LGA-4000激光气体分析仪

LGA-4000激光气体分析仪
LGA-4000激光气体分析仪

二、LGA-4000激光气体分析仪

(一)、简介

1、概要

LGA-4000激光气体分析仪能够在各种高温、高粉尘、高腐蚀等恶劣的环境下进行现场在线的气体浓度测量。

2、测量原理

LGA-4000激光气体分析仪是基于半导体激光吸收光谱(DLAS)气体分析测量技术的革新,能有效解决传统的气体分析技术中存在的诸多问题。

半导体激光吸收光谱(DLAS)技术利用激光能量被气体分子“选频”吸收形成吸收光谱的原理来测量气体浓度。由半导体激光器发射出特定波长的激光束(仅能被被测气体吸收),穿过被测气体时,激光强度的衰减与被测气体的浓度成一定的函数关系,因此,通过测量激光强度衰减信息就可以分析获得被测气体的浓度。

3、系统组成

LGA-4000激光气体分析仪由激光发射、光电传感和分析模块等构成,如图 1.2所示。由激光发射模块发出的激光束穿过被测烟道(或管道),被安装在直径相对方向上的光电传感模块中的探测器接收,分析控制模块对获得的测量信号进行数据采集和分析,得到被测气体浓度。在扫描激光波长时,由光电传感模块探测到的激光透过率将发生变化,且此变化仅仅是来自于激光器与光电传感模块之间光通道内被测气体分子对激光强度的衰减。光强度的衰减与探测光程之间的被测气体含量成正比。因此,通过测量激光强度衰减可以分析获得被测气体的浓度。

图4、

●●●●5

L

激光发射光电传感

控制模块

表1.1 LGA-4000激光气体分析仪规格和技术参数表

图2.1. LGA-4000激光气体分析仪示意图

LGA-4000激光气体分析仪采用了集成化、模块化的设计方式,系统主要功能模块是由发射单元和接收单元构成(见图2.1)。发射单元驱动半导体激光器,将探测激光发射,并穿过被测环境,由接收单元进行光电转换,将传感信号送回发射单元,由发射单元的中央处理模块对光谱数据进行分析,获得测量结果。

基于半导体激光吸收光谱(DLAS)技术的LGA-4000激光气体分析仪具有无须采样预处理系统,恶劣环境适应力强等诸多优势,可实现响应速度快、精度高的原位(In-Situ)测量。当LGA-4000激光气体分析仪采用原位安装形式时,发射单元和接收单元通过连接单元直接安装在过程管道上,系统的相关尺寸如图2.2所示。

单位: mm

2、发射单元

图2.3 LGA-4000发射单元实物图

LGA-4000激光气体分析仪的发射单元由人机界面、激光器驱动模块、中央处理模块、半导体激光器和精密光学元件等器件组成,主要实现半导体激光发射、光谱数据处理和人机交互等功能,其外形见图2.3。发射单元通过连接锁箍与连接单元(或标定单元)连接,连接单元仪表由吹扫接口、光路调整机构、维护切断阀门和安装法兰等组成。在对发射单元进行清洁或其他维护时,维护切断阀门可起到隔绝过程管道和操作环境,防止危险气体泄漏的作用。

3接收单元

图2.4 LGA-4000接收单元实物图

LGA-4000激光气体分析仪的接收单元由光电传感器、信号处理模块、电源模块和精密光学元件等部分组成,其外形见图2.4。接收单元的主要功能是接收传感信号,并将光谱吸收信号传输至发射单元进行处理。与发射单元相同,接收单元也是通过连接锁箍与连接单元(或标定单元)连接,连接单元仪表由吹扫接口、光路调整机构,维护切断阀门和安装法兰

等组成。

4正压控制模块

由于LGA-4000激光气体分析仪大量应用在一些存在爆炸可能的危险场合,需要对气体分析仪本身进行专门的防爆设计,以达到危险性环境的应用要求。因此,LGA-4000激光气体分析仪有专门的防爆设计,其发射和接收单元采用正压防爆设计(防爆等级:Expxmd IICT5),在箱体内部通入保护性气体(氮气)达到正压防爆的作用。

2.5)激光

图 每格代表压力100Pa 。

电源(Power )指示灯:红色LED 指示灯,用于指示正压控制模块的电源情况。红灯亮表示正压控制模块已经正常上电。

状态(State )指示灯:能显示红、绿、黄的LED 三色指示灯,其中:

·指示灯不亮:发射和接收单元内部压力处于低压状态(小于300Pa ),正压控制单元不接通LGA-4000发射和接收单元的供电电源;

·指示灯呈黄色:发射和接收单元内部压力已从低压状态进入正常工作状态(500Pa-1000Pa),正压控制单元正处于换气延时(15分钟)等待中。此时,正压控制单元仍不接通发射和接收单元的供电电源;

·指示灯呈绿色:发射和接收单元内部压力已经达到正常工作状态,并完成换气,此时正压控制单元接通发射和接收单元的供电电源,系统处于正常工作状态。

·指示灯呈红色:发射和接收单元压力处于警告工作状态,此时压力可能可能处于欠压(300Pa-500Pa)或者过压(>1000Pa)状态,此时正压控制单元仍会接通发射和接收单元的供电

5吹

图2.6 LGA-4000吹扫单元接口定义和尺寸图

(三)、现场安装

LGA-4000激光气体分析仪的现场安装工作主要包括焊接法兰的焊接、发射单元和接收单元的安装、吹扫装置的安装、光路的初步调节、电气连接和光路的优化调节等。本章介绍上述环节的正确操作。

LGA-4000激光气体分析仪采用原位安装方式,具体的安装图请参见图3.1。

发射单元接收单元

检修平台。

(2)焊接法兰的焊接

LGA-4000激光气体分析仪的发射和接收单元分别安装在被测管道(烟道)上的两个焊接法兰上。发射和接收单元分别设计有光路调整机构,允许上述两法兰的同轴度有一定的偏差,但应符合图3.2所示要求, 即保证两法兰轴心线之间的角度不大于4o的误差。两焊接法兰一般应焊接在被测管道(烟道)上直径相对的水平位置。

然后依次按对角顺序逐步紧定四对M16螺栓;

● 紧定后,两法兰面之间的保留约为3mm 空隙,不可全部紧死,需留有光路调节的

余量。

图3.3 仪器法兰安装示意图

(2)调节两仪器法兰的同轴性

3)在光路调节工装一直打开情况下,固紧光路调节工装端仪器法兰上的4颗锁紧螺栓,同时注意另一端光靶上的光斑是否移动,如果移动,须依次重复1)、2)、3)步骤,

直至光斑不移动;

4)重复步骤4)固紧另一仪器法兰。

3 、安装发射、接收单元

把发射单元的发射端装入仪器法兰(见图3.3),注意玻环的销钉方向,然后用锁箍固紧,并把紧定螺栓锁紧。相同方法装上接收单元。

4、安装吹扫单元

LGA-4000激光气体分析仪的吹扫单元可使用压缩空(氮)气为气源,安装时可使用M16螺栓固定在接收和发射单元之间的位置;并将气源总管接入进气口,使用8mm 的铜管/不锈钢管把吹扫单元的出气口连接到发射、接收单元的仪器法兰上的单向阀接口上。

图3.5 吹扫单元示意图

LGA-4000激光气体分析仪停止工作时,请保持吹扫气流或关闭连接单元的

维护切断阀门,否则测量环境中的粉尘等污染物会污染发射和接收单元中的光

学元件。

激光气体分析仪的电源采用标准24V 直流电压输入,产品还提供了丰富的输入输出信号接口:继电器输出,4-20mA 浓度输出,4-20mA 补偿信号(温度和压力)输入和RS485通讯接口。上述这些接口信号在LGA-4000激光气体分析仪的发射单元的连接端座,图 3.6给出各类接口信号的具体电气连接定义。用户可以根据需要选择连接信号。

面显示出上电自检信息。

7、光路优化

在完成LGA-4000激光气体分析仪的安装、初调和通电之后,发射单元的LCD将显示开机、初始化和自检画面(图4.2)。等待自检完成后,LCD液晶屏上将显示各种测量、状态信息,观察状态条中的透过率数据,如果透过率大于80%,则安装、调节完毕,可以开始正常

使用。否则需按下述步骤优化分析系统发射、接收单元的光路调节:

(1)松开发射单元仪器法兰上的四颗紧定螺栓(见图3.3),调节四颗M16螺栓使LGA-4000发射单元LCD液晶屏上显示的透过率达到最大,然后锁紧四颗紧定螺栓;

(2)松开接收单元仪器法兰上的四颗紧定螺栓,调节四颗M16螺栓使LGA-4000发射单元LCD液晶屏上显示的透过率达到最大,然后锁紧四颗紧定螺栓;

四、软件操作

在线测量

【在线测量界面】是【主设置界面】菜单中的第一项,如下图4.11、4.12、4.13所示。系统设计有测量光程,气体温度,气体压力,吹扫光程,吹扫温度,吹扫浓度和测量方式等七个可供选择的子选项。用户可以通过“<”,“>”和“SET”键来选择要设置的参数。按下“ESC”键将使系统返回到【主设置界面】。

图4.11 在线测量画面1

图4.12 在线测量画面2

图4.13 在线测量画面3

【在线测量界面】画面中各个信息意义如下:

●测量光程:设置被测气体光程长度;

●气体温度:设置被测气体的温度;

●气体压力:设置被测气体的压力;

●吹扫光程:设置吹扫光程(图4.14中LF2+LF1+LB1+LB2+LB3);

●吹扫温度:设置吹扫气体的温度;

●吹扫浓度:设置吹扫气体中含被测气体成分的浓度;

●测量方式:设置气体的测量方式;

●确认参数:确认已设置的参数并且确认系统进入测量状态。

(1)

置请参见4.14“辅助设置”子菜单的“压力通道输入”设置。

●吹扫光程:设定吹扫光程长度值(0~15)m;

●吹扫温度:设定吹扫气体温度(200~3000)K;

●吹扫浓度:设定吹扫气体浓度,可以选择为输入方式或是测量方式;

LGA-4000激光气体分析仪的内部集成了吹扫补偿模块,当用户选择吹扫浓度为测试方式后,系统会自动补偿吹扫气中含被测气体的气体浓度;

● 确认参数: 确认参数设定。当选择“确认参数”并按“SET ”键后,系统会存储输入

参数并自动退回到上一级菜单;

9 离线标定

【离线标定界面】是【主设置界面】菜单中第二项。如下图4.15所示。

图4.15 离线标定菜单画面

在【离线标定界面】中,用户可以根据需要选择如下操作:

● 调整零点:对仪器进行调零。把含有零浓度被测气体的校准气体(如高纯氮气)通

入标定管,然后执行本操作调零仪器的示值;

● 标定预览:对仪器进行预标定。把含有已知被测量气体浓度的校准气通入标定管,

然后执行本操作对仪器示值进行标定。标定前请先进行上述调零操作;

● 标定光程:设定标定管光程长度值;

● 标定温度:设定校准气的温度,可以选择为输入方式或是测量方式;

标定温度的测量方式又分为4-20mA 测量方式或热敏电阻测量方式(这两种方式

的选择只能通过LGA-4000服务端软件设置)。如果选择了4-20mA 测量方式,

4-20mA 电流值对应气体温度值的设置请参见4.14“辅助设置”子菜单的“温度通

道输入”设置。

● 标定压力:设定校准气的压力,可以选择为输入方式或是测量方式。

标定压力的测量方式指的是4-20mA 测量方式,4-20mA 电流值对应的气体压力值

的设置请参见4.14“辅助设置”子菜单的“压力通道输入”设置。

(1)调整零点子选项

【调整零点界面】是【离线标定界面】菜单中第一项。如下图4.16所示。

图4.16调零显示画面

【调整零点界面】中显示有被测气体浓度和取消调零、确认调零等菜单。

当用户选择“确认调零”后,仪器开始调零,图4.17为调零进度画面(其中进度条表示调零进度)。

图4.17调零进度画面

(2)标定预览子选项

【标定预览界面】是【离线标定界面】菜单中第二项。如下图4.18所示。

图4.18标定预览画面

【标定预览界面】中显示有被测气体浓度、标气浓度和取消标定、确认标定等菜单。

此处标定浓度用于设置用户标定用的标气浓度。

由于LGA-4000激光气体分析仪在推荐标定周期内漂移不会很大,如果测得的浓度值与输入的正确气体浓度相差较大,建议选择“取消标定”菜单项,先不接受该次标定。请检查“标定系数”菜单中的各个参数设置是否正确,标定气路是否有泄露,标准气体是否已搁置很长时间,标准气体浓度是否太低(建议用户使用本公司推荐浓度的标准气体来标定分析仪)等。

图4.19标定确认画面

如果一切正常,请选择“确认标定”菜单(如图4.19所示)。仪器开始标定,显示标定进度画面,如图4.20所示:

图4.20 标定中画面

(3)4.21

10度,并将其补偿。在连续工作一段时间后,吹扫补偿模块也存在一定的漂移,因此吹扫补偿模块也需要定期标定。

【吹扫补偿界面】是【主设置界面】菜单中的第三项。如下图4.22所示:

图4.22吹扫补偿菜单画面

在【吹扫补偿界面】中,用户可以根据需要选择如下操作:

●调整零点:对吹扫补偿模块进行调零。把含有零浓度被测气体的校准气体(如高纯

氮气)通入发射端和接受端的吹扫单元进气口,然后执行本操作调零示值;

●标定预览:对吹扫补偿模块进行标定。把以氮气为底的含有已知被测量气体浓度的

校准气通入发射端和接受端的吹扫单元进气口,然后执行本操作进行标定。标定前

请先进行上述调零操作。

(1)吹扫补偿模块调整零点

【调整零点界面】是【吹扫补偿界面】菜单中的第一项。如下图4.23所示:

图4.23吹扫补偿模块调零菜单画面

当用户选择“确认调零”后,仪器开始吹扫补偿模块调零,图4.24为调零进度画面(其中进度条表示调零进度)。

图4.24吹扫补偿模块调零中画面

(2)吹扫补偿模块标定预览

【标定预览界面】是【吹扫补偿界面】菜单中的第二项。如下图4.25所示:

图4.25吹扫补偿模块标定预览画面

用户设置好标定浓度后,移动光标选择“确认标定”后,仪器开始吹扫补偿模块标定,如下图4.26、4.27所示:

图4.26吹扫补偿模块确认标定画面

图4.27吹扫补偿模块标定中画面

(六)、维护和标定

为了保证LGA-4000激光气体分析仪能长时间准确、可靠地工作,需要周期性地维护和标定LGA-4000激光气体分析仪。本章详细说明这些分析系统使用中的重要环节。

1、维护

由于没有使用易磨损的运动部件和其他需要经常更换的部件,系统维护工作量非常小。日常预防性维护工作主要局限于:(1)检查和调整吹扫气体的流量,(2)目测检查和清洁光学元件,(3)优化系统测量光路。

LGA-4000激光气体分析仪设计了吹扫单元来保护发射、接收单元上的光学元件不受被测环境中粉尘等的污染,保持合适的吹扫气流量是实现这一目标的关键。另外,在长时间的运行过程中测量环境中的粉尘等污染物还是可能逐渐污染光学元件,使光学透过率下降,影响系统的正常工作,因此需要周期性地清洁这些光学部件。发射和接收单元的光路在长时间的工作后,也可能会漂离最佳工作状态,需要适时地优化光路调整。

LGA-4000激光气体分析仪在信号处理电路上作了特殊的设计,只要传感器探测到的信号电压值不小于正常测量时的1%,就不会影响分析系统的测量性能。这大大降低了对光学元件清洁度和光路调节的要求。

在对系统进行上述维护的时候也请检查分析系统探头的泄漏、腐蚀和各种连接是否松动等。

(1) 清洁光学元件

对于大多数的应用场合,清洁光学元件的维护周期通常超过三个月。即使对于高粉尘含量的应用场合,在设置了合适的吹扫气流量后,也可以较长时间地保持光学元件的清洁。建议一般情况下每3-6个月清洗一遍光学元件,以保证仪器的长时间连续、正确工作,减少计

划外维护工作。如果吹扫系统出现故障,也请检查光学元件的污染情况。

LGA-4000激光气体分析仪的LCD液晶屏上显示了测量激光束的透过率信息。光学元件清洁度下降以及测量光路偏离最佳位置均会导致激光束透过率的下降。因此,此透过率信息可以作为需要清洁光学元件或优化光路调整(参见6.1.2节)的指示。如透过率没有显著的下降,则可以延长维护周期,反之,则应缩短维护周期。另外,当透过率低于3%时,警告继电器就会报警,LCD液晶屏上也会显示相应的报警信息(具体报警信息见表5.2),提示用户需要进行相应的维护工作。

1

2

3

4

5

6

能会从仪器法兰开口处溢出或环境气体进入管道产生危害。

(2) 优化测量光路

为了确保LGA-4000激光气体分析仪持续工作在最佳工作状态,建议每半年调节一次发射、接收单元测量光路最大化测量信号。具体的优化步骤可参见本说明书3.6节。

由于LGA-4000激光气体分析仪能自动监测各关键单元的工作状况,若需在推荐的维护

激光拉曼光谱仪实验报告

实验六 激光拉曼光谱仪 【目的要求】 1.学习和了解拉曼散射的基本原理; 2.学习使用激光拉曼光谱仪测量CCL 4的谱线; 【仪器用具】 LRS-3型激光拉曼光谱仪、CCL 4、计算机、打印机 【原 理】 1. 拉曼散射 当平行光投射于气体、液体或透明晶体的样品上,大部分按原来的方向透射 而过,小部分按照不同的角度散射开来,这种现象称为光的散射。散射是光子与物质分子相互碰撞的结果。由于碰撞方式不同,光子和分子之间会有多种散射形式。 ⑴ 弹性碰撞 弹性碰撞是光子和分子之间没有能量交换,只是改变了光子的运动方向,使得散射光的频率与入射光的频率基本相同,频率变化小于3×105HZ ,在光谱上称为瑞利散射。瑞利散射在光谱上给出了一条与入射光的频率相同的很强的散射谱线,就是瑞利线。 ⑵ 非弹性碰撞 光子和分子之间在碰撞时发生了能量交换,这不仅使光子改变了其运动方向,也改变了其能量,使散射光频率与入射光频率不同,这种散射在光谱上称为拉曼散射,强度很弱,大约只有入射线的10-6。 由于散射线的强度很低,所以为了排除入射光的干扰,拉曼散射一般在入射线的垂直方向检测。散射谱线的排列方式是围绕瑞利线而对称的。在拉曼散射中散射光频率小于入射光频率的散射线被称为斯托克斯线;而散射光频率大于入射光频率的散射线被称为反斯托克斯线。斯托克斯线和反斯托克斯线是如何形成的呢?在非弹性碰撞过程中,光子与分子有能量交换, 光子转移一部分能量给分子, 或者从分子中吸收一部分能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值21E E E -=?。在光子与分子发生非弹性碰撞过程中,光子把一部分能量交给分子时,光子则以较小的频率散射出去,称为频率较低的光(即斯托克斯线),散射分子接受的能量转变成为分子的振动或转动能

激光气体分析仪

二、LGA-4000激光气体分析仪 (一)、简介 1、概要 LGA-4000激光气体分析仪能够在各种高温、高粉尘、高腐蚀等恶劣的环境下进行现场在线的气体浓度测量。 2、测量原理 LGA-4000激光气体分析仪是基于半导体激光吸收光谱(DLAS)气体分析测量技术的革新,能有效解决传统的气体分析技术中存在的诸多问题。 半导体激光吸收光谱(DLAS)技术利用激光能量被气体分子“选频”吸收形成吸收光谱的原理来测量气体浓度。由半导体激光器发射出特定波长的激光束(仅能被被测气体吸收),穿过被测气体时,激光强度的衰减与被测气体的浓度成一定的函数关系,因此,通过测量激光强度衰减信息就可以分析获得被测气体的浓度。 3、系统组成 LGA-4000激光气体分析仪由激光发射、光电传感和分析模块等构成,如图 1.2所示。由激光发射模块发出的激光束穿过被测烟道(或管道),被安装在直径相对方向上的光电传感模块中的探测器接收,分析控制模块对获得的测量信号进行数据采集和分析,得到被测气体浓度。在扫描激光波长时,由光电传感模块探测到的激光透过率将发生变化,且此变化仅仅是来自于激光器与光电传感模块之间光通道内被测气体分子对激光强度的衰减。光强度的衰减与探测光程之间的被测气体含量成正比。因此,通过测量激光强度衰减可以分析获得被测气体的浓度。

图4、 ●●●●5 L 激光发射光电传感 控制模块

表1.1 LGA-4000激光气体分析仪规格和技术参数表 图2.1. LGA-4000激光气体分析仪示意图 LGA-4000激光气体分析仪采用了集成化、模块化的设计方式,系统主要功能模块是由发射单元和接收单元构成(见图 2.1)。发射单元驱动半导体激光器,将探测激光发射,并穿过被测环境,由接收单元进行光电转换,将传感信号送回发射单元,由发射单元的中央处理模块对光谱数据进行分析,获得测量结果。

激光拉曼光谱的原理和应用及拉曼问答总结(整理完毕)

激光拉曼光谱的原理和应用 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会暗原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究 推荐激光拉曼光谱法是以拉曼散射为理论基础的一种光谱分析方法。 激光拉曼光谱法的原理是拉曼散射效应。 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不公改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。 对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。 这就是拉曼光谱可以作为分子结构的分析工具的理论工具。 拉曼光谱仪的主要部件有: 激光光源、样品室、分光系统、光电检测器、记录仪和计算机。 应用 激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。 有机化学 拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是碇化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。 高聚物 拉曼光谱可以提供关于碳链或环的结构信息。在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中拉曼光谱可以发挥其独特作用。电活性聚合物如聚毗咯、聚噻吩等的研究常利用拉曼光谱为工具,在高聚物的工业生产方面,如对受挤压线性聚乙烯的形态、高强度纤维中紧束分子的观测,以及聚乙烯磨损碎片结晶度的测量等研究中都彩了拉曼光谱。 生物 拉曼光谱是研究生物大分子的有力手段,由于水的拉曼光谱很弱、谱图又很简单,故拉曼光谱可以在接近自然状态、活性状态下来研究生物大分子的结构及其变化。拉曼光谱在蛋白质

激光气体分析仪的发展现状及其应用

激光气体分析仪的发展现状及其应用 叶 晟 (武汉晟诺仪器科技有限公司 湖北 武汉 430074) 摘 要:本文介绍了可调谐半导体激光吸收光谱(T unable D iode L aser A bsorption S pectroscopy)的基本原理及其在气体传感方面的应用及发展过程。针对TDLAS在不同行业的应用案例,例如工业过程分析、环境监测、安全检测、医疗应用以及科学研究等,具体阐述了激光气体分析仪的结构和应用特点。并对激光气体分析仪的发展趋势做了初步探讨。 关键词:TDLAS 可调谐半导体激光器 激光气体分析 1 前言 近年来红外光谱分析技术的快速发展使其气体分析应用得到了普遍推广,同时伴随半导体激光器技术的不断进步,激光器所具有的高转换效率、快速调谐性和高光谱分辨率等优点得以凸显,促成了以近红外半导体激光器为基础的光谱分析方法和仪器成为当前研究和应用的热点。激光气体分析仪也从传统的单光路结构,向多光路、长光程等技术方向不断拓展,使得TDLAS技术在诸多领域得以推广和应用,并取得了良好的市场经济效益。 2 激光气体分析仪的原理 激光气体分析仪大多采用了半导体激光器作为光源,利用气体在近红外和中红外的吸收光谱特性,对气体类型或浓度进行分析和测量。 2.1可调谐半导体激光吸收光谱原理 可调谐半导体激光吸收光谱(T unable D iode L aser A bsorption S pectroscopy),简称TDLAS,是利用半导体激光器的波长可调谐特性,获得待测气体的吸收线或吸收光谱,从而对待测气体进行定性或定量分析。待测气体可吸收特定对应波长的激光信号,造成接收光强的变化,该信号的变化符合朗伯-比尔定律,表达式如下: I v I v exp σ v cL (1) 其中 I为接收光强,I 为激光器原始光强,v为光源频率,σ为吸收面积,c为气体浓度,L为吸收光程。 根据公式(1)可知,当确定激光器频率和吸收截面时,光强的变化与气体浓度和吸收光程成正比。 与传统光源相比较,半导体激光器的光谱宽度要小于气体吸收谱线的展宽,可得到单线吸收光谱,实际应用中可有效地避免背景气体的交叉干扰影响,因此TDLAS技术是一种高分辨率吸收光谱技术。 图1 单线光谱测量原理 TDLAS技术在应用中通过快速调制激光频率,可使光谱扫过被测气体吸收谱线的一定频率范围,然后利用锁相放大和检测技术测量被气体吸收谱线吸收后 的透射激光光强中的谐波分量,以此来分析气体的吸

几种氧分析仪原理及应用

1、电化学氧分析仪: 相当一部分的可燃性的、有毒有害气体都有电化学活性,可以被电化学氧化或者还原。利用这些反应,可以分辨气体成份、检测气体浓度。电化学气体传感器分很多子类: (1)原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫、氯气等。 (2)恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析的传感器。这种传感器已经成功地用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。 (3)浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器的成功实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。 (4)极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。 目前这种传感器的主要供应商遍布全世界,主要在德国、日本、美国,最近新加入几个欧洲供应商:英国、瑞士等。 2、顺磁式氧分析仪: 顺磁式氧分析仪:根据氧气的体积磁化率比一般气体高得多,在磁场中具有极高的顺磁特性的原理制成的一种测量气体中含氧量的分析仪器。顺磁式氧分析仪,也可叫做磁效应式氧分析仪、或磁式氧分析仪,我们通常通称为磁氧分析仪。它一般分为热磁对流式、压力机械式和磁压力式氧分析仪三种。 物质的磁特性:任何物质在外界磁场的作用下都会被磁化,呈现出一定的磁特性。物质在外加磁场中被磁化,其本身就会产生一个附加磁场,附加磁场与外磁场方向相同时,该物质就被外磁场吸引;附加磁场与外磁场方向相反时,则被外磁场排斥。因此,我们通常会将被外磁场吸引的物质称为顺磁性物质,或者说该物质具有顺磁性;而把被磁场排斥的物质称为逆磁性物质,或者说该物质具有逆磁性。气体介质处于磁场中也会被磁化,我们根据气体组分对磁场的吸引和排斥的不同,也将气体分为顺磁性和逆磁性。顺磁性气体有:O2、NO、NO2等;逆磁性气体有:H2、N2、CO2、CH4等。 磁性氧气传感器是磁性氧气分析仪的核心,但是目前也已经实现了“传感器化”进程。这种传感器只能用于氧气的检测,选择性极好。大气环境中只有氮氧化物能够产生微小的影响,但是由于这些干扰气体的含量往往很少,所以,磁氧分析技术的选择性几乎是唯一的! 当然磁氧根据传感器类型,又分为磁力机械式,热磁式氧分析仪,热磁式市场售价略低,

激光拉曼光谱仪实验报告

实验六激光拉曼光谱仪 【目的要求】 1.学习和了解拉曼散射的基本原理; 2.学习使用激光拉曼光谱仪测量CCL的谱线; 【仪器用具】 LRS-3型激光拉曼光谱仪、CCL、计算机、打印机 【原理】 1.拉曼散射 当平行光投射于气体、液体或透明晶体的样品上,大部分按原来的方向透射而过,小部分按照不同的角度散射开来,这种现象称为光的散射。散射是光子与物质分子相互碰撞的结果。由于碰撞方式不同,光子和分子之间会有多种散射形式。 (1)弹性碰撞 弹性碰撞是光子和分子之间没有能量交换,只是改变了光子的运动方向,使得散射光的频率与入射光的频率基本相同,频率变化小于3X 105HZ在光谱上称为瑞利散射。瑞利散射在光谱上给出了一条与入射光的频率相同的很强的散射谱线,就是瑞利线。 ⑵非弹性碰撞 光子和分子之间在碰撞时发生了能量交换,这不仅使光子改变了其运动方向,也改变了其能量,使散射光频率与入射光频率不同,这种散射在光谱上称为拉曼散射,强度很弱,大约只有入射线的10-6。 由于散射线的强度很低,所以为了排除入射光的干扰,拉曼散射一般在入射线的垂直方向检测。散射谱线的排列方式是围绕瑞利线而对称的。在拉曼散射中散射光频率小于入射光频率的散射线被称为斯托克斯线;而散射光频率大于入射光频率的散射线被称为反斯托克斯线。斯托克斯线和反斯托克斯线是如何形成的呢?在非弹性碰撞过程中,光子与分子有能量交换,光子转移一部分能量给分子或者从分子中吸收一部分能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值=E - E2。在光子与分子发生非弹性碰撞 过程中,光子把一部分能量交给分子时,光子则以较小的频率散射出去,称为频率较低的光(即斯托克斯线),散射分子接受的能量转变成为分子的振动或转动能 量,从而处于激发态Ei,这时的光子的频率为、-- ■'■:■■-(入射光的频率为\ 0);

激光拉曼光谱分析.doc

第 11 章激光拉曼光谱分析 第十一章激光拉曼光谱分析 (L aser Raman Spectroscopy, LRS) 教学要求 1.理解拉曼散射的基本原理 2.理解拉曼光谱和红外光谱与分子结构关系的主要差别 3.了解拉曼光谱仪器结构 4.了解激光拉曼光谱的应用 重点:拉曼光谱原理;拉曼光谱与红外光谱的关系 难点:拉曼光谱与红外光谱的关系 课时安排: 1.5 学时 §11-1 拉曼光谱原理 一、拉曼光谱 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。 在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。 由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分 子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。 拉曼光谱和红外光谱一样同属于分子振动光谱 ,可以反映分子的特征结构。但是拉曼散射效应是个非常弱的过程 ,一般其光强仅约为入射光强的 10-10。 1、瑞利散射 虚拟态 当光子与物质的分子发生弹性碰撞时, hυ0hυ0 没有能量交换,光子仅改变运动方向,这种散射称瑞利散射。入射光与散射光的频率相同,如图中 2、3 两种情况。 2、斯托克斯 (Stokes)散射 hυ0h(υ0-υ1) hυ0hυ0hυ0h(υ0+υ1) υ=1 υ=0 图 11-1 瑞利散射、斯托克斯和反斯托克斯散射示意图 当光子与物质的分子发生非弹性碰撞时,可以得到或失去能量,当受激分子

各类气体分析仪基本原理及特点

各类气体分析仪基本原理及特点 1、质谱仪的基本原理 质谱仪又称质谱计,是分离和检测不同同位素的仪器。它根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。 具体工作过程为:质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按荷质比q/m(q为电荷,m为质量)大小分离的装置,原理公式:q/m=2U/B2r2(U为电压,B为磁感应强度,r为半径)。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。 优点:测量气体种类多,测试速度快,灵敏度高,结果精确,稳定性和重复性 也较高。 缺点:是价格偏高;仪器机构复杂,需要专业人员维护;要求环境高。 2、气相色谱仪的基本原理

检测混合物由载气(载气特性为惰性气体,不应与样品和溶剂反应。一般可选用且常用的载气有氢气,氮气,氦气。氦气有最好的分离柱效果,氦气用于热导式测量组件,氢气用于当氦气不能使用的场合,另一为氦气和氢气的混合气可得到较快的响应)带入,检测混合物通过色谱柱(通常为填充柱和毛细管柱)与色谱柱内固定相(我们把色谱柱内不移动,起分离作用的填料称为固定相)相互作用,这种相互作用大小的差异使各混合物各组分按先后次序从流出,并且依次导入检测器,从而得到各组分的检测信号。按照导入检测器的先后次序,经过对比,可以区别出是什么组分,根据峰高度或峰面积可以计算出各组分含量。 主要特点 气相色谱仪因为检测器的不同而具有不同的优缺点。 2、氢火焰检测器气相色谱仪。氢火焰检测器(FID, flame ionization detector)是利用氢火焰作电离源,使被测物质 电离,产生微电流的检测器。它是破坏性的、典型的质量型 检测器。 优点: 对几乎所有的有机物均有响应,特别是对烃类化合物灵敏度高,而且响应值与碳原子数成正比;对 H2O、CO2和 CS2等无机物不敏感;对气体流速、压力和温度变化不敏感。它的线性范围宽,结构简单、操作方便,死体积几乎为零。因此,作为实验室仪器, FID

气体分析仪种类

气体分析仪种类 现在热门的气体分析仪好像很多,一搜一大把,但是把所有热门的气体分析仪搜集在一起介绍的却没有,这让刚接触气体分析仪的菜鸟们或者急需对气体分析仪有一个大概了解的使用者们很苦恼。我曾经对现在究竟有多少种气体分析仪,它们都是什么使用原理也迷茫过,随着接触的次数增多,我总结了发电厂,生物工程,化肥,炼油,石油,油田录井,煤化工,钢铁厂,水泥,陶瓷等行业中经常用到的几种气体分析仪,供小虾米们参考下吧,希望能帮到跟曾经的我一样的某些人,也许不是很齐全,欢迎大虾们补充。现在就让我开始对热门的气体分析仪种类做一个简单的介绍吧。 一、激光气体分析仪 (1)DLAS(DiodeLaserAbsorptionSpectroscopy)半导体激光吸收光谱技术的简称。DLAS 技术本质上是一种光谱吸收技术,通过分析激光被气体的选择性吸收来获得气体的浓度。它与传统红外光谱吸收技术的不同之处在于,半导体激光光谱宽度远小于气体吸收谱线的展宽。因此,DLAS技术是一种高分辨率的光谱吸收技术,半导体激光穿过被测气体的光强衰减可用朗伯-比尔(Lambert-Beer)定律表述式得出,关系式表明气体浓度越高,对光的衰减也越大。因此,可通过测量气体对激光的衰减来测量气体的浓度。 (2)拉曼激光气体分析仪 拉曼激光气体分析仪RLGA的核心部分是一个激光检测装置,其中的氦氖激光器可以发射一种安全的低功率单波激光到一个气体测试腔内。由于激光能量微弱,装置内部通过检测腔两端的反射镜不断进行反射,将能量放大1000倍左右。光子与气体分子发生碰撞后发生散射,产生一种不同于激光频谱的光谱,而且不同分子散射出来的光谱是特定不相同的,这就是我们所称的“拉曼散射光谱”。检测腔内壁装有8个光学滤波器和光电传感器,用来吸收和检测不同分子的特定光谱频率,从而得到8种不同待测气体成分含量。根据这种原理,每种待测气体的含量都是通过直接测量得到的,不需要任何的导算;RLGA的检测精度更高;反应速度更快。 拉曼激光气体分析仪RLGA内部主要由激光检测装置和一台集成工控PC组成,如图1显示。检测装置将原始光电信号通过I/O板卡转换并传输到PC中进行处理,最后将经过处理的检测结果等数据通过监控软件显示并保存起来,这些数据文件能在Excel等数据处理软件中打开;LGA的监控软件由Think & Do组态软件搭建,主界面上会显示LGA 的工作状态和检测结果等信息。进入相应的界面,还能对LGA的各种运行参数进行修改设置。其功能包括:气体分析、零气标定、气体范围标定、各种气体的趋势记录、手动操作界面、I/O板的通道状态等。

激光气体分析仪

2016-2020年中国激光气体分析仪行业市场开发前景及发展建议研究报告 Special Statenent特别声明 本报告由华经视点独家撰写并出版发行,报告版权归华经视点所有。本报告是华经视点专家、分析师调研、统计、分析整理而得,具有独立自主知识产权,报告仅为有偿提供给购买报告的客户使用。未经授权,任何网站或媒体不得转载或引用本报告内容,华经视点有权依法追究其法律责任。如需订阅研究报告,请直接联系本网站客服人员(8610-56188812 56188813),以便获得全程优质完善服务。 华经视点是中国拥有研究人员数量最多,规模最大,综合实力最强的研究咨询机构(欢迎客户上门考察),公司长期跟踪各大行业最新动态、资讯,并且每日发表独家观点。 目前华经视点业务范围主要覆盖市场研究报告、投资咨询报告、行业研究报告、市场预测报告、市场调查报告、征信报告、项目可行性研究报告、商业计划书、IPO上市咨询等领域,同时也为个阶层人士提供论文、报告等指导服务,是一家多层次、多维度的综合性信息研究咨询服务机构。 Report Description报告描述 《2016-2020年中国激光气体分析仪行业市场开发前景及发展建议研究报告》由中国行业研究报告网独家撰写。报告以行业为研究对象,基于行业的现状,行业运行数据,行业供需,行业竞争格局,重点企业经营分析,行业产业链进行分析,对市场的发展状况、供需状况、竞争格局、赢利水平、发展趋势等进行了分析,预测行业的发展前景和投资价值。在周密的市场调研基础上,通过最深入的数据挖掘,从多个角度去评估企业市场地位,准确挖掘企业的成长性,为企业提供新的投资机会和可借鉴的操作模式,对欲在行业从事资本运作的经济实体等单位准确了解目前行业发展动态,把握企业定位和发展方向有重要参考价值。报告还对下游行业的发展进行了探讨,是企业、投资部门、研究机构准确了解目前中国市场发展动态,把握行业发展方向,为企业经营决策提供重要参考的依据。 Report Directory报告目录 第一章2014-2015激光气体分析仪行业概述 第一节激光气体分析仪行业定义 第二节激光气体分析仪行业发展历程 第三节激光气体分析仪行业分类情况

激光拉曼光谱气体分析技术在天然气中的应用及发展

激光拉曼光谱气体分析技术在天然气中的应用及发展 一、什么是激光拉曼光谱? 1928年,印度物理学家Raman发现了激光拉曼光谱。激光拉曼光谱是单色光束的入射光光子与分子相互作用后产生散射,这种散射分为瑞利散射和拉曼散射。 拉曼光谱通常采用的单色光源是激光,将分子激发到一种虚态,之后受激分子跃迁到与基态不相同的振动能量级,这时,散射辐射的频率对比入射频率将发生改变。这种频率的改变和基态与终态的振动能量级差相同,这样的非弹性散射光就叫做拉曼散射。频率不发生变的散射称之为弹性散射,即瑞利散射。 如果拉曼散射频率一但低于入射频率时,称为斯托克斯散射。相反,称为反斯托克斯散射。通常的拉曼实验检测到的是斯托克斯散射,拉曼散射光和瑞利散射光的频率差值称之为拉曼位移。 由于拉曼散射光的强度十分微弱,对其进行观测和研究都非常困难,在没有高强度、单色性好的光源出现之前,拉曼光谱的发展固步不前。 自1930年红宝石激光器成功制造以来,拉曼光谱的发展就进入了个崭新的时期,先后经历了单通道检测器光电讯号转换器、COD电荷耦合器件实现多通道检测技术、共振拉曼光谱分析技术、表面增强拉曼效应分析技术实现分子水平的检测技术,以及非线性拉曼光谱技术。 在这个过程中拉曼光谱仪的发展经历了两个很大的飞跃,第一次为20世纪纪80年代开发的拉曼探针共焦激光拉曼光谱仪,使用陷波滤波器使杂散光得到抑制,成功地降低了激光源的功率,另一个则是20世纪90年代发展的傅立叶变换拉曼光谱仪,使用1064rm近红外激光光源避免了处于可见光区的荧光干扰,使仪器的灵敏度得到很大的提升。 拉曼光谱学经过近一个世纪的发展,其原理已十分成熟,并成为光谱学的一个分支,已大量应用于材料、石油化工、环保生物等很多研究领域。 二、激光拉曼光谱在天然气分析中的应用挑战 由于气体分子的密度远小于固体和液体分子的密度,其散射截面更小,从而导致散射强度很微弱,较难检测。因此,早期利用激光拉曼光谱进行气体分析面临着巨大的困难。 1、1980年,激光拉曼光谱测定天然气组分的方法被提出,在室温O.8MPa条件下对甲烷——氮气二元混合气体及甲烷——氮气——丁烷三元混合气体进行了测定分析,得到的测定结果与重量法测定结果最大差值为0.2%(摩尔分数),测量不确定度为0.1%,另外还对含有甲烷(75.713%)、乙烷(13.585%)、丙烷(6.742%)、正丁烷(1.326%)、异丁烷(1.336%)、正戊烷(0.216%)、异戊烷(0.223%)及氮气(0.869%)8种组分的标准天然气进行了测定分析,但是其测定结果的重现性及准确度较差,且灵敏度低,其中异丁烷、正戊烷和异戊烷3种组分未检出。 2、2001年,尼布鲁天然气处理厂利用自制的高压样品池和共聚焦拉曼光谱仪对天然气(组分及含量见表1)进行了测定分析,测定结果表明: 1)随着测定压力增大,各组分的拉曼峰强度增强; 2)拉曼谱图中未检出低浓度的正丁烷(0.58%)、戊烷(0.204%)及C6+(0.068%),但是清晰检测出了浓度

激光氧分析仪

西门子在线分析仪器在钢铁行业中的应用 1. 引言 钢铁行业在我国的国民经济中,占有举足轻重的地位。作为全球制造业中心,中国的工业化发展的潜力很大,经济的持续增长,会为钢铁行业的发展提供动力。而今,中国的钢铁行业正经历着兼并重组,淘汰落后产能,优化产业布局,发展循环经济,实现节能减排的过程。钢铁行业健康稳步的发展,关系重大。 钢铁的冶炼过程实质上是原材料、燃料和成品的流转过程,在流转中伴随着大量气体产生,而在线检测分析这些过程气体是冶金工业生产工艺优化控制、安全和环保监控必不可少的关键技术之一。西门子公司是中国钢铁工业的合作伙伴,一直致力于推动中国钢铁工业自动化水平的不断提高。西门子分析仪器能够应用于钢铁行业中的炼钢、炼铁及烧结等各个装置,对降低能源消耗、保证生产安全等起着十分重要的作用,还对钢铁企业增大产能,提高产品质量有积极的效果。 2. 分析仪简介 西门子分析仪器含盖了气体分析仪的各类产品,可以为客户提供各种各样的解决方案。西门子分析仪器包括在线色谱分析仪、红外分析仪、氧分析仪、热导分析仪和激光分析仪等。 其中,MAXUM II在线色谱分析仪凭借其强大的功能,可以用于分析测量各种复杂样品中的各个气体组分含量,比如高炉煤气中的CO、CO2、N2、H2,焦炉煤气中的CO、CO2、H2、CH4、O2、N2和微量H2S等。再加上西门子强大的EZChrom色谱工作站软件,还可以用于实验室分析。 多组分非分光红外分析仪ULTRAMAT 6/23 通过分析被测气体对测量光束的吸收获得被测气体浓度,由于其较宽的光源,可以同时测量CO、CO2、SO2等多个组分。OXYMAT 6磁压氧分析仪则通过测量含氧混合气的体积磁化率得到混合气中氧气的浓度,快速的响应时间使其能够用于安全控制和优化控制。 激光分析仪LDS 6和SITRANS SL可以在线原位测量,实时获取数据。较低的维护成本,最低1s的响应时间使其逐步代替部分传统分析仪,成为钢铁行业应用中的新宠。下一章节就具体介绍这些分析仪分别在钢铁行业中各个装置的应用。 3. 西门子分析仪在钢铁行业中的应用 3.1. 炼铁中的应用 高炉冶炼是当今炼铁工艺中最主要的炼铁方法。时事检测出高炉煤气中各组分的含量可以及时反应出炉内状况,指导高炉的操作,从而保证了高炉稳定顺利的运行,同时为提高产品质量、产量起着十分重要的作用。 西门子MAXUM II色谱分析仪可以在线检测高炉煤气中N2、CO、CO、H2的含量,每一个周期自动向高炉控制中心提供一组准确、可靠的高炉煤气中各组份的百分含量。通过计算CO2/ (CO+CO2) 的比值来判断煤气利用率,控制焦煤比,一般在焦炭负荷不变的情况下比价降低,说明煤气利用率降低,预示着高炉转凉;通过观察H2的含量判断风口中小套高压水及炉身冷却壁常压水是否漏水,如果H2值增加,说明存在漏水,为防止爆炸,需尽快解决;通过对N2含量的检测,可推测出高炉的泄漏率。一般采样点选在重力除尘器后,布袋除尘前的煤气水平管道上。由于西门子色谱分析仪拥有多检测器、并行色谱、无阀切换、电

激光气体现场在线分析仪技术与产品应用讲解

激光气体现场在线分析仪技术与产品应用 2005-3-29 - 功能和性能 现场在线(in-situ )分析测量工业过程气体成分含量,在世界工业领域中显得越来越重要。 现场在线气体分析测量也是复杂工业过程和排放最重要的领域之一。特别是用户对低含量和高精度气体分析测量的需要,也要求气体分析仪制造商采用更新、更先进的技术。 满足此需要是挪威纳斯克公司开发激光气体现场在线分析仪的主要目的。纳斯克公司能提供基于独特技术、比传统气体分析产品更具优越性能的一系列激光气体现场在线分析仪。 激光气体现场在线分析仪开创了工业过程和排放气体测量新领域。通过先进的固态二极管激光技术、光学解决方案、光谱学和坚固的工业设计等独特技术,激光气体现场在线分析仪能工作在无来自其它气体交叉干扰影响情况下。过程压力可达5 bar,温度超过1600℃。 - 测量原理 激光气体现场在线分析仪是光学仪器,从温度稳定、单模二极管激光器发射激光到发射器直径方向相对的接收器上。二极管激光器工作在室温附近。 传统在线(on-line分析仪如红外(IR )在线分析仪通常受来自其它气体成分(包括粉尘、水分背景成分等)交叉干扰影响,此问题在探测含量很低时,显得越来越严重。对照采用宽带光谱过滤的传统IR 红外在线分析仪,激光气体现场在线分析仪采用在近红外光谱范围内的单线光谱技术。

单线光谱测量技术基于在近红外区域内对被测气体单吸收线的挑选。通过对所选吸收线光谱分析,使得在所选吸收线波长内无其它气体的吸收线(无交叉吸收干涉)。然后,通过调节二极管激光器温度和驱动电流,将二极管激光器频率调整对应到气体的单吸收线。激光光谱宽度相应调整到比被测气体单吸收线光谱 宽度更窄。通过改变二极管激光器的电流,包含单吸收线的激光波长被扫描发射出来(见图A )。 在激光扫描发射期间,作为波长的一个特性,接收单元探测到的光强度将发生变化,且此变化仅仅是来自于激光器与接收器之间光通道内被测气体分子对光线的吸收。探测到的单吸收线的形状和尺寸(见图A ),用来计算发射器和接收器之间的气体含量。其它气体的吸收线不会出现在所选波长范围内,因此不会对单吸收线产生干扰,从而影响气体含量测量。 激光气体现场在线分析仪不受过程气体中分水、粉尘或视窗上污染物等吸收影响,这是由于气体含量的计算是基于独特单吸收线尺寸和形状,因此实现了更可靠的测量,并减少了维护的需要。 - 安装 由于其小而坚固的机械单元,激光气体现场在线分析仪很容易安装。由三个基本单元组成: 发射单元,带吹扫、调整机构、DN50安装 接收单元,带吹扫、调整和标定机构、DN50安装 电子单元,带显示器 发射和接收单元通过自身法兰直接装配到焊接在管道或烟道上的DN50/PN10或PN16法兰上,也可在它们之间插入带法兰阀门(推荐球阀)。安装时需联一台PC 电脑到分析仪电子单元上,运行服务软件来进行。

激光拉曼光谱分析

第十一章 激光拉曼光谱分析 (Laser Raman Spectroscopy ,LRS ) §11-1 拉曼光谱原理 一、拉曼光谱 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。 在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。 由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。 拉曼光谱和红外光谱一样同属于分子振动光谱,可以反映分子的特征结构。但是拉曼散射效应是个非常弱的过程,一般其光强仅约为入射光强的10-10 。 1、瑞利散射 当光子与物质的分子发生弹性碰撞时,没有能量交换,光子仅改变运动方向,这种散射称瑞利散射。入射光与散射光的频率相同,如图中2、3两种情况。 2、斯托克斯(Stokes)散射 当光子与物质的分子发生非弹性碰撞时,可以得到或失去能量,当受激分子 υ=0 图11-1 瑞利散射、斯托克斯和反斯托克斯散射示意图 υ=1

从基态跃迁到某一虚拟态,返回到某一激发态,入射光频率大于散射光频率,如图中第1种情况,最后这种散射称斯托克斯(Stokes)线。 3、反斯托克斯(Anti-Stokes)散射 当原处于激发态的分子跃迁到某一虚拟态,返回到基态,入射光频率小于散射光频率,如图中第4种情况。这种散射称反斯托克斯(Stokes)线。 由于常温下处于基态的分子占绝大多数,斯托克斯线比反斯托克斯线强得多。 4、拉曼位移 入射光频率与拉曼散射光频率之差称拉曼位移。它与物质的振动和转动能级有关,不同的物质有不同的拉曼位移。 对于同一种物质,若用不同频率的入射光照射,所产生的拉曼散射光的频率也不相同,但拉曼位移却是一个确定值。 因此,拉曼位移与入射光频率无关,仅与分子振动能级有关。—拉曼光谱物质分子结构分析和定性鉴定的依据。 5、拉曼光谱: 横坐标:拉曼位移; 纵坐标:强度 二、去偏振度 激光是偏振光。 起偏振器测得的垂直于入射光方向散射光强和平行于入射光方向散射光强的比值称去偏振度,用ρ表示。 ρ取值:0~3/4; ρ→0,对称性高,ρ→3/4,不对称结构 三、共振拉曼效应 当选取的入射激光波长非常接近或处于待测分子生色团吸收频率时,产生电子耦合,拉曼跃迁的几率大大增加,使得分子的某些振动模式的拉曼散射截面增强高达106 倍,这种现象称为共振拉曼效应(Resonance Raman ,RR) 。 利用共振拉曼光谱的某些拉曼谱带的选择性增强,可以得到生色团振动光谱信息。但是只有少数分子具有与处于可见光区的激发光相匹配的电子吸收能级。(只有与生色团有关的振动形式才具有共振拉曼光谱)

气体分析仪种类

气体分析仪种类 各类气体分析仪基本原理及特点 1、质谱仪的基本原理 质谱仪又称质谱计,是分离和检测不同同位素的仪器。它根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。 具体工作过程为:质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按荷质比q/m(q为电荷,m为质量)大小分离的装置,原理公式:q/m=2U/(U为电压,B为磁感应强度,r为半径)。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。 优点:测量气体种类多,测试速度快,灵敏度高,结果精确,稳定性和重复性也较高。 缺点:是价格偏高;仪器机构复杂,需要专业人员维护;要求环境高。 2、气相色谱仪的基本原理 检测混合物由载气(载气特性为惰性气体,不应与样品和溶剂反应。一般可选用且常用的载气有氢气,氮气,氦气。氦气有最好的分离柱效果,氦气用于热导式测量组件,氢气用于当氦气不能使用的场合,另一为氦气和氢气的混合气可得到较快的响应)带入,检测混合物通过色谱柱(通常为填充柱和毛细管柱)与色谱柱内固定相(我们把色谱柱内不移动,起分离作用的填料称为固定相)相互作用,这种相互作用大小的差异使各混合物各组分按先后次序从流出,并且依次导入检测器,从而得到各组分的检测信号。按照导入检测器的先后次序,经过对比,可以区别出是什么组分,根据峰高度或峰面积可以计算出各组分含量。 主要特点 气相色谱仪因为检测器的不同而具有不同的优缺点。 2.1 氢火焰检测器气相色谱仪。氢火焰检测器(FID, flame ionization detector)是利用氢火焰作电离源,使被测物质电离,产生微电流的检测器。它是破坏性的、典型的质量型检测器。 优点: 对几乎所有的有机物均有响应,特别是对烃类化合物灵敏度高,而且响应值与碳原子数成正比;对H2O、CO2和CS2等无机物不敏感;对气体流速、压力和温度变化不敏感。它的线性范围宽,结构简单、操作方便,死体积几乎为零。因此,作为实验室仪器,FID得到普遍的应用,是最常用的气相色谱检测器。 缺点:

激光氧分析仪

Laser Gas 02分析仪应知 应会标准 1. 激光氧表的测量原理是什么? 2. 我公司激光氧表是怎么安装的? 3. 为什么需要用氮气进行吹扫? 4. 如何标定该仪表? 1原理: NEOM激光气体分析仪是一台光学仪器。其原理是:把烟道一侧发射器上的红外激光发射到烟道相反的另一侧上的接收器上。测量技术基于烟道内存在的气体分子测量对光的吸收量。测量原理被称为红外单线吸收光谱。大多数气体只吸收特定波长的光。吸收量是烟道内气体含量的一个直接反映。 二极管激光波长通过扫描被选定的吸收线得到,由于二极管激光器和探测器上的特定气体分子的吸收,探测光强由于激光波长的作用而变化。为增加其敏感性,采用了波长调制技术:当扫描吸收线时,激光波长会被轻微调节。第二谐波信号用于测量吸收气体的浓度。既然在特定的波长下,其他气体的吸收线并不存在,所以不存在来自其他气体的直接干扰。测量气体的浓

度与吸收线的振幅是成比例的。然而有另一中类型的干扰——他可能会影响测量的浓度。这就是来自分子碰撞的扩大的影响。不同的分子类型可能会不同程度地扩大吸收线。如当水分子的浓度由0%增加到30%时,吸收线宽可能会变化1倍或0.5倍。这导致即使其他气体参数保持不变,也会把吸收线振幅减少到同样的数量。如果线宽变化没有考虑在内的化,这会导致测量浓度的下降。激光气体分析仪能够自动补偿其他气体导致的吸收线宽的改变。其补偿方法是基于使用先进的数字过滤技术,从被测量的第二谐波信号中提出线宽信息。这使得激光气体分析仪对测量区域中存在的其他气体完全的不敏感,也就是完全不受任何其他气体的干扰。 激光气体分析仪测量的仅仅是特定气体的自由分子的浓度,因而对绑定在其他分子上成为复合体的分子和附着在或溶解在微粒和小滴的分子是不敏感的。当把这一测量方法与其他测量技术得到的结果比较时一定要小心。 2仪表描述: 激光气体分析仪包括3个独立的单元:带有吹扫的发射单元;带有吹扫的接受单元;电源由外部提供直流24V。

不同气体分析仪测定气体成分的优缺点

不同气体分析仪测定气体成分的优缺点 1.质谱仪 优点: 测量气体种类多,测试速度快,灵敏度高,结果精确,稳定性和重复性也较高。 缺点: 是价格偏高;仪器机构复杂,需要专业人员维护;要求环境高。 2.气相色谱仪 (1)氢火焰检测器气相色谱仪 优点: 对几乎所有的有机物均有响应,特别是对烃类化合物灵敏度高,而且响应值与碳原子数成正比;对H2O、CO2和CS2等无机物不敏感;对气体流速、压力和温度变化不敏感。它的线性范围宽,结构简单、操作方便,死体积几乎为零。因此,作为实验室仪器,FID 得到普遍的应用,是最常用的气相色谱检测器。 缺点: 需要可燃气体(氢气) 、助燃气体和载气三种气源钢瓶及其流速控制系统。因此,制作成一体化的便携式仪器非常困难,特别是应对突发性环境污染事件的分析与检测就更加困难,因为它需要点“一把火”,增加了引燃、引爆的潜在危险性 (2)热导检测器气相色谱仪 优点: 它对所有的物质都有响应,结构简单、性能可靠、定量准确、价格低廉、经久耐用,又是非破坏性检测器,因此,TCD始终充满着旺盛的生命力。近十几年来,配置于商品化气

相色谱仪的产量仅次于FID,应用范围较广泛。 缺点: 与其他检测器相比,TCD的灵敏度低,这是影响其应用于环境分析与检测的主要因素。以氦气作载气,进气量为2 mL时,检出限可达106量级。因此,使用这种检测器的便携式气相色谱仪,不适于室内外一般环境污染物分析与检测,大多用于污染源和突发性环境污染事故的分析与检测。 3.红外线气体分析仪 优点: 1)测量范围宽:可分析气体上限达100%,下限达几个(ppm)的浓度。进行精细化处理后,还可以进行痕量(ppb)分析(物质中含量在百万分之一以下组合的分析方法)2)灵敏度高:具有很高的监测灵敏度,气体浓度有微小变化都能分辨出来; 3)测量精度高:一般都在FS(满量程),不少产品达到FS。与其他分析手段相比,它的精度较高且稳定性好;反应速度快:响应时间一般在10S以内(达到T90的时间);缺点: 不能分析对称结构无极性双原子分子(如Ν2、Ο2、)及单原子分子气体(He、Ne、Ar),或者需要和其他检测器使用。 4. 紫外线气体分析仪 优点: 操作简单,可以测量SO2、NOx、HCl、NH3等气体 缺点:

激光拉曼光谱的测定

实验四 激光拉曼光谱的测定 093858 张亚辉 一. 实验目的 1、了解拉曼光谱的基本原理,掌握显微共焦激光拉曼光谱仪的使用方法。 2、测量一些常规物质和复杂样品的拉曼光谱。 二. 实验原理 当用波长比试样粒径小得多的频率为υ的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。散射光中除了存在入射光频率υ外,还观察到频率为υ±△υ的新成分,这种频率发生改变的现象就被称为拉曼效应。υ即为瑞利散射,频率υ+△υ称为拉曼散射的斯托克斯线,频率为υ-△υ的称为反斯托克斯线。△υ通常称为拉曼频移,多用散射光波长的倒数表示,计算公式为 1 1λλ ν-= ? 式中,λ和λ0分别为散射光和入射光的波长。△υ的单位为cm -1。 由于拉曼谱线的数目、频移、强度直接与分子振动或转动能级有关。因此,研究拉曼光谱可以提供物质结构的有关信息。自从激光问世以来,拉曼光谱的研究取得了长足进展,已广泛应用于物理、化学、生物以及生命科学等研究领域。 图 1显微共焦激光拉曼光谱仪结构 显微镜 样品 狭缝 光栅 扩束器

三、实验仪器和试剂 1. 显微共焦激光拉曼光谱仪 Renishaw inVia (英国雷尼绍公司) Renishaw 显微共焦激光拉曼光谱仪原理: 本系所用的是英国雷尼绍显微共聚焦激光拉曼光谱仪(图2),它具有诸多优势如:高稳定性、高重复性高重复光谱,重复性:≦±0.2波数;激光阻挡水平高 (杂散光抑制水平高);高灵敏度 (贯穿于整个仪器设计中):各激发光波长配以各自独立的引入光学元件(反射镜等), 使到达样品的激光功率最大。透射式光谱仪设计,以避免散焦缺陷。并对各激发光波段配以相应的透镜, 使每激光谱段分别都达到最佳透过效率,获得最高的通光效率。 2. 粉碎机、载玻片、盖玻片、胶头滴管 3. 测试样品 常规物质:CCl 4,KNO 3 复杂样品:不同淀粉类作物 自备样品:不同材料的小挂件 四.实验步骤 1. 打开主机和计算机电源,同时打开激光器后面的总电源开关,将仪器预热20分钟左右。 2. 自检. 静态取谱(Static ),中心520 Raman Shift cm -1, Advanced -> Pinhole 设 图2 雷尼绍显微共聚焦激光拉曼光谱仪

相关文档
最新文档