强为p 3的空气的体积V 3=10m 3。 根据玻马定律则有 2233p V p V '= 联立可解得 p 3=2.1×106Pa 设潜水艇所在海底位置的深度为h ,因 p 3=p 0+ρ gh 解得 h =200m 2.在我国北方的冬天,即便气温很低,一些较深的河 流、湖泊、池塘里的水一般也不会冻结到底,鱼类还可以在水面结冰的情况下安全过冬,试解释水不会冻结到底的原因? 【详解】 由于水的特殊内部结构,从4C ?到0C ?,体积随温度的降低而增大,达到0C ?后开始结冰,冰的密度比水的密度小。 入秋冬季节,气温开始下降,河流、湖泊、池塘里的水上层的先变冷,密度变大而沉到水底,形成对流,到达4C ?时气温如果再降低,上层水反而膨胀,密度变小,对流停止,“漂浮”在水面上,形成一个“盖子”,而下面的水主要靠热传导散失内能,但由于水

高中奥林匹克物理竞赛解题方法之七对称法

例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A , 抛出点离水平地面的高度为h ,距离墙壁的水平距离为s , 小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示. 求小球抛出时的初速度. 解析:因小球与墙壁发生弹性碰撞, 故与墙壁碰撞前后入射速度与反射速度具有对称性, 碰撞后小球的运 动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理, 效果上相当于小球从A ′点水平抛出所做的运动. 根据平抛运动的规律:?? ? ??==2 021gt y t v x 因为抛出点到落地点的距离为3s ,抛出点的高度为h 代入后可解得:h g s y g x v 2320 == 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距为d , 一个小球以初速度0v 从两墙正中间的O 点斜向上抛出, 与A 和B 各发生一次碰撞后正好落回抛出点O , 求小球的抛射角θ. 解析:小球的运动是斜上抛和斜下抛等三段运动组成, 若按顺序求解则相当复杂,如果视墙为一平面镜, 将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解. 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有 ? ??==?? ???-==0221sin cos 200y d x gt t v y t v x 落地时θθ 代入可解得2 202arcsin 2122sin v dg v dg == θθ 所以抛射角 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬 想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于 三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可. 由题意作图7—3, 设顶点到中心的距离为s ,则由已知条件得 a s 3 3 = 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为 v v v 2330cos = =' 由此可知三角形收缩到中心的时间为 v a v s t 32='= 此题也可以用递推法求解,读者可自己试解. 例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m ,内外半径几乎同为R. 槽内A 、B 两处分别放有一个质量也为m 的小球,AB 间的距离为槽的直径. 不计一切摩擦. 现将系统置于光滑水平面上,开始时槽静止,两小球具有垂直于AB 方向的速度v ,试求两小球第一次相距R 时,槽中心的速度0v . 解析:在水平面参考系中建立水平方向的x 轴和y 轴. 由系统的对称性可知中心或者说槽整体将仅在x 轴方向上 运动。设槽中心沿x 轴正方向运动的速度变为0v ,两小球相对槽心做角速度大小为ω的圆周运动,A 球处于

高中物理竞赛训练题:运动学部分

高中物理竞赛训练题1 运动学部分 一.知识点 二.习题训练 1.轰炸机在h高处以v0沿水平方向飞行,水平距离为L处有一目标。(1)飞机投弹要击中目标,L应为多大?(2)在目标左侧有一高射炮,以初速v1发射炮弹。若炮离目标距离D,为要击中炸弹,v1的最小值为多少?(投弹和开炮是同一时间)。 2.灯挂在离地板高h、天花板下H-h处。灯泡爆破,所有碎片以同样大小的初速度v0朝各个方向飞去,求碎片落到地面上的半径R。(可认为碎片与天花板的碰撞是弹性的,与地面是完全非弹性的。) 若H =5m,v0=10m/s,g = 10m/s2,求h为多少时,R有最大值并求出该最大值。 3.一质量为m的小球自离斜面上A处高为h的地方自由落下。若斜面光滑,小 球在斜面上跳动时依次与斜面的碰撞都是完全弹性的,欲使小球恰能掉进斜面上距A点为s的B处小孔中,则球下落高度h应满足的条件是什么?(斜面倾角θ为已知) 4.速度v0与水平方向成角α抛出石块,石块沿某一轨道飞行。如果蚊子以大小恒定的速率v0沿同一轨道飞行。问蚊子飞到最大高度一半处具有多大加速度?空气阻力不计。 5.快艇系在湖面很大的湖的岸边(湖岸线可以认为是直线),突然快艇被风吹脱,风沿着快艇以恒定的速度v0=2.5km/h沿与湖岸成α=150的角飘去。你若沿湖岸以速度v1=4km/h行走或在水中以速度v2=2km/h游去(1人能否赶上快艇?(2)要人能赶上快艇,快艇速度最多为多大?(两种解法)

6.如图所示,合页构件由两菱形组成,边长分别为2L 和L ,若顶点A以匀加速度a水平向右运动,当BC 垂直于OC 时,A 点速度恰为v ,求此时节点B和节点C 的加速度各为多大 ? 7.一根长为l 的薄板靠在竖直的墙上。某时刻受一扰动而倒下,试确定一平面曲线 f (x ,y ) = 0,要求该曲线每时每刻与板相切。(地面水平)。 10.一只船以4m/s 的速度船头向正东行驶,海水以3m/s 的速度向正南流,雨点以10m/s 的收尾速度竖直下落。求船中人看到雨点的速度 11。一滑块p 放在粗糙的水平面上,伸直的水平绳与轨道的夹角为θ,手拉绳的另一端以均匀速度v 0沿轨道运动,求这时p 的速度和加速度。 12. 如下图,v 1、v 2、α已知,求交点的v 0. 13.两个半径为R 的圆环,一个静止,另一个以速度v 0自左向右穿过。求如图的θ角位置(两圆交点的切线恰好过对方圆心)时,交点A 的速度和加速度。

高中物理竞赛专题训练

高中物理竞赛专题训练 1、一圆柱体的坚固容器,高为h,上底有一可以打开和关闭的密封阀门,现把此容器沉入深为H 的湖底,并打开阀门,让水充满容器,然后关闭阀门。设大气压强为P0, 湖水的密度为,则容器内部底面受到的向下的压强为_________,若将 此容器从湖底移动湖面上,这时容器内部底面上受到的向下的压强为 _________。(P 0+gH、P0+gH) 2、氢原子处于基态时,能量E=_________;当氢原子处于n=5的能量状态时,氢原子的能量为__________;当氢原子从n=5状态跃迁到n=1的基态时,辐射光子的能量是_________,是_________光线(红外线、可见或紫外线)。(—13.6 ev、—0.54ev 、13.06ev、紫外线) 3、质量为m的物体A置于质量为M、倾角为的斜面B上,A、B之间光滑接触,B的底面与水平地面也是光滑接触。设开始时A与B均为静止,而后A以某初速度沿B的斜面向上运动,如图所示,试问A在没有到达斜面顶部前是否会离开斜面?为什么?讨论中不必考虑B向前倾倒的可能性。(不会离开斜面,因为A与B的相互作用力为(mMcos g) / [M+m(sin)2],始终为正值) 4、一电荷Q1均匀分布在一半球面上,无数个点电荷、电量均为Q2位于通过球心的轴线上,且在半球面的下部。第k个电荷与球心的距离为,而k=1,2,3,4……,设球心处的电势为零,周围空间均为自由空间。若Q1已知求Q2。(—Q1/2)

5、一根长玻璃管,上端封闭,下端竖直插入水银中,露出水银面的玻璃管长为76 cm。水银充满管子的一部分。玻璃管的上端封闭有0.001mol的空气,如图所示。外界大气压强为76cmHg。空气的定容摩尔热容量为C V =20.5J/mol k。当玻璃管与管内空气的温度均降低100C时,试问管内空气放出多少热量?(0.247焦耳) 6、如图所示,折射率n=1.5的全反射棱镜上方6cm处放置一物体AB,棱镜直角边长为6cm,棱镜右侧10cm处放置一焦距f1=10cm的凸透镜,透镜右侧15cm处再放置一焦距f2=10cm的凹透镜,求该光学系统成像的位置和像放大率。(在凹透镜的右侧10cm处、放大率为2) 7、在边长为a的正方形四个顶点上分别固定电量均为Q的四个点电荷,在对角线交点上放一个质量为m,电量为q(与Q同号)的自由点电荷。若将q沿着对角线移动一个小的距离,它是否会做周期性振动?若会,其周期是多少?(会做周期性振动,周期为) 8、一匀质细导线圆环,总电阻为R,半径为a,圆环内充满方向垂直于 环面的匀强磁场,磁场以速率K均匀的随时间增强,环上的A、D、C三点位置对称。电流计G

高中奥林匹克物理竞赛解题方法 10图像法

高中奥林匹克物理竞赛解题方法 十、图像法 方法简介 图像法是根据题意把抽象复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形象、简明的特点,来分析解决物理问题,由此达到化难为易,化繁为简的目的,图像法在处理某些运动问题,变力做功问题时是一种非常有效的方法。 赛题精讲 例1:一火车沿直线轨道从静止发出由A 地驶向B 地,并停止在B 地。AB 两地相距s ,火 车做加速运动时,其加速度最大为a 1,做减速运动时,其加速度的绝对值最大为a 2,由此可可以判断出该火车由A 到B 所需的最短时间为 。 解析:整个过程中火车先做匀加速运动,后做匀减速运动,加速度最大时,所用时间最短,分段运动可用图像法来解。 根据题意作v —t 图,如图11—1所示。 由图可得1 1t v a = vt t t v s t v a 21)(21212 2=+== 由①、②、③解得2 121)(2a a a a s t += 例2:两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度为v 0,若前车突然以恒定 的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车。已知前车在刹车过程中所行的距离为s ,若要保证两辆车在上述情况中不相碰,则两车在做匀速行驶时保持的距离至少为 ( ) A .s B .2s C .3s D .4s 解析:物体做直线运动时,其位移可用速度——时间图像 中的面积来表示,故可用图像法做。 作两物体运动的v —t 图像如图11—2所示,前车发 生的位移s 为三角形v 0Ot 的面积,由于前后两车的刹车 加速度相同,根据对称性,后车发生的位移为梯形的面积 S ′=3S ,两车的位移之差应为不相碰时,两车匀速行驶 时保持的最小车距2s. 所以应选B 。 ① ② ③ 图11—2

初三物理竞赛试卷--含答案

初三物理竞赛训练试卷 1.一辆汽车重1.0×104 N ,现要测量车的重心位置,让车的前轮压在水平地秤(一种弹簧 秤)上,测得压力为6×103 N ,汽车前后轮中心的距离是2 m .则汽车重心的位置到前轮中心的水平距离为 [ ] A .2 m B .1.8 m C .1.2 m D .0.8 m 2.如图所示是电路的某一部分,R 1=R 2>R 3,○ A 为理想电流表.若电流只从A 点流入此电路,且流过R 1的电流为0.2A ,则以下说法正确的是[ ] A .电流不可能从C 点流出,只能从 B 点流出. B .流过○ A 的电流为零. C .流过R 2的电流一定大于0.4A . D .R 2两端的电压不一定比R 3两端的电压大. 3. 如图所示A 灯与B 灯电阻相同当变阻器滑动片向下滑动时,对两灯明暗程度的变化判断正确的是 [ ] ( (A)A 、B 灯都变亮; (B)A 、B 灯都变暗; (C)A 灯变亮,B 灯变暗 (D)A 灯变暗,B 灯变亮。 4. 在盛沙的漏斗下边放一木板,让漏斗摆动起来,同时其中细沙匀速流出,经历一段时间后,观察木板上沙子的堆积情况,则沙堆的剖面应是下图中的[ ] 5如图所示,木块m 放在木板AB 上,在木板的A 端用一个竖直 向上的力F 使木板绕B 端逆时针缓慢转动(B 端不滑动)。在此 过程中,m 与AB 保持相对静止,则[ ] A .木块m 对木板AB 的压力增大 B .木块m 受到的静摩擦力逐渐减小 C .竖直向上的拉力F 逐渐减小 D .拉力F 的力矩逐渐减小 6 在如图所示电路中,闭合电键S ,当滑动变阻器的滑动触头P 向下滑动时,四个理想电表的示数都发生变化,电表的示数分别用I 、U 1、U 2和U 3表示,电表示数变化量的大小分别用ΔI 、ΔU 1、ΔU 2和ΔU 3表示.下列比值正确的个数是[ ] ①U 1/I 不变,ΔU 1/ΔI 不变. ②U 2/I 变大,ΔU 2/ΔI 变大. ③U 2/I 变大,ΔU 2/ΔI 不变. ④U 3/I 变大,ΔU 3/ΔI 不变. A.一个 B.二个 C.三个 D.四个 2R 3R B ? ? ?A 1R A C A B C D B A F θ m

物理竞赛专题训练(力学)

1. 如图所示,圆柱形容器中盛有水。现将一质量为0.8千克的正方体物块放入容器中,液面上升了1厘米。此时正方体物块有一半露出水面。已知容器的横截面积与正方体横截面积之比为5∶1,g 取10牛/千克,容器壁厚不计。此时物块对容器底的压强是__________帕。若再缓缓向容器中注入水,至少需要加水___________千克,才能使物块对容器底的压强为零。 2. 如图所示,是小明为防止家中停水而设计的贮水箱.当水箱中水深达到1.2m 时,浮子A 恰好堵住进水管向箱内放水,此时浮子A 有1/3体积露出水面(浮子A 只能沿图示位置的竖直方向移动)。若进水管口水的压强为1.2×105Pa ,管口横截面积为2.5㎝2,贮水箱底面积为0.8m 2,浮子A 重10N 。则:贮水箱能装__________千克的水。 浮子A 的体积为______________m 3. 3. 弹簧秤下挂一金属块,把金属块全部浸在水中时,弹簧秤示数为3.4牛顿,当 金属块的一半体积露出水面时,弹簧秤的示数变为 4.4牛顿,则:金属块的重力为____________牛。金属块的密度为________千克/米3(g=10N/kg ) 4. 图甲是一个足够高的圆柱形容器,内有一边长为10cm 、密度为0.8×103kg/m 3的正方体物块,物块底部中央连有一根长为20cm 的细线,细线的另一端系于容器底部中央(图甲中看不出,可参见图乙)。向容器内缓慢地倒入某种液体,在物块离开容器底后,物块的1/3浮出液面。则:当液面高度升至_________厘米时;细线中的拉力最大。细线的最大拉力是__________牛。(取g=10N/kg) 5. 如图所示,弹簧上端固定于天花板,下端连接一圆柱形重物。先用一竖直细线拉住重物,使弹簧处于原长,此时水平桌面上 烧杯中的水面正好与圆柱体底面接触。已知圆柱形重物的截面积为10cm 2 为 10cm ;烧杯横截面积20cm 2,弹簧每伸长1cm 的拉力为0.3N ,g =10N/kg 物密度为水的两倍,水的密度为103kg/m 3弹簧的伸长量为___________厘米。 6. 如图16-23所示,A 为正方体物块,边长为4cm ,砝码质量为280g ,此时物体A 刚好有2cm 露出液面。若把砝码质量减去40g ,则物体A 刚好全部浸入液体中,则物体A 的密度为____________克/厘米3(g 取10N/kg )。 7. 一个半球形漏斗紧贴桌面放置,现自位于漏斗最高处的孔向内注水,如图所示,当漏斗内的水面刚好达到孔的位置时,漏斗开始浮起,水开始从下面流出。若漏斗半径为R ,而水的密度为ρ,试求漏斗的质量为____________。 8. 将体积为V 的柱形匀质木柱放入水中,静止时有一部分露出水面,截去露出部分再放入水中,又有一部分露出水面,再截去露出部分……,如此下去,共截去了n 次,此时截下来的木柱体积是_________________,已知木柱密度ρ和水的密度ρ水。 甲

高中物理竞赛方法集锦

例11:如图13—11所示,用12根阻值均为r的相同的电阻丝构成正立方体框架。试求AG两点间的等效电阻。 解析:该电路是立体电路,我们可以将该立体电路“压扁”,使其变成平面电路,如图13—11—甲所示。 考虑到D、E、B三点等势,C、F、H三点等势,则电路图可等效为如图13—11—乙所示的电路图,所以AG间总电阻为

r r r r R 6 5363=++= 例12:如图13—12所示,倾角为θ的斜面上放一木 制圆制,其质量m=0.2kg ,半径为r ,长度L=0.1m ,圆柱 上顺着轴线OO ′绕有N=10匝的线圈,线圈平面与斜面 平行,斜面处于竖直向上的匀强磁场中,磁感应强度 B=0.5T ,当通入多大电流时,圆柱才不致往下滚动? 解析:要准确地表达各物理量之间的关系, 最好画出正视图,问题就比较容易求解了。如 图13—12—甲所示,磁场力F m 对线圈的力矩 为M B =NBIL ·2r ·sin θ,重力对D 点的力矩为: M G =mgsin θ,平衡时有:M B =M G 则可解得:A NBL mg I 96.12== 例13:空间由电阻丝组成的无穷网络如图13—13 所示,每段电阻丝的电阻均为r ,试求A 、B 间的等效 电阻R AB 。 解析:设想电流A 点流入,从B 点流出,由对称 性可知,网络中背面那一根无限长电阻丝中各点等电 势,故可撤去这根电阻丝,而把空间网络等效为图13—13—甲所示的电路。

(1)其中竖直线电阻r ′分别为两个r 串联和一个r 并联后的电阻值, 所以 r r r r r 3 232=?=' 横线每根电阻仍为r ,此时将立体网络变成平面网络。 (2)由于此网络具有左右对称性,所以以AB 为轴对折,此时网络变为如图13—13—乙所示的网络。 其中横线每根电阻为21r r = 竖线每根电阻为32r r r ='= '' AB 对应那根的电阻为r r 32 =' 此时由左右无限大变为右边无限 大。 (3)设第二个网络的结点为CD ,此后均有相同的网络,去掉AB 时电路为图13—13—丙所示。再设R CD =R n -1(不包含CD 所对应的竖线电阻) 则N B A R R =',网络如图13—13—丁所示。

初中物理竞赛-力学综合训练试题(2)

(密度、压强、浮力)补充训练(2) 一、选择题: 1.如图所示,同种材料制成的两个正方体金属块A 、B 叠放在水平地面上, 在A 的上表面施加竖直向下、大小为F 的压力.金属块A 对B 的压强为p 1, 金属块B 对地面的压强为p 2.已知:金属块A 、B 的边长之比L 1∶L 2=1∶2,F ∶G A = 3∶5,则p 1∶p 2 为( ) A .2∶3 B .6∶5 C .3∶2 D .4∶3 2.把木块放在水中时,露出部分为木块体积的1/2;将物体A 放在木块上,木块露出水面的体积为木块体积的1/3;拿掉物体A ,将物体B 放在木块上,木块露出水面的体积为木块体积的1/4.若物体A 体积是物体B 体积的2倍,则物体A 、B 的密度之比是( ) A. 2∶3 B. 3∶2 C.1∶3 D. 3∶1 3. 如图所示,向两个质量可以忽略不计且完全相同的塑料瓶中装入密度为ρA 和ρB 的液体后密闭,把它分别放在盛有密度为ρ甲、ρ乙两种液体的容器中,所受浮力分别为F 甲、F 乙,二者露出液面的高度相等,下列判断正确的是( ) A .由图可知:ρA >ρ甲>ρ乙 B .若ρA = ρB ,则ρ甲>ρ乙 C .若ρ甲=ρ乙,则ρA >ρB D .若F 甲=F 乙,则ρ甲>ρ乙 4. 用不同种材料制成的甲、乙两个实心正方体,2ρρ=乙甲,把它们分 别放在水平桌面上,甲乙对桌面的压强分别为1ρ、2ρ,如图2所示,若 把甲放在乙上面,则乙对桌面的压强是( ) A 3312214P P P + B 33122244P P P + C 22121 4P P P + D 22124P P + 5. 甲溢水杯盛满密度为ρ1的液体,乙溢水杯盛满密度为ρ2的液体。将密度为ρ的小球A 轻轻放入甲溢水杯,小球A 浸没在液体中,甲溢水杯溢出液体的质量是32g 。将小球B 轻轻放入乙溢水杯,小球B 漂浮,有6 1体积露出液面,乙溢水杯溢出液体的质量是40g 。已知小球A 与小球B 完全相同,ρ大于ρ1。则下列选项中正确的是( ) A .小球A 的质量为32g B .小球B 的质量为8g C .ρ1与ρ2之比为2:3 D .ρ1与ρ2之比为24:25 A B

高中物理竞赛专题辅导 物体平衡的种类

05 物体平衡的种类 概念规律: 1、平行力的合成与分解 物体所受的几个力的作用线彼此平行,且不作用于一点,即为平行力(系)。 在平行力的合成或分解的过程中,必须同时考虑到力的平动效果和转动效果,后者要求合力和分力相对任何一个转轴的力矩都相同。 两个同向平行力的合力其方向与两个分力方向相同,其大小等于分力大小之和。其作用线在两个分力作用点的连线上。合力作用点到分力作用点的距离与分力的大小成反比。例如:两个同向平行力F A和F B,其合力的大小F=F A+F B,合力作用点O满足AO·F A=BO·F B 的关系。 两个反向平行力的合力其方向与较大的分力方向相同,其大小等于分力大小之差。其作用线在两个分力作用点的连线的延长线上,且在较大的分力的外侧。合力作用点到分力作用点的距离与分力的大小成反比。例如:两个反向平行力F A和F B的合成其合力的大小F=F B-F A(假如F B>F A,则F和F B同向)其合力的作用点满足AO·F A=BO·F B的关系。 一个力分解成两个平行力,是平行力合成的逆过程。 2、重心和质心 重心是重力的作用点。质心是物体(或由多个物体组成的系统)质量分布的中心。物体的重心和质心是两个不同的概念,当物体远离地球而不受重力作用时,重心这个概念就失去意义,但质心却依然存在。对于地球上体积不太大的物体,由于重力与质量成正比,重心与质心的位置是重合的。但当物体的高度和地球半径比较不能忽略时,两者就不重合了,如高山的重心比质心要低一些。 质心位置的定义表达式是一个矢量表达式,可以写成三个分量表达式: 其意义可以这样理解:假定由多质点组成的物体被分成许多小块,每块都有相同的质量m,物体总质量等于块数(设为N块)乘以每块质量m,第一式可以改写成: 即等于各小块的位置X i之和除以块数N。因此,在假定每块质量相等时X C,就是所有X i的平均值。如果其中有一块(设第i块)的质量是其它小块质量的两倍,则在求和时,相应的X i应出现两次。这可以设想把此两倍的质量的小块分成相等的两块即可看出。因

上教版初中物理竞赛训练试题

上教版初中物理竞赛训 练试题 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

物理竞赛训练试题——运动学 班级________姓名________得分________ 一. 选择题:(3分×10=30分) 1.河中有一漂浮物,甲船在漂浮物上游100米处,乙船在漂浮物下游100米处,若两船同时以相同的速度去打捞,则( ) A.甲船先到 B.乙船先到 C.两船同时到达 D.无法判断 2.隧道长550米,一列火车车厢长50米,正以36千米/时的速度匀速行驶,车厢中某乘客行走的速度为1米/秒,当列车过隧道时,乘客经过隧道的时间至少为( ) 秒秒秒秒 3.蒸汽火车沿平直道行驶,风向自东向西,路边的观察者看到从火车烟囱中冒出的烟雾是竖直向上呈柱形的,由此可知,相对于空气火车的运动方向是 ( ) A.自东向西 B.自西向东 C.静止不动 D.无法确定 4.甲乙两船相距50千米同时起船,且保持船速不变,若两船同时在逆水中航行,甲船航行100千米,恰赶上乙船,若两船都在顺水中航行,则甲船赶上乙船需航行( ) 千米的路程千米的路程 C.大于50千米小于100千米路程 D.大于100千米的路程 5.坐在甲飞机中的某人,在窗口看到大地向飞机迎面冲来,同时看到乙飞机朝甲飞机反向离去,下列判断错误的是( ) A.甲飞机正向地面俯冲 B.乙飞机一定在作上升运动 C.乙飞机可能与甲飞机同向运动 D.乙飞机可能静止不动 6.一列长为S的队伍以速度u沿笔直的公路匀速前进.一个传令兵以较快的速度v从队末向队首传递文件,又立即以同样速度返回队末.如果不计递交文件的时间,那么这个传令兵往返一次所需的时间是( ) u v+u v /v2+u2 v /v2—u2 7.如图所示:甲乙两人同时从A点出发沿直线向B点走去.乙先到达B点,然后返回,在C点遇到甲后再次返回到B点后,又一次返回并在D点第二次遇到甲. 设整个过程甲速度始终为V,乙速度大小也恒定保持8V.则S 1:S 2 ( ) :7 :6 :8 :7 8.根据图中所示情景,做出如下判断: A.甲船可能向右运动,乙船可能向右运动 B.甲船可能向左运动,乙船可能向左运动 C.甲船可能静止,乙船可能静止 D.甲船可能向左运动,乙船可能向右运动. 以上说法中正确的个数是( ) A. 0个个个个 9.一辆汽车以40千米/时的速度从甲站开往乙站,当它出发时恰好一辆公共汽车从乙站开往甲站,以后每隔15分钟就有一辆公共汽车从乙站开往甲站,卡车在途中遇到6辆公共汽车,则甲乙两站之间的距离可能为( )

高中物理竞赛解题方法 八、作图法

八、作图法 方法简介 作图法是根据题意把抽象复杂的物理过程有针对性的表示成物理图像,将物理 问题转化成一个几何问题,通过几何知识求解,作图法的优点是直观形象,便于定性分析,也可定性计算,灵活应用作图法会给解题带来很大方便。 赛题精析 例1 如图8—1所示,细绳跨过定滑轮,系住一个 质量为m 的球,球靠在光滑竖直墙上,当拉动细绳使球 匀速上升时,球对墙的压力将( ) A .增大 B .先增大后减小 C .减小 D .先减小后增大 图8—1 解析 球在三个力的作用下处于平衡,如图8—1—甲所示.当球上升时,θ角 增大,可用动态的三角形定性分析,作出圆球的受力图(如图8—1—甲).从图可见,当球上升时,θ角增大,墙对球的支持力增大,从而球对墙的压力也增大. 故选A 正确. 图8—1—甲 图8—2 图8—2—甲 例2 用两根绳子系住一重物,如图8—2所示.绳OA 与天花板间夹角θ不变,

当用手拉住绳子OB ,使绳OB 由水平方向转向竖直方向的过程中,OB 绳所受的拉力将( ) A .始终减小 B .始终增大 C .先减小后增大 D .先增大后减小 解析 因物体所受重力的大小、方向始终不变,绳OA 拉力的方向始终不变,又 因为物体始终处于平衡状态,所受的力必然构成一个三角形,如图8—2—甲所示,由图可知OB 绳受的拉力是先减小后增大. 可知答案选C 例3 如图8—3所示,质量为m 的小球A 用细绳拴在天花板上, 悬点为O ,小球靠在光滑的大球上,处于静止状态.已知:大球的球心 O ′在悬点的正下方,其中绳长为l ,大球的半径为R ,悬点到大球最 高点的距离为h.求对小球的拉力T 和小球对大球的压力. 解析 力的三角形图和几何三角形有联系,若两个三角形相似, 则可以将力的三角形与几何三角形联系起来,通过边边对应成比例求解. 图8—3 以小球为研究对象,进行受力分析,如图8—3—甲所示,小球 受重力mg 、绳的拉力T 、大球的支持力F N ,其中重力mg 与拉力T 的 合力与支持力F N 平衡.观察图中的特点,可以看出力的矢量三角形 ABC 与几何三角形AOO ′相似,即: R h mg l T += R h mg R F N += 图8 —3—甲 所以绳的拉力:T= mg R h l + 小球对大球的压力mg R h R F F N N +==' 例4 如图8—4所示,质点自倾角为α的斜面上方定点O 沿

物理竞赛专题训练(功和能)

功和功率练习题 1.把30kg的木箱沿着高O.5m、长2m的光滑斜面由底部慢慢推到顶端,在这个过程中此人对木箱所做的功为J,斜面对木箱的支持力做的功为J。 2.一台拖拉机的输出功率是40kW,其速度值是10m/s,则牵引力的值为N。在10s 内它所做的功为J。 3.一个小球A从距地面1.2米高度下落,假设它与地面无损失碰撞一次后反弹的的高度是原来的四分之一。小球从开始下落到停止运动所经历的总路程是________m。 4.质量为4 ×103kg的汽车在平直公路上以12m/s速度匀速行驶,汽车所受空气和路面对它的 阻力是车重的O.1倍,此时汽车发动机的输出功率是__________W。如保持发动机输出功率不变,阻力大小不变,汽车在每行驶100m升高2m的斜坡上匀速行驶的速度是__________m/ s。 5.用铁锤把小铁钉钉敲入木板。假设木板对铁钉的阻力与铁钉进入木板的深度成正比。已知第一 次将铁钉敲入木板1cm,如果铁锤第二次敲铁钉的速度变化与第一次完全相同,则第二次铁钉进入木板的深度是__________cm。 6.质量为1Og的子弹以400m/s的速度水平射入树干中,射入深度为1Ocm,树干对子弹的平均 阻力为____ N。若同样质量的子弹,以200m/s的速度水平射入同一树干,则射入的深度为___________cm。(设平均阻力恒定) 7. 人体心脏的功能是为人体血液循环提供能量。正常人在静息状态下,心脏搏动一次,能以1.6 ×105Pa的平均压强将70ml的血液压出心脏,送往人体各部位。若每分钟人体血液循环量约为6000ml,则此时,心脏的平均功率为____________W。当人运动时,心脏的平均功率比静息状态增加20%,若此时心脏每博输出的血量变为80ml,而输出压强维持不变,则心脏每分钟搏动次数为____________。 8. 我国已兴建了一座抽水蓄能水电站,它可调剂电力供应.深 夜时,用过剩的电能通过水泵把下蓄水池的水抽到高处的上蓄水 池内;白天则通过闸门放水发电,以补充电能不足,如图8—23 所示.若上蓄水池长为150 m,宽为30 m,从深液11时至清晨4 时抽水,使上蓄水池水面增高20 m,而抽水过程中上升的高度 始终保持为400 m.不计抽水过程中其他能量损失,则抽水机的 功率是____________W。g=10 N/kg) 9. 一溜溜球,轮半径为R,轴半径为r,线为细线,小灵玩溜溜球时,如图所示,使球在水平桌面 上滚动,用拉力F使球匀速滚动的距离s,则(甲)(乙)两种不同方式各做功分别是_____________J和__________________J

大学物理竞赛题标准版(含答案)

2011年浙江省大学生物理竞赛 理论竞赛卷 考试形式:闭卷,允许带 无存储功能的计算器 入场 考试时间: 2011 年 12 月 10 日 上午8:30~11:30 气体摩尔常量 K mol J 31.8??=R 玻尔兹曼常量 K J 10 38.1??=k 真空介电常数 ε0=8.85?10-12C 2/(N ?m 2) 真空中光速 c =3?108m/s 普朗克常数h =6.63?10-34J ?s 基本电荷e =1.6?10-19C 真空介电常数ε 0=8.85?10-12C 2/(N ?m 2) 电子质量m e =9.1? 10-31kg 真空磁导率μ0=4π?10-7H/m 真空中光速c =3?108m/s 里德伯常数-1 7 m 10097.1?=R 电子伏特 1eV=1.6? 10-19J 氢原子质量 m =1.67? 10-27kg 维恩位移定律常数b =2.898×10-3m K 斯忒恩-波尔兹曼常数σ=5.67×10-8W/m 2K 4 这三项是公式编的,字号偏大。字号改小后:-1 1 -K mol J 31.8??=R ,-1 23 K J 1038.1??=-k , -1 7 m 10097.1?=R 一、选择题:(单选题,每题3分,共30分) 1.质量为m 的质点在外力作用下,其运动方程为 j t B i t A r ρρρ ωωsin cos +=,式中A 、B 、 ω 都是正的常量.由此可知外力在t =0到t =π/(2ω)这段时间内所作的功为( ) A . )(21 222B A m +ω B .)(222B A m +ω C .)(21222B A m -ω D .)(2 12 22A B m -ω 2.一座塔高24m ,一质量为75kg 的人从塔底走到塔顶. 已知地球的质量为6?1024kg ,从日心参考系观察,地球移动的距离为?( )(不考虑地球的转动) A .12m B .24m C .4.0?-24m D .3.0?-22m 3.边长为l 的正方形薄板,其质量为m .通过薄板中心并与板面垂直的轴的转动惯量为( ) A . 231ml B .261ml C .2121 ml D .224 1 ml 4.μ子的平均寿命为2.2?10-6s .由于宇宙射线与大气的作用,在105m 的高空产生了相对地面速度为0.998c (c 为光速)的μ子,则这些μ子的( ) A .寿命将大于平均寿命十倍以上,能够到达地面 B .寿命将大于平均寿命十倍以上,但仍不能到达地面 C .寿命虽不大于平均寿命十倍以上,但能够到达地面 D .寿命将不大于平均寿命十倍以上,不能到达地面 5.乐器二胡上能振动部分的弦长为0.3m ,质量线密度为=ρ4?10-4kg/m ,调音时调节弦的张力F ,使弦所发出的声音为C 大调,其基频为262Hz. 已知波速ρ F u =,则弦中的张力 为( ) A .1.0N B .4.2N C .7.0N D .9.9N

高中物理竞赛方法集锦微元法针对训练

高中物理竞赛方法集锦微元法针对训练 例18:如图3—17所示,电源的电动热为E ,电容器的 电容为C ,S 是单刀双掷开关,MN 、PQ 是两根位于同 一水平面上的平行光滑长导轨,它们的电阻能够忽略不计, 两导轨间距为L ,导轨处在磁感应强度为B 的平均磁场 中,磁场方向垂直于两导轨所在的平面并指向图中纸面 向里的方向.L 1和L 2是两根横放在导轨上的导体小棒, 质量分不为m 1和m 2,且21m m <.它们在导轨上滑动 时与导轨保持垂直并接触良好,不计摩擦,两小棒的电阻 相同,开始时两根小棒均静止在导轨上.现将开关S 先合向 1,然后合向2.求: 〔1〕两根小棒最终速度的大小; 〔2〕在整个过程中的焦耳热损耗.〔当回路中有电流时,该电流所产生的磁场可忽略不计〕 解析:当开关S 先合上1时,电源给电容器充电,当开关S 再合上2时,电容器通过导体小棒放电,在放电过程中,导体小棒受到安培力作用,在安培力作用下,两小棒开始运动,运动速度最后均达到最大. 〔1〕设两小棒最终的速度的大小为v ,那么分不为L 1、L 2为研究对象得: 111 1v m v m t F i i -'=? ∑=?v m t F i i 111 ① 同理得: ∑=?v m t F i i 222 ② 由①、②得:v m m t F t F i i i i )(212211+=?+?∑∑ 又因为 11Bli F i = 21i i t t ?=? 22Bli F i = i i i =+21 因此 ∑∑∑∑?=?+=?+?i i i i t i BL t i i BL t BLi t BLi )(212211 v m m q Q BL )()(21+=-= 而Q=CE q=CU ′=CBL v 因此解得小棒的最终速度 2221)(L CB m m BLCE v ++= 〔2〕因为总能量守恒,因此热Q v m m C q CE +++=22122)(2 12121 即产生的热量 22122)(2 12121v m m C q CE Q +--=热

全国高中物理竞赛训练题及答案

1、有一无限大的导体网络,它是由大小相同的正六边形网眼组成,如图(1.1),所有六边形每边的电阻都为R ,求结点a 、b 之间的电阻。 解析:像这类求导体网络的等效电阻的题目,我们不可能由电阻的串并联关系求出等效电阻,只能用电流的分步法,在ab 间引入一个电压ab U ,在网络中形成总电流I ,再找出ac I ,ab I 与I 的关系,最后由R U I =确定ab R 。 由网络的对称性可知,假设有电流I 从a 点流入网络,必有 1 3I 电流由a 流向c ,在c 点又分为两支路电流,则cb 的电流为1 6 I 。 另一方面,假设有I 电流有b 点流出网络,必有13I 电流由c 流向b ,a 和d 分别有1 6I 流向c 。 将两种情况叠加,则有I 电流由a 流入,从b 流出,按电流的分步法,必有 362ac I I I I = += 方向经导线ac 由a 流向c 362 ab I I I I = += 方向经导线cb 由c 流向b 所以a 、b 两点间的等效电阻为 a b a c c b ab U I R I R R R I I +=== 2、证明图(2.1)中的Y 形电阻网络与图(2.2)中的?形电阻网络的等效变化关系为: 图(1.1) a b c d 2 3 1 2 I 3 I 12 R 31 R 23 R 1 I 图(2.2) 1 I 1 R 2 R 3R 3 I 3 2I 2 1 图(2.1)

12233112 3 12233123 1 12233131 2R R R R R R R R R R R R R R R R R R R R R R R R ?++=???++=???++=?? 和 3112 1 122331 12232 122331 23313 122331R R R R R R R R R R R R R R R R R R ?=?++??=?++??=?++? 解析:所谓等效变换,就是指这两种网络联接方式之间,仍保持电路中其余各部分的电流和电压不变,即Y 形网络中三个端点的点位1U ,2U ,3U 及流过的电流1I 、2I 、3I 和?形网络中的三个端相同,见图(2.1)和图(2.2). 如图(2.3),设流经电阻12R 、23R 、31R 的电流分别是12I 、23I 、31I ,对图(2.1)所示的Y 形网络有 112212 331131123 0I R I R U I R I R U I I I -=?? -=??++=? 由此可得 3 2 11231 1223 31 12 23 31 R R I U U R R R R R R R R R R R R = - ++++ 对图(2.2)所示的网络有 121212 313131 11231U I R U I R I I I ?=?? ? =?? ?=-?? 解得 31 1211231 U U I R R =- 所以有 33121212311223311223311231 R U R U U U R R R R R R R R R R R R R R -=-++++ 式中各对应项的系数相等 122331 123 R R R R R R R R ++= 图(2.3) 3I 1I 2I 12 R 31R 23R 12I 23I 31I

2020上教版初中物理竞赛训练试题

一.选择题:(3分×10=30分) 1.河中有一漂浮物,甲船在漂浮物上游100米处,乙船在漂浮物下游100米处,若两船同时以相同的速度去打捞,则( ) A.甲船先到 B.乙船先到 C.两船同时到达 D.无法判断 2.隧道长550米,一列火车车厢长50米,正以36千米/时的速度匀速行驶,车厢中某乘客行走的速度为1米/秒,当列车过隧道时,乘客经过隧道的时间至少为( ) A.5秒 B.50秒 C.55秒 D.60秒 3.蒸汽火车沿平直道行驶,风向自东向西,路边的观察者看到从火车烟囱中冒出的烟雾是竖直向上呈柱形的,由此可知,相对于空气火车的运动方向是( ) A.自东向西 B.自西向东 C.静止不动 D.无法确定 4.甲乙两船相距50千米同时起船,且保持船速不变,若两船同时在逆水中航行,甲船航行100千米,恰赶上乙船,若两船都在顺水中航行,则甲船赶上乙船需航行( ) A.50千米的路程 B.100千米的路程 C.大于50千米小于100千米路程 D.大于100千米的路程 5.坐在甲飞机中的某人,在窗口看到大地向飞机迎面冲来,同时看到乙飞机朝甲飞机反向离去,下列判断错误的是( )

A.甲飞机正向地面俯冲 B.乙飞机一定在作上升运动 C.乙飞机可能与甲飞机同向运动 D.乙飞机可能静止不动 6.一列长为S的队伍以速度u沿笔直的公路匀速前进.一个传令兵以较快的速度v从队末向队首传递文件,又立即以同样速度返回队末.如果不计递交文件的时间,那么这个传令兵往返一次所需的时间是( ) A.2S/u B.2S/v+u C.2S v /v2+u2 D.2S v /v2—u2 7.如图所示:甲乙两人同时从A点出发沿直线向B点走去.乙先到达B点,然后返回,在C点遇到甲后再次返回到B点后,又一次返回并在D点第二次遇到甲.设整个过程甲速度始终为V,乙速度大小也恒定保持8V.则S1:S2( ) A.8:7 B.8:6 C.9:8 D.9:7 8.根据图中所示情景,做出如下判断: A.甲船可能向右运动,乙船可能向右运动 B.甲船可能向左运动,乙船可能向左运动 C.甲船可能静止,乙船可能静止 D.甲船可能向左运动,乙船可能向右运动. 以上说法中正确的个数是( ) A. 0个 B.1个 C.2个 D.3个 9.一辆汽车以40千米/时的速度从甲站开往乙站,当它出发时恰好一辆公共汽车从乙站开往甲站,以后每隔15分钟就有一辆公共汽车从乙站开往甲站,卡车在途中遇到6辆公共

相关文档
最新文档