大一微积分复习资料

大一微积分复习资料
大一微积分复习资料

大学的考试比较简单,主要以书本为主,下面的复习指导可作提引作用。

10—11学年第一学期“微积分”期末复习指导

第一章 函数

一.本章重点

复合函数及分解,初等函数的概念。 二.复习要求

1、 能熟练地求函数定义域;会求函数的值域。

2、理解函数的简单性质,知道它们的几何特点。

3、 牢记常函数、幂函数、指数函数、对数函数、三角函数、反三角函数等六类基本初等函数的表达式,知道它们的定义域、值域、性质及图形特点。其中

⑴. 对于对数函数ln y x =不仅要熟记它的运

算性质,还能熟练应用它与指数函数 x y e =互为反函数的关系,能熟练将幂指函数作如下代数运算: ln v

u v u

e =

⑵.对于常用的四个反三角函数,不仅要熟习它们的定义域、值域及简单性质,还要熟记它们在特殊点的函数值.

4、 掌握复合函数,初等函数的概念,能熟练地分解复合函数为简单函数的组合。

5、 知道分段函数,隐函数的概念。 . 三.例题选解

例1. 试分析下列函数为哪几个简单函数(基本初等函或基本初等函数的线性函数)复合而成的? ⑴.2

sin x y e =

⑵.2

1

arctan()1y x

=+ 分析:分解一个复合函数的复合过程应由外层向里层进行,每一步的中间变量都必须是基本初等函数或其线性函数(即简单函数)。 解:

⑴.2,,sin u y e u v v x

===⑵.21

arctan ,, 1.y u u v x v

==

=+

例 2. cot y arc x =的定义域、值域各是什么?cot1arc =? 答:

cot y arc x = 是cot ,(0,)y x x π=∈ 的反函数,根据反函数的定义域是原来函数的值域,反函数的值域是原来函数的定义域,可知cot y arc x =的定义域是

(,)f D =-∞+∞,值域为(0,)f Z π=.

cot14

arc π

=

四.练习题及参考答案

1. ()arctan f x x =

则f (x )定义域为 ,值域为 f (1) = ;(0)f = .

2.()arcsin f x x =

则f (x )定义域为 ,值域为 f (1) =

;f = .

3.分解下列函数为简单函数的复合: ⑴.3x y e -= ⑵.3

ln(1)y x =- 答案:

1.(-∞ +∞), (,

)2

2

π

π

-

,

,04

π

2. []1,1,,,,2223ππππ

??--????

.3. ⑴.,

3u y e u x ==-

⑵.3ln ,

1.

y u u x ==-

自我复习:习题一.(A )55.⑴、⑵、⑶;

习题一.(B ).11.

第二章 极限与连续

一.本章重点

极限的计算;函数的连续及间断的判定;初等函数

的连续性。

二.复习要求

1.了解变量极限的概念,掌握函数f (x )在x 0点有极限的充要条件是:函数在x 0点的左右极限都存在且相等。

2.理解无穷小量与无穷大量的概念和关系,掌握无穷小量的运算性质,特别是无穷小量乘以有界变量仍为无穷小。例如:

1

sin lim sin

0,lim

0x x x

x x

x

→→∞==

3.会比较无穷小的阶。在求无穷小之比的极限时,

利用等价无穷小代换可使运算简化,常用的等价无穷小代换有: 当()x α 0时,有:

sin ()x α~()x α; tan ()x α~()x α

()1x e α-~()x α;

ln(1())x α+~()x α

;

1~

()

x n

α

1cos ()x α-~

2()

2

x α.…….

(参见教材P79)

4.掌握两个重要极限:

(Ⅰ).0sin lim

1x x

x

→=

(Ⅱ).1

01lim(1)lim(1)x

x x x e x x

→∞→+==+

记住它们的形式、特点、自变量的变化趋势及扩展形式(变形式).并能熟练应用其求极限,特别是应用重要极限(Ⅱ)的如下扩展形式求1∞

型未定式极限:

1

0lim(1)lim(1)x k

x x x k e kx x

→∞→+==+ 1

0lim(1)lim(1)x k

x x x k e kx x

-→∞→-==- 5.掌握函数连续的概念, 知道结论:初等函数在其定义区间内都是连续的,分段函数在定义区间内的不连续点只可能是分段点。函数f (x )在分段点x 0处连续的充要条是:函数在x 0点极限存在且等于

0()f x ,即:

0lim ()()x x f x f x →=

当分段函数在分段点0x 的左右两边表达式不相同时,函数f (x )在分段点x 0处连续的充要条件则是:

0lim ()lim ()()x x x x f x f x f x -

+→→==.

6. 掌握函数间断点及类型的判定。

函数的不连续点称为间断点,函数()f x 在

0x 点间断,必至少有下列三种情况之一发生:

⑴、()f x 在0x 点无定义;

⑵、0

lim ()x x f x →不存在;

⑶、存在0

lim ()x x f x →,但0

0lim ()()x x f x f x →≠.

若0x 为()f x 的间断点,当)(lim 0

x f x x +→及

)(lim 0x f x x -

→都存在时,称0x 为()f x 的第一类间断

点,特别)(lim 0

x f x x +→=)(lim 0

x f x x -→时(即0

lim ()

x x f x →存在时),称0x 为()f x 的可去间断点;

)(lim )(lim 0

0x f x f x x x x -+

→→≠时称0x 为()f x 的跳

跃间断点。

不是第一类间断点的都称为第二类间断点。 7.了解连续函数的运算性质及闭区间上连续函数的性质,特别要知道闭区间上的连续函数必有最大值与最小值。

8.能够熟练地利用极限的四则运算性质;无穷小量、无穷大量的关系与性质;等价无穷小代换;教材P69公式(2.6);两个重要极限;初等函数的连续性及洛必达法则(第四章)求函数的极限。

三.例题选解

例1.单项选择题

⑴下列极限中正确的是( ) A.sin lim

1x x

x

→∞= B. 1

sin lim

11

x x x

→∞=

C. 20sin lim 1x x x →=

D. 0tan lim 1x x

x

→=

⑵ 当0x →

1是2

sin x 的

( )

A.低阶无穷小;

B.高阶无穷小;

C.同阶无穷小,但不是等价无穷小;

D. 等价无穷小; 分析与解: ⑴. A 与 C 显然都不对,对于D, 记tan ()x

f x x

=

, 则tan 0

()tan 0x x x

f x x x x ?>??=?

?

∴0

tan lim ()lim 1x x x

f x x

++

→→==

tan lim ()lim 1x x x

f x x

-

-

→→==--0lim ()x f x +→≠ 即D 也不对,剩下的B 就是正确答案。

⑵. 由于

2

2222000212lim lim lim 1sin x x x x x x

x x →→→===代换 ∴ 应选择D. 例3.求极限:

⑴0lim x →2ln(1)1cos x x

-- ⑵lim x →∞

2(

)5

x

x x --

解: ⑴ 此极限为

00

型 ∵当0x →时,有

2

ln(1)x -~2

()x -, 1cos x -~2

2

x

∴0lim x →2ln(1)

1cos x x -- 220lim 22

x x x

→-==- ⑵ 此极限为1∞

型,可用重要极限()II 。

lim x →∞

2(

)5x x x -- =x

x x )5

31(lim -+

∞→

x x x x x ?-?-∞→-+=5

3

35)5

3

1(lim x x x x x ?--∞→??

????-+=5

3

35

)531(lim

3e =. )35

3lim 53lim

(=-=?-∞→∞→x x x x x x

例2.判断函数229

6

x y x x -=-- 的间断点,并

判断其类型。

解:由于229(3)+3)

6(3)(2)

x x x y x x x x --==

---+( ∴3,

2x x ==-是函数y 无定义的点,因而是

函数y 的间断点。 ∵33(3)(3)36

lim

lim (3)(2)25

x x x x x x x x →→-++==-++

∴ 3x =为函数 y 的可去间断点; ∵22(3)(3)3

lim

lim (3)(2)2

x x x x x x x x →-→--++==∞-++

∴ 2x =-为函数 y 的第二类(无穷型)间断。

例3.函数

2

1cos 2

()00x f x x x x k ?

-??=≠??=??

在点0x =处连续,求常数k .

分析与解:由于分段函数()f x 在分段点0x =的左右两边表达式相同,因此()f x 在0x =连续的充要条件是

lim ()(0).x f x f k →==

2220001cos 82lim ()lim lim x x x x x

f x x x

→→→-==代换

1

.8

=

∴1.

8k =

四.练习题及参考答案

1.填空

⑴.当0x →时,(1)sin2x

e x -与

1)ln(12)x +相比,是

__________________无穷小;

⑵.21lim(

)23

x

x x x →∞

-=+ __________________;

⑶.220

[cos(3)1]tan 3lim

(1)ln(15)

x

x x

x e x →-=-+______________.

2.单项选择题 ⑴.设2(3)(2)

56

x x y x x +-=

-+,下面说法正确的是

________;

A. 点3,2x x =-=都是可去间断点;

B. 点2x =是跳跃间断点,点3x =是无穷间断

点;

C. 点2x =是可去间断点,点3x =是无穷间断

点;

D. 点2x =是可去间断点,点3x =是跳跃间断

点;

⑵.下面正确的是______________. A.0tan lim

1x x x →= ; B. 01

lim sin 0x x x

→=;

C. 0

tan lim

x x

x

→不存在; D. 0tan lim

1x x x →=. 答案:1. ⑴.同阶而不等价的 ;⑵.2

e - ;⑶.3

20

-

. 2. ⑴.C; ⑵.B . 自我复习.习题二(A) 11. (4).24. ⑴,(4),⑺.

27.⑴. (4).28.⑴,⑵. 30.⑵.37.⑴,⑶. 习题二(B).14.

第三章 导数与微分

一.本章重点.

导数的概念,导数及微分的计算.

二.复习要求

1.掌握函数()x ?在0x 处可导的定义,并能熟练应用导数的定义式求分段函数在分段点的导数。 导数是一个逐点概念,()x ?在0x 处的导数的定

义式常用的有如下三种形式:

0000

()()

()lim

x f x x f x f x x

?→+?-'=?

000()()

lim h f x h f x h

→+-=

000

()()lim x x f x f x x x →-=- . 2.知道导数的几何意义,会求()x ?在0x 处的切线方程。

3.熟记基本求导公式及求导的运算法则,熟练掌握下列求导方法,并能熟练应用它们求函数的导数: ⑴运用基本求导公式及求导的四则运算法则求导; ⑵复合函数求导法; ⑶隐函数求导法; ⑷取对数求导法。

4.理解高阶导数的概念,能熟练求函数的二阶导数。

5.理解微分的概念,能应用微分基本公式及运算法则求函数的微分。

6.掌握函数可微,可导及连续的关系。

三.例题选解

例1.求下列函数的导数: ⑴.2(1)y f x =+ ,求,.y y ''' ⑵.y

= 求.

y '.

⑶.设y =tan x

e ,求dy

⑷. 3ln(1)y x =+ ,求y ''

解:⑴、本题为抽象函数求导,由复合函数求导法,得:

221()(1)y f x x '''=++ 2(1)2f x x '=+? 22(1)x f x '=?+ .

222(1)2(1)2y f x xf x x '''''=+++?

2

22

2(1)4(1)f x

x f x

'''=+++ ⑵ 本题为幂指函数求导,必须用取对数求导法。

原方程两边取对数:

ln ln y x =

上式两边对x 求导,视y 为中间变量:

'y y

1ln x x +

1ln 12y x ?'=?+???

1ln 12x ?=?+???

12

ln (

1)2

x

-

=+ 注:本题除此方法外,也可以:

x

x e

y ln 3?=

)1

3ln 3321

(

ln 3x x x x

e

y x

x ?+??='∴?

⑶. ∵tan (tan )x y e x ''=? tan 2sec x

e

x =? . ∴tan 2sec x dy e xdx =?

⑷. 2

3

31x y x '=+

322326(1)33(1)x x x x y x +-?''=+ 332

3(2)

(1)

x x x -=+ 例2. 设()x ?在1x =处可导,且'(1)2?=.

求1(43)lim

1

x x x →---??(1)

分析:将()x ?在1x =处的导数的定义式理解为结构式:

(1)'?=0

(1)(1)

lim

→+-

??

其中 为1-=?x x 或x ?的函数.且当0

→?x

时,0→ 即可. 解:

11(43)lim 1

(1)]lim (3)3(1)3(1)6

x x x x x x f →→-----=?---'=-=-??(1)?[1-3?(1) 例3.求曲线 3333x y axy a +-=在点

()0,a 处的切线方程。

解:显然,点()0,

a 在曲线上,

现求切线的斜率,即(0,)y a ' 曲线方程两边对x 求导:

22

33330x y y ay axy ''+?--=

解得 2

2ay x y y ax

-'=-

∴(0,)y a '=1

切线方程为:y a x -= 即 y x a -=

例4、设2

1()000

x e f x x x

x -?-?

=≠??=?

试讨论()f x 在0x =处的连续性及可导性。 分析与解:由已知,(0)0f =; (1)讨论()f x 在0x =处的连续性。

∵ 2

00201

lim ()lim lim 0(0).

x x x x e f x x x

f x

-→→→-=-=代换==

∴()f x 在0x =处连续。

(2)讨论()f x 在0x =处的可导性。

分段函数在分段点的导数必须用定义求:

(0)

()lim

x f x f f x →-'=-()0

2

01

0lim 0

x x e x x -→--=-

2

222001lim lim 1x x x e x x

x -→→--===-代换 即存在 () 1.

f '=-0

四.练习题及参考答案

1.单项选择题 .设22

ln(1)0()10

x x x f x x ?-?

≠??

=?

?-=???

下面说法正确的是( ). A.()f x 在0x =不连续;

B. .()f x 在0x =连续,但不可导;

C. ()f x 在0x =可导,且(0)1f '=-;

D. ()f x 在0x =可导,且(0)0f '=.

2.填空题

()f x 在0x x =处可导,且0()1f x '=-,则

(1)000

()()

lim

______h f x h f x h h

→+--=

3.求函数的导数或微分: ⑴

1x

y x

=, 求y '

⑵[]

ln(1)(1)y f x x =-<,

求,

y y '''

⑶.y =dy .

4.设3

cos()y x xy =+确定y 是x 的函数,求

dy

dx

,并求出函数在点(0,1)的切线方程。 5、证明:(1)若)(x f 是偶函数且可导,那么)(x f '是奇函数,(2)若)(x f 是奇函数且可导,那么

)(x f '是偶函数,

答案:1.D. 2. 2- 3.⑴.12(1ln )x

y x x -'=-

(2).[]1

ln(1)1

y f x x ''=

?-- ; [][]2

2

1

ln(1)(1)1

ln(1)(1)y f x x f x x ''''=

--'-

--

⑶.21

x

dy dx x =

-. 4.2

1sin()3sin()

dy y xy dx y x xy -=+; 切线方程:33y x -=.

自我复习:习题三(A) 13; 21,⑹,⑼; 24.⑴,⑵; 25;26.⑴,⑺; 27.⑸;29.⑵,⑹,⑺; 47.⑴,⑵.54.

习题三(B) 1 ;3;11.

第四章 中值定理与导数的应用

一.本章重点

求未定式极限的洛必达法则;应用导数判定函

数的单调性,求函数的极值和最值;应用导数确定曲线的凹向与拐点;对经济问题作边际分析;

二.复习要求

1知道罗尔定理、拉格朗日中值定理的条件和结论,会求定理中的ξ,掌握拉格朗日定理推论的意义。

2.熟练掌握用洛必达法则求未定式极限的方法。

注意:⑴洛必达法则只能直接用于求“0

”型或“

”型未定式的极限,对于其他类型的未定式极限,必须将其转化为“00”型或“∞

”型未定

式才能使用法则。

⑵洛必达法则可以连续使用,当再次使用法则时,一定要检验法则的条件是否成立,当条件不满足时必须停止使用,改用其他求极限的方法计算.

⑶.在求未定式极限时,将洛必达法则和等价无穷小代换等其它方法结合使用,可使运算更简便。

3.掌握用一阶导数判定函数单调性的方法,并能利用函数的单调性证明不等式。

4.掌握函数极值的概念及求函数极值方法.

5.掌握最值的概念及其与极值的关系,能熟练求闭区间上连续函数的最大、最小值;会求经济应用问题的最值.如求最大总收入,最大总利润等.

6.掌握函数的凹向,拐点的概念及求曲线凹向,拐点的方法.

三.例题选解

例1. 求下列极限

(1). 0sin 21

lim ln(1)

x x e x x x x →+--+

(2).

2sin 0

lim x x x +

→ (3). 011

lim ln(1)x x x →??-?

?

+??

解:

(1) 0sin 21

0lim

()ln(1)

x x e x x x x →+--+ 2

0sin 21lim x x e x x x →+--代换

0cos 20

lim ()20

x x e x x

→+-洛

0sin lim ()2

x x e x →-洛

=不是未定式 12

=.

(2) 原式为幂指型不定式(0

0型),利用代数变换:ln v

u v u

e =,得:

02sin 2si ln n 2si 0

li ln n m lim lim x x x x x x

x x

e x e ++

+

→?→→?==

其中 0

lim 2sin ln (0)x x x +

→??∞

x x x ln 2lim 0

?=+

→ (代换) 02l n lim 1x x x

+→= (∞∞

02

2

lim 1x x x

+

→=-洛

lim (2)0x x +

→=-=. ∴原式=0

1e = (3) 0

11

lim ln(1)x x x →??-?

?

+??

()∞-∞型 =0ln(1ln(1)lim

)x x x x x →+-+ 0

0()通分化为型

=0ln(1)lim

x x x

x x

→+-? (代换)

01

11lim 2x x x

→-+= (洛必达) =01

lim

2(1)2

x x x x →-=-+.

例2.求函数2

1x

y x =+的单调区间和极值,凹凸区

间和拐点。 解:函数2

1x

y x

=

+的定义域为(,)-∞+∞ 22

2222(1)21(1)(1)x x x x y x x +-?-'==++,

222224(2)(1)2(1)2(1)

(1)x x x x x y x -?+-+??-''=+

223

2(3)(1)x x x -=+ 。

令22

(1)(1)

0(1)x x y x -+'=

=+,得驻点1x =-,

1x =;无不可导点。

两驻点分定义域为三个子区间,列表讨论如下:

令23

2(0(1)

x x x y x +''=

=+ 得 0,x x ==y ''不存在的点。曲线的

凹向及拐点列表讨论如下:

由上面的讨论看出: 函数2

1x

y x =

+的单减区间为 (,1)(1,)-∞-?+∞;

单增区间为[1,1]-。极小值是1(1)2

y -=-

极大值是1(1)2

y =

。 曲线2

1x

y x =+

的凸区间是(,-∞?

凹区间是()?+∞。

曲线2

1x y x =

+

的拐点有三个:(4

-, (0,0)

,4

。 例3.证明不等式

2

1(1)ln(1)(0)2

x x x x x ++<

+>

分析与证:证明不等式的方法很多,利用函数的单调性或最值证明不等式是常用的方法之一。这里用单调性来证明。即令

2

1()(1)ln(1)2

f x x x x x =++-

- 则问题转化为证()0(0)(0)f x f x <=> 即证在0x >时,()f x 单减。

∵1()ln(1)11x

f x x x x

+'=++

--+ ln(1)x x =+- 1()1011x

f x x x

-''=

-=<++ ∴0x >时,()f x '单减,有 ()(0)0f x f ''<=

∴()f x 也单减,有()(0)0f x f <=, 证毕。 例4.证明:对任意1x ≥,有

1arcsin

2

x π

= 分析: 本题为恒等式的证明。我们设

1()arcsin

F x x

= 由拉格朗日定理的推论,若能证明

()0F x '= 则()F x c ?≡,再确定

2

c π

=

即可。

证:当1x ≥时,

1()()F x '

''=+

2

21

111x x =-+-

0=

-

=

∴ ()F x c ≡

∵2

1arcsin 0arctan )1(π

=

+=F

∴ 2

c π

=

,证毕!

例5求出函数543551y x x x =-++在区间

[2,1]-上的最大、最小值。

解:显然函数543551y x x x =-++在闭区间

[2,1]-上连续,因而必存在最大、最小值。

4322520155(1)(3)y x x x x x x '=-+=--

由0y '=,解得区间(1,2)-内的可疑点为:

120,1x x ==. 比较以下函数值,

(1)10,(0)1,(1)2,(2)7f f f f -=-===-

得 max min (1)2,(1)10f f =-=-.

例 6.某食品加工厂生产x 单位的总成本为2()20040.03C x x x =++,得到的总收益是2()80.02R x x x =-,求出生产该商品x 单位的

边际利润、生产300单位时的边际利润,当生产多少单位时利润最大。 解:⑴.利润函数

2()()()0.014200L x R x C x x x =-=-+-

边际利润函数()0.024L x x '=-+. ⑵.当300x =时,

(300)0.0230042L '=-?+=

⑶.令()0.0240L x x '=-+= 解得:200x =

(200)0.020L ''=-<,

∴产量200x =单位时,可获最大利润。 注:设函数)(x f y =可导,导函数)(x f '也称为边际函数。

四.练习题与参考答案

1. 求极限 (1) 2

1lim (1cos

)x x x

→∞

- ⑵ 0

11lim(

)sin x x x

→- ⑶ 1ln 0

lim (tan )x

x x +

2. 证明. 当1x >时,有: (1)ln 2(1)x x x +>-.

3证明: 2

1cos 1(0)2

x x x >-

>

4 .求3

2

399y x x x =--+单调区间和极值,凹凸区间和拐点。

5. 证明当0x >时,有:

C =,并求出常数C.

参考答案: 1. (1).

1

2

; ⑵.0 ; ⑶.e . 4. 单增区间(,1)(3,)-∞-?+∞;

单减区间(1,1)-;极大值(1)14y -=, 极小值(3)18y =-;

上凹区间(1 +∞);下凹(凸)区间(-∞ 1) ; 拐点(1 , -2). 5. 2

C π

=

.

自我复习:

习题四 (A )

8, 9.⑸,⑻,⑼,⑾ ,⑿; 14.⑴,⑶,⑸; 18.⑴,⑵;19.⑴ ;20.⑴,⑶;32.⑵,⑷;37; 41。

习题四 (B ) 10;12.

微积分知识点小结

第一章 函数 一、本章提要 基本概念 函数,定义域,单调性,奇偶性,有界性,周期性,分段函数,反函数,复合函数,基本初等函数,初等函数 第二章 极限与连续 一、本章提要 1.基本概念 函数的极限,左极限,右极限,数列的极限,无穷小量,无穷大量,等价无穷小,在一点连续,连续函数,间断点,第一类间断点(可去间断点,跳跃间断点),第二类间断点. 2.基本公式 (1) 1sin lim 0=→口 口口, (2) e )11(lim 0=+→口口口 (口代表同一变量). 3.基本方法 ⑴ 利用函数的连续性求极限; ⑵ 利用四则运算法则求极限; ⑶ 利用两个重要极限求极限; ⑷ 利用无穷小替换定理求极限; ⑸ 利用分子、分母消去共同的非零公因子求0 0形式的极限; ⑹ 利用分子,分母同除以自变量的最高次幂求 ∞∞形式的极限; ⑺ 利用连续函数的函数符号与极限符号可交换次序的特性求极限; ⑻ 利用“无穷小与有界函数之积仍为无穷小量”求极限. 4.定理 左右极限与极限的关系,单调有界原理,夹逼准则,极限的惟一性,极限的保号性,极限的四则运算法则,极限与无穷小的关系,无穷小的运算性质,无穷小的替换定理,无穷小与无穷大的关系,初等函数的连续性,闭区间上连续函数的性质. 第三章 导数与微分 一、本章提要

瞬时速度,切线,导数,变化率,加速度,高阶导数,线性主部,微分. 2.基本公式 基本导数表,求导法则,微分公式,微分法则,微分近似公式. 3.基本方法 ⑴利用导数定义求导数; ⑵利用导数公式与求导法则求导数; ⑶利用复合函数求导法则求导数; ⑷隐含数微分法; ⑸参数方程微分法; ⑹对数求导法; ⑺利用微分运算法则求微分或导数. 第四章微分学的应用 一、本章提要 1. 基本概念 未定型,极值点,驻点,尖点,可能极值点,极值,最值,曲率,上凹,下凹,拐点,渐近线,水平渐近线,铅直渐近线. 2.基本方法 ⑴用洛必达法则求未定型的极限; ⑵函数单调性的判定; ⑶单调区间的求法; ⑷可能极值点的求法与极大值(或极小值)的求法; ⑸连续函数在闭区间上的最大值及最小值的求法; ⑹求实际问题的最大(或最小)值的方法; ⑺曲线的凹向及拐点的求法; ⑻曲线的渐近线的求法; ⑼一元函数图像的描绘方法. 3. 定理 柯西中值定理,拉格朗日中值定理,罗尔中值定理, 洛必达法则,函数单调性的判定定理,极值的必要条件,极值的第一充分条件,极值的第二充分条件,曲线凹向的判别法则. 第五章不定积分 一、本章提要 1. 基本概念 原函数,不定积分.

大学高等数学(微积分)下期末考试卷(含答案)

大学高等数学(微积分)<下>期末考试卷 学院: 专业: 行政班: 姓名: 学号: 座位号: ----------------------------密封-------------------------- 一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末 的括号中,本大题分4小题, 每小题4分, 共16分) 1、设lim 0n n a →∞ =,则级数 1 n n a ∞ =∑( ); A.一定收敛,其和为零 B. 一定收敛,但和不一定为零 C. 一定发散 D. 可能收敛,也可能发散 2、已知两点(2,4,7),(4,6,4)A B -----,与AB 方向相同的单位向量是( ); A. 623(, , )777 B. 623(, , )777- C. 623( ,, )777-- D. 623(, , )777-- 3、设3 2 ()x x y f t dt = ? ,则dy dx =( ); A. ()f x B. 32()()f x f x + C. 32()()f x f x - D.2323()2()x f x xf x - 4、若函数()f x 在(,)a b 内连续,则其原函数()F x ( ) A. 在(,)a b 内可导 B. 在(,)a b 内存在 C. 必为初等函数 D. 不一定存在

二、填空题(将正确答案填在横线上, 本大题分4小题, 每小题4分, 共16分) 1、级数1 1 n n n ∞ =+∑ 必定____________(填收敛或者发散)。 2、设平面20x By z -+-=通过点(0,1,0)P ,则B =___________ 。 3、定积分1 21sin x xdx -=?__________ _。 4、若当x a →时,()f x 和()g x 是等价无穷小,则2() lim () x a f x g x →=__________。 三、解答题(本大题共4小题,每小题7分,共28分 ) 1、( 本小题7分 ) 求不定积分sin x xdx ? 2、( 本小题7分 ) 若()0)f x x x =+>,求2'()f x dx ?。

(完整)同济版高等数学下册练习题(附答案)

第八章 测 验 题 一、选择题: 1、若a → ,b → 为共线的单位向量,则它们的数量积 a b →→ ?= ( ). (A) 1; (B)-1; (C) 0; (D)cos(,)a b →→ . 向量a b →→?与二向量a → 及b → 的位置关系是( ). 共面; (B)共线; (C) 垂直; (D)斜交 . 3、设向量Q → 与三轴正向夹角依次为,,αβγ,当 cos 0β=时,有( ) ()(); (); ()A Q xoy B Q yoz C Q xoz D Q xoz ⊥r r r r 面; 面面面 5、2 ()αβ→ → ±=( ) (A)22αβ→→±; (B)2 2 2ααββ→→→ →±+; (C)2 2 ααββ→→→ →±+; (D)2 2 2ααββ→→→ →±+. 6、设平面方程为0Bx Cz D ++=,且,,0B C D ≠, 则 平面( ). (A) 平行于轴;x ;(B) y 平行于轴; (C) y 经过轴;(D) 经过轴y . 7、设直线方程为111122 00A x B y C z D B y D +++=??+=?且 111122,,,,,0A B C D B D ≠,则直线( ). (A) 过原点; (B)x 平行于轴; (C)y 平行于轴; (D)x 平行于轴. 8、曲面2 50z xy yz x +--=与直线5 13 x y -=- 10 7 z -= 的交点是( ). (A)(1,2,3),(2,1,4)--;(B)(1,2,3); (C)(2,3,4); (D)(2,1,4).-- 9、已知球面经过(0,3,1)-且与xoy 面交成圆周 22160 x y z ?+=?=?,则此球面的方程是( ). (A)2 2 2 6160x y z z ++++=; (B)222 160x y z z ++-=; (C)2 2 2 6160x y z z ++-+=; (D)2 2 2 6160x y z z +++-=. 10、下列方程中所示曲面是双叶旋转双曲面的是( ). (A)2 2 2 1x y z ++=; (B)22 4x y z +=; (C)22 2 14y x z -+=; (D)2221916 x y z +-=-. 二、已知向量,a b r r 的夹角等于3 π ,且2,5a b →→==,求 (2)(3)a b a b →→→→ -?+ . 三、求向量{4,3,4}a → =-在向量{2,2,1}b → =上的投影 . 四、设平行四边形二边为向量 {1,3,1};{2,1,3}a b → → =-=-{}2,1,3b =-,求其面积 . 五、已知,,a b →→ 为两非零不共线向量,求证: ()()a b a b →→→→-?+2()a b →→ =?. 六、一动点与点(1,0,0)M 的距离是它到平面4x =的距离的一半,试求该动点轨迹曲面与yoz 面的交线方程 . 七、求直线L :31258x t y t z t =-?? =-+??=+? 在三个坐标面上及平面 π380x y z -++=上的投影方程 . 八、求通过直线 122 232 x y z -+-==-且垂直于平面3250x y z +--=的平面方程 .

微积分期末测试题及复习资料

一 单项选择题(每小题3分,共15分) 1.设lim ()x a f x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对 2.设f (x )在点x =a 处可导,那么0()(2)lim h f a h f a h h →+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④ 1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ). ①(-1,1) ②,22ππ??-??? ? ③(0,+∞) ④(-∞,+∞) 4.设2()()lim 1() x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在 5.已知0lim ()0x x f x →=及( ),则0 lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时 ③仅当0lim ()0x x g x →=时 ④仅当0 lim ()x x g x →存在时 二 填空题(每小题5分,共15分) 1.sin lim sin x x x x x →∞-=+____________. 2.31lim(1)x x x +→∞+=____________. 3.()f x =那么左导数(0)f -'=____________,右导数(0)f +'=____________. 三 计算题(1-4题各5分,5-6题各10分,共40分) 1.111lim()ln 1 x x x →-- 2.t t x e y te ?=?=?,求22d y dx 3.ln(y x =,求dy 和22d y dx . 4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求dy dx . 5.设111 1,11n n n x x x x --==++,求lim n x x →∞.

微积分下册知识点

微积分(下)知识点 第 1 页 共 18 页 微积分下册知识点 第一章 空间解析几何与向量代数 (一) 向量及其线性运算 1、 向量,向量相等,单位向量,零向量,向量平行、共线、 共面; 2、 线性运算:加减法、数乘; 3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式; 4、 利用坐标做向量的运算:设),,(z y x a a a a = , ),,(z y x b b b b = , 则 ),,(z z y y x x b a b a b a b a ±±±=± , ),,(z y x a a a a λλλλ= ; 5、 向量的模、方向角、投影: 1) 向量的模: 222z y x r ++= ; 2) 两 点 间 的 距 离公式: 212212212)()()(z z y y x x B A -+-+-= 3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,, 4) 方向余弦:r z r y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα 5) 投影:?cos Pr a a j u =,其中?为向量a 与u 的夹角。 (二) 数量积,向量积 1、 数量积:θcos b a b a =? 1)2a a a =? 2)?⊥b a 0=?b a z z y y x x b a b a b a b a ++=? 2、 向量积:b a c ?=

微积分(下)知识点 第 1 页 共 18 页 大小:θsin b a ,方向:c b a ,,符合右手规则 1)0 =?a a 2)b a //?0 =?b a z y x z y x b b b a a a k j i b a =? 运算律:反交换律 b a a b ?-=? (三) 曲面及其方程 1、 曲面方程的概念:0),,(:=z y x f S 2、 旋转曲面: yoz 面上曲线0),(:=z y f C , 绕y 轴旋转一周: 0),(2 2=+±z x y f 绕 z 轴旋转一周: 0),(22=+±z y x f 3、 柱面: ),(=y x F 表示母线平行于 z 轴,准线为 ?????==0 ),(z y x F 的柱面 4、 二次曲面(不考) 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:122 222 2=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 4) 双叶双曲面:122 22 2 2 =--c z b y a x

微积分下册期末试卷附答案

中南民族大学06、07微积分(下)试卷 及参考答案 06年A 卷 评分 阅卷人 1、已知22 (,)y f x y x y x +=-,则=),(y x f _____________. 2、已知,则= ?∞ +--dx e x x 0 21 ___________. π =? ∞ +∞ --dx e x 2 3、函数 22 (,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则= ')0,1(x f ________. 5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是 ____________________. 二、选择题(每小题3分,共15分) 评分 阅卷人 6 知dx e x p ?∞ +- 0 )1(与?-e p x x dx 1 1 ln 均收敛, 则常数p 的取值范围是( ). (A) 1p > (B) 1p < (C) 12p << (D) 2p >

7 数???? ?=+≠++=0 ,0 0 ,4),(222 22 2y x y x y x x y x f 在原点间断, 是因为该函数( ). (A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义 (D) 在原点二重极限存在,但不等于函数值 8、若 2 2223 11 1x y I x y dxdy +≤= --?? ,22223212 1x y I x y dxdy ≤+≤=--??, 2 2223 324 1x y I x y dxdy ≤+≤=--?? ,则下列关系式成立的是( ). (A) 123I I I >> (B) 213I I I >> (C) 123I I I << (D) 213I I I << 9、方程x e x y y y 3)1(596+=+'-''具有特解( ). (A) b ax y += (B) x e b ax y 3)(+= (C) x e bx ax y 32)(+= (D) x e bx ax y 323)(+= 10、设∑∞ =12n n a 收敛,则∑∞ =-1) 1(n n n a ( ). (A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定 三、计算题(每小题6分,共60分) 评分 评分 评阅人 11、求由2 3x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.

最新高等数学下考试题库(附答案)

《高等数学》试卷1(下) 一.选择题(3分?10) 1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ). A.3 B.4 C.5 D.6 2.向量j i b k j i a +=++-=2,2,则有( ). A.a ∥b B.a ⊥b C.3,π=b a D.4 ,π=b a 3.函数11 22222-++--=y x y x y 的定义域是( ). A.(){ }21,22≤+≤y x y x B.(){}21,22<+p D.1≥p 8.幂级数∑∞ =1n n n x 的收敛域为( ). A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1- 9.幂级数n n x ∑∞=?? ? ??02在收敛域内的和函数是( ).

A.x -11 B.x -22 C.x -12 D.x -21 10.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cx e y = 二.填空题(4分?5) 1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________. 2.函数()xy z sin =的全微分是______________________________. 3.设133 23+--=xy xy y x z ,则=???y x z 2_____________________________. 4. x +21的麦克劳林级数是___________________________. 三.计算题(5分?6) 1.设v e z u sin =,而y x v xy u +==,,求.,y z x z ???? 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,y z x z ???? 3.计算σd y x D ??+22sin ,其中22224:ππ≤+≤y x D . 4.求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径). 四.应用题(10分?2) 1.要用铁板做一个体积为23 m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省? . 试卷1参考答案 一.选择题 CBCAD ACCBD 二.填空题 1.0622=+--z y x . 2.()()xdy ydx xy +cos . 3.1962 2--y y x . 4. ()n n n n x ∑∞=+-01 21.

大一微积分期末试卷及答案

微积分期末试卷 一、选择题(6×2) cos sin 1.()2,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π →-=--==>、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( ) n 1 X cos n = 2 00000001( ) 5"()() ()()0''( )<0 D ''()'()06x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线 1~6 DDBDBD 二、填空题 1d 1 2lim 2,,x d x ax b a b →++=xx2 211、( )=x+1 、求过点(2,0)的一条直线,使它与曲线y=相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是:2+1 x5、若则的值分别为: x+2x-3

1 In 1x + ; 2 322y x x =-; 3 2 log ,(0,1),1x y R x =-; 4(0,0) 5解:原式=11(1)()1m lim lim 2 (1)(3)3477,6 x x x x m x m x x x m b a →→-+++===-++∴=∴=-= 三、判断题 1、无穷多个无穷小的和是无穷小( ) 2、0sin lim x x x →-∞+∞在区间(,)是连续函数() 3、0f"(x )=0一定为f(x)的拐点() 4、若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、设 函 数 f (x) 在 [] 0,1上二阶可导且 '()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有 1~5 FFFFT 四、计算题 1用洛必达法则求极限2 1 20lim x x x e → 解:原式=2 2 2 1 1 1 330002(2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞- 2 若34()(10),''(0)f x x f =+求 解:332233 33232233432'()4(10)312(10)''()24(10)123(10)324(10)108(10)''()0 f x x x x x f x x x x x x x x x x f x =+?=+=?++??+?=?+++∴= 3 2 4 lim(cos )x x x →求极限

微积分下册期末试卷及答案[1]

1、已知22 (,)f x y x y x +=-,则=),(y x f _____________. 2、已知,则= ?∞ +--dx e x x 21 ___________. π =? ∞ +∞ --dx e x 2 3、函数 22 (,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________. 5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是 ____________________. 6 知dx e x p ?∞ +- 0 )1(与 ? -e p x x dx 1 1ln 均收敛,则常数p 的取值范围是( c ). (A) 1p > (B) 1p < (C) 12p << (D) 2p > 7 数 ?? ?? ?=+≠++=0 ,0 0 ,4),(222 22 2y x y x y x x y x f 在原点间断, 是因为该函数( b ). (A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值 8 、若2 211 x y I +≤= ?? ,2 2 212x y I ≤+≤= ?? , 2 2 324x y I ≤+≤= ?? ,则下列关 系式成立的是( a). (A) 123I I I >> (B) 213I I I >> (C) 123I I I << (D) 213I I I << 9、方程x e x y y y 3)1(596+=+'-''具有特解( d ). (A) b ax y += (B) x e b ax y 3)(+= (C) x e bx ax y 32)(+= (D) x e bx ax y 323)(+= 10、设∑∞ =12n n a 收敛,则∑∞ =-1) 1(n n n a ( d ). (A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定 一、填空题(每小题3分,共15分) 1、2(1)1x y y -+. 2 3、) 32 ,31(-. 4、1. 5、"6'0y y y -+=. 11、求由2 3x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.解: 32 y x =的函数为

高等数学(下)期末复习题(附答案)

《高等数学(二)》期末复习题 一、选择题 1、若向量b 与向量)2,1,2(-=a 平行,且满足18-=?b a ,则=b ( ) (A ) )4,2,4(-- (B )(24,4)--, (C ) (4,2,4)- (D )(4,4,2)--. 2、在空间直角坐标系中,方程组2201x y z z ?+-=?=? 代表的图形为 ( ) (A )直线 (B) 抛物线 (C ) 圆 (D)圆柱面 3、设22 ()D I x y dxdy =+?? ,其中区域D 由222x y a +=所围成,则I =( ) (A) 2240 a d a rdr a π θπ=? ? (B) 2240 2a d a adr a π θπ=? ? (C) 2230 02 3 a d r dr a π θπ=? ? (D) 2240 01 2 a d r rdr a π θπ=? ? 4、 设的弧段为:2 3 0,1≤ ≤=y x L ,则=? L ds 6 ( ) (A )9 (B) 6 (C )3 (D) 2 3 5、级数 ∑∞ =-1 1 ) 1(n n n 的敛散性为 ( ) (A ) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不确定 6、二重积分定义式∑??=→?=n i i i i D f d y x f 1 0),(lim ),(σηξσλ中的λ代表的是( ) (A )小区间的长度 (B)小区域的面积 (C)小区域的半径 (D)以上结果都不对 7、设),(y x f 为连续函数,则二次积分??-1 010 d ),(d x y y x f x 等于 ( ) (A )??-1010 d ),(d x x y x f y (B) ??-1010d ),(d y x y x f y (C) ? ?-x x y x f y 10 1 0d ),(d (D) ?? 1 010 d ),(d x y x f y 8、方程2 2 2z x y =+表示的二次曲面是 ( ) (A )抛物面 (B )柱面 (C )圆锥面 (D ) 椭球面

大一微积分期末试卷及答案

微积分期末试卷 选择题(6×2) cos sin 1.()2 ,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π→-=--== >、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小 3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001() 5"()() ()()0''( )<0 D ''()'()0 6x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线 C既有铅直又有水平渐近线 D既有铅直渐近线 1~6 DDBDBD 一、填空题 1d 12lim 2,,x d x ax b a b →++=x x2 21 1、( )= x+1 、求过点(2,0)的一条直线,使它与曲线y= 相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+14、y拐点为:x5、若则的值分别为: x+2x-3

1 In 1x + ; 2 322y x x =-; 3 2 log ,(0,1),1x y R x =-; 4(0,0) 5解:原式=11 (1)() 1m lim lim 2 (1)(3) 3 4 77,6 x x x x m x m x x x m b a →→-+++== =-++∴=∴=-= 二、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0 sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函数f(x)在 [] 0,1上二阶可导且 ' ()0A ' B ' (f x f f C f f <===-令(),则必有 1~5 FFFFT 三、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 解:原式=2 2 2 1 1 1 3 3 2 (2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞- 2 若3 4 ()(10),''(0)f x x f =+求 解:3 3 2 2 3 3 3 3 2 3 2 2 3 3 4 3 2 '()4(10)312(10) ''()24(10)123(10)324(10)108(10)''()0 f x x x x x f x x x x x x x x x x f x =+?=+=?++??+?=?+++∴= 3 2 4 lim (cos )x x x →求极限

微积分下册主要知识点

微积分下册主要知识点

4.1不定积分 *基本积分表 *基本积分法:利用基本积分表。 4.2换元积分法 一、第一换元积分法(凑微分法) C x F C u F du u g dx x x g +=+=='??)]([)()()()]([???. 二、常用凑微分公式 三、第二换元法 x u x u x u x u x u x u a u e u x u x u b ax u x d x f dx x x f x d x f dx x x f x d x f xdx x f x d x f xdx x f x d x f xdx x f x d x f xdx x f da a f a dx a a f de e f dx e e f x d x f dx x x f x d x f dx x x f a b ax d b ax f a dx b ax f x x x x x x x x x x arcsin arctan cot tan cos sin ln ) (arcsin )(arcsin 11 )(arcsin .11) (arctan )(arctan 11 )(arctan .10cot )(cot csc )(cot .9tan )(tan sec )(tan .8cos )(cos sin )(cos .7sin )(sin cos )(sin .6)(ln 1)(.5)()(..4) (ln )(ln 1 )(ln .3) 0()()(1 )(.2)0()()(1 )(.12 2 221==========+=-=-=+-==-=?=?=?=?=?≠=≠++= +??????????????????????-μμμμμμμ 法 分 积元换 一第换元公式积分类型

微积分(下册)期末试卷与答案

中南民族大学06、07微积分(下)试 卷及参考答案 06年A 卷 1、已知22 (,)y f x y x y x +=-,则=),(y x f _____________. 2、已知,则= ?∞ +--dx e x x 21 ___________. π =? ∞ +∞ --dx e x 2 3、函数22 (,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=' )0,1(x f ________. 5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是 ____________________. 二、选择题(每小题3分,共15分) 6 知dx e x p ?∞ +- 0 )1(与 ? -e p x x dx 1 1ln 均收敛,

则常数p 的取值范围是( ). (A) 1p > (B) 1p < (C) 12p << (D) 2p > 7 数?? ?? ?=+≠++=0 ,0 0 ,4),(222 222y x y x y x x y x f 在原点间断, 是因为该函数( ). (A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义 (D) 在原点二重极限存在,但不等于函数值 8 、若 2211 x y I +≤= ?? , 22212 x y I ≤+≤= ?? , 22324 x y I ≤+≤= ?? ,则下列关系式成立的是( ). (A) 123I I I >> (B) 213I I I >> (C) 123I I I << (D) 213I I I << 9、方程x e x y y y 3)1(596+=+'-''具有特解( ). (A) b ax y += (B) x e b ax y 3)(+= (C) x e bx ax y 32)(+= (D) x e bx ax y 323)(+= 10、设∑∞ =12n n a 收敛,则∑∞ =-1) 1(n n n a ( ). (A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定 三、计算题(每小题6分,共60分)

微积分(下)期末复习题完整版

期末复习题 一、填空题 1、=?→x t t x x 0 20 d cos lim . 2、若)(x f 在],[b a 上连续, 则=?b x x x f x 2d )(d d . 3、已知)(x F 是)(x f 的原函数,则?>+x x t a t f t )0( d )(1 等于 . 4、若2 e x -是)(x f 的一个原函数,则 ='? 10 d )(x x f . 5、 =++?-112d 1| |x x x x . 6、已知2 1)(x x x f +=,则)(x f 在]2,0[上的平均值为 . 7、设 ? =+π0 ),(sin d )(x f x x x f 且)(x f 连续, 则=)(x f . 8、设曲线k x y =(0,0>>x k )与直线1=y 及y 轴围成的图形面积为3 1 ,则=k . 9、设y x y y x y x f arcsin )1()2(),(22---=,则 =??) 1,0(y f . 10、设y x z 2e =,则 =???y x z 2 . 11、交换积分次序 =? ?x y y x f x ln 0e 1d ),(d . 12、交换积分次序 =? ? ---x x y y x f x 11 1 2 2d ),(d . 13、交换积分次序 ? ?-2 210 d ),(d y y x y x f y = . 二、选择题 1、极限x t t x x cos 1d )1ln(lim 2sin 0 -+?→等于( ) (A )1 (B )2 (C )4 (D )8 2、设x x t t f x e d )(d d e 0=?-,则=)(x f ( ) (A) 2 1x (B) 21x - (C) x 2e - (D) x 2e -- 3、设)(x f 是连续函数,且C x F x x f +=?)(d )(,则必有( )B (A ))(d )(x F t t f x a =? (B ))(]d )([x F t t F x a ='? (C ) )(d )(x f t t F x a ='? (D ))()(]d )([a f x f t t F x a -=''?

大一微积分期末试题附答案

微积分期末试卷 一、选择题(6×2) cos sin 1.()2,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π →-=--==>、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001 () 5"()() ()()0''( )<0 D ''()'()06x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线 二、填空题 1 d 1 2lim 2,,x d x ax b a b →++=xx2 211、( )=x+1 、求过点(2,0)的一条直线,使它与曲线y=相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+1 x5、若则的值分别为: x+2x-3

三、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函 数 f (x) 在 [] 0,1上二阶可导且 '()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有 四、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 2 若34()(10),''(0)f x x f =+求 3 2 4 lim(cos )x x x →求极限 4 (3y x =-求 5 3tan xdx ? 五、证明题。 1、 证明方程3 10x x +-=有且仅有一正实根。 2、arcsin arccos 1x 12 x x π +=-≤≤证明() 六、应用题 1、 描绘下列函数的图形 21y x x =+

微积分(下册)主要知识点汇总

4.1不定积分 *基本积分表 *基本积分法:利用基本积分表。 4.2换元积分法 一、第一换元积分法(凑微分法) C x F C u F du u g dx x x g +=+=='??)]([)()()()]([???. 二、常用凑微分公式 三、第二换元法 C x F C t F dt t t f dx x f +=+='=??)]([)()()]([)(ψ??, 注: 以上几例所使用的均为三角代换, 三角代换的目的是化掉根式, 其一般规律如下: 当被积函数中含有 a) ,22x a - 可令 ;sin t a x = b) ,22a x + 可令 ;tan t a x = c) ,22a x - 可令 .sec t a x = x u x u x u x u x u x u a u e u x u x u b ax u x d x f dx x x f x d x f dx x x f x d x f xdx x f x d x f xdx x f x d x f xdx x f x d x f xdx x f da a f a dx a a f de e f dx e e f x d x f dx x x f x d x f dx x x f a b ax d b ax f a dx b ax f x x x x x x x x x x arcsin arctan cot tan cos sin ln ) (arcsin )(arcsin 11 )(arcsin .11)(arctan )(arctan 11 ) (arctan .10cot )(cot csc )(cot .9tan )(tan sec )(tan .8cos )(cos sin )(cos .7sin )(sin cos )(sin .6)(ln 1)(.5)()(..4) (ln )(ln 1 )(ln .3) 0()()(1 )(.2) 0()()(1 )(.12 2221==========+=-=-=+-==-=?=?=?=?=?≠=≠++=+??????????????????????-μμμμμμμ 法 分 积元换 一第换元公式积分类型

2019最新高等数学(下册)期末考试试题(含答案)ABI

2019最新高等数学(下册)期末考试试题(含答 案) 一、解答题 1.建立以点(1,3,-2)为中心,且通过坐标原点的球面方程. 解:球的半径为R == 设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14 即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程. 2.求下列线性微分方程满足所给初始条件的特解: πd 11(1)sin ,1d x y y x y x x x =+== ; 解: 11d d 11sin e sin d [cos ]e d x x x x x y x x c c x x c x x x -??????==+=-+?????? ?? 以π,1x y ==代入上式得π1c =-, 故所求特解为 1(π1cos )y x x =--. 2311(2)(23)1,0x y x y y x ='+-== . 解:2 2323d 3ln x x x x c x --=--+? 2 2 223323d 23 +3ln d 3ln e e e d e d x x x x x x x x x x y x c x c -------??????∴==++???????? 2223311e .e e 22x x x x x c c ----????=?=++ ? ????? 以x =1,y =0代入上式,得12e c =-. 故所求特解为 2311e 22e x y x -??=- ??? . 3.设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比,若质点由(a ,0)沿椭圆移动到B (0,b ),求力所做的功. 解:依题意知 F =kxi +kyj ,且L :cos sin x a t y a t =??=?,t :0→π2

重积分_期末复习题_高等数学下册_(上海电机学院)

第九章 重积分 一、选择题 1.I=222222(),:1x y z dv x y z Ω ++Ω++=???球面部, 则I= [ C ] A. ???Ω Ω=dv 的体积 B.???1 42020sin dr r d d θ?θππ C. ???104 020sin dr r d d ??θππ D. ???104 020sin dr r d d θ?θππ 2. Ω是x=0, y=0, z=0, x+2y+z=1所围闭区域, 则???Ω =xdxdydz [ B ] A. ???---y x x dz x dy dx 210 21010 B. ???---y x x dz x dy dx 210 21010 C. ???-1 021021 0dz x dx dy y D. ???---y x y dz x dx dy 210 21010 3. 设区域D 由直线,y x y x ==-和1x =所围闭区域,1D 是D 位于第一象限的部分,则[B ] (A )()()1 cos d d 2d d D D xy x xy x y xy x y +=???? (B )()()()1 cos d d 2cos d d D D xy x xy x y x xy x y +=???? (C )()()1 cos d d 2(cos())d d D D xy x xy x y xy x xy x y +=+???? (D )()()cos d d 0D xy x xy x y +=?? 4. Ω:12 22≤++z y x , 则??? Ω =++++++dxdydz z y x z y x z 1 )1ln(2 2 2 222 [ C ] A. 1 B. π C. 0 D. 3 4π 5.222{(,),0}D x y x y a y =+≤≥,其中0a >,则D xy d σ=?? D A.2 20 sin cos a d r dr π θθθ?? B. 30 sin cos a d r dr π θθθ? ?

相关文档
最新文档