基于CDRS的舰队事件城市动力学自适应建模(IJITCS-V9-N1-1)

基于CDRS的舰队事件城市动力学自适应建模(IJITCS-V9-N1-1)
基于CDRS的舰队事件城市动力学自适应建模(IJITCS-V9-N1-1)

I.J. Information Technology and Computer Science, 2017, 1, 1-8

Published Online January 2017 in MECS (https://www.360docs.net/doc/3e9567363.html,/) DOI: 10.5815/ijitcs.2017.01.01

Adaptive Modeling of Urban Dynamics during

Armada Event using CDRs

Suhad Faisal Behadili

Normandie Univ, Unihavre, Litis, 76600 Le Havre, France

E-mail: suhad.behadili@etu.univ-lehavre.fr

Cyrille Bertelle

Normandie Univ, Unihavre, Litis, 76600 Le Havre, France

E-mail: cyrille.bertelle@univ-lehavre.fr

Loay E. George

Baghdad University, Computer Science Department, Baghdad, Iraq

E-mail: loayedwar57@https://www.360docs.net/doc/3e9567363.html,.iq

Abstract —This study investigates the mobile phone data during ephemeral event (Armada). The statistical techniques have been used for modeling human mobility collectively and individually. The undertaken substantial parameters are: inter-event times, travel distances (displacements), and radius of gyration. They have been analyzed and simulated using computing platform by integrating various applications for huge database management, visualization, analysis, and simulation. Accordingly, the general population pattern law has been extracted. This study has revealed the individuals mobility in dynamic perspective for 615,712 mobile users, also the simulated observed data are classified according to general, work, and off days. Index Terms —Modeling, urban mobility, radius of gyration, travel distance, CDRs. I. I NTRODUCTION The Communication devices (mobile networks, social

media platforms) have produced digital traces for their

users either voluntarily or not. This type of collective data

can give powerful indications that are affecting the urban

systems design and development [1]. For understanding

the collective human behavior of urban city, hence the

geo-visualization techniques could be used.

Understanding, modeling, simulating the pedestrian

behavior and movements (individuals mobility) among

urban points/regions is very challenging effort, since it is

very important in rescue situations for many kinds of

events, either in the indoor events like evacuation of

buildings, stadiums, theaters, ships, aircraft or outdoor

ones like public assemblies, open concerts, religious

gatherings, community evacuation ...etc., in exigency

situations, there are several incidents could be happening,

where the overcrowding causes injuries and death cases,

which could be emerged during emergency situations.

The advantages of studying people mobility are to put the

plans for emergency events prior to their existence, verify and estimate the evacuation strategies by simulating the event and evaluating its rescue efficiency, control and manage the crowd movements to avoid the potential problems, to support and interconnect multi scientific fields (traffic engineering, architecture, socio-psychology, safety science... etc.), as well as to understand how individuals are evolving inside the city, how they are using city services. Since the city planners have to face to the development of cities and to be sure that the services like transportation are efficient and are able to reply to the citizen necessity [2]. Additionally, this kind of studies has to be highlighted to find more modeling improvements, in order to have more realistic simulation results with flexible skills, hence this will give precise and accurate vision to each studied system [3]. The simulation models of human mobility are

classified according to their space representation, which

could be continuous, grid based or network structure.

Also, could be verified according to their intent like

specific or general, or the level of abstraction as

macroscopic, mesoscopic, and microscopic [3]. Ref. [4]

focused on the individuals supporting during emergency

conditions, they used macroscopic level models.

Thereafter, the computer improvements give strong push

to this field, so the level of research is developed to be

more efficient via the concept of modeling in microscopic

level.

The Multi agent models are very suggestive

simulations for spatio-temporal dynamics, since they are

elaborating the relationships between micro-level

individual actions and emergent macro-level phenomena.

Ref. [5] accomplished multi-agent system framework,

which model emergent human social behaviors

(competitive, queuing, and herding) at the microscopic

level, these models build artificial environment

composed of agents, which have the ability to interact in

intelligence and adaptability with each other [6]. In these

models the agents are acting based on some strategies.

The agents are an atomic unit in the computer program and it is goal-directed. However, their interactions are based on predetermined mobility conditions like leader, follower, and inhibition agents. This kind of simulation is very effective for large scale rescue scenario and complex systems, and modeling crowd behaviors.

The agent-based modeling gives a very important facility, which is the high variety of representation, since the agent can represent any kind of structures either individual agent or aggregated once in the reference system, also provides the ability to coordinate that with the spatio-temporal (spatial/time) scales at any level of abstraction the modeler wants, according to the targets of the reference system modeling or the reference system concepts to be shown. This ability is very useful, especially when respecting the changes that could be appear during the simulation process, like new events or structures, agents emergence as in pheromone trail built by ant, and the social clusters evolution for any population.

The paper is organized as follows: Section I presents this introduction. Section II focuses on the observed data and their properties. Section III represents the research approach used to achieve this study, and elaborate the effective used parameters, that are used to simulate the human mobility during the observed event. Section IV describes the conclusions and future suggestions.

II. T HE C ASE S TUDY OF CDR S

In the last decades the scientists’attention is paid to analyze the social and communication networks. This is accomplished by studying individuals mobility and analyze their life patterns, as well as the transportation surveys to collect long term mobility data, so this could be achieved by sought-after an efficient automatic datasets systems as CDRs Call Detail Records [7, 8]. The CDRs could be considered as georeferenced data for human mobility. Hence, it is no surprise that most of the quantitative data about human mobility have been gathered via CDRs of mobile phone networks [9].

Ref. [10] works on tracing human mobility using mobile phone data, in spite of highly utilization of this data in multi fields, but this research focuses on its usage in planning to transportation system, it has comparing between two data sources the mobile data and odometer reading from safety inspections of vehicles at the same region. It compares mobility features of mobile phone traces with mobility features of odometer readings from annual safety inspections of all private vehicles registered in the Boston Metropolitan Area. CDRs are records that are registered the whole individuals communications history for months, which are predetermined for billing purposes, but the researchers used it as very huge repository to the events (call, s ms, and internet connection) of the mobile networks, and the mobility behavior of the network users, the CDRs are records registered in formal secured DB with standard style. Because of their standard format, they are easily extracted and manipulated, but the weakness of them is in the localization information, which is obtained from the mobile user activities only [11].

The investigations that are using CDRs have several problems like the privacy problem, since the information of the mobile network subscribers will be vulnerable, in order to be announced for unauthorized parties, therefore it is anonymized (hidden) to protect the subscribers' privacy. As well as, we the mass size of these data (CDRs), so they need sampling and accurate manipulations preserve their accuracy and avoid any misuse or misunderstanding of their reality, by other hand the graphical or geographical representation of these datasets is difficult, because of the hardware/software limitations that could be encountered during the processing operations. However, the CDRs datasets overcome the acquisition problems (financially/ time consuming), but their projection/ trajectories tracing still time consuming [7].

Generally, there are two data types which are the communication data, and the communication independent data (Itinerancy data). However, the mobile phone datasets are the most powerful media to analyze and discover the human mobility either individually or collectively, since the mobile phone now is the closest buddy to almost people, therefore it makes the phone data are the highly elected tools to uncover and understand the human life patterns, as well as the anomalous events of the investigated data [7].

The spatio-temporal datasets are the acquired CDRs from the mobile phone network, which have a huge size for millions of subscribers and hold many events either anomalous or normal events. The normal events give a good reflection of the daily life for the investigated area like citizens habits and social activities. The anomalous events data are very useful in detecting the disasters or catastrophes immediately (in real time) with spatial and temporal indications, so the evacuation and emergency reactions could be taken as soon as possible according to any alarm indications. All CDRs are reported periodically in seconds; therefore they are very accurate real time data of any mobile user activity.

The human life patterns of urban areas could be extracted by classifying the activities according to different time intervals over the investigated area. This analysis is an attempt to study the human mobility with regard to individuals activities alteration in the observed area along different time intervals, where each mobile event represents an individual activity. However, that doesn’t mean absolute indication to pure individual activities, because the individual could be existed in a place out of coverage area, so this probability make him exist actually, but not necessarily appeared in the mobile net data. Nevertheless, the mobile phone activities reflect individuals densities in somehow. In this case study, CDRs don’t give an indication of mobility path. The drift of individuals activities in different places and times had been calculated using simulation platform.

The aim of this study is modeling and simulating individuals mobility during Armada event. The used data

in this study are the CDRs generated by the given mobile phone operator (Orange Company in France). Armada is the name of the famous marine festival takes ten days period, it is one of world free spectacle in Rouen (capital city of Upper Normandy in France). This case study is observing the fifth edition of the Armada event during 4th - 15th July 2008. The case study includes 51,958,652 CDRs, which are activities of 288 hours with lack of 15 hours. The observed period includes 5 off days, which are weekends and vacation, and 7 work days. The classical CDRs contain: mobile IDs (alias), towers IDs and positions which are geo-referenced by 2D-coordinates (x, y), the cells on each tower, and the cells IDs, mobile activity types (call in/out, SMS in/out, mobile hand over, abnormal call halt, and normal call end), and the date and time of the mobile phone activity recorded [12].

These data are non-deterministic with discrete nature, so the collective mode would be the effective approach to analyze and simulate them. However, the mobile phone traces are incomplete to describe all individuals mobility, because many individuals travel in the city without making any mobile phone activity. As well as, the mobile phone traces are only captured by the towers, which are located at several locations in the urban city, hence the positions determination would be estimated approximately [13,14].

III. M ODELING A PPROACH

This study is an attempt to model and simulate the general pattern law for the collective data, as well as they are investigated in more detail by classifying them into general, work, and off days. The main parameters in this study are the ?t(inter-event time), ?r(travel distance), and (radius of gyration). The samples means of the distributions are obtained by an exponential distribution. The computations are performed for the observed data of 12 days, they are manipulated for total individuals (population) in spatio-temporal mode.

A.Individuals Activities

The individuals usage of mobile phone are highly varied, ranged between very active users (having many calls/SMSs), and inactive users (having little calls/SMSs), hence sampling them would depend on their activities, which are ranged between rarely-frequently usages [15]. The probability distribution of ?t has been computed for each consecutive activities of each individual, which are performed sequentially for the observed data of 12 days (each day independently). The probability function is computed to obtain the universal system pattern, it is estimated with regard to consecutive parameter in order to formulate simplified model with its quantitative analysis parameters, the modeled data and simulated responses of the model are performed using one of the well-known functions probability density function (PDF) [15].

The exponential distribution (probability distribution) is capable of modeling the events happened randomly over time. It is used to describe the ?t [15] of individuals activities with PDF as in equation (1). The cutoff distribution is limited by the maximum observed

) at which the individual can wait to make any mobile activity.

|) (1)

The distribution of is estimated by equation (2) and it is argued in Ref. [16] for total observed period, the long waiting times are characterizes the individuals of less activities [15, 17, 16].

))) (2) B.Individuals Activities in Inter-event times

The inter-event times are the activities parameter, which could be estimated to give an indication about human activities relevant to their mobility, in this study the minimum time is 15 minutes, and the maximum time is 1440 (24 hours) regarded as a highest elapsed time to travel within the city. Whereas, the displacements distribution )have been computed for the total individuals during the observed period. It is argued in Ref.

[16], where the displacements distribution is presented. The is the covered di stance between each two consecutive activities during , where it is in the range, the investigated distance is limited by the maximum distance that could be traveled by individual in . The cutoff distribution is determined by the maximum observed distance which individual can travel, where it is along day hours. Note that, the maximum time slice couldn't exceed with regards to the observed area. The ) distributions for different follows truncated power law as in equation (3).

))) (3)

As well as, for deeper insight the distribution is performed for the work days and off days respectively as in Fig.1, where the of the work days are approximately similar, but for the off days the curve of average of them has longer displacements, which reflects that the individuals have a tendency to make long travels during the holidays. The regularity is obvious in all patterns.

Additionally, the gyration radius is estimated, which is an important parameter to characterize the individuals mobility patterns during observed time. It measures how far and how frequent the individual moves during time. So, it enables the individuals sampling according to their relevant . The distribution of gyration radius uncovers the population heterogeneity, where individuals traveled within ()in long/short distances regularly within (t) as formulated in equation (4), which refers to the center of mass of each individual trajectory, as argued in Ref. [18].

(a) (b)

Fig.1. Displacements distribution P(?r), the cutoff distribution is determined by the maximum distance traveled by individuals for the inter-event-times, each day has its own curve and the curve of days mean is (Daymoy), the patterns are almost identical and the curves ar e collapsed, a: P(?r) for work days period, it shows an identical patterns for this pe riod , b: P(?r) for off days period, it shows longer travel distances , this period has a

variance in patterns.

)

∑→→ ) (4) Where → refers to i=1... ) positions recorded for

individual a, and → =

)

∑→ , the aggregated

traveled distances (displacements) are formulated in the P() distribution, and the obtained power law P() as in equation (5).

()()() (5) The resulted are classified into 6 samples of (5, 10, 15, 20, 25, and 30) km, where the individuals are travel within these common . The developed algorithm to compute radius of gyration distribution has

) complexity, and it is implemented with Matlab2015 platform. Whereas, the () is computed for total population during the observed period in order to classify the evolution along the observed time series, as in Fig.2 which shows the variance along time, they are approximately similar in their patterns, also the highest occurrences are the small once ranged ), while the range ) are the lowest once, which indicates that individuals have the tendency to mobile in small and in stable patterns along the general observed period. Then, the distributions are computed for the general, work, and off days periods respectively, as shown in Fig. 3 it is clear that could be aggregated in 3 main ranges, which are ranked orderly such as the , , and . This evolution over time )is the same either during the total time series or work/ off time series. Generally, the individuals have high tendency is to travel within . The are evolved in same patterns during all verified period classes, also they are stable and ranked orderely as mentioned ealier.

C.Trajectories within Radius of Gyration

The radius of gyration () is considered to be a more dedicated feature that is capable of characterizing the periodic trajectories of individuals. However, the displacement distributions showed that of individuals are almost identical, so they are invariant. As well as, the activities distributions are uncovered the similarities of regular patterns during the time evolution of radius of gyration (). The experiments revealed the possibility of classifying individuals activities into some patterns samples, and almost individuals have similar activities patterns, but in general they could be varied depending on the days either working or off days. However, the individuals could be sampled into groups according to their relevance to ), where each group has similar patterns (similar asymptotic). The individuals mobility patterns are considered as the traveled distance within each . There is a correlated relationship between and . So, the | ) distribution is presented in function of. It is computed for all individuals during the general, work, and off days period as shown in Fig. 4. It’s clear that individuals of s mall have short , on the other hand individuals of large have mix of short and long . Therefore, it could be said that and are correlated to each other, and they are capable of giving impressive view of individuals mobility patterns. This distribution shows that the individuals are traveling in that are bounded by their

, and the short distances

are included within s mall . However, the large have

the mix of short and long , which give them the

heterogeneity property.

Fig.2. Distribution of gyration radius with loglog versus time series ) during general observed period for all individuals, the evolution classifies

6 main groups of them, the measuring units for time unit is hours and for unit is Km.

As well as, the PDF of each | ) is verified for

each sample for individuals travel within the , as

shown in Fig.5, and its probability distribution is modeled

by equation (6), the individuals are sampled using PDF,

this sampling is achieved according to their bounded . It

is performed for the general, work, and off days periods.

Hence, it is clear that the small is the most prevalent

pattern for all period classes (general, work, and off) days

period. Whereas, in off days period there is some change,

where the is increased a little bit, which

means the individuals change their regular patterns during

off days and vacations. However, the short are still the dominant pattern.

( | )( | )(| ) (6) The significant importance of revealing human trajectories enforces the tendency to build the statistical models. However, the human trajectories have random stati stical patterns. In spite of data sources variance (billing system, GSM, and GPS), but the common characteristics are the aggregated over . As well as, the individual trajectory is considered as the microscopic level of mobility abstraction, which is constituted of sequenced coordinates positions along the time, i.e. the individual displacements in spatio-temporal unit. Therefore, the consecutive mobile phone activities are good proxies to estimate human mobility in multi-level of abstraction as macroscopic level, mesoscopic level, or microscopic level [19, 20]. (a)

(b)

(c)

Fig.3. Distribution of gyration radius in function of time series ) for all individuals, the evolution sampled in 3 main groups as in the figure legend, the measuring units for time unit is hours and for unit is Km, a: The ) during general observed period, b:The ) during work days observed period, c: The )d uring off days observed

period.

(a)

(b)

(c)

Fig.4. Radius of gyration distribution ( | )in function of for the individuals travel distances that bounded by their relevant , the small bounded short travel distances and the bigger ones have mix of short and long , also small and medium are the dominant

in the three periods, a: ( | )during general observed period, b: ( | )d uring work days observed period, c: ( | ) during off days

observed period, .

(a)

(b)

(c)

Fig.5. The PDF of individuals in function of their travel distances within relevant , that classifies the individuals samples, a: PDF of individuals travel distances within relevant during general observed period, b: PDF of individuals travel distances within relevant during work days observed period, c: PDF of individuals travel distances within relevant during off days observed period.

IV. C ONCLUSIONS

This research aimed to understand human mobility using the CDRs. This investigation endorsed that the mobile phone activities could act as a feature of grouping the total number of mobile network users, hence each group will have its own feature. As well as, it is concluded that the most common parameters of modeling human mobility are the inter-event time ?t,travel distance ?r, and radius of gyration , which are modeled by the power-law distribution. These parameters can reveal the mobility patterns of the evolved dynamic population along time. This study confirmed that radius of gyration () is the most common quantity, which is associated with human mobility trajectories due to its capability in measuring the how far the mass from the center of mass, i.e. it represents how far and how frequently the individual moves. However, in this study it is founded that is gradually increased at the beginning, but it settles down versus time. It has a key effect on the travel distance (?r)distributions. Also, the dynamic individuals could be sampled according to their bounded , and they are travelling within common regular , which characterize the daily life patterns of the urban during the observed period. As well as, the individuals are travelling in many short distances during workdays, but they are travelling in few long distances during off days. However, the mix of long/short travel distance are bounded by their . The traveled distance di stributions are collapsed or overlapped for groups. As well as, the activities distributions are uncovered the regular patterns and behaviors similarities during the time evolution of . The experiments analyzed the relationships between the and ?r along time, also they showed that all individuals have almost similar patterns, but these patterns in general are classified into two variant types, which are: working days and holiday days.

It is recommended that further research be undertaken in the following areas: Utilize another kind of spatio-temporal analysis techniques to manipulate the big data of CDRs, extract new human mobility parameters to make more detailed description for individuals dynamic behavior, and extend the observed area for the same population.

R EFERENCES

[1]Mohamed Salem, Joachim Schonowski, Axel Küpper,

Citizen-centric Smart Cities: M-Technology for realizing

Smart Participatory Urban Sensing in E-Government,

International Journal of Information Technology and

Computer Science ( IJITCS ), Volume No : 12 Issue No :

1, December, 2013.

[2]Dapeng Li, Thomas J. Cova, Philip E. Dennison, A

household-level approach to staging wildfire evacuation warnings using trigger modeling, Computers,

Environment and Urban Systems, 2015.

[3]Yikang Rui, Urban Growth Modeling Based on Land-use

Changes and Road Network Expansion, Doctoral Thesis

in Geodesy and Geoinformatics with S pecialization in

Geoinformatics Royal Institute of Technology Stockholm,

Sweden, 2013.

[4]Henderson L., The statistics of crowd fluids, Nature, 229,

pp. 381–383, 1971.

[5]Pan X., Computational modelling of human and social

behaviours for emergencyegress analyses, Stanford

University: U.K., 2006.

[6]Héctor A. López-Ospina, Francisco J. Martínez b, Cristián

E. Cortés, Microeconomic model of residential location

incorporating life cycle and social expectations,

Computers, Environment and Urban Systems, 2015.

[7]Thomas Couronné, Zbigniew Smoreda, Ana-Maria

Olteanu, Individual Mobility and Communication Patterns,

Analysis of Mobile Phone Datasets and Networks,

NETMOB conference, MIT, Cambridge, MA, Oct. 10-11,

2011.

[8]Markus Schlapfer, Luis M. A. Bettencourt, Sebastian

Grauwin, Mathias Raschke, Rob Claxton, Zbigniew

Smoreda, Geoffrey B. West, Carlo Ratti, The Scaling of

Human Interactions with City Size, Physics, July, 2014. [9]John Steenbruggen, Emmanouil Tranos, Peter Nijkamp,

Data from Mobile Phone Operators: A tool for Smarter

Cities?, Elsevier Volume 39, Issues 3–4, May 2015, Pages

335–346, 2014.

[10]Francesco Calabrese, Mi Diao, Giusy Di Lorenzo, Joseph

Ferreira, Jr. Carlo Ratti, Understanding Individual

Mobility Patterns from Urban Sensing Data: A Mobile

Phone Trace Example, Elsevier, September, 2012.

[11]Vatcharaporn Esichaikul and Phyo Thinzar Latt,

Multidimensional Data Analysis of Call Records in a

Telecommunication Company, International Journal of

Information Technology and Computer Science ( IJITCS ),

Volume 22 : Issue No : 1, December, 2015.

[12]Behadili Suhad Faisal, Cyrille Bertelle, Loay Edwar

George, Visualization of People Attraction from Mobile

Phone Trace Database: A Case study on Armada 2008 in

French City of Rouen, Proceedings of the 1st International

Engineering Conference On Developments in Civil &

Computer Engineering Applications, 2014.

[13]Lin Sun, Enabling Pervasive Applications by

Understanding Individual and Community

Behaviors,

UniversitéPierre & Marie Curie -TELECOM SudParis,

December, 2012.

[14]Roberto Trasarti, Ana-Maria Olteanu-Raimond, Mirco

Nanni, Thomas Couronne, Barbara Furletti, Fosca

Giannotti, Zbigniew Smoreda, Cezary Ziemlicki,

Discovering urban and Country Dynamics from Mobile

Phone Data with S patial Correlation Patterns,

Telecommunications Policy archive, Volume 39 Issue 3,

May 2015, Pages 347-362, 2015.

[15]Marta C. González, Cesar A. Hidalgo, Albert-Laszlo

Barabasi, Understanding individual Human Mobility

Patterns, nature 453, 2009.

[16]Suhad Faisal Behadili, Cyrille Bertelle, Loay E. George,

Modelling Dynamic Patterns using Mobile Data, pp. 25–

30, Cs & It-Cscp 2016 .

[17]Ilya Narsky, Frank C. Porter, Statistical Analysis

Techniques in Particle Physics, Fits, Density Estimation

and Supervised Learning, Wiley-VCH; 1 edition

December 23, 2013.

[18]Suhad Faisal Behadili, Cyrille Bertelle, Loay E. George,

Human Trajectories Characteristics, ICUPTCE'16, 2016. [19]Christian M. Schneider, Vitaly Belik, Thomas Couronné,

Zbigniew Smoreda, Marta C. Gonzalez, Unravelling

Daily Human Mobility Motifs, Royal Society, 2013. [20]Xiao-Yong Yan, Xiao-Pu Han, Tao Zhou, Bing-Hong

Wang, Exact Solution of Gyration Radius of Individual's

Trajectory for a Simplified Human Mobility Model,

Physics, 2010.

Authors’Profiles

Suhad F. Behadili is a PhD. student of

computer science at LITIS, Le Havre

University, France. She is an academic

member in computer science department,

College of Science, Baghdad University.

Her main interests are modeling and

simulation.

Cyrille Bertelle holds a PhD from

University of Le Havre in France in 1991.

His activities concern complex systems

modelling and their applications in various

domains like ecosystems, game theory,

logistics, urban dynamics and territorial

intelligence. He focuses his studies on

emerging computing using collective

intelligence methods and complex networks. He is full professor in Computer Sciences in Normandie University, Le Havre, France since 2005. He is co-founder of a regional institute on complex systems in Normandie (ISCN) and co-representative of Complex Systems Digital Campus (CS-DC) UNESCO UniTwin. He was Vice-President for Research and Development in Le Havre University from 2012 to 2016. He is now director of the research federation on Logistics in Normandie / Seine Valley / Le Havre. He is co-editor of three books in Springer series ―Understanding Complex Systems‖.

Loay E. George is graduated from

Baghdad University in 1979 (B.Sc in

Physics), 1983 (M.Sc in theoretical

Physics), and 1997 (Ph.D in Image

Processing). He is working as teaching

staff member in Computer Science

department/ College of Science/ Baghdad

University. His main interests are in image processing applications development, multimedia processing.

How to cite this paper: Suhad Faisal Behadili, Cyrille Bertelle, Loay E. George,"Adaptive Modeling of Urban Dynamics during Armada Event using CDRs", International Journal of Information Technology and Computer Science(IJITCS), Vol.9,

No.1, pp.1-8, 2017. DOI: 10.5815/ijitcs.2017.01.01

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

仿人机器人运动学和动力学分析

国防科学技术大学 硕士学位论文 仿人机器人运动学和动力学分析 姓名:王建文 申请学位级别:硕士 专业:模式识别与智能系统 指导教师:马宏绪 20031101

能力;目前,ASIMO代表着仿人机器人研究的最高水平,见图卜2。2000年,索尼公司也推出了自己研制的仿人机器人SDR一3X,2002年又研制出了SDR一4X,见图卜3。日本东京大学也一直在进行仿人机器人的研究,与Kawada工学院合作相继研制成功了H5、H6和H7仿人机器人,其中H6机器人高1.37米,体重55公斤,具有35个自由度,目前正在开发名为Isamu的新一代仿人机器人,其身高1.5米,体重55公斤,具有32个自由度。日本科学技术振兴机构也在从事PINO机器人的研究,PINO高0.75米,采用29个电机驱动,见图卜4。日本Waseda大学一直在从事仿人机器人研究计划,研制的wL系列仿人机器人和WENDY机器人在机器人界有很大的影响,至今已投入100多万美元,仍在研究之中。Tohoku大学研制的Saika3机器人高1.27米,重47公斤,具有30个自由度。美国的MIT和剑桥马萨诸塞技术学院等单位也一直在从事仿人机器人研究。德国、英国和韩国等也有很多单位在进行类似的研究。 图卜1P2机器人图卜2ASIMO机器人图1.3SDR-4X机器人图1-4PINO机器人 图卜5第一代机器人图l-6第二代机器人图1.7第三代机器人图1—8第四代机器人 在国家“863”高技术计划和自然科学基金的资助下,国内也开展了仿人机器人的研究工作。目前,国内主要有国防科技大学、哈尔滨工业大学和北京理工大学等单位从事仿人机器人的研究。国防科技大学机器人实验室研制机器人已有10余年的历史,该实验室在这期间分四阶段推出了四代机器人,其中,2000年底推出的仿人机器入一“先行者”一是国内第一台仿人机器人。2003年6月,又成功研制了一台具有新型机械结构和运动特性的仿人机器人,这台机器人身高1.55米,体重63.5公斤,共有36个自由度,脚踝有力 第2页

(完整版)系统动力学模型案例分析

系统动力学模型介绍 1.系统动力学的思想、方法 系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在—定条件下互相转化。所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。系统动力学方法从构造系统最基本的微观结构入手构造系统模型。其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。 2.建模原理与步骤

(1)建模原理 用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。系统动力学认为系统具有整体性、相关性、等级性和相似性。系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。系统动力学构模和模拟的一个最主要的特点,就是实现结构和功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。与其它模型一样,系统动力学模型也只是实际系统某些本质特征的简化和代表,而不是原原本本地翻译或复制。因此,在构造系统动力学模型的过程中,必须注意把握大局,抓主要矛盾,合理地定义系统变量和确定系统边界。系统动力学模型的一致性和有效性的检验,有一整套定性、定量的方法,如结构和参数的灵敏度分析,极端条件下的模拟试验和统计方法检验等等,但评价一个模型优劣程度的最终标准是客观实践,而实践的检验是长期的,不是一二次就可以完成的。因此,一个即使是精心构造出来的模型也必须在以后的应用中不断修改、不断完善,以适应实际系统新的变化和新的目标。 (2)建模步骤 系统动力学构模过程是一个认识问题和解决问题的过程,根据人们对客观事物认识的规律,这是一个波浪式前进、螺旋式上升的过程,因此它必须是一个由粗到细,由表及里,多次循环,不断深化的过程。系统动力学将整个构模过程归纳为系统分析、结构分析、模型建立、模型试验和模型使用五大步骤这五大步骤有一定的先后次序,但按照构模过程中的具体情况,它们又都是交叉、反复进行的。 第一步系统分析的主要任务是明确系统问题,广泛收集解决系统问题的有关数据、资料和信息,然后大致划定系统的边界。 第二步结构分析的注意力集中在系统的结构分解、确定系统变量和信息反馈机制。 第三步模型建立是系统结构的量化过程(建立模型方程进行量化)。 第四步模型试验是借助于计算机对模型进行模拟试验和调试,经过对模型各种性能指标的评估不断修改、完善模型。 第五步模型使用是在已经建立起来的模型上对系统问题进行定量的分析研究和做各种政策实验。 3.建模工具 系统动力学软件VENSIM PLE软件 4.建模方法 因果关系图法 在因果关系图中,各变量彼此之间的因果关系是用因果链来连接的。因果链是一个带箭头的实线(直线或弧线),箭头方向表示因果关系的作用方向,箭头旁标有“+”或“-”号,分别表示两种极性的因果链。

系统动力学模型

第10 章系统动力学模型 系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。 1 系统动力学概述 2 系统动力学的基础知识 3 系统动力学模型 第1 节系统动力学概述 1.1 概念系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。 系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下: 1 系统动力学模型的理论基础是系统动力学的理论和方法; 2 系统动力学模型的研究对象是复杂反馈大系统; 3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室” ; 4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算 机仿真语言DYNAMIC勺支持,如:PD PLUS VENSIM等的支持; 5 系统动力学模型的关键任务是建立系统动力学模型体系; 6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计

算机仿真实验结果,即坐标图象和二维报表; 系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。 地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。 1.2 发展概况 系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTERI出来的。目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等著作,引起了世界各国政府和科学家的普遍关注。 在我国关于系统动力学方面的研究始于1980 年,后来,陆续做了大量的工作,主要表现如下: 1 )人才培养 自从1980年以来,我国非常重视系统动力学人才的培养,主要采用“走出去,请进来”的办法。请进来就是请国外系统动力学专家来华讲学,走出去就是派留学生,如:首批派出去的复旦大学管理学院的王其藩教授等,另外,还多次举办了全国性的讲习班。 2 )编译编写专著

运动学、静力学、动力学概念

运动学、静力学、动力学概念 运动学 运动学是理论力学的一个分支学科,它是运用几何学的方法来研究物体的运动,通常不考虑力和质量等因素的影响。至于物体的运动和力的关系,则是动力学的研究课题。 用几何方法描述物体的运动必须确定一个参照系,因此,单纯从运动学的观点看,对任何运动的描述都是相对的。这里,运动的相对性是指经典力学范畴内的,即在不同的参照系中时间和空间的量度相同,和参照系的运动无关。不过当物体的速度接近光速时,时间和空间的量度就同参照系有关了。这里的“运动”指机械运动,即物体位置的改变;所谓“从几何的角度”是指不涉及物体本身的物理性质(如质量等)和加在物体上的力。 运动学主要研究点和刚体的运动规律。点是指没有大小和质量、在空间占据一定位置的几何点。刚体是没有质量、不变形、但有一定形状、占据空间一定位置的形体。运动学包括点的运动学和刚体运动学两部分。掌握了这两类运动,才可能进一步研究变形体(弹性体、流体等)的运动。 在变形体研究中,须把物体中微团的刚性位移和应变分开。点的运动学研究点的运动方程、轨迹、位移、速度、加速度等运动特征,这些都随所选的参考系不同而异;而刚体运动学还要研究刚体本身的转动过程、角速度、角加速度等更复杂些的运动特征。刚体运动按运动的特性又可分为:刚体的平动、刚体定轴转动、刚体平面运动、刚体定点转动和刚体一般运动。 运动学为动力学、机械原理(机械学)提供理论基础,也包含有自然科学和工程技术很多学科所必需的基本知识。 运动学的发展历史 运动学在发展的初期,从属于动力学,随着动力学而发展。古代,人们通过对地面物体和天体运动的观察,逐渐形成了物体在空间中位置的变化和时间的概念。中国战国时期在《墨经》中已有关于运动和时间先后的描述。亚里士多德在《物理学》中讨论了落体运动和圆运动,已有了速度的概念。

机械系统动力学

《机械系统动力学》 机械系统动力学中分析中的 仿真前沿 学院:机械工程学院 专业:机制一班 姓名:董正凯 学号:S12080201006

摘要 计算机及其相应技术的发展为建立机械系统仿真提供了一个有效的手段,机械系统动力学中的许多难题均可以采用仿真技术来解决,本文主要讲述了目前在机械系统动力学的分析中仿真技术主要的研究重点及其研究中主要存在的问题。 关键词:机械系统动力学仿真系统建模

机械系统动力学中分析中的仿真前沿 机械专业既是一个传统的专业,又是一个不断融合新技术、不断创新的专业。随着科技的发展,计算机仿真技术越来越广泛地应用在各个领域。基于多体系统动力学的机械系统动力学分析与仿真技术,从二十世纪七十年代开始吸引了众多研究者,已解决了自动化建模和求解问题的基础理论问题,并于八十年代形成了一系列商业化软件,到了九十年代,机械系统动力学分析与仿真技术更已能成熟应用于工业界。 目前的研究重点表现在以下几个方面: (1)柔性多体系统动力学的建模理论 多刚体系统的建模理论已经成熟,目前柔性多体系统的建模成了一个研究热点,柔性多体系统动力学由于本身既存在大范围的刚体运动又存在弹性变形运动,因而其与有限元分析方法及多刚体力学分析方法有密切关系。事实上,绝对的刚体运动不存在,绝对的弹性动力学问题在工程实际中也少见,实际工程问题严格说都是柔性多体动力学问题,只不过为了问题的简化容易求解,不得不化简为多刚体动力学问题、结构动力学问题来处理。然而这给使用者带来了不便,同一个问题必须利用两种分析方法处理。大多商用软件系统采用的浮动标架法对处理小变形部件的柔性系统较为有效,对包含大变形部件的柔体多体系统会产生较大仿真分析误差甚至完全错误的仿真结论。最近提出的绝对节点坐标方法,是对有限元技术的拓展和较大创新,在常规有限元中梁单元、板壳单元采用节点微小转动作为节点坐标,因而不能精确描述刚体运动。绝对节点坐标法则采用节点位移和节点斜率作为节点坐标,其形函数可以描述任意刚体位移。利用这种方法梁和板壳可以看作是等参单元,系统的质量阵为一常数阵,然而其刚度阵为强非线性阵,这与浮动标架法有截然不同的区别。这种方法已成功应用于手术线的大变形仿真中。寻求有限元分析与多刚体力学的统一近年来成为多体动力学分析的一个研究热点,绝对节点坐标法在这方面有极大的潜力,可以说绝对节点坐标法是柔性多体力学发展的一个重要进展。另外,各种柔性多体的分析方法之间是否存在某种互推关系也引起了人们的注意,如两个主要分析方法:浮动标架法、绝对节点坐标法之间是否可以互推?这些都具有重大理论意义。 另外柔性多体系统动力学中由于大范围的刚体运动与弹性变形运动相互耦合,采用浮动标架法时,即便是小变形问题,由于处于高速旋转仍会产生动力刚化现象。如果仅仅采用小变形理论,将产生错误的结论,必须计及动力刚化效应。动力刚化现象已成为柔性多体动力学的一个重要研究方面。如何利用简单的补偿方法来考虑动力刚化是问题的关键。 柔性多体系统动力学中关于柔性体的离散化表达存在三种形式:基于有限元分析的模态表达,基于试验模态分析的模态表达和基于有限元节点坐标的有限元列式。有限元列式由于大大地增加了系统的求解规模使其应用受到限制,因而一般采用模态分析方法,对模态进行模态截断、模态综合,从而缩减系统的求解规模。为了保证求解精度,同时又能提高求解速度如何进行模态截断、模态综合就成了一个关键问题。再者如何充分利用试验模态分析的结果也是一个关键性研究课题,这一方面的研究还不够深入。 柔性多体系统动力学可以计算出每一时刻的弹性位移,通过计算应变可计算计算出应力。由于一般的多柔体分析程序不具备有限元分析功能,因而柔性体的应力分析都是由有限元程序处理。由于可以计算出每个柔性体的应力的变化历

系统动力学模型

第10章系统动力学模型 系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。 1 系统动力学概述 2 系统动力学的基础知识 3 系统动力学模型 第1节系统动力学概述 1.1 概念 系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。 系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下: 1 系统动力学模型的理论基础是系统动力学的理论和方法; 2 系统动力学模型的研究对象是复杂反馈大系统; 3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室”; 4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算

机仿真语言DYNAMIC的支持,如:PD PLUS,VENSIM等的支持; 5 系统动力学模型的关键任务是建立系统动力学模型体系; 6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计算机仿真实验结果,即坐标图象和二维报表; 系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。 地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。 1.2 发展概况 系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTER)提出来的。目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等著作,引起了世界各国政府和科学家的普遍关注。 在我国关于系统动力学方面的研究始于1980年,后来,陆续做了大量的工作,主要表现如下: 1)人才培养

机械系统动力学仿真软件ADAMS培训教程

机械系统动力学仿真软件ADAMS培训教程(1周时间) 一机械系统动力学方程基础 以闭环矢量法为例,介绍平面机构的运动学方程推导,瞬态动力学方程求解,方程组装及在Matlab/simulink模块中的实现,让学生对动力学求解有一个感性的认识。 教学内容: 1.1 机构动力学分析。四杆机构,杆长分别为L1,L2,L3和L4, 其中,L3为机架,L1为匀速转动的原动件,杆L4受到一恒定的扭矩T的作用。求各杆的运动和受力。(图中的杆均为均质杆,质量为mi,转动惯量为Ii,i=1,2,3….) 1.2 画出上式的Matlab/Simulink仿真框图(10分) 1.3 编写S函数,并在Simulink中调试实现 使用知识:超越方程的求解,牛顿—莱布尼兹迭代法,相容性检测(位移,速度),任意点的运动信息输出 练习:曲柄滑块机构,从方程推导、矩阵方程组装,流程图,编程实现

二ADAMS软件工程介绍及机构动力学仿真 介绍ADAMS软件的功能,几何模型建立方法和第三方CAD模型导入技巧,材料属性配置,运动副、驱动和载荷的创建,仿真计算参数设置及计算结果后处理。介绍弹簧模型、接触模型和轮胎路谱模型(如果有车辆专业学员的话),凸轮副,齿轮模型等常用模型的仿真。 准备内容:机构三维几何模型,最好还有凸轮,齿轮等常用运动副。 介绍模型的构成,建模方法(含几何模型导入技巧),各种运动副、载荷的施加,接触模型参数设置,学会常见机构动力学分析,结果后处理,包括常用的各种测量的使用。 练习:常规运动,接触,轮胎路谱模型的应用,结果后处理。 三模型参数化,灵敏度分析及优化设计研究 介绍ADAMS的设计变量定义,常用函数的使用,模型形状、尺寸、材料参数化和位置方向参数化,建立各种状态变量、约束和目标函数的测量,进行灵敏度分析和优化设计研究,改进模型的设计。 参数优化几何建模,参数化材料特性、单元属性,本构关系参数。目标函数,约束的建立,灵敏度分析、优化求解参数设定。 练习:机构优化;减振系统优化;

刚体的运动学与动力学问题

刚体的运动学与动力学问题 编者按中国物理学会全国中学生物理竞赛委员会2000 年第十九次会议对《全国中学生物理竞赛内容提要》作了一些调整和补充,并决定从2002 年起在复赛题与决赛题中使用提要中增补的内容. 一、竞赛涉及有关刚体的知识概要 1. 刚体 在无论多大的外力作用下,总保持其形状和大小不变的物体称为刚体.刚体是一种理想化模型,实际物体在外力作用下发生的形变效应不显着可被忽略时,即可将其视为刚体,刚体内各质点之间的距离保持不变是其重要的模型特征. 2 . 刚体的平动和转动 刚体运动时,其上各质点的运动状态(速度、加速度、位移)总是相同的,这种运动叫做平动.研究刚体的平动时,可选取刚体上任意一个质点为研究对象.刚体运动时,如果刚体的各个质点在运动中都绕同一直线做圆周运动,这种运动叫做转动,而所绕的直线叫做转轴.若转轴是固定不动的,刚体的运动就是定轴转动.刚体的任何一个复杂运动总可看做平动与转动的叠加,刚体的运动同样遵从运动独立性原理. 3. 质心质心运动定律 质心这是一个等效意义的概念,即对于任何一个刚体(或质点系),总可以找到一点C,它的运动就代表整个刚体(或质点系)的平动,它的运动规律就等效于将刚体(或质点系)的质量集中在点C,刚体(或质点系)所受外力也全部作用在点C时,这个点叫做质心.当外力的作用线通过刚体的质心时,刚体仅做平动;当外力作用线不通过质心时,整个物体的运动是随质心的平动及绕质心的转动的合成.质心运动定律物体受外力F 作用时,其质心的加速度为aC,则必有F=maC,这就是质心运动定律,该定律表明:不管物体的质量如何分布,也不管外力作用点在物体的哪个位置,质心的运动总等效于物体的质量全部集中在此、外力亦作用于此点时应有的运动. 4 . 刚体的转动惯量J 刚体的转动惯量是刚体在转动中惯性大小的量度,它等于刚体中每个质点的质量mi与该质点到转轴的距离ri的平方的乘积的总和,即 J=miri2. 从转动惯量的定义式可知,刚体的转动惯量取决于刚体各部分的质量及对给定转轴的分布情况.我们可以利用微元法求一些质量均匀分布的几何体的转动惯量. 5. 描述转动状态的物理量 对应于平动状态参量的速度v、加速度a、动量p=mv、动能Ek=(1 /2 )mv2;描述刚体定轴转动状态的物理量有: 角速度ω角速度的定义为ω=Δθ/Δt.在垂直于转轴、离转轴距离r处的线速度与角速度之间的关系为v=rω. 角加速度角加速度的定义为α=Δω/Δt.在垂直于转轴、离转轴距离r处的线加速度与角加速度的关系为at=rα. 角动量L角动量也叫做动量矩,物体对定轴转动时,在垂直于转轴、离转轴距离r处某质量为m的质点的角动量大小是mvr=mr2ω ,各质点角动量的总和即为物体的角动量,即 L=miviri=(miri2)ω=Jω. 转动动能Ek当刚体做转动时,各质点具有共同的角速度ω及不同的线速度v,若第i个质点质

(完整版)飞机动力学模型建立

建立飞机飞行动力学模型 飞机的本体飞行动力学模型分为非线性模型和线性模型。如图所示,线 性模型常用于飞机的飞行品质特性分析和飞行控制律设计,而非线性模型通常用于飞机稳定性和操纵性特征的精确估计,从而进行各种非线性特征和线性模型的误差分析。另外,非线性模型还特别用在一些特殊的飞行任务,例如大迎角和快速机动飞行等线性模型不适用的场合。 建立全量非线性六自由度运动方程 (1)刚体飞机运动的假设['3]: ①飞机为刚体且质量为常数; ②固定于地面的坐标系为惯性坐标系; ③固定于机体的坐标系以飞机质心为原点; ④忽略地球曲率,即采用所谓的“平板地球假设”; ⑤重力加速度不随飞行高度变化; 以上假设是针对几云J<3,H<30加飞机的。 (2)坐标系说明: ①地面坐标轴系凡一O。x:夕。29:在地面上选一点09,使xg轴在水平面内并指向某一方向,z。轴垂直于地面并指向地心,yg轴也在水平面内并 垂直于x。轴,其指向按照右手定则确定,如图2一3(a) ②机体坐标轴系凡一d朴忆:原点O取在飞机质心处,坐标系与飞机固 连,x轴在飞机对称面内并平行于飞机的设计轴线指向机头,y轴垂直

于飞机对称面指向机身右方,:轴在飞机对称面内,与x轴垂直并指向机身下方,如图2一3(b)。 (3)刚体飞机的全量六自由度非线性运动方程为: 力方程组: 力矩方程组: 运动方程组:

导航方程组: 符号说明: 建立飞机小扰动线化方程 (l)基本假设: ①小扰动假设:我们把运动状态与飞机基准运动状态差别很小的扰动运动 称为小扰动运动。采用小扰动假设线化后的方程,在大多数情况下均能 给出足够满意的结果。这是因为:a、在大多数飞行情况下,各主要气 动参数的变化与扰动量成线性关系;b、飞行中即使遇到相当强烈的扰 动,在有限的时间内飞机的线速度和角速度也往往只有很小的变化量。 ②飞机具有对称面(气动外形和质量分布均对称)则且略去 机体内转动部件的陀螺力矩效应。 ③在基准运动中,对称平面处于铅垂位置(即θ=0), 且运动所在平面与飞机对称平面相重合(即β=O)。 在满足上述条件下,可以推论出:纵向气动力和力矩对横侧参数在其基准运动状态下的倒数均等于零。 横侧气动力和力矩对纵向运动参数在基准运动状态下的导数也均等于零。

动力学主要仿真软件

车辆动力学主要仿真软件 1960年,美国通用汽车公司研制了动力学软件DYNA,主要解决多自由度无约束的机械系统的动力学问题,进行车辆的“质量-弹簧-阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的诞生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAMS软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR 刚性积分算法,采用稀疏矩阵技术提高计算效率。1977年,美国Iowa 大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLR早在20世纪70年代,Willi Kortüm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA(1984),以及最终享誉业界的SIMPACK(1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MEDYNA软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACK软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPACK软件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACK算法技术的优势,成功地将控制系统和多体

《运动学与动力学仿真》实验指导书

《运动学与动力学仿真》实验指导书适用专业:机械电子工程 上海电机学院 2014年10月

实验一虚拟样机几何建模 一、实验目的 1、了解虚拟样机建模的目的 2、掌握利用Adams/View 进行几何体建模的方法,熟悉典型几何体的建模命令和相关的属性调整方法 二、实验要求 实验前预习相关知识和实验内容。 三、实验原理 Adams/view 中的几何建模工具集如图1所示。 图1 几何建模工具集 调用几何建模工具通常有两种方法:使用主工具箱上的建模工具集选择工具图标,或通过菜单选择几何建模工具命令。 使用主工具箱建模方法: 1)在主工具箱中,用鼠标右键选择上部的几何建模按钮,屏幕弹出如图1所示的几何建模工具集; 2)用鼠标选择相应的建模工具集的图标; 3)在参数设置对话框,修改参数值。 4)按照屏幕下方状态栏的提示,绘制几何图形。

图形 图2 基本形体图库 四、实验设备 机房,adams软件 五、实验步骤 1)在几何建模工具集中选取所要建的三维实体建模工具图标; 2)在参数设置栏,设置所建立的几何体是新构件(New Part)、添加到现有构件(Add to Part)还是添加到地基上(On Ground); 3)在参数设置栏,选择输入有个尺寸参数。 4)按照屏幕下方状态栏的提示,用鼠标确定起始绘图点; 5)按住鼠标左键,拖动鼠标,屏幕出现所绘图形。可以在参数设置栏设置形体的尺寸; 6)释放鼠标,完成简单形体建模,绘图结束点定义了几何体的方向和部分形体。 六、实验注意事项 无 七、实验报告要求 1、根据原理和要求画出2个基本的形体

实验二约束类型及工具 一、实验目的 1. 了解运动学与动力学分析中常用的约束类型 2. 掌握 Adams/View中添加运动约束的方法 二、实验要求 实验前预习相关知识和实验内容 三、实验原理 ADANMS/View提供了12种常用的运动副工具。作用:可以将两个构件连接起来。条件:被连接的构件可以是刚体构件、柔性构件或者是点质量。常用运动副如图1所示。 图1 常用的运动副 1)在连接工具集或者在连接对话框,选择连接工具图标。

机械系统动力学

《机械系统动力学》是清华大学出版社出版,杨义勇编著的机械专业书籍。全书共9章。介绍了机械系统中常见的动力学问题、机械动力学问题的类型和解决问题的一般过程,讲述了刚性机械系统的动力学分析与设计,含弹性构件的机械系统的动力学,含间隙副机械的动力学,含变质量机械系统动力学以及机械动力学数值仿真数学基础与相关软件。本书可作为高等院校机械工程专业本科和研究生教材,也可作为从事机械工程研究和设计的技术人员的参考书籍。 《机械系统动力学》内容是集20多年的课程教学经验,在唐锡宽和金德闻1984年编写的《机械动力学》一书的基础上进行体系变更、内容更新、扩充和改写后编著而成的。全书共9章:第1章绪论,介绍了机械系统中常见的动力学问题、机械动力学问题的类型和解决问题的一般过程,是学习后面内容的基础;第2、3章讲述刚性机械系统的动力学分析与设计,包括机构惯性力平衡的原理与方法;第4章和第5章是含弹性构件的机械系统的动力学,后者内容为含柔性转子机械的平衡原理与方法;第6章是含间隙副机械的动力学;第7章是含变质量机械系统动力学;第8、9章介绍机械动力学数值仿真数学基础与相关软件,并给出了仿真实例。书后附有103道练习题。《机械系统动力学》可作为高等院校机械工程专业本科和研究生教材,也可作为从事机械工程研究和设计的技术人员的参考书籍。 机械动力学课程在清华大学的开设已有20多年历史。 近几年,杨义勇在中国地质大学(北京)也开设了机械系统动力学这

一学位课程。上述课程所使用的教材均以 唐锡宽、金德闻编写的《机械动力学》(高等教育出版社19 84年出版)为基础,加上多种补充教材和讲义。在多年的教学过程中,随着对课程地位、学生学习的目的和课程体系的不断探索,金德闻先后编写了《高速转子的振动与平衡》、《机械动力学设计》等补充教材和研究生学位课程讲义《现代机械设计理论与方法》中的“机械动力学”部分,金德闻、唐锡宽还配套编写了《机械动力学习题、作业实验汇编》;杨义勇则编写了《机械系统动力学》讲义。作者在对上述教材和讲义进行体系变更、内容更新、扩充和改写的基础上,写成了这本新的《机械系统动力学》。 机械动力学是应用力学基本理论解决机械系统中的动力学问题的一门学科,其核心问题是建立机械系统的运行状态与其内部参数、外界条件之间的关系,从而找到解决问题的途径。该学科是机械性能设计的重要部分,在高速机械和精密机械中,机械动力学性能的分析与设计中是不可缺少的,有时甚至是至关重要的。机械动力学课程教学的目的就是使学生了解机械系统中动力学问题的类型和掌握应用力学的基础知识解决这些问题的基本方法和途径。机械系统千变万化,但它们存在的动力学问题有一定规律性,解决这些问题的方法也有共性。 本书对机械动力学的内容和体系的安排有以下特点: (1)按照系统的组成和运行条件将机械系统分为刚性系统和考虑构件弹性的系统两大部分,以便根据它们不同的性质分别讲述处理动力

(完整版)动力学建模方法与解法总结

目录 1 刚体系统 (1) 2 弹性系统动力学 (6) 3 高速旋转体动力学 (10)

1 刚体系统 一般力学研究的对象,是由两个或两个以上刚体通过铰链等约束联系在一起的力学系统,为一般力学研究对象。自行车、万向支架陀螺仪通常可看成多刚体系统。人体在某种意义上也可简化为一个多刚体系统。现代航天器、机器人、人体和仿生学中关于动物运动规律的研究都提出了多刚体系统的一系列理论模型作为研究对象。多刚体系统按其内部联系的拓扑结构,分为树型和非树型(包含有闭链);按其同外界的联系情况,则有有根和无根之别。利用图论的工具可以一般地分析多刚体系统的构造,建立系统的数学模型和动力学方程组。也可从分析力学中的高斯原理出发,用求极值的优化算法直接求解系统的运动和铰链反力。依照多刚体系统动力学的理论和方法,广泛采用电子计算机对这些模型进行研究,对于精确地掌握这些对象的运动规律是很有价值的。 1.1 自由物体的变分运动方程 任意一个刚体构件i ,质量为i m ,对质心的极转动惯量为i J ',设作用于刚体的所有外力向质心简化后得到外力矢量i F 和力矩i n ,若定义刚体连体坐标系y o x '''的原点o '位于刚体质心,则可根据牛顿定理导出该刚体带质心坐标的变分运动方程: 0][][=-'+-i i i i i i i T i n J F r m r φδφδ&&&& (1-1) 其中,i r 为固定于刚体质心的连体坐标系原点o '的代数矢量,i φ为连体坐标系相对于全局坐标系的转角,i r δ与i δφ分别为i r 与i φ的变分。 定义广义坐标: T i T i i r q ],[φ= (1-2) 广义: T i T i i n F Q ],[= (1-3) 及质量矩阵: ),,(i i i i J m m diag M '= (1-4) 体坐标系原点固定于刚体质心时用广义力表示的刚体变分运动方程:

系统动力学模型

1.1 海洋资源可持续开发研究综述 海洋可持续发展包括三层含义,即海洋经济的持续性、海洋生态的持续性和社会的持续性,海洋的可持续发展以保证海洋经济发展和资源永续利用为目的,实现海洋经济发展与经济环境相协调,经济、社会、生态效益相统。运用海洋可持续发展理论和海域承载力理论研究海洋资源开发的可持续性,从我国的海洋产业入手,分析我国海洋资源开发利用的状况,从海洋产业结构和产业布局、海洋管理和海洋开发技术等方面总结我国海洋开发的问题,并针对这些问题,提出切实可行的实现海洋可持续发展的途径和措施。国外学者对海洋资源的发展和研究进行研究,建立相应的模型,认为技术在海洋资源发展过程中起到极其重要的作用。国内学者则以具体省份为例研究海洋资源可持续发展,对辽宁省所拥有的海洋资源进行概述后,分析了辽宁海洋资源开发与海洋生态环境保护之间的关系,提出开展海域资源价值折损评估,采用政策调控和市场机制保护海洋生态环境。利用我国重要海洋产业数据,分析我国海洋资源开发利用的状况,并从海洋产业结构和布局及管理等角度总结海洋资源开发存在的问题,提出实现海洋资源可持续发展的途径。学者从海洋资源与环境保护角度分析,研究开发海洋的过程中,存在着海洋环境污染、海洋渔业资源衰退等问题。 1.2 系统动力学模型研究综述 到20 世纪70 年代初系统动力学被用来解决很多领域的问题,成为比较成熟的学科,系统动力学到20 世纪70 年代初所取得的成就使人们相信它是研究和处理诸如人口、自然资源、生态环境、经济和社会等相互连带的复杂系统问题的有效工具。基于市场均衡论和信用风险理论,完善运用于分析代际消费计划的系统动力学机制模型,并提出可替换选择。国内学者将系统动力学运用于研究资源与

系统动力学模型案例分析

系统动力学模型介绍 1、系统动力学的思想、方法 系统动力学对实际系统的构模与模拟就是从系统的结构与功能两方面同时进行的。系统的结构就是指系统所包含的各单元以及各单元之间的相互作用与相互关系。而系统的功能就是指系统中各单元本身及各单元之间相互作用的秩序、结构与功能,分别表征了系统的组织与系统的行为,它们就是相对独立的,又可以在—定条件下互相转化。所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。系统动力学方法从构造系统最基本的微观结构入手构造系统模型。其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系与相互作用关系与实际系统结构的一致程度。模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,就是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识与理解程度,其中也包含着大量的实际工作经验,就是属定性方面的信息。因此,系统动力学对系统的结构与功能同时模拟的方法,实质上就就是充分利用了实际系统定性与定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。 2、建模原理与步骤 (1)建模原理

用系统动力学方法进行建模最根本的指导思想就就是系统动力学的系统观与方法论。系统动力学认为系统具有整体性、相关性、等级性与相似性。系统内部的反馈结构与机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。系统动力学模型的系统目标就就是针对实际应用情况,从变化与发展的角度去解决系统问题。系统动力学构模与模拟的一个最主要的特点,就就是实现结构与功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。与其它模型一样,系统动力学模型也只就是实际系统某些本质特征的简化与代表,而不就是原原本本地翻译或复制。因此,在构造系统动力学模型的过程中,必须注意把握大局,抓主要矛盾,合理地定义系统变量与确定系统边界。系统动力学模型的一致性与有效性的检验,有一整套定性、定量的方法,如结构与参数的灵敏度分析,极端条件下的模拟试验与统计方法检验等等,但评价一个模型优劣程度的最终标准就是客观实践,而实践的检验就是长期的,不就是一二次就可以完成的。因此,一个即使就是精心构造出来的模型也必须在以后的应用中不断修改、不断完善,以适应实际系统新的变化与新的目标。 (2)建模步骤 系统动力学构模过程就是一个认识问题与解决问题的过程,根据人们对客观事物认识的规律,这就是一个波浪式前进、螺旋式上升的过程,因此它必须就是一个由粗到细,由表及里,多次循环,不断深化的过程。系统动力学将整个构模过程归纳为系统分析、结构分析、模型建立、模型试验与模型使用五大步骤这五大步骤有一定的先后次序,但按照构模过程中的具体情况,它们又都就是交叉、反复进行的。 第一步系统分析的主要任务就是明确系统问题,广泛收集解决系统问题的有关数据、资料与信息,然后大致划定系统的边界。 第二步结构分析的注意力集中在系统的结构分解、确定系统变量与信息反馈机制。 第三步模型建立就是系统结构的量化过程(建立模型方程进行量化)。 第四步模型试验就是借助于计算机对模型进行模拟试验与调试,经过对模型各种性能指标的评估不断修改、完善模型。 第五步模型使用就是在已经建立起来的模型上对系统问题进行定量的分析研究与做各种政策实验。 3、建模工具 系统动力学软件VENSIM PLE软件 4、建模方法 因果关系图法 在因果关系图中,各变量彼此之间的因果关系就是用因果链来连接的。因果链就是一个带箭头的实线(直线或弧线),箭头方向表示因果关系的作用方向,箭头旁标有“+”或“-”号,分别表示两种极性的因果链。 a.正向因果链A→+B:表示原因A的变化(增或减)引起结果B在同一方向上发生变化(增或减)。

机械系统动力学

机械系统动力学报告 学院:机械工程学院 专业:机械电子工程 姓名: 学号:

机械系统动力学 1 机械系统动力学简介 随着现代工业对机械设备及机械传动系统的要求越来越高,机械设备及机械传动系统向着大型化、高速化、轻量化、构件柔性化方向发展。人们对生产率的不断追求,使得机械的运转速度不断提高;与此同时,人们总是希望使用的机器轻巧一些,材质的改善使得构件的截面可以设计得更小一些,这样就减轻了重量、节省了材料;速度高了使得机器中的惯性力增大,截面小了使得构件的柔性加大,这样使得系统更容易产生振动,振动降低了机械的精度和寿命,恶化了劳动条件。 由于动力学研究的复杂性,人们常常引入一些假定,使问题的研究过程简化。随着生产实践的发展对动力学分析的准确度提出了新的要求;而科学技术的发展又为动力学分析提供了新的理论和分析手段。动力学的发展趋势是:逐步将这些假定抛弃,使得分析更接近客观实际。 对于低速机械,运动中产生的惯性力可以忽略不计。随着机械速度的提高,惯性力不能再被忽略,此时可根据达朗伯原理将惯性力加入静平衡方程进行求解,这种方法就称为动态静力方法。 为了求出惯性力,就必须知道构件的加速度。因此在动态静力分析之前首先要进行运动学分析,而在运动学分析时总是假定构件是按某一给定的理想运动规律运动,多数驱动构件均被假定做等速回转运动。由于采用了等速回转这一假定,在动态静力分析中便不涉及原动机的特性,因而,着本质上是一种理想运动状态下的力学分析。现在在许多速度较高的机械中,用动态静力分析代替了静力分析。 在力的作用下,机械很难维持“驱动件等速回转”这种假定。尽管这种假定在许多情形下是允许的,但在实际运动中常常需要知道系统的真实运动规律,因而进行动力分析就是求出在外力作用下系统的真实运动,用于解决动力学的正问题。由于分析的对象是整个机械系统,所以又称为机械系统动力学。 在高速情况下,动态精度与静态精度有很大的区别。精密机床的动态性能研究、高速间歇机构的动态定位精度研究就是这样发展起来的。 高速旋转机械可以采用静态设计,制造出来后通过动平衡减少振动,还要使运转速度避开临界转速。但是,随着转速的进一步提高和柔性转子的出现,就必须采取全方位的综合措施,不仅在设计时要进行认真的动力学分析,而且在运行过程中

机械系统动力学

机械系统动力学: 《机械系统动力学》是清华大学出版社出版,杨义勇编著的机械专业书籍。介绍了机械系统中常见的动力学问题、机械动力学问题的类型和解决问题的一般过程,讲述了刚性机械系统的动力学分析与设计,含弹性构件的机械系统的动力学,含间隙副机械的动力学,含变质量机械系统动力学以及机械动力学数值仿真数学基础与相关软件。 图书目录: 第1章绪论 1.1 机械系统中常见的动力学问题 1.2 解决机械动力学问题的一般过程 1.3 机械系统的动力学模型 1.3.1 刚性构件 1.3.2 弹性元件 1.3.3 阻尼 1.3.4 流体润滑动压轴承 1.3.5 机械系统的力学模型 1.4 建立机械系统的动力学方程的原理与方法 1.4.1 牛顿第二定律 1.4.2 达朗贝尔原理 1.4.3 拉格朗日方程 1.4.4 凯恩方程 1.4.5 影响系数法

1.4.6 传递矩阵法 1.5 动力学方程的求解方法 1.5.1 欧拉法 1.5.2 龙格?库塔法 1.5.3 微分方程组与高阶微分方程的解法 1.5.4 矩阵形式的动力学方程 1.6 机械动力学实验与仿真研究 第2章刚性机械系统动力学 2.1 概述 2.2 单自由度机械系统的动力学模型 2.2.1 系统的动能 2.2.2 广义力矩的计算 2.2.3 动力学方程 2.3 不同情况下单自由度系统的动力学方程及其求解方法 2.3.1 等效转动惯量和广义力矩均为常数 2.3.2 等效转动惯量为常数,广义力矩是机构位置的函数 2.3.3 等效转动惯量为常数,广义力矩为速度的函数 2.3.4 等效转动惯量是位移的函数,等效力矩是位移和速度的函数 2.3.5 等效转动惯量是位移的函数 2.4 基于拉格朗日方程的多自由度机械系统建模方法 2.4.1 系统的描述方法

相关文档
最新文档