Characterization_of__Rhizoctonia species_associated_with_foliar_necrosis_and

Characterization_of__Rhizoctonia species_associated_with_foliar_necrosis_and
Characterization_of__Rhizoctonia species_associated_with_foliar_necrosis_and

European Journal of Plant Pathology106:27–36,2000.

?2000Kluwer Academic Publishers.Printed in the Netherlands.

Characterization of Rhizoctonia species associated with foliar necrosis and

leaf scorch of clonally-propagated Eucalyptus in Brazil

Silvaldo Felipe da Silveira1,Acelino Couto Alfenas2,Francisco Alves Ferreira2and John Clifford Sutton3

1Laborat′o rio de Protec??a o de Plantas,Universidade Estadual do Norte Fluminense,CEP28.015-620,

Campos dos Goytacazes,RJ,Brazil(Phone/Fax:+55247263746;E-mail:silvaldo@uenf.br);

2Departamento de Fitopatologia,Universidade Federal de Vic?osa,CEP36.571-000,Vic?osa,MG,Brazil;

3Department of Environmental Biology,University of Guelph,Guelph,Ontario,N1G2W1,Canada

Accepted14October1999

Key words:Rhizoctonia solani,Thanatephorus cucumeris

Abstract

The objective was to identify and characterize the causal agent of foliar necrosis and leaf scorch of Eucalyptus spp.in Brazil.Nineteen putative isolates of Rhizoctonia obtained from Eucalyptus plants during clonal propagation were compared with isolates from other hosts and with tester strains of anastomosis groups of Rhizoctonia solani. Features compared were morphological characteristics of anamorphs and teleomorphs,numbers of nuclei per cell in the vegetative hyphae,anastomosis of hyphae,and ability to produce necrotic lesions on cuttings and damping-off of E.grandis×E.urophylla hybrid seedlings.Rhizoctonia solani AG1(‘AG1-IB like’)was the most frequent causal agent isolated from Eucalyptus plants and cuttings with symptoms of leaf scorch and foliar necrosis respectively. These isolates were highly virulent on Eucalyptus cuttings and presented naturally epiphytic growth on Eucalyptus shoots.Binucleate isolates and isolates of R.solani AG4were also virulent on cuttings and were most virulent on Eucalyptus seedlings causing pre-and post-emergence damping-off.Virulence on Eucalyptus cuttings and seedlings was not restricted to a single species or anastomosis group of Rhizoctonia.

Introduction

In Brazil,since1986,severe losses have occurred in clonally-propagated Eucalyptus(Eucalyptus spp.)in screenhouses of production nurseries and after out-planting to the?eld.Losses in screenhouses are chie?y associated with leaf necrosis and stem decay of cut-tings during the initial phase of rooting,while in the ?eld the main symptoms are leaf scorch,leaf spot and defoliation.The disease has been observed in the major areas where Eucalyptus is grown but it is assum-ing more importance in the north of the Minas Gerais State and in the tropical areas as the east coast of the country and in the north Amazon region in the State of Par′a(Ferreira and Silveira,1995;Ferreira,1991). Causes of the diseases in screenhouses and in the?eld have been attributed to Rhizoctonia spp.(Alfenas et al., 1988)and to R.solani K¨u hn(Carvalho et al.,1989a, b;Ferreira,1991;Silveira and Alfenas,1993).Under highly humid conditions,sclerotial epiphytic strains of R.solani grow from the soil to the lower branches and, later,to the apical region of shoots and trees and pro-duce leaf scorch and defoliation(Rezende and Ferreira, 1992).These strains also cause mortality of cuttings in nurseries when infected shoots are used for clonal multiplication(Ferreira,1991).A binucleate isolate of Rhizoctonia sp.has been associated with leaf blight of E.grandis in highland areas of the State of S?a o Paulo (Ferreira and Silveira,1995).A more detailed study, especially of the taxonomic relationships of the causal agents is necessary whilst the etiologies of the diseases remain unclear.

28

The identi?cation of Rhizoctonia spp.does not ade-quately characterize the pathogen because there are many groups that are differentiated primarily by hyphal anastomosis af?nity which show distinctive biological characteristics,including pathogenicity,growth habit, and epidemiology(Ogoshi,1985;1987).Anastomosis groups of Rhizoctonia spp.and of R.solani are some-times considered to constitute reproductively isolated populations or‘biological species’in nature(Ander-son et al.,1982).This af?rmative has been reinforced by biochemical and molecular data(Jabaji-Hare,1996; Kuninaga,1996;Cubeta et al.,1996).

The objective of the present study was to identify and characterize the causal agents of foliar necrosis and leaf scorch of Eucalyptus spp.in Brazil.Fungal iso-lates from Eucalyptus and from other hosts were exam-ined for morphological features of the anamorph and teleomorph.Anastomosis tests were conducted with tester strains of R.solani anastomosis groups.Some Brazilian isolates and Japanese tester strains of repre-sentative groups of R.solani were tested for ability to produce necrotic lesions on cuttings,and damping-off of E.grandis×E.urophylla hybrid seedlings. Materials and methods

Pathogen isolates

Putative Rhizoctonia isolates were obtained from Euca-lyptus cuttings with symptoms of necrosis and from established Eucalyptus plants with leaf scorch symp-toms.For isolation,sclerotia and diseased tissues from Eucalyptus were surface-sterilised by immersion in NaOCl(0.1%chlorine)for20–30s,washed in ster-ile water and placed directly on agar medium.After 24–36h at25?C,colonies were examined with the aid of a dissecting microscope and hyphal tips were transferred to potato–dextrose–agar(PDA)medium. The isolates were maintained on PDA medium,stored at14?C and transferred at6-month intervals.Some isolates from other hosts were also included for comparisons(Table1).

Enumeration of the nuclei

Nuclei were counted in stained vegetative cells with safranine-O in3%aqueous solution of KOH(Yamamoto and Uchida,1982;Kronland and Stanghellini,1988)or Giemsa–HCl(Furtado,1968;Herr,1979).The Giemsa–HCl method was improved by using2-day-old colonies that were grown in a liquid Sucrose–Yeast–Asparagine medium(SY A)(sucrose=10g,yeast extract=2g,L-asparagine=2g,KH2PO4=1g, MgSO4·7H2O=0.1g,ZnSO4·7H2O=0.44mg, FeCl3=0.48mg,MnCl2·H2O=0.36mg,distilled-

H2O for1l?nal volume,pH adjusted to5.3with NaOH before sterilization at120?C20min).

Hyphal anastomosis tests

Each test isolate was paired with the following Japanese tester strains of R.solani:AG1-IA(CSKA,CSIW); AG1-IB(SHIBA2,B19);AG1-IC(F2,BV7);AG2-1 (PS4,F56),AG-2IIIB(C96,C330),AG2-2IV(65L.2, RI64);AG3(ST9,ST-11-6);AG4-HG1(AH1),AG4 (140);AG5(CU8904,GM10);AG6-HG1(OHT-1), AG7(H0-1556)and AG-BI(TS-2-4)(Sneh et al.,1991;

A.Ogoshi,https://www.360docs.net/doc/3610762341.html,m.).For each pairing,a0.3cm-diameter disk from2-to4-day-old colonies of the test isolate and the tester strain were positioned3-cm apart on sterilized cellophane paper on a microscope slide(7.5×2.5cm).Before pairings,the cellophane paper was soaked in distilled water to prevent drying. Slides with disks were kept in a saturated atmosphere in humidity chambers in the dark at25?C,and observed for anastomosis after24,30,36,42,and48h.Each pair-ings were replicated four all times.Positive controls consisted of pairings between tester strains of the same anastomosis group and subgroup.The isolates RH-3, RH-18,and RH-10were also paired with the other iso-lates obtained in the study to con?rm previous results of anastomosis and enumeration of the nuclei.Anas-tomosis was regarded as positive when hyphae grew together,made contact,and their walls fused,followed by death of adjacent cells(‘killing reaction’)(Parmeter et al.,1967;1969).Hyphal anastomosis was observed with a compound microscope using safranine-O–KOH as a mounting stain(Yamamoto and Uchida,1982).

Morphology of the anamorph

The color of mycelium,and the presence and morphol-ogy of sclerotia and monilioid cells were recorded for isolates grown on PDA for10days at25?C in the dark.Morphology of sclerotia produced on Eucalyp-tus sprouts that were naturally infected or arti?cially inoculated were also examined.

29

Table1.Origin,nuclear condition and hyphal anastomosis groups of the isolates of Rhizoctonia studied

Isolate Host Symptoms Origin/Date Nuclear cell number Hyphal anastomosis

of vegetative hyphae?groups and subgroups RH-1Eucalyptus sp.Leaf scorch Ipatinga MG/19876–10–13AG1-IB

RH-2Eucalyptus sp.Leaf scorch Rio Jari,PA/19916–10–15AG1-IB

RH-3Eucalyptus sp.Leaf scorch Teixeira de Freitas6–10–15AG1-IB

BA/1991

RH-4Eucalyptus sp.Leaf scorch Teixeira de Freitas6–10–12AG1-IB

BA/1992

RH-5Eucalyptus sp.Cutting rot Aracruz,ES/19922–(3–4)ND?

RH-6Eucalyptus sp.Leaf scorch on Vic?osa,Mg/19886–10–15AG4

seedlings

RH-7Gossypium sp.Damping-off Vic?osa,Mg/19886–10–15AG4

RH-8Eucalyptus grandis Damping-off Vic?osa,Mg/19886–10–15AG4

H.ex M.

RH-10Eucalyptus sp.Cutting rot T.de Freitas,BA/19882–(3–4)ND

RH-11Eucalyptus sp.Cutting rot Aracruz,ES/19916–10–15AG4

RH-12Phaseolus vulgaris L.Damping-off Venda Nova,ES/19926–10–15AG4

RH-15Eucalyptus sp.Leaf scorch T.de Freitas,BA/19926–10–15AG1-IC

RH-16Eucalyptus sp.Cutting rot Aracruz,ES/19926–10–12AG1-IB

RH-17Eucalyptus sp.Cutting rot Aracruz,ES/19926–10–15AG1-IB

RH-18Eucalyptus sp.Cutting rot Aracruz,ES/19926–10–15AG1

RH-19Eucalyptus sp.Leaf scorch Aracruz,ES/19926–10–15AG1-IB

RH-20Eucalyptus sp.Leaf scorch Eun′a polis,BA/19936–10–15AG1-IB

RH-21Phaseolus vulgaris Web-blight Linhares,ES/19936–10–15AG1-IB

RH-22Eucalyptus sp.Leaf scorch T.de Freitas,BA/19936–10–15AG1-IB

RH-23Caesalpinia Leaf scorch Vic?osa,Mg/19932–(3–4)ND

echinata LAM.

RH-24Thuja sp.Damping-off Vic?osa,Mg/19942–(3–4)ND

RH-25Eucalyptus sp.Leaf scorch Ipatinga,Mg/19946–10–15AG1-IB

RH-26Phaseolus vulgaris Web-blight Ponte Nova,Mg/19946–10–15AG1-IC

RH-27Eucalyptus sp.Leaf scorch Ipatinga,Mg/19956–10–15AG1-IB

RH-28Eucalyptus sp.Leaf scorch S.J.dos Campos,2–(3–4)ND

SP/1995

RH-29Eucalyptus sp.Leaf scorch Vic?osa,Mg/19956–10–15AG1-IB

?Values in parentheses were observed mostly in terminal cells of young branches of binucleate hyphae.The minor nuclear cell number veri?ed in the multinucleate hyphae were commonly in terminal cells of the young branches and the major nuclear cell number were veri?ed mostly in large thick-walled cells of the mycelium(‘runner hyphae’).

ND=anastomosis group was not determined because tester binucleate strains for pairings were lacking.

Teleomorph induction and morphology

To promote teleomorph formation,bunches of10–15 detached Eucalyptus shoots were inoculated with a mycelial suspension of each test isolate of Rhizoctonia. The isolates were grown in SY A medium at25?C in darkness for4days,after which the mycelium was recovered in a Buchner funnel,suspended in tap water(0.05%w/v),and homogenized(Polytron, Brinkman Instruments )for1min.The Eucalyptus shoots were surface sterilized,dried with paper towels, immersed in the mycelial suspensions,and positioned with their basal ends in tap water in0.5l containers.The inoculated shoots were kept in a glass chamber, under intermittent misting with aerated water(5min on:15min off),with relative humidity oscillating between80%and100%,temperature of25?C and a 12-h photoperiod(600–2000lux,cool-white?uores-cent lights).Isolates that did not sporulate on Eucalyp-tus shoots were evaluated for teleomorph production by the following methods modi?ed from previous authors:(i)transfer from a rich to a poor medium (Whitney and Parmeter,1963),(ii)addition of aerated steamed soil over cultures on potato–yeast–dextrose agar(PYDA)medium on plates(Tu and Kimbrough, 1975)and(iii)divided plate,with growth from a rich

30

to a poor medium,under aerated wet to dry conditions

(Adams and Butler,1983a,b).The morphology of

basidia,sterigmata,basidiospores,supporting hyphae

of the basidium,and hyphal branching of the hyme-

nium tissues were examined under light microscopy

(400–1000×magni?cation),using lactophenol–cotton

blue as a mounting stain.

Pathogenicity tests

Isolates that differed in origin,morphology and anas-

tomosis grouping were selected to be compared for

ability to produce necrotic lesions on leaves of cut-

tings and damping-off of young Eucalyptus plants.

The substrate for cuttings and seeds was a mixture of

composted Eucalyptus bark and vermiculite(7:3,v/v)

amended with fertilizer Osmocote(NPK,17:9:13)at

0.01%(w/v),autoclaved at120?C for1h and again

after24h.After sterilization,each300g of the mix-

ture was infested with100ml of a water suspension

of comminuted mycelium(0.05%w/v).The mycelium

was obtained as described for teleomorph induction.

Each300-g portion of the infested substrate was lightly

compacted into a plastic chamber(Gerbox type).

As in routine use to induce adventitious rooting,the

8–10cm long cuttings,taken from45-day-old shoots

of E.grandis×E.urophylla hybrid,were prepared

with a pair of leaves each of which was trimmed to

half length.Five cuttings were planted in each one

of the three chambers per isolate(three replicates).

The incubation conditions were as described for teleo-

morph induction.In the controls,only sterilized water

was added to the substrate.After?ve days,disease

severity was assessed on the half-leaves of cuttings,

using the following scale:0,no lesions;1,lesions <1cm in diameter;2,lesions>1cm in diameter to 50%of the leaf area;3,lesions on>50%of the

leaf area.

To test the ability of isolates to cause damping-off,

49seeds of E.grandis×E.urophylla hybrid were sown

1cm apart on infested substrate in each of a series of

three Gerbox chambers,which were closed by lids and

positioned in a germination chamber at25?C and with

a12-h photoperiod(2000lux).After48h,when the

seedlings began to emerge,lids of the Gerbox cham-

bers were removed and the seedlings were irrigated

daily with20ml sterilized water per unit.Incidence of

seedling emergence and of post-emergence damping-

off were determined daily from days7–15after sowing.

Variance analyses of the data and Scott–Knott averages comparison were done on PC compatible software (SAEG–Genetics and Statistics Analyses System, Euclides,1983).

Results

Enumeration of nuclei

Of the six isolates of Rhizoctonia from Eucalyptus cut-tings with necrosis on leaves,four were multinucleate and two binucleate(Table1).Among twelve isolates from plants or shoots with symptoms of leaf scorch col-lected in the?eld,eleven were multinucleate and one binucleate.

Anastomosis groups

Three multinucleate isolates from plants with leaf scorch,and all multinucleate isolates from necrotic lesions on cuttings,anastomosed with isolates of group AG-1of R.solani(Table1).Multinucleate isolates RH-6,RH-8,and RH-11from Eucalyptus,RH-7from cotton and RH-12from bean anastomosed with isolates from group AG-4.Binucleate isolates RH-5,RH-10, and RH-28from Eucalyptus,RH-23from Caesalpinia echinata and RH-24from Thuja sp.,did not anasto-mose with any of the R.solani tester strains.When the binucleate RH-10was used as a tester anastomosis occurred with the binucleate isolates RH-5and RH-24. Anamorph morphology

On Eucalyptus shoots,the multinucleate Brazilian iso-lates RH-1to4,RH-17,RH-19,RH-20,RH-22,RH-25, and RH-27produced small and irregular sclerotia (100–300μm in length)that were whitish or greyish when young and light-brown when mature(Figure1D). On PDA,the isolates did not form monilioid cells and their sclerotia were formed among entangled hyphae(Figure1E).The mycelium was light-brown to yellowish-brown and,on PDA,formed?at sclerotial masses,2–10mm in diameter,that were whitish-grey when young and light-brown at maturity.Translucent drops of a dark-brown liquid were exuded in cavities in the surface of sclerotial masses.These isolates were thus morphologically similar to Japanese isolates B19 and SHIBA2of R.solani AG1-IB(Watanabe and Matsuda,1966).The other three Brazilian AG1iso-lates,RH-16,RH-21,and RH-29,were also simi-lar to R.solani AG1-IB isolates on the host,but on

31

Figure1.Morphological characteristics of Brazilian isolates of Thanatephorus cucumeris(R.solani of anastomosis group1)similar to that of subgroup AG1-IB(A,B,C,D and E,isolate RH3)and to subgroup AG1-IC(F and G,isolate RH15).A–appearance of the hymenium on surface of eucalyptus leaf;B–basidium and young basidiospores;C–collapsed basidia(arrows)and mature basidiospores; D–‘microsclerotial’type sclerotia;E–‘microsclerotial’type of sclerotial formation among entangled hyphae;F–regularly spherical sclerotia,white when young and nearly black at maturity;G–forming sclerotia showing monilioid chlamydosporic cells.

32

PDA medium they produced dark-brown mycelium and barrel-shaped monilioid cells(10–20×20–35μm) that were isolated or in loose aggregates on aerial mycelium.In vitro,sclerotia of these isolates were less than500μm in diameter and were formed by clus-ters of monilioid cells.On inoculated shoots these isolates produced abundant small irregular sclero-tia similar to those produced by AG1-IB isolates. When on PDA,the Japanese AG1-IB isolates showed creamy to light-brown mycelium,sclerotial crusts with super?cial drops of a dark-translucent exudate,and monilioid cells.

Cultural characteristics and sclerotial morphology of Brazilian isolates RH-15and RH-26were similar to those of Japanese isolates B19and F2of R.solani AG1-IC(Watanabe and Matsuda,1966).On PDA, mycelium of RH-15and of RH-26was creamy to light-brown;the sclerotia were regularly spheroid,300–1500μm in diameter,initially white,and brown to black at maturity(Figure1F).When immature,the sclerotia had oblong,hyaline monilioid cells,each 15–20μm in major diameter(Figure1G).

Isolate RH-18,a multinucleate form of R.solani AG-1from Eucalyptus with scorch symptoms,pro-duced light-cream to brownish-cream mycelium on PDA,and concentric zones of light aerial mycelium with barrel-shaped monilioid cells(7.5–15.0×15.0–25.0μm)on aerial agglomerations of mycelium.On the host,RH-18produced only dense epiphytic light-cream mycelium.

The binucleate isolates RH-5and RH-10were similar in morphology.On PDA each produced light-cream to greyish-cream mycelium,and formed sclerotial crusts that were brown and<1mm in major diameter at the base of the medium in petri dishes and culture tubes.Loose aggregations of monilioid cells, that were10–15×15–30μm in size and generally barrel-shaped,were produced on aerial mycelium and on sclerotia,which were rare.Neither isolates produced sclerotia when inoculated on Eucalyptus.Mycelial characteristics of binucleate isolates RH-23and RH-24were similar to those of RH-5and RH-10,but RH-23did not form monilioid cells and formed?at brown sclerotial mass in concentric zones on PDA medium. Similarly,RH-24did not produce monilioid cells and its sclerotia were formed at the edge of colonies among entangling hyphae.

The binucleate isolate RH-28that was isolated from Eucalyptus branches with leaf scorch symp-toms formed distinctive sclerotia in the?eld.The sclerotia were elongated,200–300×500–900μm,and creamy-brown.Under?eld conditions,creamy-grey to greyish-brown mycelial strands up to2mm in diame-ter were super?cially formed on the affected branches of the trees(Ferreira and Silveira,1995).On PDA, colonies of RH-28developed slowly at25?C,were creamy-yellow when young and,after15days,were dark-brown and velvety near the center and light-brown near the edges.Monilioid cells,sclerotia,and mycelial cords were not observed in culture.

Teleomorph induction and morphology Teleomorphs were produced when host tissues were inoculated with the isolates RH-2,RH-3,RH-4,RH-15, RH-16,RH-17,and RH-20from Eucalyptus,RH-21 from bean and RH-24from Thuja sp.,but not by other isolates or by other methods of induction tested.Except RH-24,all the other cited isolates produced basidial branching,basidia and basidiospores that con?rmed that the teleomorph was Thanatephorus cucumeris Frank(Donk)(Talbot,1970)(Figure1B and1C).All these isolates were multinucleate and belonged to anas-tomosis group AG-1of R.solani.Binucleate isolate RH-24formed a dense,smooth hymenium with sparse basidial branching and loose clusters of short basidia on Eucalyptus leaves.The basidia were obovoid to pyriform and two to three times greater in diame-ter than the basidiogenous hyphae.The basidiospores were subspherical,and exhibited repetitive germina-tion,characteristic of Ceratobasidium Rogers.The size of the basidia(7,5–10–13×6–7–8.5μm)and basid-iospores(4.0–6–7.0×3.2–5–6.2μm)did not conform with those of species of Ceratobasidium(Sneh et al., 1991;Stalpers and Andersen,1996). Pathogenicity tests

All isolates except RH-28caused some necrosis on Eucalyptus cuttings but the severity of symptoms var-ied widely among isolates(Figure2A).Multinucleate isolates RH-2,RH-3,RH-6,RH-18,RH-21,and F2, and binucleate isolates RH-5,RH-10and RH-24pro-duced severe disease at levels that did not differ sig-ni?cantly(P<0.05).Multinucleate isolates RH-15, RH-16,and RH-29,and binucleate isolate RH-23 produced moderately severe disease.Isolate RH-8,a multinucleate form from Eucalyptus seedlings with damping-off,and Japanese isolate B19,produced mild symptoms.

33

Figure 2.Virulence of Rhizoctonia isolates to E.grandis ×E.urophylla hybrid cuttings and seedlings.A –Average severity of leaf scorch on leaves of eucalyptus cuttings ?ve days after inoculation (CV =25%);B –Percentage of emerged healthy and diseased eucalyptus seedlings (CV =20%)?fteen days after sowing.The RH designation identi?es Brazilian test isolates and B19and F2correspond to Japanese tester strains of R.solani AG1-IB and -IC,respectively.The control not inoculated is T.The bars with the same letter did not share signi?cant different values at 5%probability by Skott-Knott test.

All isolates,except RH-15,RH-28,and B-19,reduced emergence of Eucalyptus seedlings,and isolates RH-19,and RH-28caused post-emergence damping-off (Figure 2B).RH-6,RH-8,and F2caused severe reduction in emergence.Binucleate isolates RH-5,RH-10,RH-23,and RH-24,but not RH-28,reduced seedling emergence and all caused post-emergence damping-off.Isolates of R.solani group AG-1(RH-2,RH-3,RH-16,RH-18,RH-21,and RH-29)from aerial parts and cuttings of Eucalyptus caused pre-emergence damping-off but incidence of seedling emergence was greater than that for isolates of R.solani group AG4from seedbeds (RH-6and RH-8).

Discussion

At the International Symposium on Rhizoctonia ,in Noordwijkerhout,The Netherlands,in 1995,it was proposed that Rhizoctonia solani K¨u hn be established as the new type species of the genus (Stalpers and Andersen,1996).Thus,our paper follows the concept of the genus Rhizoctonia according to the rede?nition of the species R.solani ,based on that of Parmeter and Whitney (1970)and to rede?nition of the genus,as was later amended by Ogoshi (1975).

In the present work,with the exception of one bin-ucleate isolate (RH-28),the fungal isolates that were pathogenic to foliage and shoots of Eucalyptus were identi?ed as R.solani and made hyphal anastomosis with AG1tester strains.Production of the teleomorph T.cucumeris by most of the AG1isolates con?rmed that the anamorphs were those of R.solani (Parmeter and Whitney,1970;Talbot,1970).In Kerala,India,R.solani was also reported to be a principal pathogen of Eucalyptus in forest nurseries,where it caused damping-off of seedlings,and necrosis and leaf scorch of transplants,but these reports did not include any characterization at the subspeci?c level (Sharma,1986;Sharma and Florence,1984).

Among the Brazilian R.solani AG1isolates from Eucalyptus,one belonged to subgroup AG1-IC (Ogoshi,1987)AG1-type 3(Sherwood,1969)and twelve had cultural characteristics similar,but not iden-tical,to Japanese isolates B19and SHIBA2of R.solani AG1-IB (Sneh,1991).The differences were that some of the Brazilian cultures lacked monilioid cells and,differed in color on PDA.On the host,Brazilian iso-lates produced epiphytic growth and microsclerotia,similar to that produced by R.solani AG1-IB Japanese isolates.Because the three subgroups of R.solani AG1,-IA,-IB and -IC,were based primarily on pathogenicity and on sclerotial and cultural morphol-ogy,but not on hyphal anastomosis (Ogoshi,1985),the present ?ndings indicate that additional morpho-logical sub-populations exist in the anastomosis group 1of the R.solani .Isolates of those known subgroups IA,IB and IC constitute a portion of the diversity of the R.solani AG1.Liu and Sinclair (1993)compared 61isolates of R.solani AG1by means of RFLP anal-ysis of spacer sequences of the nuclear rDNA,and revealed the existence of six intraspeci?c subgroups (ISG).According to Vilgalys and Gonzales (1990),variability of rDNA-RFLPs among isolates within each of the AG1subgroups,IA,IB and IC,suggests

34

the existence of additional genetically divergent sub-populations.Detailed studies with a larger diversity of isolates are needed to?nd the relative importance of morphological features,such as the color of cultures, sclerotial formation and the presence and morphology of monilioid cells,and molecular data on subgrouping R.solani AGI.The subgroup AG1-IB,which was once classi?ed as a different species,Rhizoctonia microscle-rotia Matz,1917(Parmeter and Whitney,1970),was also assigned to‘web-blight type’(Watanabe and Matsuda,1966)and to anastomosis subgroups type1 of R.solani(Sherwood,1969).In this work,the AG1‘microesclerotial type’isolates from Eucalyptus were named R.solani‘AG1-IB like’.

Isolate RH-18was included in AG1on the basis of hyphal anastomosis,but showed cultural charac-teristics and sclerotia that differed from isolates of AG1-IA,AG1-IB and AG1-IC,and did not correspond with descriptions of other groups(Sneh et al.,1991; Ogoshi,1987).Mycelium of RH-18lacked brown pig-mentation on PDA,which should exclude the isolate from R.solani(Parmeter and Whitney,1970;Talbot, 1970).However RH-18repeatedly anastomosed with Brazilian and Japanese isolates of R.solani AG1.In R.solani,hyphal anastomosis is considered strong evi-dence for identi?cation of this species once this charac-ter is thought to be regulated by complex compatibility factors(Parmeter and Whitney,1970).RH-18appears to be an isolate which does not possess the diagnostic characteristics of any group or subgroup of the genus, in common with the‘overlapping isolates’of Sherwood (1969).This author observed the existence of isolates of the four main anastomosis groups of R.solani that share some characteristics such as lacking sclerotia and strong pigmentation.Additionally,there is no men-tion in the literature about hyphal anastomosis between isolates of R.solani AG1and bridging isolates of other anastomosis groups or species(Carling,1996). Morphological observations and anastomosis data indicate that there was taxonomic diversity among the binucleate isolates.From the evidence,RH-5and RH-10from Eucalyptus belong to the same anamor-phic species.Mycelial characteristics and production of sclerotia of RH-5and RH-10indicate that they are R.fragariae Husain and McKeen(Husain and McKeen,1963;Sneh et al.,1991).RH-24that causes damping-off in Thuja sp.produced subspherical to spherical basidiospores similar to,but larger than,those of the orchid symbionts C.sphaerosporium Warcup and Talbot and C.globiosporum Warcup and Talbot (Sneh et al.,1991).Basidia of RH-24also did not match descriptions of the orchid symbionts.RH-24 differed from RH-5and RH-10in that it produced super?cial sclerotia formed as entangled hyphae but not monilioid cells on PDA medium.RH-24anasto-mosed with RH-5and RH-10,however anastomosis does not clearly delimit anamorphs and teleomorphs of binucleate Rhizoctonia(Ogoshi,1985;Oniki et al., 1986;Burpee et al.,1980).In the absence of avail-able culture types,the binucleate Rhizoctonia RH-5, RH-10,RH-23and RH-24were not identi?ed at species level.

The binucleate isolate RH-28has morphological characteristics of Rhizoctonia(Ogoshi,1975),except that it produced mycelial strands on host branches in the?eld,which could be considered as rhizomorphs (Ferreira and Silveira,1995).The presence of rhi-zomorphs exclude all fungi from Rhizoctonia genus concept(Ogoshi,1975).More detailed studies on the morphology of mycelial strands,sclerotia,septa and basidia are needed to identify RH-28to genus and species levels.Inoculation of Eucalyptus branches with mycelium of this isolate caused a few lesions on some leaves,but failed to produce sexual structures,sclero-tia and mycelial strands or anything like rhizomorphs (data not presented).

According to Baker(1970),isolates of R.solani that are ecologically adapted to aerial or underground parts of plants are relatively specialized,while those that are found on the soil surface are relatively unspecialized. R.solani AG-4is one of the main examples of the rel-atively unspecialized form,and includes isolates that have broad host ranges,attack plants at the soil level, and cause pre-and post-emergence damping-off(Sneh et al.,1991).In the present study,isolates RH-6and RH-8of R.solani AG-4caused necrotic lesions on foliage of Eucalyptus cuttings,but other isolates in this group did not attack the shoots.For these unspecialized isolates,as for the AG4isolates and for binucleate iso-lates that occur in the soil surface,the rooting medium would be the main source of inoculum in production systems of Eucalyptus cuttings.

The R.solani‘AG1-IB-like’isolates that caused leaf scorch of Eucalyptus conformed with the ecological group‘true aerial forms’of Baker(1970).This author suggested that in regions with humid climates,these aerial forms have a fast epiphytic growth and produce abundant sclerotia on host,which could favor an aerial existence independent of the soil.Besides Eucalyptus, R.solani AG1-IB is a pathogen of aerial parts of plants

35

in various families,especially the Leguminosae(Sneh et al.,1991;Ogoshi,1985).These characteristics must be considered for the control of disease in Eucalyptus nurseries and hedges when the diseased or symptom-less shoots are sources of inoculum in cuttings used for propagation systems(Ferreira,1991). Acknowledgements

The authors thank Dr.Akira Ogoshi(Faculty of Agri-culture,Hokkaido University,Japan),Dr.James B. Sinclair and Dr.Zoglin L.Liu(University of Illinois, Urbana-Champaign,USA),for kindly supplying tester strains of R.solani.Appreciation is extended to the Brazilian individuals and institutions which pro-vided additional Rhizoctonia isolates.The scholarships of the Brazilian foundations,Conselho Nacional de Desenvolvimento Cient′??co e Tecnol′o gico(CNPq)and Coordenac??a o de Aperfeic?oamento de Pessoal de N′?vel Superior(CAPES)is gratefully acknowledged by the ?rst author.

References

Adams GC Jr and Butler EE(1983a)In?uence of nutrition on the formation of basidia and basidiospores in Thanatephorus cucumeris.Phytopathology73:147–151

Adams GC Jr and Butler EE(1983b)Environmental factors in?uencing the formation of basidia and basidiospores in Thanatephorus cucumeris.Phytopathology73:152–155 Alfenas AC,Ferreira FA,Barbosa MM et al.(1988)Fungos asso-ciados`a podrid?a o de estacas de eucalipto para enraizamento (Fungi associated with the Eucalyptus cuttings rot).Brazilian Phytopathology13:310(in Portuguese,abstr)

Anderson NA(1982)The genetics and pathology of Rhizoctonia solani.Ann Rev Phytopathology,20:329–347

Baker KF(1970)Type of Rhizoctonia disease and their occur-rence.In:Parmeter JR Jr(ed)Rhizoctonia solani:Biology and Pathology(pp20–31)University of California Press,London Burpee LL,Sanders PL,Cole H Jr and Sherwood RT(1980)Anas-tomosis groups among isolates of Ceratobasidium cornigerum and related fungi.Mycologia.72:689–701

Carling DE(1996)Grouping in Rhizoctonia solani by hyphal anastomosis interactions.In:Sneh B,Jabaji-Hare S,Neate S and Dijst G(eds)Rhizoctonia species:Biology,Ecology, Pathology and Disease Control(pp35–47)Kluwer Academic Publishers,London

Carvalho AO,Alfenas AC and Demuner NL(1989a)Pato-genicidade de fungos isolados de estacas de eucalipto para enraizamento(Pathogenicity of fungi isolated from Eucalyp-tus cuttings for rooting).Brazilian Phytopathology14:122(in Portuguese,abstr)Carvalho AO,Brommonschenkel SH,Alfenas AC et al.(1989b) Identi?cac??a o de culturas de Rhizoctonia spp.isoladas de eucalipto e leucena(Identi?cation of cultures of Rhizoctonia spp.isolated from Eucalyptus and leucena).Brazilian Phy-topathology14:121(in Portuguese,abstr)

Cubeta MA,Vilgalys R and Gonzales D(1996)Molecular analy-sis of ribosomal RNA genes in Rhizoctonia fungi.In:Sneh B, Jabaji-Hare S,Neate S and Dijst G(eds)Rhizoctonia species: Biology,Ecology,Pathology and Disease Control(pp81–86) Kluwer Academic Publishers,London

Euclides RF(1983)Sistema para An′a lise Estat′isticas e Gen′e ticas(SAEG)(Genetics and Estatistics Analyses System). CPD/UFV,Divis?a o de Pesquisa e Desenvolvimento,Vic?osa, MG(in Portuguese)

Ferreira FA(1991)Queima foliar de eucalipto,por Rhizoctonia solani em jardim clonal e plantas no campo da regi?a o amaz?o nica(Eucalyptus leaf blight by R.solani on hedges and plantations of the amazon region).Brazilian Phytopathology 16:32(in Portuguese,abstr)

Ferreira FA and Silveira SF(1995)Queima de folhas do eucalipto no Estado de S?a o Paulo causada por uma Rhizoctonia binucle-ada(Eucalyptus leaf blight in the State of the S?a o Paulo caused by a binucleate Rhizoctonia).Brazilian Phytopathology20:366 (in Portuguese,abstr)

Furtado JS(1968)Basidial cytology of Exidia nucleata. Mycologia60:9–15

Herr LJ(1979)Practical nuclear staining procedures for Rhizoc-tonia like fungi.Phytopathology69:958–961

Husain SS and Mckeen WE(1963)Rhizoctonia fragariae sp.nov. in relation to strawberry degeneration in southeastern Ontario. Phytopathology53:532–540

Jabaji-Hare S(1996)Biochemical methods.In:Sneh B,Jabaji-Hare S,Neate S and Dijst G(eds)Rhizoctonia species:Biology, Ecology,Pathology and Disease Control(pp65–71)Kluwer Academic Publishers,London

Kronland WC and Stanghellini ME(1988)Clean slide technique for the observation of anastomosis and nuclear condition of Rhizoctonia solani.Phytopathology78:820–822

Kuninaga S(1996)DNA base sequence complementary analyses. In:Sneh B,Jabaji-Hare S,Neate S and Dijst G(eds)Rhizocto-nia species:Biology,Ecology,Pathology and Disease Control (pp73–80)Kluwer Academic Publishers,London

Liu ZL and Sinclair JB(1993)Differentiation of intraespeci?c groups within anastomosis group1of Rhizoctonia solani using ribosomal DNA internal transcribed spacer and isozyme com-parisons.Can J P Pathol15:272–280

Ogoshi A(1987)Ecology and pathogenicity of anastomosis and intraspeci?c groups of Rhizoctonia solani KUHN.Ann Rev Phytopathology25:125–143

Ogoshi A(1985)Anastomosis and intraspeci?c groups of Rhizoc-tonia solani and binucleate Rhizoctonia.Brazilian Phytopathol-ogy10:371–390

Ogoshi A(1975)Grouping of Rhizoctonia solani and their perfect states.Rev of Plant Protect Res Japan8:98–103

Oniki M,Ogoshi A and Araki T(1986)Ceratobasidium setariae, C.cornigerum,and C.gramineum,the teleomorphs of the pathogenic binucleate Rhizoctonia fungi from gramineous plants.Trans Mycologia Soc Japan27:147–158

36

Parmeter JR Jr,Sherwood RT and Platt WD(1969)Anasto-mosis grouping among isolates of Thanatephorus cucumeris. Phytopathology59:1270–1278

Parmeter JR Jr and Whitney HS(1970)Taxonomy and nomencla-ture of the imperfect state.In:Parmeter JR Jr(ed)Rhizoctonia solani,Biology and Pathology(pp7–19)University of Califor-nia Press,London

Parmeter JR Jr,Whitney HS and Platt WD(1967)Af?ni-ties of some Rhizoctonia species that resemble mycelium of Thanatephorus cucumeris.Phytopathology57:218–223 Rezende DV and Ferreira FA(1992)Epi?tismo de linhagens de Rhizoctonia solani na doenc?a queima de folhas do eucalipto (Epiphytism of strains of the Rhizoctonia solani in the Euca-lyptus leaf blight disease).Brazilian Phytopathology17:204 (in Portuguese,abstr)

Sharma JK(1986)Eucalyptus in India:Past,Present and Future: Potential threat of native pathogens on exotic Eucalyptus in Kerala.Kerala Forest Res Inst,KFRI,Scienti?c Paper72: 367–376

Sharma JK and Florence EJM(1984)Nursery diseases of Euca-lyptus in Kerala,India.Eur J Forest Pathology19:77–87 Sherwood RT(1969)Morphology and physiology in four anas-tomosis groups of Thanatephorus cucumeris.Phytopathology 59:1924–1929

Silveira SF and Alfenas AC(1993)Characterization of isolates of Rhizoctonia solani K¨u hn,causal agent of leaf spot,web-blight,

damping-off and cutting rot of Eucalyptus spp.Annals of6th International Congress of Plant Pathology142(abstr)

Sneh B,Burpee L and Ogoshi A(1991)Identi?cation of Rhizo-ctonia species.APS Press,New York

Stalpers JA and Andersen TF(1996)A synopsis of the taxonomy of teleomorphs connected with Rhizoctonia s.l.In:Sneh B, Jabaji-Hare S,Neate S and Dijst G(eds)Rhizoctonia species: Biology,Ecology,Pathology and Disease Control(pp49–63) Kluwer Academic Publishers,London

Talbot PHB(1970)Taxonomy and nomenclature of the perfect state.In:Parmeter JR Jr(ed)Rhizoctonia solani,Biology and Pathology(pp20–31)University of California Press,London Tu CC and Kimbrough JW(1975)A modi?ed soil-over-culture method for inducing basidia in Thanatephorus cucumeris. Phytopathology65:730–731

Vilgalys R and Gonzales D(1990)Ribosomal DNA restrition fragment length polymorphisms in Rhizoctonia solani.Phy-topathology80:151–158

Watanabe B and Matsuda A(1966)Studies on the grouping of Rhizoctonia solani K¨u hn pathogenic to upland crops.P Dis Insects Pests7:1–131(Bull Appl Exp)

Whitney HS and Parmeter JR Jr(1963)Synthesis of hetero-karyons in Rhizoctonia solani K¨u hn.Can J Bot41:879–886 Yamamoto DT and Uchida JY(1982)Rapid nuclear staining of Rhizoctonia solani and related fungi with acridine orange and with safranin.Mycologia.74:145–149

高中参考资料化学人教版选修3 第二章 训练4 杂化轨道理论

训练4杂化轨道理论 [基础过关] 一、原子轨道杂化与杂化轨道 1.下列有关杂化轨道的说法不正确的是() A.原子中能量相近的某些轨道,在成键时能重新组合成能量相等的新轨道 B.轨道数目杂化前后可以相等,也可以不等 C.杂化轨道成键时,要满足原子轨道最大重叠原理、最小排斥原理 D.杂化轨道可分为等性杂化轨道和不等性杂化轨道 2.下列关于杂化轨道的叙述正确的是() A.杂化轨道可用于形成σ键,也可用于形成π键 B.杂化轨道可用来容纳未参与成键的孤电子对 C.NH3中N原子的sp3杂化轨道是由N原子的3个p轨道与H原子的s轨道杂化而成的 D.在乙烯分子中1个碳原子的3个sp2杂化轨道与3个氢原子的s轨道重叠形成3个C—H σ键二、杂化轨道类型及其判断 3.根据价层电子对互斥理论及原子的杂化轨道理论判断NF3分子的立体构型和中心原子的杂化方式为 () A.直线形sp杂化B.三角形sp2杂化 C.三角锥形sp2杂化D.三角锥形sp3杂化 4.在BrCH===CHBr分子中,C—Br键采用的成键轨道是() A.sp—p B.sp2—s C.sp2—p D.sp3—p 5.下列分子中的中心原子杂化轨道的类型相同的是() A.CO2和SO2B.CH4和NH3 C.BeCl2和BF3D.C2H2与C2H4 三、杂化轨道类型与分子构型 6.下列说法中正确的是() A.PCl3分子是三角锥形,这是因为磷原子是sp2杂化的结果 B.sp3杂化轨道是由任意的1个s轨道和3个p轨道混合形成的4个sp3杂化轨道 C.中心原子采取s p3杂化的分子,其立体构型可能是四面体形或三角锥形或V形 D.AB3型的分子立体构型必为平面三角形 7.下列推断正确的是() A.BF3为三角锥形分子 B.NH+4的电子式为[H··N H , H · · H]+,离子呈平面正方形结构 C.CH4分子中的4个C—H键都是氢原子的1s轨道与碳原子的2p轨道形成的s-p σ键D.甲醛分子为平面三角形,有一个π键垂直于三角形平面 8.甲烷分子(CH4)失去一个H+,形成甲基阴离子(CH-3),在这个过程中,下列描述不合理的是

杂化轨道理论(图解)

杂化轨道理论(图解)一、原子轨道角度分布图 S Px Py Pz dz2 dx2-y2dxy dxz dyz 二、共价键理论和分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)和1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。他们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k?u`veilent]bond[b?nd])。用黑点代表价电子(即最外层s,p轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子(lone[l?un]pair[pε?]electron[i`lektr?n])。Lewis结构式的书写规则又称八隅规则(即8电子结构)。 评价贡献:Lewis共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其与离子键的区别。局限性:①、未能阐明共价键的本质和特性;②、八隅规则的例外 PCl5SF6BeCl2BF3NO,NO2… 中心原子周围价电子数101246含奇数价电子的分子… ③、不能解释某些分子的性质。含有未成对电子的分子通常是顺磁性的(即它们在磁场中表现出磁性)例如O2。 2、1927年德国的海特勒Heitler和美籍德国人的伦敦London两位化学家建立了现代价键理论,简称VB理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特和美国的马利肯两位化学家提出分子轨道理论,简称MO理论。马利肯由于建立和发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO法和VB法是两种根本不同的物理方法;都是电子运动状态的近似描述;在一定条件

杂化轨道理论(图解)

杂化轨道理论(图解) 一、原子轨道角度分布图 S Px Py Pz dz 2 dx 2-y 2 dxy dxz dyz 二、共价键理论与分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)与1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。她们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总就是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k ?u`veilent]bond[b ?nd])。用黑点代表价电子(即最外层s,p 轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子(lone[l ?un ]pair[pε?]electron[i`lektr ?n])。Lewis 结构式的书写规则又称八隅规则(即8电子结构)。 评价 贡献:Lewis 共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其与 PCl 5 SF 6 BeCl 2 BF 3 NO,NO 2 … 中心原子周围价电子数 10 12 4 6 含奇数价电子的分子 … ③、不能解释某些分子的性质。含有未成对电子的分子通常就是顺磁性的(即它们在磁场中表现出磁性)例如O 2。 2、1927年德国的海特勒Heitler 与美籍德国人的伦敦London 两位化学家建立了现代价键理论,简称VB 理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特(F 、Hund)与美国的马利肯(R 、S 、Mulliken)两位化学家提出分子轨道理论,简称MO 理论。马利肯(R 、S 、Mulliken)由于建立与发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO 法与VB 法就是两种根本不同的物理方法;都就是电子运动状态的近似描述;在一定条

人教版高中数学选修三分子的立体构型练习题

高中化学学习材料 (精心收集**整理制作) 第二节分子的立体结构(第一课时) 【案例练习】 1、下列物质中,分子的立体结构与水分子相似的是() A、CO2 B、H2S C、PCl3 D、SiCl4 2、下列分子的立体结构,其中属于直线型分子的是() A、H2O B、CO2 C、C2H2 D、P4 3、写出你所知道的分子具有以下形状的物质的化学式,并指出它们分子中的键角分别是多少?(1)直线形 (2)平面三角形 (3)三角锥形 (4)正四面体 4、下列分子中,各原子均处于同一平面上的是() A、NH3 B、CCl4 C、H2O D、CH2O 参考答案: 第二节分子的立体结构(第二课时) 【案例练习】 1、下列分子中心原子是sp2杂化的是() A、PBr3 B、CH4 C、BF3 D、H2O 2、氨气分子空间构型是三角锥形,而甲烷是正四面体形,这是因为 A.两种分子的中心原子的杂化轨道类型不同,NH3为sp2型杂化,而CH4是sp3型杂化 B.NH3分子中N原子形成三个杂化轨道,CH4分子中C原子形成4个杂化轨道 C.NH3分子中有一对未成键的孤对电子,它对成键电子的排斥作用较强 D.氨气分子是极性分子而甲烷是非极性分子 3、用Pauling的杂化轨道理论解释甲烷分子的四面体结构,下列说法不正确的是() A、C原子的四个杂化轨道的能量一样 B、C原子的sp3杂化轨道之间夹角一样 C、C原子的4个价电子分别占据4个sp3杂化轨道 D、C原子有1个sp3杂化轨道由孤对电子占据 4、用VSEPR 理论判断 物质成键电子对数孤电子对数分子或离子的形状 H2O NH4+ BF3

H3O+ 参考答案: 第二节分子的立体结构(第三课时) 【案例练习】 1、在[Cu(NH3)4]2+配离子中NH3与中心离子Cu2+结合的化学键是 A.离子键 B.非极性键 C.极性键 D.配位键 2、与人体血液中血红蛋白以配位键结合的一种有毒气体是 A.氯气 B.氮气 C.一氧化碳 D.甲烷 3、向盛有硫酸铜水溶液的试管里加入氨水,首先形成难溶物,继续添加氨水,难溶物 溶解得到深蓝色的透明溶液。下列对此现象说法正确的是 A.反应后溶液中不存在任何沉淀,所以反应前后Cu2+的浓度不变。 B.沉淀溶解后,将生成深蓝色的配合离子[Cu(NH3)4] 2+。 C.向反应后的溶液加入乙醇,溶液将会没有发生变化,因为[Cu(NH3)4] 2+不会与乙醇发生反应。 D.在[Cu(NH3)4] 2+离子中,Cu2+给出孤对电子,NH3提供空轨道。 4、下列属于配合物的是() A、NH4Cl B、Na2CO3﹒10H2O C、CuSO4﹒5H2O D、Co(NH3)6Cl3 参考答案:1D 2C 3B 4D 5B

图解杂化轨道理论

一.杂化轨道理论的基本要点 (1)概念:原子在形成分子时,为了增强成键能力,同一原子中能量相近的不同类型(s 、p 、d…)的几个原子轨道可以相互叠加进行重新组合,形成能量、形状和方向与原轨道不同的新的原子轨道。这种原子轨道重新组合的过程称为原子轨道的杂化,所形成的新的原子轨道称为杂化轨道。 (2)注意事项: ①、只有在形成分子的过程中,中心原子能量相近的原子轨道才能进行杂化,孤立的原子不可能发生杂化。②、只有能量相近的轨道才能互相杂化。常见的有:ns np nd ,(n-1)d ns np ; ③、杂化前后,总能量不变。但杂化轨道在成键时更有利于轨道间的重叠,即杂化轨道的成键能力比未杂化的原子轨道的成键能力增强,形成的化学键的键能大。这是由于杂化后轨道的形状发生了变化,电子云分布集中在某一方向上,成键时轨道重叠程度增大,成键能力增强。 ④、杂化所形成的杂化轨道的数目等于参加杂化的原子轨道的数目,亦即杂化前后,原子轨道的总数不变。⑤、杂化轨道的空间构型取决于中心原子的杂化类型。不同类型的杂化,杂化轨道的空间取向不同,即一定数目和一定类型的原子轨道间杂化所得到的杂化轨道具有确定的空间几何构型,由此形成的共价键和共价分子相应地具有确定的几何构型。 什么叫杂化?同一原子的能量相近的原有的原子轨道“混杂”起来,重新组合形成新轨道的过程,叫做杂化。什么叫杂化轨道?新组合的原子轨道叫做杂化轨道。 为什么要杂化?杂化轨道形成的化学键的强度更大,体系的能量更低。杂化的动力:受周围原子的影响。 为什么杂化后成键,体系的能量降低?杂化轨道在一个方向上更集中,便于轨道最大重叠。 杂化轨道的构型决定了分子的几何构型:杂化轨道有利于形成σ键,但不能形成π键。由于分子的空间几何构型是以σ键为骨架,故杂化轨道的构型就决定了其分子的几何构型。 二.最常见的杂化轨道类型简介 杂化轨道基本类型sp sp 2 sp 3 参加杂化的原子轨道 1个s 和1个p 1个s 和2个p 1个s 和3个p 杂化轨道数目2个sp 杂化轨道 3个sp 2杂化轨道 4个sp 3杂化轨道 每个杂化轨道的成分21s ,2 1p 31s ,3 2p 41s ,4 3p 杂化轨道间的夹角 180° 120°109°28′ 课题:杂化轨道理论解读 总第( )期 命题人:

同步练习 2.2.2 杂化轨道理论(人教版选修3) (2)

2.2 分子的立体构型第2课时杂化轨道理论 练基础落实 知识点1杂化轨道 1.下列有关杂化轨道的说法不正确的是() A.原子中能量相近的某些轨道,在成键时能重新组合成能量相等的新轨道 B.轨道数目杂化前后可以相等,也可以不等 C.杂化轨道成键时,要满足原子轨道最大重叠原理、最小排斥原理 D.杂化轨道可分为等性杂化轨道和不等性杂化轨道 2.关于原子轨道的说法正确的是() A.凡是中心原子采取sp3杂化方式成键的分子其几何构型都是正四面体 B.CH4分子中的sp3杂化轨道是由4个H原子的1s轨道和C原子的2p轨道混合起来而形成的 C.sp3杂化轨道是由同一个原子中能量相近的s轨道和p轨道混合起来形成的一组能量相近的新轨道 D.凡AB3型的共价化合物,其中心原子A均采用sp3杂化方式成键 3.根据价层电子对互斥理论及原子的杂化理论判断NF3分子的空间构型和中心原子的杂化方式为() A.直线形sp杂化B.三角形sp2杂化 C.三角锥形sp2杂化D.三角锥形sp3杂化 知识点2利用杂化轨道判断分子的空间构型 4.下列分子中的中心原子杂化轨道的类型相同的是() A.CO2与SO2B.CH4与NH3 C.BeCl2与BF3D.C2H2与C2H4 5.下列说法中正确的是() A.PCl3分子是三角锥形,这是因为磷原子是sp2杂化的结果 B.sp3杂化轨道是由任意的1个s轨道和3个p轨道混合形成的4个sp3杂化轨道 C.中心原子采取sp3杂化的分子,其几何构型可能是四面体形或三角锥形或V形 D.AB3型的分子空间构型必为平面三角形 6.下列分子的空间构型可用sp2杂化轨道来解释的是() ①BF3②CH2===CH2③④CH≡CH ⑤NH3⑥CH4 A.①②③B.①⑤⑥C.②③④D.③⑤⑥ 7.下列推断正确的是() A.BF3为三角锥形分子 B.NH+4的电子式为,离子呈平面正方形结构 C.CH4分子中的4个C—H键都是氢原子的1s轨道与碳原子的2p轨道形成的s—p σ键 D.CH4分子中的碳原子以4个sp3杂化轨道分别与4个氢原子的1s轨道重叠,形成C—H σ键

2018-2019学年高中化学选修3练习:第二章第二节第2课时杂化轨道理论与配合物理论简介

第二章第二节第2课时杂化轨道理论与配合物理论简介知识点一杂化轨道理论的考查 1.下列关于杂化轨道的说法错误的是() A.并不是所有的原子轨道都参与杂化 B.同一原子中能量相近的原子轨道参与杂化 C.杂化轨道能量集中,有利于牢固成键 D.杂化轨道中一定有电子 2.下列描述正确的是() A.CS2为V形极性分子 B.SiF4与S的中心原子均为sp3杂化 C.C2H2中σ键与π键的数目比为1∶1 D.水加热到很高温度都难分解是因水分子间存在氢键 3.下列分子中画横线的原子采取的杂化方式为sp杂化的是() A.CH4 B.C2H4 C.C2H2 D.NH3 知识点二配合物理论的考查 4.以下微粒含配位键的是() ①N2②CH4③OH-④N⑤Fe(CO)5⑥Fe(SCN)3⑦H3O+⑧[Ag(NH3)2]OH A.①②④⑦⑧ B.③④⑤⑥⑦ C.①④⑤⑥⑦⑧ D.全部

5.化合物NH3与BF3可以通过配位键形成NH3·BF3。 (1)配位键的形成条件是。 (2)在NH3·BF3中,原子提供孤电子对,原子提供空轨道。 (3)写出NH3·BF3的结构式并用“→”标出配位键:。 6.[2019·福建华安一中开学考试]下列说法中正确的是() A.SO2、CO2、SiO2中的S、C、Si均为sp3杂化 B.H3O+、N、[Cu(NH3)4]2+均含有配位键 C.S、C、Si均为平面三角形 D.NH3、CH4中的N、C分别为sp2、sp3杂化,因此分子空间构型不同 7.下列描述中正确的是() A.Cl的空间构型为平面三角形 B.SiF4和S的中心原子均为sp3杂化 C.在所有的元素中,氟的第一电离能最大 D.C2H5OH分子中共含有8个极性键,1个π键 8.分析原子的杂化方式,并根据等电子体原理判断下列各组分子中的所有原子处于同一平面,或者在一条直线上的是() A.C2H2、HClO、C2H6 B.CO2、N2O、HC≡C—NH2 C.C6H5CH3、C3H4、CH4 D.C6H6、C2H4、HCN 9.甲醛分子的结构式为,下列描述正确的是() A.甲醛分子中有4个σ键 B.甲醛分子中的C原子为sp3杂化

杂化轨道理论(图解)

杂化轨道理论(图解) 一、原子轨道角度分布图 S Px Py Pz dz2 dx2-y2dxy dxz dyz 二、共价键理论和分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)和1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。他们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k?u`veilent]bond[b?nd])。用黑点代表价电子(即最外层s,p轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子

(lone[l?un]pair[pε?]electron[i`lektr?n])。Lewis 结构式的书写规则又称八隅规则(即8电子结构)。 评价贡献:Lewis共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其与离子键的区别。局限性:①、未能阐明共价键的本质和特性;②、八隅规则的例外很多。 PCl 5SF6BeCl 2 BF3NO,NO2… 中心原子周围价电子数10 12 4 6 含奇数价电子 的分子 … ③、不能解释某些分子的性质。含有未成对电子的分子通常是顺磁性的(即它们在磁场中表现出磁性)例如O2。 2、1927年德国的海特勒Heitler和美籍德国人的伦敦London两位化学家建立了现代价键理论,简称VB理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特(F.Hund)和美国的马利肯(R.S.Mulliken)两位化学家提出分子轨道理论,简称MO 理论。马利肯(R.S.Mulliken)由于建立和发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO法和VB法是两种根本不同的物理方法;都是电子运动状态的近似描述;在一定条件下它们具有等价性。 O2 :2 O原子电子组态 1s2 2s2 2p4 →O2,8×2=16个电子,外层电子:12个电子,

新课标高中化学选修3第二节杂化轨道理论配合物理论

第2课时 杂化轨道理论配合物理论 学业要求素养对接 1.能运用杂化轨道理论解释和预测简单分子的立体构型。 2.知道配位键的特点,认识简单的配位化合物的成键特征,了解配位化合物的存在与应用。微观探析:运用杂化轨道理论、配合物理论。 模型认知:根据杂化轨道理论确定简单分子的立体构型、根据配合物理论模型解释配合物的某些典型性质。 [知识梳理] 一、杂化轨道理论简介 1.用杂化轨道理论解释甲烷分子的形成 在形成CH4分子时,碳原子的一个2s轨道和三个2p轨道发生混杂,形成四个能量相等的sp3杂化轨道。四个sp3杂化轨道分别与四个H原子的1s轨道重叠成键形成CH4分子,所以四个C—H键是等同的。可表示为 C原子的杂化轨道 2.杂化轨道的类型与分子立体构型的关系 杂化类型sp sp2sp3 参与杂化的原子轨道及数目n s 1 1 1 n p 1 2 3 杂化轨道数目 2 3 4 杂化轨道 间的夹角 180°120°109°28′

杂化轨道示意图 立体构型直线形 平面 三角形 正四面 体形 实例BeCl2、 CO2、 CS2 BCl3、 BF3、 BBr3 CF4、 SiCl4、 SiH4 【自主思考】 1.用杂化轨道理论分析CH4的杂化类型和呈正四面体形的原因? 提示在形成CH4分子时,碳原子的一个2s轨道与三个2p轨道混杂,形成4个能量相等的sp3杂化轨道,分别与四个氢原子的1s轨道重叠成键形成CH4分子,4个σ键之间作用力相等,键角相等形成正四面体形。 二、配合物理论简介 1.配位键 (1)概念:共用电子对由一个原子单方面提供而跟另一个原子共用的共价键,即“电子对给予-接受键”,是一类特殊的共价键。 (2)实例:在四水合铜离子中,铜离子与水分子之间的化学键是由水分子提供孤电子对给予铜离子,铜离子接受水分子的孤电子对形成的。 (3)表示:配位键可以用A→B来表示,其中A是提供孤电子对的原子,叫做配体;B是接受电子对的原子。例如: ①NH+4中的配位键表示为。 ②[Cu(NH3)4]2+中的配位键表示为。

人教版高中化学选修3分层练习杂化轨道理论、配合物理论

课时练习(七)杂化轨道理论、配合物理论 (建议用时:40分钟) [基础达标练] 1.下列说法正确的是() A.PCl3分子呈三角锥形,这是磷原子采取sp2杂化的结果 B.sp3杂化轨道是由任意的1个s轨道和3个p轨道混杂形成的4个新轨道C.中心原子采取sp3杂化的分子,其立体构型可能是四面体形或三角锥形或V形 D.AB3型分子的立体构型必为平面三角形 C[PCl3分子的中心原子磷的价层电子对数=σ键电子对数+孤电子对数=3 +5-3×1 2=4,因此PCl3分子中磷原子采取sp 3杂化,A项错误。sp3杂化轨道是 原子最外电子层上的s轨道和3个p轨道混杂形成的4个新轨道,B项错误。一般采取sp3杂化的分子,其立体构型呈四面体形,但如果有杂化轨道被中心原子上的孤电子对占据,则分子的立体构型会发生变化,如NH3、PCl3分子呈三角锥形,H2O分子呈V形,C项正确,D项错误。] 2.在BrCH===CHBr分子中,C—Br键采用的成键轨道是() A.sp-p B.sp2-s C.sp2-p D.sp3-p C[分子中的两个碳原子都是采用s p2杂化,溴原子的价电子排布式为4s24p5,4p轨道上有一个单电子,与碳原子的一个s p2杂化轨道成键。] 3.下列说法正确的是() A.CHCl3是正四面体形结构,中心原子为sp3杂化 B.H2O分子中氧原子为sp2杂化,其分子立体构型为V形 C.二氧化碳中碳原子为sp杂化,为直线形分子结构 D.NH+4中N原子为sp3杂化,是四边形结构 [答案] C 4.下列关于[C r(H2O)4B r2]Br·2H2O的说法正确的是()

A.配体为水分子,外界为Br- B.中心离子的配位数为6 C.中心离子采取sp3杂化 D.中心离子的化合价为+2 B[C r(H2O)4B r2]Br·2H2O中内界为[C r(H2O)4B r2]+,Cr3+为中心离子,配体为H2O、Br-,配位数为6,外界为Br-,Cr3+提供的空轨道数为6,中心离子没有采取sp3杂化。] 5.下列微粒中含配位键的是() ①N2H+5②CH4③OH-④NH+4 ⑤Fe(CO)3⑥Fe(SCN)3⑦H3O+ ⑧Ag(NH3)2OH A.①②④⑦⑧B.③④⑤⑥⑦ C.①④⑤⑥⑦⑧D.全部 C[形成配位键的条件是一个原子(或离子)有孤电子对,另一个原子(或离子)有空轨道。在②CH4、③OH-中不含配位键。] 6.下列过程与配合物的形成无关的是() A.除去Fe粉中的SiO2可用强碱溶液 B.向一定量的AgNO3溶液中加入氨水至沉淀消失 C.向FeCl3溶液中加入KSCN溶液 D.向一定量的CuSO4溶液中加入氨水至沉淀消失 A[二氧化硅和氢氧化钠溶液反应生成硅酸钠和水,硅酸钠和水都不是配合物,所以与配合物的形成无关,故A选;银离子和氨水反应生成氢氧化银沉淀,氢氧化银能和氨水反应生成银氨配合物,所以与配合物的形成有关,故B不选;铁离子和硫氰化钾溶液反应生成硫氰化铁配合物,所以与配合物的形成有关,故C 不选;铜离子和氨水反应生成氢氧化铜蓝色沉淀,氢氧化铜和氨水反应生成铜氨络合物,所以与配合物的形成有关,故D不选。] 7.下列分子或离子中,能提供孤电子对与某些金属离子形成配位键的是() ①H2O②NH3③F-④CN-⑤CO A.①②B.①②③

高中杂化轨道理论(图解)

高中杂化轨道理论(图解) 一、原子轨道角度分布图 二、共价键理论和分子结构 价键法(VB法)价键理论一: 1、要点: ⑴、共价键的形成条件:①、先决条件:原子具有未成对电子; ②、配对电子参与成键的原子轨道要满足对称匹配、能量相近以及最大重叠的原则;③、两原子具有成单的自旋相反的电子配对, 服从保里不相容原理。 ⑵、共价键的本质:是由于原子相互接近时轨道重叠,原子间通 过共用自旋相反的电子使能量降低而成键。 ⑶、共价键的特征:①、饱和性,一个原子有几个未成对电子(包括激发后形成的未成对电子),便和几个自旋相反的电子配对成键;而未成对电子数是有限的,故形成化学键的数目是有限的。 ②、根据原子轨道最大重叠原理,原子轨道沿其角度分布最大值 方向重叠,即共价键具有一定的方向性。 ⑷、共价键的类型:单键、双键和叁键。 ①、σ键和π键。 ⅰ、σ键:沿键轴方向重叠,呈圆柱形对称,称为σ轨道,生成的键称为σ键σ是希腊字母,相当于英文的s,是对称Symmetry[`simitri]这个字的第一个字母)。 σ键形成的方式: ⅱ、π键:两个p轨道彼此平行地重叠起来,轨道的对称面是通

过键轴的平面,这个对称面就叫节面,这样的轨道称为

π轨道,生成的键称为π键(π相当于英文的p ,是平行 parallel[`p?r?lel]的第一个字母)。 π键的形成过程: , σ键和π键的比较 σ键 (共价键中都存在σ键) π键 (只存在不饱和共价键 中) 重叠方式 (成建 方向) 沿两电子云(原子轨道)的键轴方向以“头碰头”的方式遵循原子轨道最大程度重叠原理进行重叠 两互相平行的电子云(原子轨道)以“肩并肩”的方式遵循原子轨道最大程度重叠原理进行重叠 重叠 程度 重叠程度较大 重叠程度较小 电子云形状 共价键电子云(重叠部分)呈轴对称 共价键电子云(重叠部 分)呈镜像对称 牢固程度 强度较大,键能大,较牢固,不易断裂 强度较小,键能较小,不很牢固,易断裂 化学活 泼性 不活泼,比π键稳定 活泼,易发生化学反应 类型 s-s 、s-p 、、p-p 、s- p -p π键,、p -p 大π 健 型 项 目

高中化学 专题4 第1单元第1课时 杂化轨道理论与分子空间构型教案 苏教版选修3

第1课时杂化轨道理论与分子空间构型 [核心素养发展目标] 1.了解杂化轨道理论,能从微观角度理解中心原子的杂化轨道类型对 分子空间构型的影响。2.通过对杂化轨道理论的学习,掌握中心原子杂化轨道类型的判断方法,建立分子空间构型分析的思维模型。 一、杂化轨道及其理论要点 1.试解释CH4分子为什么具有正四面体的空间构型? (1)杂化轨道的形成 碳原子2s轨道上的1个电子进入2p空轨道,1个2s轨道和3个2p轨道“混合”起来,形成能量相等、成分相同的4个sp3杂化轨道,可表示为 (2)共价键的形成 碳原子的4个sp3杂化轨道分别与4个H原子的1s轨道重叠形成4个相同的σ键。 (3)CH4分子的空间构型 甲烷分子中的4个C—H键是等同的,C—H键之间的夹角——键角是109.5°,形成正四面体型分子。 2.轨道杂化与杂化轨道 (1) 轨道的杂化:在外界条件影响下,原子内部能量相近的原子轨道重新组合形成一组新轨道的过程叫做原子轨道的杂化。 (2)杂化轨道:重新组合后的新的原子轨道,叫做杂化原子轨道,简称杂化轨道。 (3)轨道杂化的过程:激发→杂化→轨道重叠。 3.杂化轨道的类型 杂化类型sp sp2sp3 参与杂化的原子轨 道及数目 n s 1 1 1 n p 1 2 3 杂化轨道数目 2 3 4 杂化轨道理论的要点

(1)原子形成分子时,通常存在激发、杂化和轨道重叠等过程。发生轨道杂化的原子一定是中心原子。 (2)原子轨道的杂化只有在形成分子的过程中才会发生,孤立的原子是不可能发生杂化的。 (3)只有能量相近的轨道才能杂化(如2s、2p)。 (4)杂化前后原子轨道数目不变(参加杂化的轨道数目等于形成的杂化轨道数目),且杂化轨道的能量相同。 (5)杂化轨道成键时要满足化学键间最小排斥原理,使轨道在空间取得最大夹角分布。故杂化后轨道的伸展方向、形状发生改变,但杂化轨道的形状完全相同。 例1下列关于杂化轨道的说法错误的是( ) A.所有原子轨道都参与杂化形成杂化轨道 B.同一原子中能量相近的原子轨道参与杂化 C.杂化轨道能量集中,有利于牢固成键 D.杂化轨道中不一定有一个电子 答案 A 解析参与杂化的原子轨道,其能量不能相差太大,如1s轨道与2s、2p轨道能量相差太大,不能形成杂化轨道,即只有能量相近的原子轨道才能参与杂化,故A项错误,B项正确;杂化轨道的电子云一头大一头小,成键时利用大的一头,可使电子云重叠程度更大,形成牢固的化学键,故C项正确;并不是所有的杂化轨道中都会有电子,也可以是空轨道,也可以有一对孤电子对(如NH3),故D项正确。 例2下列有关sp2杂化轨道的说法错误的是( ) A.由同一能层上的s轨道与p轨道杂化而成 B.共有3个能量相同的杂化轨道 C.每个sp2杂化轨道中s轨道成分占三分之一 D.sp2杂化轨道最多可形成2个σ键 答案 D 解析同一能层上s轨道与p轨道的能量差异不是很大,相互杂化的轨道的能量差异也不能过大,A项正确;同种类型的杂化轨道能量相同,B项正确;sp2杂化轨道是由一个s轨道与2个p轨道杂化而成的,C项正确;sp2杂化轨道最多可形成3个σ键,D项错误。 二、用杂化轨道理论解释分子的形成及分子中的成键情况 1.用杂化轨道理论解释BeCl2、BF3分子的形成 (1)BeCl2分子的形成

原子轨道杂化理论

杂化轨道理论 价键理论简明地阐明了共价键的形成过程和本质,成功解释了共价键的方向性和饱和性,但在解释一些分子的空间结构方面却遇到了困难。例如CH 4分子的形成,按照价键理论,C 原子只有两个未成对的电子,只能与两个H 原子形成两个共价键,而且键角应该大约为90°。但这与实验事实不符,因为C 与H 可形成CH 4分子,其空间构型为正四面体,∠HCH = 109.5°。为了更好地解释多原子分子的实际空间构型和性质,1931年鲍林提出了杂化轨道理论(hybrid orbital theory ),丰富和发展了现代价键理论。1953年,我国化学家唐敖庆等统一处理了s-p-d-f 轨道杂化,提出了杂化轨道的一般方法,进一步丰富了杂化理论的内容。 1.杂化轨道理论的基本要点 杂化轨道理论从电子具有波动性、波可以叠加的观点出发,认为一个原子和其他原子形成分子时,中心原子所用的原子轨道(即波函数)不是原来纯粹的s 轨道或p 轨道,而是若干不同类型、能量相近的原子轨道经叠加混杂、重新分配轨道的能量和调整空间伸展方向,组成了同等数目的能量完全相同的新的原子轨道——杂化轨道(hybrid orbital),以满足化学结合的需要。这一过程称为原子轨道的杂化(hybridization )。 下面以CH 4分子的形成为例加以说明。 基态C 原子的外层电子构型为2s 22p x 12p y 1。在与H 原子结合时,2s 上的一个电子被激发到2p z 轨道上,C 原子以激发态2s 1 2p x 1 2p y 1 2p z 1 参与化学结合。当然,电子从2s 激发到2p 上需要能量,但由于可多生成二个共价键,放出更多的能量而得到补偿。 在成键之前,激发态C 原子的四个单电子分占的轨道2s 、2p x 、2p y 、2p z 会互相“混杂”,线性组合成四个新的完全等价的杂化轨道。此杂化轨道由一个s 轨道和三个p 轨道杂化而成,故称为sp 3杂化轨道。经杂化后的轨道一头大,一头小,其方向指向正四面体的四个顶角,能量不同于原来的原子轨道(图1.6)。 形成的四个sp 3杂化轨道与四个H 原子的1s 原子轨道重叠,形成(sp 3-s )σ键,生成CH 4分子。 杂化轨道成键时,同样要满足原子轨道最大重叠原理。由于杂化轨道的电子云分布更为集中,杂化轨道的成键能力比未杂化的各原子轨道的成键能力强,故形成CH 4分子后体系能量降低,分子的稳定性增强。 CH 4分子形成的整个杂化过程可示意如下: 化合物的空间构型是由满足原子轨道最大重叠的方向所决定的。在CH 4分子中,四个sp 3杂化轨道 图1.6 sp 3杂化轨道示意图 激发 杂化 sp 3杂化轨道 4 个电子能量相等 2 s 2p 基态C 原子 2 s 2 p 1个2s 电子激发到2p 轨道 与4 个H 原子的1s 电子结合 sp 3-s 重叠成键

杂化轨道理论(图解)

杂化轨道理论(图解) 、原子轨道角度分布图 rpl 经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)和1919年美国化学家路易斯 (Lewis)等提出了化学键的电子理论。他们根据稀有气体原子的电子层 结构特别稳定这一事实,提出各元素原子总是力 图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯 塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子 对而形成的化学键称为共价键(covalent [k?u'veilent]bond[b ?nd])。用黑点代表价电子(即最外层s, P轨 道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀 有气体原子的电子结构。为了方 便,常用短线代替黑点,用“一”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键, 表示3对电子形成的共价叁键。原子单独拥有的未成键的电 子对叫做孤对电子(lone[l ?un]pair[p rgr 41;41 二 二、共价键理论和分子结构 ㈠、共价键理论简介 41丄 41'龍H —Ifii V y 4P HII/—I Px I dx2-y2I I dxy | | dxz | | dyz | ■ 1 if t 同闻*

£?lectron[i'lektr ?n])。 Lewis结构式的书写规则又称八隅规则(即8电子结构)评价贡献:Lewis 共价概念初步解释了一些简单非金属原 子间形成共价分子的过程及其与离子键的区别。局限性:①、 未能阐明共价键的本质和特性;②、八隅规则的例外很多。 ③、不能解释某些分子的性质。含有未成对电子的分子通常 是顺磁性的(即它们在磁场中表现出磁性)例如 2、1927年德国的海特勒Heitler和美籍德国人的伦敦 London两位化学家建立了现代价键理论,简称VB理论(电 子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年一1932年,德国的洪特和美国的马利肯两位化 学家提出分子轨道理论,简称M0理论。马利肯由于建立和 发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO法和VB法是两种根本不同的物理方法;都是电子运 动状态的近似描述;在一定条件下它们具有等价性。 ? O2 :2 O原子电子组态1S22S2 2p47O2,8X 2=1个电子, 外层电子:12个电子, ? KK( (T 2S)2((T*2S)2((T 2pz)2 ( n 2px)2( n 2py)2( n *2pX)1 ( n

相关文档
最新文档