高等数学D12_10欧拉方程

高等数学D12_10欧拉方程

高等数学D12_10欧拉方程

初值问题

《计算机数学基础(2)》辅导六 第14章常微分方程的数值解法 一、重点内容 1.欧拉公式: (k=0,1,2,…,n-1) 局部截断误差是O(h2)。 2. 改进欧拉公式: 或表示成: 平均形式: 局部截断误差是O(h3)。 3. 四阶龙格――库塔法公式: 其中κ1=f(x k,y k);κ2=f(x k+ 0.5h,y k+ 0.5 hκ1);κ3=f(x k+ 0.5 h,y k+ 0.5 hκ2); κ4=f(x k+h,y k+hκ3) 局部截断误差是O(h5)。

二、实例 例1用欧拉法解初值问题 取步长h=0.2。计算过程保留4位小数。 解h=0.2,f(x,y)=-y-xy2。首先建立欧拉迭代格式 =0.2y k(4-x k y k) (k=0,1,2) 当k=0,x1=0.2时,已知x0=0,y0=1,有 y(0.2)≈y1=0.2×1(4-0×1)=0.8 当k=1,x2=0.4时,已知x1=0.2,y1=0.8,有 y(0.4)≈y2=0.2×0.8×(4-0.2×0.8)=0.6144 当k=2,x3=0.6时,已知x2=0.4,y2=0.6144,有 y(0.6)≈y3=0.2×0.6144×(4-0.4×0.6144)=0.4613 例2 用欧拉预报-校正公式求解初值问题 取步长h=0.2,计算y(1.2),y(1.4)的近似值,小数点后至少保留5位。 解步长h=0.2,此时f(x,y)=-y-y2sin x 欧拉预报-校正公式为: 有迭代格式:

当k=0,x0=1,y0=1时,x1=1.2,有 =y0(0.8-0.2y0sin x0)=1×(0.8-0.2×1sin1)=0.63171 y(1.2)≈y1 =1×(0.9-0.1×1×sin1)-0.1(0.63171+0.631712sin1.2)=0.71549 当k=1,x1=1.2,y1=0.71549时,x2=1.4,有 =y1(0.8-0.2y1sin x1)=0.71549×(0.8-0.2×0.71549sin1.2) =0.47697 y(1.4)≈y2 =0.71549×(0.9-0.1×0.71549×sin1.2) -0.1(0.47697+0.476972sin1.4) =0.52611 例3写出用四阶龙格――库塔法求解初值问题 的计算公式,取步长h=0.2计算y(0.4)的近似值。至少保留四位小数。 解此处f(x,y)=8-3y,四阶龙格――库塔法公式为 其中κ1=f(x k,y k);κ2=f(x k+ 0.5h,y k+ 0.5 hκ1);κ3=f(x k+ 0.5 h,y k+ 0.5 hκ2);

欧拉公式的应用

欧拉公式的应用 绪论 本文首先介绍了一下欧拉公式以及推广的欧拉公式,对欧拉公式的特点作了简要的探讨.欧拉公式形式众多,在数学领域内的应用范围很广,本文对欧拉公式在三角函数中的应用作了详细的研究,欧拉公式在求三角级数中的应用中、在证明三角恒等式时、解三角方程的问题时、探求一些复杂的三角关系时,可以避免复杂的三角变换,利用较直观的代数运算使得问题得到解决.另一方面,利用欧拉公式大降幂,能够把高次幂的正余弦函数表示为一次幂函数的代数和,克服了高次幂函数在运算上的不方便. 关键词:欧拉公式三角函数降幂级数三角级数

目录 绪论......................................错误!未定义书签。目录......................................错误!未定义书签。 一、绪论 (1) 二、欧拉公式的证明、特点、作用 (1) 三、欧拉公式在三角函数中的应用 (4) (一) 倍角和半角的三角变换 (4) (二) 积化和差与差化积的三角变换 (4) (三) 求三角表达式的值 (5) (四) 证明三角恒等式 (6) (五) 解三角方程 (7) (六) 利用公式求三角级数的和 (7) (七) 探求一些复杂的三角关系式 (8) (八) 解决一些方程根的问题 (9) (九) 欧拉公式大降幂 (10) 结束语 (15)

一、绪论 欧拉公式形式众多,有多面体欧拉公式、欧拉求和公式、cos sin i e i θθθ=+、欧拉积分等多种形式、立体几何、工程方面等方面.由于欧拉公式有多种形式,在数学领域中的应用范围很广,本文只介绍欧拉公式的一种形式“cos sin i e i θθθ=+”以及这种形式在数学中的应用. 二 、欧拉公式的证明、特点、作用 1748年,欧拉在其著作中陈述出公式cos sin i e i θθθ=+,欧拉公式在数学的许多定理的证明和计算中,有着广泛的应用.它将定义和形式完全不同的指数函数和三角函数联系起来,为我们研究这两种函数的有关运算及其性质架起了一座桥梁.同时我们知道三角函数的恒等变换是中学数学中的一个重要内容,也是一个难点,但由于三角恒等变换所用公式众多,这便给解决三角变换问题带来了诸多不便.下面将通过欧拉公式,将三角函数化为复指数函数,从而将三角变换化为指数函数的代数运算,从而使得问题简单化,并给出了欧拉公式在其它几个方面的应用,在高等数学中的部分应用. 欧拉公式cos sin i e i θθθ =+它的证明有各种不同的证明方法,好多《复变 函数》教科书上,是以复幂级数为工具,定义复变指数函数和复变三角函数来进行证明的.下面我们介绍一种新的证明方法:极限法. 证明 令()1n f z i n θ?? =+ ??? (),R n N θ∈∈. 首先证明 ()lim cos sin n f z i θθ→∞ =+. 因为 arg 1n i narctg n n θθ?? ?? += ? ????? , 所以 2 2 211cos sin n n i i narctg i narctg n n n n θθθθ????????? ?+=++ ? ? ? ???????? ?????. 从而2 2 2lim 1lim 1cos sin n n n n i narctg i narctg n n n n θθθθ→∞→∞????????? ?+=++ ? ? ? ???????? ?????.

微分方程数值解法

《微分方程数值解法》 【摘要】自然界与工程技术中的很多现象,可以归结为微分方程定解问题。其中,常微分方程求解是微分方程的重要基础内容。但是,对于许多的微分方程,往往很难得到甚至不存在精确的解析表达式,这时候,数值解提供了一个很好的解决思路。,针对于此,本文对常微分方程数值解法进行了简单研究,主要讨论了一些常用的数值解法,如欧拉法、改进的欧拉法、Runge —Kutta 方法、Adams 预估校正法以及勒让德谱方法等,通过具体的算例,结合MA TLAB 求解画图,初步给出了一般常微分方程数值解法的求解过程。同时,通过对各种方法的误差分析,让大家对各种方法的特点和适用范围有一个直观的感受。 【关键词】 常微分方程 数值解法 MA TLAB 误差分析 引言 在我国高校,《微分方程数值解法》作为对数学基础知识要求较高且应用非常广泛的一门课程,不仅 在数学专业,其他的理工科专业的本科及研究生教育中开设这门课程.近四十年来,《微分方程数值解法》不论在理论上还是在方法上都获得了很大的发展.同时,由于微分方程是描述物理、化学和生物现象的数学模型基础,且它的一些最新应用已经扩展到经济、金融预测、图像处理及其他领域 在实际应用中,通过相应的微分方程模型解决具体问题,采用数值方法求得方程的近似解,使具体问题迎刃而解。 2 欧拉法和改进的欧拉法 2.1 欧拉法 2.1.1 欧拉法介绍 首先,我们考虑如下的一阶常微分方程初值问题 ???==0 0)() ,('y x y y x f y (2--1) 事实上,对于更复杂的常微分方程组或者高阶常微分方程,只需要将x 看做向量,(2--1)就成了一个一阶常微分方程组,而高阶常微分方程也可以通过降阶化成一个一阶常微分方程组。 欧拉方法是解常微分方程初值问题最简单最古老的一种数值方法,其基本思路就是把(2--1)中的导数项'y 用差商逼近,从而将一个微分方程转化为一个代数方程,以便求解。 设在[]b a ,中取等距节点h ,因为在节点n x 点上,由(2--1)可得:

欧拉公式的证明和应用

数学文化课程报告 欧拉公式的证明与应用 一.序言------------------------------------------------------------------------2 二.欧拉公式的证明--------------------------------------3 极限法 --------------------------------------3 指数函数定义法-------------------------------4 分离变量积分法-------------------------------4 复数幂级数展开法-----------------------------4 变上限积分法---------------------------------5 类比求导法-----------------------------------7 三.欧拉公式的应用 求高阶导数-----------------------------------7 积分计算------------------------------------8 高阶线性齐次微分方程的通解------------------9 求函数级数展开式----------------------------9 三角级数求和函数----------------------------10 傅里叶级数的复数形式-------------------------10 四.结语------------------------------------------------11 参考文献-----------------------------------------------11 一.序言

常微分方程作业欧拉法与改进欧拉法

P77 31.利用改进欧拉方法计算下列初值问题,并画出近似解的草图:dy + =t = t y y ≤ ≤ ,2 ;5.0 0,3 )0( )1(= ,1 ? dt 代码: %改进欧拉法 function Euler(t0,y0,inv,h) n=round(inv(2)-inv(1))/h; t(1)=t0; y(1)=y0; for i=1:n y1(i+1)=y(i)+h*fun(t(i),y(i)); t(i+1)=t(i)+h; y(i+1)=y(i)+1/2*h*(fun(t(i),y(i))+ fun(t(i+1),y1(i+1))) end plot(t,y,'*r') function y=fun(t,y); y=y+1; 调用:Euler(0,3,[0,2],0.5) 得到解析解:hold on; y=dsolve('Dy=y+1','(y(0)=3)','t'); ezplot(y,[0,2]) 图像:

dy y =t - t y ;2.0 t = ≤ )0( 0,5.0 ,4 )2(2= ≤ ? ,2 dt 代码: function Euler1(t0,y0,inv,h) n=round(inv(2)-inv(1))/h; t(1)=t0; y(1)=y0; for i=1:n y1(i+1)=y(i)+h*fun(t(i),y(i)); t(i+1)=t(i)+h; y(i+1)=y(i)+1/2*h*(fun(t(i),y(i))+ fun(t(i+1),y1(i+1))) end plot(t,y,'*r') function y=fun(t,y); y=y^2-4*t; 调用: Euler1(0,0.5,[0,2],0.2) 图像:

微分方程常用的两种数值解法:欧拉方法与龙格—库塔法

四川师范大学本科毕业论文 微分方程常用的两种数值解法:欧拉方法与龙 格—库塔法 学生姓名XXX 院系名称数学与软件科学学院 专业名称信息与计算科学 班级2006级 4 班 学号20060640XX 指导教师Xxx 四川师范大学教务处 二○一○年五月

微分方程常用的两种数值解法:欧拉方法与龙格—库塔法 学生姓名:xxx 指导教师:xx 【内容摘要】微分方程是最有生命力的数学分支,在自然科学的许多领域中,都 会遇到常微分方程的求解问题。当前计算机的发展为常微分方程的应用及理论研究提供了非常有力的工具,利用计算机解微分方程主要使用数值方法,欧拉方法和龙格——库塔方法是求解微分方程最典型常用的数值方法。本文详细研究了这两类数值计算方法的构造过程,分析了它们的优缺点,以及它们的收敛性,相容性,及稳定性。讨论了步长的变化对数值方法的影响和系数不同的同阶龙格—库塔方法的差别。通过编制C程序在计算机上实现这两类方法及对一些典型算例的结果分析比较,能更深切体会它们的功能,优缺点及适用场合,从而在实际应用中能对不同类型和不同要求的常微分方程会选取适当的求解方法。 关键词:显式单步法欧拉(Euler)方法龙格—库塔(Runge—Kutta)方法截断误差收敛性 Two commonly used numerical solution of differential equations:Euler method and Runge - Kutta method Student Name: Xiong Shiying Tutor:Zhang Li 【Abstract】The differential equation is the most vitality branch in mathematics. In many domains of natural science, we can meet the ordinary differential equation solution question. Currently, the development of computer has provided the extremely powerful tool for the ordinary differential equation application and the fundamental research, the computer solving differential equation mainly uses value method. The Euler method and the Runge—Kutta method are the most typical commonly value method to solve the differential equation. This article dissects the structure process of these two kinds of values commonly value method to solve the analyses their good and bad points, to their astringency, the compatibility, and the stability has made the proof. At the same time, the article discuss the length of stride to the numerical method changing influence and the difference of the coefficient different same step Runge—kutta method. Through establishing C program on the computer can realize these two kind of methods, Anglicizing some models of calculate example result can sincerely realize their function, the advantage and disadvantage points and the suitable situation, thus the suitable solution method can be selected to solve the different type and the

欧拉及改进的欧拉法求解常微分方程

生物信息技术0801 徐聪U200812594 #include #include void f1(double *y,double *x,double *yy) { y[0]=2.0; x[0]=0.0; yy[0]=2.0; for(int i=1;i<=9;i++) { x[i]=x[i-1]+0.2; y[i]=y[i-1]+0.2*(y[i-1]-x[i-1]); yy[i]=x[i]+1+exp(x[i]); printf("若x=%f,计算值是%f,真实值是%f,截断误差是%f\n ",x[i],y[i],yy[i],y[i]-yy[i]); } }; void f2(double *y,double *x,double *yy) { y[0]=1.0; x[0]=0.0; yy[0]=1.0; for(int i=1;i<=9;i++) { x[i]=x[i-1]+0.2; y[i]=y[i-1]+0.2*(2*y[i-1]+x[i-1]*x[i-1]); yy[i]=-0.5*(x[i]*x[i]+x[i]+0.5)+1.25*exp(2*x[i]); printf("若x=%f,计算值是%f,真实值是%f,截断误差是%f\n ",x[i],y[i],yy[i],y[i]-yy[i]); } }; void f3(double *y,double *x,double *yy,double *y0) { y[0]=2.0; x[0]=0.0; yy[0]=2.0; for(int i=1;i<=9;i++) { x[i]=x[i-1]+0.2; y0[i]=y[i-1]+0.2*(y[i-1]-x[i-1]); y[i]=y[i-1]+0.1*(y[i-1]-x[i-1]+y0[i-1]-x[i-1]);

欧拉公式推导

欧拉公式推导: 图4.3所示的两端铰支杆件,受轴向压力N 作用而处于中性平衡微弯状态,杆件弯曲后截面中产生了弯矩M 和剪力V ,在轴线任意点上由弯矩产生的横向变形为1y ,由剪力产生的横向变形为2y ,总变形21y y y +=。 y 图4.3 两端铰支的轴心压杆临界状态 设杆件发生弯曲屈曲时截面的临界应力小于材料比例极限p f ,即p f ≤σ(对理想材料取y p f f =)。由材料力学可得: EI M dz y d -=2 12 由剪力V 产生的轴线转角为: dz dM GA V GA dz dy ?=?==ββγ2 式中 A 、I ——杆件截面面积、惯性矩; E 、G ——材料的弹性模量、剪切模量; β—— 与截面形状有关的系数。 因为 222 22dz M d GA dz y d ?=β 所以 2222122222d y d y d y M d M dz dz dz EI GA dz β=+=-+? 由 y N M ?=得: 2222dz y d GA N y EI N dz y d ?+?-=β

01=?+??? ??-''y EI N GA N y β 令 ??? ??-=GA N EI N k β12 得常系数线性二阶齐次方程 20y k y ''+= 其通解为:sin cos y A kz B kz =+ 由边界条件:;0,0==y z 0=B ,kz A y sin =。再由0,==y l z 得: 0sin =kl A 上式成立的条件是0=A 或0sin =kl ,其中0=A 表示杆件不出现任何变形,与杆件微弯的假设不符。由0sin =kl ,得πn kl =(=n 1,2,3…),取最小值=n 1,得π=kl ,即 2 221N k N l EI GA πβ==??- ??? 由此式解出N ,即为中性平衡的临界力cr N 12222222211Ι11γππβππ?+?=?+?=l ΕΙl ΕGA l ΕΙl ΕΙ N cr (4.6) 临界状态时杆件截面的平均应力称为临界应力cr σ 12 22211γλπλπσ?+?==ΕΑΕA N cr cr (4.7) 式中 1γ——单位剪力时杆件的轴线转角,)/(1GA βγ=; l ——两端铰支杆得长度; λ——杆件的长细比,i l /=λ; i ——杆件截面对应于屈曲轴的回转半径,A I i /=。 如果忽略杆件剪切变形的影响(此影响很小)则式(4.6)、(4.7)变为: 22cr E πσλ = (4.8)

数值计算方法复习题9

习题九 1. 取步长h = 0.1,分别用欧拉法与改进的欧拉法解下列初值问题 (1);(2) 准确解:(1);(2); 欧拉法:,,, 改进的欧拉法:,,, 2. 用四阶标准龙格—库塔法解第1题中的初值问题,比较各法解的精度。,,, 3. 用欧拉法计算下列积分在点处的近似值。 0.5000,1.1420,2.5011,7.2450 4. 求下列差分格式局部截断误差的首项,并指出其阶数。 (1),2 (2),3; (3),4 (4),4 5.用Euler法解初值问题取步长h=0.1,计算到x=0.3(保留到小数点后4位).

解: 直接将Eulerr法应用于本题,得到 由于,直接代入计算,得到 6.用改进Euler法和梯形法解初值问题取步长 h=0.1,计算到x=0.5,并与准确解相比较. 解:用改进Euler法求解公式,得 计算结果见下表 用梯形法求解公式,得 解得 精确解为 7.证明中点公式(7.3.9)是二阶的,并求其局部截断误差主项. 证明根据局部截断误差定义,得 将右端Taylor展开,得

故方法是二阶的,且局部截断误差主项是上式右端含h3的项。 8.用四阶R-K方法求解初值问题取步长 h=0.2. 解直接用四阶R-K方法 其中 计算结果如表所示: 9.对于初值问题 解因f'(y)=-100,故由绝对稳定区间要求(1)用Euler法解时, (2)用梯形法解时,绝对稳定区间为,由因f 对y是线性的,故不用迭代,对h仍无限制。(3)用四阶R-K方法时, 10. (1) 用Euler法求解,步长h应取在什么范围内计算才稳定?(2) 若用梯形法求解,对步长h有无限制? (3) 若用四阶R-K方法求解,步长h如何选取?

欧拉公式的证明(整理)Word版

欧拉公式的证明 著名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+....., siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有: a^(it)=ρ(cosθ+isinθ) 1 因共轭解适合方程,用-i替换i有: a^(-it)=ρ(cosθ-isinθ) 2

欧拉公式的证明和应用

欧拉公式的证明和应用-CAL-FENGHAI.Network Information Technology Company.2020YEAR

数学文化课程报告 欧拉公式的证明与应用 一 .序言------------------------------------------------------------------------2 二.欧拉公式的证明--------------------------------------3 1.1 极限法 --------------------------------------3 1.2 指数函数定义法-------------------------------4 1.3 分离变量积分法-------------------------------4 1.4 复数幂级数展开法-----------------------------4 1.5 变上限积分法---------------------------------5

1.6 类比求导法-----------------------------------7 三.欧拉公式的应用 2.1 求高阶导数-----------------------------------7 2.2 积分计算------------------------------------8 2.3 高阶线性齐次微分方程的通解------------------9 2.4 求函数级数展开式----------------------------9 2.5 三角级数求和函数----------------------------10 2.6 傅里叶级数的复数形式-------------------------10 四.结语------------------------------------------------11 参考文献-----------------------------------------------11 一.序言 欧拉是十八世纪最杰出的最多产的数学家之一[1],留下了数不胜数的以其名 字命名的公式。本文关注的欧拉公式x i x e ix sin cos +=,在复数域中它把指数函数 联系在一起。特别当π=x 时,欧拉公式便写成了01=+πi e ,这个等式将最富有特 色的五个数π,,,,10e i 绝妙的联系在一起,“1是实数的基本单位,i 是虚数的基本单位,0是唯一的中性数,他们都具有独特的地位,都具有代表性。i 源于代数,

第8章 常微分方程数值解法 本章主要内容: 1.欧拉法

第8章 常微分方程数值解法 本章主要内容: 1.欧拉法、改进欧拉法. 2.龙格-库塔法。 3.单步法的收敛性与稳定性。 重点、难点 一、微分方程的数值解法 在工程技术或自然科学中,我们会遇到的许多微分方程的问题,而我们只能对其中具有较简单形式的微分方程才能够求出它们的精确解。对于大量的微分方程问题我们需要考虑求它们的满足一定精度要求的近似解的方法,称为微分方程的数值解法。本章我们主要 讨论常微分方程初值问题?????==00 )() ,(y x y y x f dx dy 的数值解法。 数值解法的基本思想是:在常微分方程初值问题解的存在区间[a,b]内,取n+1个节点a=x 0<x 1<…<x N =b (其中差h n = x n –x n-1称为步长,一般取h 为常数,即等步长),在这些节点上把常微分方程的初值问题离散化为差分方程的相应问题,再求出这些点的上的差分方程值作为相应的微分方程的近似值(满足精度要求)。 二、欧拉法与改进欧拉法 欧拉法与改进欧拉法是用数值积分方法对微分方程进行离散化的一种方法。 将常微分方程),(y x f y ='变为() *+=?++1 1))(,()()(n x n x n n dt t y t f x y x y 1.欧拉法(欧拉折线法) 欧拉法是求解常微分方程初值问题的一种最简单的数值解法。 欧拉法的基本思想:用左矩阵公式计算(*)式右端积分,则得欧拉法的计算公式为:N a b h N n y x hf y y n n n n -= -=+=+)1,...,1,0(),(1 欧拉法局部截断误差 11121 )(2 ++++≤≤''=n n n n n x x y h R ξξ或简记为O (h 2)。

计算方法及答案汇总

《计算方法》练习题一 一、填空题 1. 14159.3=π的近似值3.1428,准确数位是( )。 2.满足d b f c a f ==)(,)(的插值余项=)(x R ( )。 3.设)}({x P k 为勒让德多项式,则=))(),((22x P x P ( )。 4.乘幂法是求实方阵( )特征值与特征向量的迭代法。 5.欧拉法的绝对稳定实区间是( )。 6. 71828.2=e 具有3位有效数字的近似值是( )。 7.用辛卜生公式计算积分 ?≈+1 01x dx ( ) 。 8.设)()1()1(--=k ij k a A 第k 列主元为) 1(-k pk a ,则=-)1(k pk a ( )。 9.已知?? ? ? ??=2415A ,则=1A ( )。 10.已知迭代法:),1,0(),(1 ==+n x x n n ? 收敛,则)(x ?'满足条件( )。 二、单选题 1.已知近似数,,b a 的误差限)(),(b a εε,则=)(ab ε( )。 A .)()(b a εε B.)()(b a εε+ C.)()(b b a a εε+ D.)()(a b b a εε+ 2.设x x x f +=2 )(,则=]3,2,1[f ( )。 A.1 B.2 C.3 D.4 3.设A=?? ? ? ??3113,则化A为对角阵的平面旋转=θ( ). A. 2π B.3π C.4π D.6 π 4.若双点弦法收敛,则双点弦法具有( )敛速. A.线性 B.超线性 C.平方 D.三次 5.改进欧拉法的局部截断误差阶是( ). A .)(h o B.)(2h o C.)(3h o D.)(4 h o 6.近似数2 1047820.0?=a 的误差限是( )。 A. 51021-? B.41021-? C.31021-? D.2102 1 -? 7.矩阵A满足( ),则存在三角分解A=LR 。 A .0det ≠A B. )1(0det n k A k <≤≠ C.0det >A D.0det

微分方程数值解

微 分方程数值解及其应用 绪论 自然界中的许多事物的运动和变化规律都可以用微分方程来描述,因此对工程和科学技术中的实际问题的研究中, 常常需要求解微分方程.但往往只有少数较简单和典型的微分方程可求出其解析解,在大多数情况下,只能用近似法求解,数值解法是一类重要的近似方法.本文主要讨论一阶常微分方程的初值问题的数值解法,探讨这些算法在处理来自生活实际问题中的应用,并结合MATLAB 软件,动手编程予以解决. 1 微分方程的初值问题[1] 1.1 预备知识 在对生活实际问题的研究中,通常需要考虑一阶微分方程的初值问题 00(,)()dy f x y dx y x y ?=???=? (1) 这里(),f x y 是矩形区域R :00,x x a y y b -≤-≤上的连续函数. 对初值问题(1)需要考虑以下问题:方程是否一定有解呢?若有解,有多少个解呢?下面给出相关的概念与定理. 定义1 Lipschitz 条件[1][2]:矩形区域R :00,x x a y y b -≤-≤上的连续函数(),f x y 若满足:存在常数0L >,使得不等式()()1212,,f x y f x y L y y -≤-对所有()()12,,,x y x y R ∈都成立,则称(),f x y 在R 上关于y 满足Lipschitz 条件. 定理 1 解的存在唯一性定理[1][3]:设f 在区域()}{,,D x y a x b y R =≤≤∈上连续,关于y 满足Lipschitz 条件,则对任意的[]00,,∈∈x a b y R ,常微分方程初值问题(1)当[],x a b ∈时存在唯一的连续解()y x . 该定理保证若一个函数(),f x y 关于y 满足Lipschitz 条件,它所对应的微分方程的初值问题就有唯一解.在解的存在唯一性得到保证的前提下,自然要考虑方程的求

欧拉公式的证明(整理)

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 欧拉公式的证明 著名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+....., siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqr t(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2;

MATLAB求解常微分方程数值解

利用MATLAB求解常微分方程数值解

目录 1. 内容简介 (1) 2. Euler Method(欧拉法)求解 (1) 2.1. 显式Euler法和隐式Euler法 (2) 2.2. 梯形公式和改进Euler法 (3) 2.3. Euler法实用性 (4) 3. Runge-Kutta Method(龙格库塔法)求解 (5) 3.1. Runge-Kutta基本原理 (5) 3.2. MATLAB中使用Runge-Kutta法的函数 (7) 4. 使用MATLAB求解常微分方程 (7) 4.1. 使用ode45函数求解非刚性常微分方程 (8) 4.2. 刚性常微分方程 (9) 5. 总结 (9) 参考文献 (11) 附录 (12) 1. 显式Euler法数值求解 (12) 2. 改进Euler法数值求解 (12) 3. 四阶四级Runge-Kutta法数值求解 (13) 4.使用ode45求解 (14)

1.内容简介 把《高等工程数学》看了一遍,增加对数学内容的了解,对其中数值解法比较感兴趣,这大概是因为在其它各方面的学习和研究中经常会遇到数值解法的问题。理解模型然后列出微分方程,却对着方程无从下手,无法得出精确结果实在是让人难受的一件事情。 实际问题中更多遇到的是利用数值法求解偏微分方程问题,但考虑到先从常微分方程下手更为简单有效率,所以本文只研究常微分方程的数值解法。把一个工程实际问题弄出精确结果远比弄清楚各种细枝末节更有意思,因此文章中不追求非常严格地证明,而是偏向如何利用工具实际求解出常微分方程的数值解,力求将课程上所学的知识真正地运用到实际方程的求解中去,在以后遇到微分方程的时候能够熟练运用MATLAB得到能够在工程上运用的结果。 文中求解过程中用到MATLAB进行数值求解,主要目的是弄清楚各个函数本质上是如何对常微分方程进行求解的,对各种方法进行MATLAB编程求解,并将求得的数值解与精确解对比,其中源程序在附录中。最后考察MATLAB中各个函数的适用范围,当遇到实际工程问题时能够正确地得到问题的数值解。 2.Euler Method(欧拉法)求解 Euler法求解常微分方程主要包括3种形式,即显式Euler法、隐式Euler法、梯形公式法,本节内容分别介绍这3种方法的具体内容,并在最后对3种方法精度进行对比,讨论Euler法的实用性。 本节考虑实际初值问题 使用解析法,对方程两边同乘以得到下式

微分方程数值解欧拉法

1.1、求解初值问题()?????=-=-1 0y y xe dx dy x ,已知精确解为 ()()x x x x y -+=22 12 当h=0.1时,解为: n x n y ()n x y ()n n y x y - 0 1 1 0 0.1 0.900000 0.909362 9.3616E-03 0.2 0.819048 0.835105 1.6057E-02 0.3 0.753518 0.774155 2.0637E-02 0.4 0.700391 0.723946 2.3555E-02 0.5 0.657165 0.682347 2.5182E-02 0.6 0.621775 0.647598 2.5823E-02 0.7 0.592526 0.618249 2.5723E-02 0.8 0.568034 0.593114 2.5080E-02 0.9 0.547177 0.571230 2.4053E-02 1.0 0.529051 0.551819 2.2768E-02 0.1 0.2 0.30.40.50.60.70.80.91 当h=0.05时,解为:

n x n y ()n x y ()n n y x y - 0 1 1 0 0.05 0.950000 0.952418 2.4185E-03 0.10 0.904878 0.909362 4.4835E-03 0.15 0.864158 0.870391 6.2326E-03 0.20 0.827406 0.835105 7.6996E-03 0.25 0.794223 0.803138 8.9155E-03 0.30 0.764247 0.774155 9.9084E-03 0.35 0.737147 0.747850 1.0704E-02 0.40 0.712621 0.723946 1.1324E-02 0.45 0.690397 0.702188 1.1791E-02 0.50 0.670223 0.682347 1.2124E-02 0.55 0.651876 0.664213 1.2338E-02 0.60 0.635148 0.647598 1.2450E-02 0.65 0.619855 0.632328 1.2473E-02 0.70 0.605829 0.618249 1.2420E-02 0.75 0.592918 0.605220 1.2302E-02 0.80 0.580985 0.593114 1.2129E-02 0.85 0.569909 0.581819 1.1909E-02 0.90 0.559579 0.571230 1.1651E-02 0.95 0.549896 0.561258 1.1362E-02 1.00 0.540771 0.551819 1.1048E-02 0.1 0.2 0.30.40.50.60.70.80.91

欧拉公式的证明

欧拉公式的证明 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

欧拉公式的证明 着名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:??? 设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是 e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+.....,

siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有:

相关文档
最新文档