聚合物结构与性能考试

聚合物结构与性能考试
聚合物结构与性能考试

《聚合物结构与性能》考试复习提纲

1、通过人类五次产业革命的学习给予了我们哪些启发?

①科技发展越来越快,对人类社会的影响也越来越大

②科学技术成为推动国家发展不可或缺的因素

③近代科学技术更多地关注在纳米以及生物、宇宙等未知领域

④随着科学的发展,人们更关注新型材料的研究,为人类更好的服务

2、通过对21世纪人类所面临的八大领域问题的了解,你对人类未来前景有什么看法?

①新技术的产生和发展往往是“连锁反应”,全面爆发,相互激发,形成技术的“群体革命”,可以看出所有革新都是为了生活的更好,只有适应大自然,合理改造自然。才是出路之所以在!

②出现一些问题是很正常的,应考虑走低碳的可持续发展道路,这样才能长治久安

3、为什么说新型材料科学与工程是发展八大领域的先导?

①新材料是人类文明的基石,为各领域提供材料基础,各领域的发展离不开材料,材料是

八大领域发展的先导。

②新材料的产生深刻影响了人类的生产生活方式。材料对国民经济和国防建设起着关键的

支撑作用,而新材料是高技术领域的重要组成部分。

③材料科学每前进一小步,人类文明就前进一大步。

4、表述四大材料各自的特征及不同功能,请用材料中电子的行为来论述其内在机理。

①金属材料

特点:导电性能优良,强度、硬度高,高温变形,耐磨,加工性能好等。

内在机理:原子核较重,核外电子云较密集,金属原子最外层电子处于自由运动状态,每个电子可和若干个电子随时作用形成金属键。

②无机非金属材料

特点:耐高温、耐腐蚀、韧性低、可塑性差、加工困难、强度高、电学特性和光学特性。内在机理:电子被束缚在个别原子上,不可自由移动,故呈现脆性。

③高分子材料

特点:高分子材料按特性分为橡胶、塑料、纤维、涂料、粘合剂等,不同材料有各自的特性内在机理:分子量大,分子量分布具有多分散性,合成制备方法、成型加工工艺多样化。④复合材料

特点:在一个特定的基体中,填充有一种或多种填充体,既能保留原组分或材料的主要特色,并通过复合效应获得原组分所不具备的性能,可以通过材料设计使各组分的性能相互补充并彼此关联,从而获得新的优越性能。

功能机理:各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同要求。

5. 四大材料如何相互促进发展?有哪些主要途径,你在这方面有什么创新思想。

通过制备复合材料从而实现将几大类材料优点结合起来

①改进金属材料的加工工艺,从而提高其综合性能

②无机非金属材料一般延展性差,属于脆性材料,加工成型工艺相对复杂繁琐,提高其可塑性是这一类材料得到大范围推广使用所必须解决的首要问题。

③解决以石油副产物为主要原料合成高分子材料的问题,同时减少新材料的研发投入,尽量通过改性,改变加工工艺等手段提高现有材料的性能。

6. 通过学习四大材料对我们有哪些主要启发,结合自己研究方向谈自己的设想和研究路线

①几大材料的产生都不同程度地产生了资源、环境等一系列问题。

②由需出发,供需结合,研发、生产、实践相结合。

③预先权衡好各方利弊的情况下,仍需加大新材料的研发力度。

④现有的认知水平与技术手段还有待提高

⑤新材料的发展历程是伴随着人类文明的不断进步而不断开拓创新的过程。

7. 为什么说中国古代“易经八卦圆形”是立体空间的“一四三八”规律的最全面的描述,是把立方体展开形成平面化的典型方式?你认为图中“鱼眼”及“鱼尾”怎样摆是最合理的?

从八卦图最外圈看共有八个符号而每一个符合中由三个三个的爻线组成,故称“83”;在这里只要把一用+来表示,--用-来表示,那么八卦符号完全变成下面立体空间的八个相畴的表述:

至于八卦的“鱼头鱼尾”的两个大区(二,)每一个大区中还包含对方的小鱼眼区(),以示“你中有我”,“我中有你”的两个分区,成“4”,这样又与上述立体空间某方向的切面所呈现的四个平面区一致,最终太极图用一根线来把对量的两大区加以统一代表数“1”,这样《易经》实际上代表着立体空间1438的形象。

8. 一个立方体的八个相畴中哪些是符合左旋,哪些是符合右旋法则的?这说明什么问题?在什么情况下是全对称?在什么情况下变得对称破缺?

从x轴出发到y轴结束,看用的是左手还是右手,左手即为左旋,右手为右旋。

9. 请举例说明自然界最佳黄金分割原理的客观存在。你在研究工作中将如何应用这个原理现来促进自己研究的思路?

①利用线段上的两个黄金分割点,可以做出正五角星,正五边形等。

②建筑物中某些线段的比就科学地采用了黄金分割,舞台的报幕员并不是站在舞台的中间,而是偏在台上一侧,黄金分割点处最佳。

③植物界也有采用黄金分割的地方,如果从一颗嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。

10. 为什么一切生命体的密码子最多有64个,其内在的原因在哪里?请用四种碱基结构的电荷分布来讲述三联体密码子产生的机制。人类遗传基因密码子由碱基三三组成,一共有四种碱基,一共有43=64种密码子

11. 你认为原子核外电子的运动是否像太阳系行星一样转圆运动?如果不是,为什么?

①卢瑟福提出的太阳-行星模型:所有原子都有一个核即原子核,核的体积只占整个原子体积极小的一部分,原子的正电荷和绝大部分质量集中在核上,电子像行星绕着太阳那样绕核运动。

②带电微粒在力场中运动时总要产生电磁辐射并逐渐失去能量,运动着的电子轨道会越来越小,最终将与原子核相撞从而导致原子毁灭,但现实中原子毁灭的事实并未发生过。

③海森堡的不确定原理:不可能同时测得电子的精确位置和精确动量,正是由于这种不确定性,电子不可能按照前面太阳-行星模型中行星绕太阳那样的轨道运动。

12. 请推导二阶偏微分型薛定谔方程,其对哪些体系有用,请指出H φ=Eφ各项的物理意义。为什么以前觉得这个方程很难理解?通过学习你对波函数有了什么样的新认识?

H=T+V,T=Tx+Ty+Tz,V=e-·Z+/r

λx=2π x/ Px=h/λx,Tx=Px2/2m

Tx=h2 /8π2m x2

Ty=-Tz=h2▽/8π2m

H2=-h2▽/8π2m+V

因为以前所学知识不够广博,完善,因此难以全面理解薛定谔方程。学习了之后对波函数的认识:

1、虽然任意给定的E都可以解出一个函数解,但只有满足一定条件的分立的一些E值才能给出有物理意义的波函数

2、由于薛定谔方程是一个线性微分方程,所以任意几个解的线性组合还是薛定谔方程的解。

13. 根据角量子数l=0,1,2,请画出双叶,四叶轨道形状。并指出s,p,d轨道只能分别有1、3、5种轨道,着重指出出现d z2轨道的原因?

cosΦ sinΦ

14. 化学键的形成为什么一定要遵循对称原理。请举例说明形成σ键,π键,络合配位的原因?用举例说明金属键,离子键,共价键的差别。

对称性原理:所有化学过程成键的充分条件是:电子云对称。电子云对称重叠能量大,键更加牢固。

15. 从门捷列夫元素周期表里我们学习到什么方法论?你有什么体会?

1、量变转变为质变的规律。

2、实践出真理。

3、真正的真理是经过实践检验过,并随着人们的认识而不断变化发展的。

16. 从各种元素的特征中你看出了哪些规律?

①元素周期表中元素及其化合物的递变性规律

原子半径

1、除第一周期外,其他周期元素(惰性气体元素除外)的原子半径随原子序数的递增而减

2、同一族的元素从上到下,随电子层数增多,原子半径增大

单质的熔点

1、同一周期元素随原子序数的递增,元素组成的金属单质的熔点递增,非金属单质的熔点

递减

2、同一族元素从上到下,元素组成的金属单质熔点递减,非金属单质的熔点递增

元素的金属性与非金属性

1、同一周期的元素从左到右金属性递减,非金属性递增。

2、同一主族元素从上到下金属性递增,非金属性递减

元素化合价

1、除第一周期外,同周期从左到右,元素最高正价由+1递增到+7,非金属元素负价由碳族

-4递增到-1

2、同一主族的元素的最高正价、负价均相同。

最高价氧化物和水化物的酸碱性

元素的金属性越强,其最高价氧化物的水化物的碱性越强;元素的非金属性越强,最高价氧

化物的水化物的酸性越强。

非金属气态氢化物

袁术非金属性越强,气态氢化物越稳定,同周期非金属元素的非金属性越强,其气态氢化物水溶液一般酸性越强,同主族非金属元素的非金属性越强,其气态氢化物水溶液酸性越弱单质的氧化性、还原性

一般元素的金属性越强,单质的还原性越强,其氧化物的阳离子氧化性越弱;元素的非金属性越强,单质的氧化性越强,其简单阴离子的还原性越弱。

②三角形规律

所谓“三角形”,即A、B处于同周期,A、C处于同主族的位置,可排列出三者原子结构、性质方面的规律。

③对角线规律

有些元素在周期表中虽然既非同周期,又非同驻足,但其单质与同类化合物的化学性质却很相似,例如Li和Mg等

④似规律

同族元素性质相似、对角线上元素性质相似、相邻元素性质相似、同位素化学性质相似

⑤元素的周期数等于主族族序数的元素具有良性,由此可推断元素及其化合物的性质

17. 生命起源中起最初催化,激活动力作用的元素有哪些?为什么?

分子生物学的研究揭示,微量元素通过与蛋白质和其他有机基团结合,形成了酶、激素、维生素等生物大分子,发挥着重要的生理生化功能。酶是生命的催化剂,迄今体内发现的1000余种,约有50%到70%需要微量元素参加或激活,它们在细胞酶系统中功能相当广泛。微量元素还参与了激素与维生素的合成。众所周知,碘为甲状腺激素的生物合成所必需的,而锌在维持胰岛素的主体结构中亦不可缺少。核苷酸还原酶的作用依赖于铁等等。

18. 水的结构与“灵感性”何来?

①分子结构的特点是具有很大极性和生成氢键的能力

②水分子间的相互作用很强,在提高温度,增强水分子热运动时需要更多的热量和更高的温度。

③在常温下所有的液体中,除汞以外,水具有最大的表面张力,而其他液体大多远低于水。

④熔点和沸点相对较高,比热很大,溶解热和蒸发热都有较高数值,水的表面张力很强。

⑤水的各种界面特性,如毛细、润湿、吸附等均很突出,在各种物理化学变化中以及自然界机体生命活动中起着显著作用

⑥介电常数大,溶解和离解能力强,化学反应活泼,是由于水分子的极性和氢键生成能力,能够产生强烈水合作用。

19. 生命科学中有哪些重大发现?

①DNA双螺旋结构的发现

②基因重组技术

③生物技术(包括细胞工程、酶工程、发酵工程、蛋白质工程等)

20. 在化学反应领域里判断反应的反应方向有哪几种方法,对此你有什么样的认识?请把作业的习题做出来!

21. 物质世界总趋势是熵增加的方向还是pricogin耗散减少熵的过程?请用自然界的种种实例来说明自然界的有序化和无序化竞争的过程,人类应负什么样的责任?

现实的物质世界总趋势是pricogin耗散减少熵的过程,指把熵耗散掉,变成有规律有秩序的系统,由著名的学者pricogin提出,该理论指出自然界并不按照热力学孤立体系向熵增加的方向转移,而是向有规律、有秩序的方向发展,这种发展过程在相当程度上借助于外界能量,建立新的“建筑物”,越完好的“建筑”其所用的能量也越高。从无生命过渡到有生命的过程和形成代代相传的遗传基因的过程,高能量的ATP起着非常重要的作用,没有ATP 就没有生命的活力。

22. 从<> 和 Van Krevlen《polymer properties》抄出计算溶解度常数用的作用力参数表,计算习题中两种分子的e d,e p,e h值。举例说明这些计算对我们材料学的研究有什么样的指导意义?

色散内聚能密度e

d =E

d

/V=(∑F

d

/V)2

极性内聚能密度e

p =E

p

/V=(∑F

p

/V)2

氢键内均密度e

h =E

h

/V=(∑F

h

/V)2

其中F

d ,F

p

,F

h

分别为基团的色散、极性、氢键作用力参数,V为克分子体积,

是由基团或原子贡献体积加和而得。

23. 你是如何理解四种化学键存在的客观性和必然性?

离子键:两个原子间电负性相差极大时形成。例如:氯和钠,当他们要结合成分子时,电负性大的氯会从电负性小的钠抢走一个电子,以符合八隅体,之后氯会带负一价的方式存在,而钠则以正一价的方式存在,两者再以库伦静电力因正负相吸而结合在一起。

共价键:两个电负性相近的原子,例如两个氧,互相共享共外围电子以符合八隅体的键接方式,因此也有人说这是非金属元素间的结合方式,而共价键有键角及方向的限制,因此不能随意延伸,并无分子结构。

配位键:是一种特殊的共价键,当共价键中共用的电子对是由其中一原子独自供应时,就成配位键。

金属键:金属原子间的键接方式,金属阳离子透过与带负电的电子间的库伦静电力,金属原子间共享游走于空价轨域的电子,而结合成稳定态。

24. 你是怎样理解四种分子间作用力?为什么越高等级的动植物DNA中氢键作用占优势?

①色散力

1、多半是非极性分子间的作用力

2、电子转动到不同位置时,电子与原子核之间距离变小,它们之间产生色散力,当电子离

开该位置时,该作用力消失,所以是瞬时力。

3、色散力没有方向性,长时间观察测出的是平均的力值。

4、色散力的值有高度的加和值,因此大大加强了凝聚体分子间的作用力,是凝聚体之间强

度大大加强了。

5、色散力是一团分子与另一团分子团聚的力量,与汽化的力量无关

6、色散力是具有固定作用距离的,力值对距离更敏感

7、色散力是范德华力,所以温度的影响是间接的。

8、色散力的作用地位很高

②极性力

1、正电荷中心与负电荷中心间的力,与正负离子的作用力有本质区别,它是因为电子在核

外排布不均匀才显示出正电性或负电性,而不是离子键。

2、极性力是一对一的政府作用,有饱和性和方向性。

3、该作用力是一个空间上的统计平均值。

4、在空间上排列开来,会显示出极大的极性力。

5、受温度影响很大,因为正负电荷中心的距离会变化

6、在生物中起较大作用,细胞核中不同区域由于极性介质不同,对细胞核中DNA、RNA有

很大影响,有些能起促进的好的作用,有的其不好的作用。

③诱导力

1、是极性分子与非极性分子间的瞬时作用力。

2、极性分子使它周围的非极性分子的极性而变形,这种变形是瞬时的,受温度影响很大。

3、诱导力强度与极性分子的极性相关。

④氢键力

1、一切生物活动中最重要的作用力

2、人所有的DNA、RNA之所以高级是人类的DNA、RNA比一般生物更善于利用氢键

3、需要两个条件:必须有氢原子;还要有带有孤对电子的原子

4、原则上说,氢键随时形成,随时破坏,实际上,就是分子之间靠这个力排列起来,其排

列程度与物体的历史有关系

5、氢键受历史效应影响非常大,水分子之间的排列就是通过历史效应的氢键来排列的

6、这种作用是很多材料在熔体中为结晶做好的准备,若在熔融的熔体中氢键被破坏,结晶

的结果就大不相同。

25. 为什么均聚物的加成聚合中存在连锁和逐步聚合两种,其内在根本原因何在?

连锁聚合:高分子链很快产生,转化率随时间增加

逐步聚合:反应过程不产生小分子,分子量与转化率都随时间增加

逐步聚合特点:

1、通过氢离子的催化作用,也可以是金属阳离子,作用在氧上使键断裂,所以反应为酸性

2、刚开始单体与单体间反应几率都是50%,往后就不一样了

3、每个官能团以同等几率进行反应,官能团随反应进行而减少

4、分子量分布较宽

26. 请论述:自由基,阴离子,阳离子,配位聚合中活性中心结构的特征。用定量的方法指出这四种聚合反应速度与分子量如何受K d、K i、K p、K t的影响,为什么?其中为什么阳离子聚合中温度越低反应速度越快和阴离子型聚合方式的根本差别?描述阳离子和阴离子聚合方式的根本差别?

①自由基聚合活性中心为自由基,反应特征为慢引发、快增长、速终止。

②阳离子聚合活性中心为阳离子,单体特征为具有给电子基团,反应特征为快引发、快增长、易转移、难终止。

③阴离子聚合活性中心为阴离子,单体特征为具有吸电子基团,反应特征为快引发、慢增长、难终止、无转移。

④配位聚合机理分为单金属机理和双金属机理,单金属机理指活性中心由单一过渡金属(Ti)构成,单体在Ti上配位,后在Ti-C键间插入增长,双金属机理指单体在Ti上配位,而后在Al-C键间插入,在Al上增长

27. 请举例详细的论述配位聚合中d z2及若干配位基团对定向聚合作用机理,并说明定向聚合物高分子链形成的若干阶段。

催化剂内部结构、配位状态都很复杂、dz2电子云的密度受四个角上的配位原子的影响,使引发剂本身的活性不一样,所以聚合物的分子量分布较宽。

定向聚合机理:

1、高价态过渡金属的配位点全部被配体取代,没有空位可供烯类单体进行π-络合,但低价过渡金属去能和烯烃类形成稳定的π-络合物,原因是过渡金属的d轨道和烯烃类的π轨道重叠。

2、关于烯烃的配位聚合,曾先后提出了多种机理,主要有双金属机理和单金属机理,目前单金属机理更易被人们接受。

高分子链形成的若干阶段:

形成活性中心(或是空位),吸附单体进行定向配位,络合活化,插入增长,类似模板的进行定向聚合,形成立构规整的聚合物。

28. 论述本体聚合,溶液聚合,乳液聚合,悬浮聚合的差别与共同点。

29. 请举例论述共聚反应中竞聚率大小与单体化学结构关系的8中规律。并说明其内在机理。

①凡是带有极性的单体,其竞聚率大于非极性单体,易进入高分子链中。因为单独聚合时,分子与分子之间由于极性原因,单体不易脱离自己单体而进入活性中心,使极性分子间的作用力变弱,极性分子的正电性突出,容易对自由基的负电场靠合,极性单体易进入共聚物中,在其共聚物中丰度高,竞聚率大

②凡是带有共轭结构的单体,其竞聚率要大于非共轭体系的单体,易进入高分子链中。因为单独聚合时,共轭分子之间形成共轭色散力,大大限制了分子进入活性中心,所以反应慢;两者共聚时,共轭单体被非共轭分子所隔开,破坏了共轭色散力作用,共轭单体的电子云很容易变形,被活性中心所极化,从而易进入共聚物种,丰度高。

30. 请找《polymer handbook》中r1和r2值来完成课件中的作业。

北京二厂用氯乙烯和醋酸乙烯酯共聚,得到Tg为-10℃的共聚物,实验表明,醋酸乙烯酯的比例达到20%时该材料的低温耐寒性能达到要求,问:在实际聚合过程中,二者最佳配比是多少?

解:r1=1.68,r2=0.23,F1=80%,f2=1-f1

共聚物组成微分方程

F=(r1f12+f1f2)/(r1f12+2f1f2+r2f22)

代入数据后求得:f2=0.67

31. 高分子体系存在平均分子量的客观性和必然性请用定量方式,说

明为什么测试方法与不同分子量的表达式相关?上述四种平均分子量空间维数间有什么关系?是人为造的,还是客观事物的某种反映。

分子量是高分子链结构的一个组成部分,是表征高分子大小的一个重要指标,由于高分子合成过程经历了链引发、增长、终止以及可能发生的支化、交联、环化等复杂过程,每个高分子具有相同和不同的链长,许多高分子组成的聚合物具有分子量的分布,所谓聚合物的分子量仅为统计平均值。

32.自由基、阴离子、阳离子、配位聚合时对分子量分布的影响,为什么?

自由基聚合分子量分布较宽,因为自由基聚合有链转移

阴离子聚合分子量分布窄,因为阴离子聚合为活性聚合

阳离子聚合分子量分布宽,因为阳离子聚合易转移

配位聚合分子量分布较宽,因为催化剂为多活性中心

33. 为什么数均分子量与高分子材料流动有关系,而重均分子量与材料强度有关系。

①Mn:各种不同分子量的分子所占的分子数与其对应的分子量乘积的总和。

①Mw:各种不同纷纷拿资料的分子所占的质量分数与其对应的分子量乘积的总和

Mz>Mw>Mv>Mn

Mn靠近聚合物中低分子量的部分,即低分子量部分对Mn影响较大

Mw靠近聚合物中高分子量的部分,即高分子量部分对Mw影响较大

一般用Mw来表征聚合物比Mn更恰当,因为聚合物的性能如强度、熔体粘度更多地依赖于样品中较大的分子。

34. 请设计作业中的分子量分布宽度分别为1,2,6,12,30的聚合物,在合成过程中如何得到这一值,请举例说明为了达到什么目的?

1:m1=10000,n1=100,m2=9900,n2=100

2:m1=82430,n1=50,m2=10000,n2=100

6:m1=10000,n1=5,m2=150,n2=25

12:m1=10000,n1=5,m2=150,n2=55

30:m1=10000,n1=5,m2=150,n2=255

35. 特性粘度的真正物理意义是什么?

物理意义:表示高分子溶液c→0时,单体浓度的增加对溶液增比粘度或相对粘度对数的贡献,其数值不随溶液浓度大小而变化,但随浓度的表示方法而异。

36. 请用画图方法描述不良溶剂和良溶剂的溶液中高分子链的形象。

良溶剂θ溶液不良溶剂

37. 你是怎样理解θ溶液的微观结构,其与浓度,温度的依赖性如何?为什么?θ溶液有什么用途。

高分子溶液的θ状态:当一定温度下高分子-溶剂相互作用参数χ=?时,致使“超

E=0,这种溶液状态称θ状态,该温度称θ温度,该溶额化学位变化”:△μ

1

剂称θ溶剂

从大分子链段与溶剂分子相互作用来看,此时溶液-溶剂、链段-链段、链段-溶剂间的相互作用相等,排斥体积为零,大分子与溶剂分子可以自由渗透,大分子链呈现自然卷曲状态,即处于无扰状态中。

此时测得的大分子尺寸称为无扰尺寸,它是大分子尺度的一种表示,测量无扰尺寸为研究大分子链的结构,形态提供了便利:

1、即使溶液浓度较高时体系黏度依然很低

2、随温度升高体系黏度迅速增大,具有温敏性特征

38.听了本课程及三位教授讲的高性能材料的研究现状和前途之后,你感到最重要的启发是什么?对你研究有什么指导意义?

1、此课程授课形式新颖,极大发挥了同学们学习的主动性,提升了同学们自主学习的能力。

2、学习聚合物的结构与性能是学习整个高分子领域的基础,是重中之重。

3、材料,尤其是新型材料的发展,是其他各个领域发展的基石与先导。

4、中国目前在材料方面还远落后于其他先进国家,需要重视此行业的发展,努力赶超其他先进国家

5、我国在新材料方面要走的路还很长,需要大量的高技术人才,我们要努力学习科学知识,为国家做贡献。

高聚物结构与性能

1.聚合物表面改性 聚合物表面改性方法可以分为以下几种:化学改性、光化学改性、表面改性剂改性、力化学处理、火焰处理与热处理、偶联剂改性、辐照与等离子体表面改性。 (1)化学改性是通过化学手段对聚合物表面进行改性处理,其具体方法包括化学氧化法、化学浸蚀法、化学法表面接枝等。 化学氧化法是通过氧化反应改变聚合物表面活性。常用的氧化体系有:氯酸-硫酸系、高锰酸-硫酸系、无水铬酸-四氯乙烷系、铬酸-醋酸系、重铬酸-硫酸系及硫代硫酸铵-硝酸银系等,其中以后两种体系最为常用。 化学浸蚀法是用溶剂清洗可除去聚烯烃表面的弱边界层,例如通过用脱脂棉蘸取有机溶剂,反复擦拭聚合物表面多次等。 聚合物表面接枝,是通过在表面生长出一层新的有特殊性能的接枝聚合物层,从而达到显著的表面改性效果。 (2)光化学改性主要包括光照射反应、光接枝反应。 光照射反应是利用可见光或紫外光直接照射聚合物表面引起化学反应,如链裂解、交联和氧化等,从而提高了表面张力。 光接枝反应就是利用紫外光引发单体在聚合物表面进行的接枝反应。 (3)表面改性剂改性 采用将聚合物表面改性剂与聚合物共混的方式是一种简单的改性办法,它只需要在成型加工前将改性剂混到聚合物中,加工成型后,改性剂分子迁移到聚合物材料的表面,从而达到改善聚合物表面性能的目的。 (4)力化学处理是针对聚乙烯、聚丙烯等高分子材料而提出来的一种表面处理和粘接方法,该方法主要是对涂有胶的被粘材料表面进行摩擦,通过力化学作用,使胶黏剂分子与材料表面产生化学键结合,从而大大提高了接头的胶接强度。力化学粘接主要是通过外力作用下高分子键产生断裂而发生化学反应,包括力降解、力化学交联、力化学接枝和嵌段共聚等。(5)火焰处理就是在特别的灯头上,用可燃气体的热氧化焰对聚合物表面进行瞬时处理,使其表面发生氧化反应而达到表面改性的效果。热处理是将聚合物暴露在热空气中,使其表面氧化而引入含氧基团。 (6)偶联剂是一种同时具有能分别与无机物和有机物反应的两种性质不同官能团的低分子化合物。其分子结构最大的特点是分子中含有化学性质不相同的两个基团,一个基团的性质亲无机物,易于与无机物表面起化学反应;另一个基团亲有机物,能与聚合物起化学反应,生成化学键,或者能互相融合在一起。偶联剂主要包括硅烷偶联剂、钛酸酯偶联剂两大类,其作用机理同表面活性剂的改性机理相同。 (7)辐照改性是聚合物利用电离辐射(直接或间接的导致分子的激发和电离)来诱发一些物理化学变化,从而达到改性的目的。等离子体表面改性是通过适当选择形成等离子体的气体种类和等离子体化条件,对高分子表面层的化学结构或物理结构进行有目的的改性。2.哪些物质能形成液晶,判断、表征 形成液晶物质的条件: (1)具有刚性的分子结构。 (2)分子的长宽比。棒状分子长宽比>4左右的物质才能形成液晶态;盘状分子轴比<1/4左右的物质才能呈现液晶态。 (3)具有在液态下维持分子的某种有序排列所必需的凝聚力。这种凝聚力通常是与结构中的强极性基团、高度可极化基团、氢键等相联系的。 液晶相的判断:各种液晶相主要是通过它们各自的光学形态即织构来识别的,即在正交偏光显微镜下可观察到各种不同的由双折射产生的光学图像,这些图像是由“畴”和向错构成的。

聚合物结构与性能题目

《聚合物结构与性能》习题集考试为开卷考试,但只能带课本,不能带任何资料,就是希望大家完全掌握下列知识,做合格高分子专业研究生! 一、提高聚合物样品电镜下稳定性的方法 对样品进行支撑: 1.大目数电镜铜网,如 400目铜网; 2.无定型材料作支持膜:硝化纤维素(火棉胶),聚乙烯醇缩甲醛(PVF),或无定型碳;碳支持膜:通过真空蒸涂的办法,将碳沉积在光洁的载玻片或新剥离云母片表面,然后漂在蒸馏水表面,转移至铜网上。 二、提高聚合物样品成像衬度的方法有几个? (1)染色:将电子密度高的重金属原子渗入聚合物的某些区域通过提高其电子密度来增大衬度的。从最终效果上染色分正染色和负染色。从作用机制上染色分化学反应和物理渗透。从手段上分直接染色和间接染色。 最常用的染色剂有:四氧化锇(OsO4)、四氧化钌(RuO4) 四氧化锇(OsO4)染色:四氧化锇染色是利用其与-C=C-双键以及-OH和-NH2基团间的化学反应,使被染色的聚合物含有重金属锇,从而使图像的衬度提高。 四氧化钌(RuO4)染色:四氧化钌染色是利用其对不同聚合物或同一聚合物的不同部位(如晶区和非晶区)的不同渗透速率,使不同

聚合物或同一聚合物的不同部位含有不同量的重金属钌,从而使图像的衬度提高。 (2)晶粒方向: 为得到清晰的衬度,可调整晶体样品的取向,使得除透射电子束外,只出现一个很强的衍射束,一般称为双光束情况 (3)调整样品厚度; (4) 结构缺陷; (5)一次电子与二次电子相位 三、何为橡胶的高弹性?高弹性的本质是什么?什么化学结构和聚集态结构的高分子能够作为橡胶材料?请用应力应变曲线表达出橡胶、塑料、有机纤维三者的区别。 橡胶的高弹性:小应力下的大形变、外力除去后可以恢复; 高弹性的本质是熵弹性。橡胶弹性是由熵变引起的,在外力作用下,橡胶分子链由卷曲状态变为伸展状态,熵减小,当外力移去后,由于热运动,分子链自发地趋向熵增大的状态,分子链由伸展再回复卷曲状态,因而形变可逆。 具有橡胶弹性的化学结构条件: (1)由长分子链组成 (2)分子链必须有高度的柔性 (3)分子链必须结合在一个交联网络之中 第一个条件是熵弹性的本源;第二个条件是分子链迅速改变构想的可能;第三个条件保证了可恢复性,这是橡胶材料不同于单分子链之处。 (4)具有橡胶弹性的凝聚态结构:无定形态。(橡胶的聚集态是指很多生胶分子聚集在一起时分子链之间的几何排列方式和堆砌

聚合物的流变性能

第四节聚合物的流变性能 一概述 注塑中把聚合物材料加热到熔融状态下进行加工。这时可把熔体看成连续介质,在机器某些部位上,如螺杆,料筒,喷嘴及模腔流道中形成流场。在流场中熔体受到应力,时间,温度的联合作用发生形变或流动。这样聚合物熔体的流动就和机器某些几何参数和工艺参数发生密切的联系。 处于层流状态下的聚合物熔体,依本身的分子结构和加工条件可分近似牛顿型和非牛顿型流体它们的流变特性暂不予祥细介绍。 1 关于流变性能 (1)剪切速率,剪切应力对粘度的影响 通常,剪切应力随剪切速率提高而增加,而粘度却随剪切速率或剪切应力的增加而下降。 剪切粘度对剪切速率的依赖性越强,粘度随剪切速率的提高而讯速降低,这种聚合物称作剪性聚合物,这种剪切变稀的现象是聚合物固有的特征,但不同聚合物剪切变稀程度是不同的,了解这一点对注塑有重要意义。 (2)离模膨胀效应 当聚合物熔体离开流道口时,熔体流的直径,大于流道出口的直径,这种现象称为离模膨胀效应。 普遍认为这是由聚合物的粘弹效应所引起的膨胀效应,粘弹效应要影响膨胀比的大小,温度,剪切速率和流道几何形状等都能影响熔体的膨胀效应。所以膨胀效应是熔体流动过程中的弹性反映,这种行为与大分子沿流动方向的剪切应力作用和垂直于流动方向的法向应力作用有关。 在纯剪切流动中法向效应是较小的。粘弹性熔体的法向效应越大则离模膨胀效应越明显。流道的影响;假如流道长度很短,离模效应将受到入口效应的影响。这是因为进入浇口段的熔体要收剑流动,流动正处在速度重新分布的不稳定时期,如果浇口段很短,熔体料流会很快地出口,剪切应力的作用会突然消失,速度梯度也要消除,大分子发生蜷曲,产生弹性恢复,这会使离模膨胀效应加剧。如果流道足够长,则弹性应变能有足够的时间进行弹性松驰。这时影响离模膨胀效应的主要原因是稳定流动时的剪切弹性和法向效应的作用。 (3)剪切速率对不稳定流动的影响 剪切速率有三个流变区:低剪切速率区,在低剪切速率下被破坏的高分子链缠结能来得及恢复,所以表现出粘度不变的牛顿特性。中剪切区,随着剪切速率的提高,高分子链段缠结被顺开且来不及重新恢复。这样就助止了链段之间相对运动和内磨擦的减小。可使熔体粘度降低二至三个数量级,产生了剪切稀化作用。在高剪切区,当剪切速率很高粘度可降至最小,并且难以维持恒定,大分子链段缠结在高剪切下已全部被拉直,表现出牛顿流体的性质。如果剪切速率再提高,出现不稳定流动,这种不稳定流动形成弹性湍流熔体出现波纹,破裂现象是熔体不稳定的重要标志。 当剪切速率达到弹性湍流时,熔体不仅不会继续变稀,反而会变稠。这是因为熔体发生破裂。 (4)温度对粘度的影响

聚合物改性复习题

1、聚合物改性的定义,改性的方法。 答:聚合物改性:通过各种化学的、物理的或二者结合的方法改变聚合物的结构,从而获得具有所希望的新的性能和用途的改性聚合物的过程。主要方法:共混改性、填充改性、复合材料、化学改性、表面改性。共混改性指两种或两种以上的聚合物经混合制成宏观均匀的过程。填充改性指人们在聚合物中添加填充剂有时只是为了降低成本,但也有很多时候是为了改善聚合物的性能。复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。化学改性是通过化学反应改变聚合物的物理、化学性质的方法。表面改性:改善工件表面层的机械、物理或化学性能的处理方法。 2、化学改性(改变分子链结构)和物理改性(高次结构)的本质区别。 答: 第二章:基本观点: 1、共混物与合金的区别。 答:高分子合金不能简单等同于聚合物共混物,高分子合金是指含多种组分的聚合物均相或多相体系,包括聚合物共混物、嵌段和接枝共聚物,而且一般言,高分子合金具有较高的力学性能。 2、共混改性的分类(熔融、乳液、溶液和釜内) 答:按照共混时物料的形态:熔融共混:机械共混的方法,最具工业价值,是共混改性的重点。溶液共混:用于基础研究领域,工业上用于涂料和黏合剂的制备。乳液共混:共混产品以乳液的形式应用。斧内共混:是两种或两种以上聚合物单体同在一个反应釜中完成其聚合过程,在聚合的同时也完成了共混。 3、共混物形态研究的重要性。 答:共混物的形态与共混物的性能密切相关,而共混物的形态又受到共混工艺条件和共混物组分配方的影响,所以,共混物的形态研究就成了研究共混工艺条件和共混组分分配与共混物性能的关系的重要中间环节。 4、共混物形态的三种基本类型——均相体系、非均相体系(海岛结构、海海结构) 答:一是均相体系。二是非均相体系(两相体系):包括“海-岛结构”------连续相+分散相。“海-海结构”------两相均连续,相互贯穿。 5、相容性对共混物形态结构的影响。 答:在许多情况下,热力学相容性是聚合物之间均匀混合的主要推动力。两种聚合物的相容性越好就越容易相互扩散而达到均匀的混合,过渡区也就宽广,相界面越模糊,相畴越小,两相之间的结合力也越大。有两种极端情况,其一是两种聚合物完全不相容,两种聚合物链段之间相互扩散的倾向极小,相界面很明显,其结果是混合较差,相之间结合力很弱,共混物性能不好。第二种极端情况是两种聚合物完全相容或相容性极好,这时两种聚合物可相互完全溶解而成为均相体系或相畴极小的微分散体系。这两种极端情况都不利于共混改性的目的(尤其指力学性能改性)。 一般而言,我们所需要的是两种聚合物有适中的相容性,从而制得相畴大小适宜、相之间结合力较强的复相结构的共混产物。 6、与形态有关的因素:相容性、分散度和均一性的概念和作用。 答:相容性(compatibility)----共混物各组分彼此互相容纳,形成宏观均匀材料的能力。作用:通过相容性的大小,可以反映共混物聚合物之间的相互容纳能力和共混物的形态。 分散度:两相体系中分散相物料的破碎程度,常用分散相颗粒的大小和平均粒径来表示。均一性:分散相物料分散的均匀程度,亦即分散相浓度的起伏大小。作用:分散度和均一性都是用于表征分散相的分散状况。 7、相容性的概念和相容性的8种判据。 答:A)溶解度参数(δ)相近原则:△H=0,最小,表明此时聚合物对相容性最好; δ是聚合物内聚能密度的平方根,δ越相近的聚合物对相容性越好。 B)共同溶剂原则(试验法):通过实验确定聚合物相容性,方法简单,但是受到温度和浓度的影响较大,不够精确。 C)浊点法则:共混物由均相体系变为非均相体系时,共混物的透光率会发生变化,把该相转变点称为“浊点”。所以通过一定的方法测定浊点,可判断聚合物的相容性。 D)薄膜法:不同的聚合物折射率不同,将共混物制成均相溶液后制成薄膜,如果薄膜的透明度差且脆,则为不相容;反之,弱薄膜透明且有韧性,则相容性良好。缺点:误差较大,对折射率相同的聚合物,不能用此法。 E)显微镜法:目前分析共混物相容性的最准确,最直观,最有用的技术。对不相容或部分相容的体系,还可以进一步确定出分散相的颗粒大小、分布、形态和包藏结构等信息。用透射电镜观察共混物的相结构发现:即使是相容的共混体系,在微观下也是两相分布,而不是达到分子水平的混合。 F)Tg法则:比较科学、常用的方法,关键在于Tg的测定。Tg的测定方法: 动态力学法(DMA)(利用力学性质的变化) 机械分析法(利用力学性质的变化)

结构与性能(聚合物部分)整理

高聚物结构与性能 一、高聚物的分子结构 概念: 1大分子(macromolecule);是由大量原子组成的,具有相对高的分子质量或分子重量 2聚合物分子(polymer molecule);也叫高聚物分子,通常简称为高分子,它意味着:(1) 这些部分是由相对低分子质量的分子衍生的单元(所谓的单体单元或链节);(2) 并且只有一种或少数几种链节;(3) 这些需要的链节多重重复重现 3星形大分子(star macromolecule);从一个公共的核伸出三个或多个臂(支链)的分子若从一个公共的核伸出三个或多个臂(支链)则称为星型高分子 则称为星型高分子 4共聚物(copolymer);由两种或两种以上不同单体经聚合反应而得的聚合物 5共聚物分子(copolymer molecule); 6构型(configuration);是指分子中通过化学键所固定的原子的空间排列 7构象(conformation);构象指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布(由于单键内旋转而产生的分子在空间的不同形态称为~) 8链段(macromolecular segments);高分子链上对应于伸直长度和柔性与该高分子链相同的自由连结链内一个统计单元的一段分子链 9高分子链的柔性(flexibility of polymer chain), 高分子链在绕单键内旋转自由度,内旋转可导致高分子链构象的变化,因为伴随着状态熵增大,自发地趋向于蜷曲状态,这种特性就称为高分子链柔性 10聚合度(degree of polymerization); 指聚合物大分子中重复结构单元的数目 11侧基(side group);连接在有机物碳链上的取代基 12端基(end group);聚合物分子链端的基团 13无规共聚物(random copolymer);具有Bernoullian序列统计的统计聚合物(聚合物中组成聚合物的结构单元呈无规排列) 14嵌段共聚物(block copolymer);由通过末端连接的均匀序列的嵌段组成的共聚物(聚合物由较长的一种结构单元链段和其它结构单元链段构成) 15统计共聚物(statistic copolymer);通过聚合反应的统计处理给出单体单元在共聚物分子中的序列 16交替共聚物(alternating copolymer)单体单元A和单体单元B在共聚物分子中交替分布

2010年聚合物结构分析习题

《聚合物结构分析》基础习题 。 第二章红外光谱 1、红外光谱试验中有哪几种制样方法?分别适应于哪种类型的样品?对于那些易于溶解 的聚合物可以采用哪一种制样方法?对于那些不容易溶解的热塑性聚合物可以采用哪一种制样方法?对于那些仅仅能在溶剂中溶胀的橡胶样品,可以采用哪一种制样方法? 对于粘稠的低聚物和黏合剂可以采用哪种方法制样? 2、红外光谱仪中常用的附件有哪些?各自的用途是什么? 3、红外光谱图的表示方法,即纵、横坐标分别表示什么? 4、记住书中表2-1中红外光谱中各种键的特征频率范围。 5、名词:红外光谱中基团的特征吸收峰和特征吸收频率,官能团区,指纹区,透过率,吸光度,红外二向色性,衰减全反射,光声效应 6、红外光谱图中,基团的特征频率和键力常数成___正比____,与折合质量成___反比____。 7、官能团区和指纹区的波数范围分别是1300-4000cm-1和400-1300cm-1。 9、论述影响吸收谱带位移的因素。 10、在红外谱图中C=O的伸缩振动谱带一般在1650-1900cm-1,该谱带通常是含C=O 聚合物的最强谱带;记住表2-2中C=O在不同分子中红外光谱图上对应的吸收谱带的位置。对于聚丙烯酸、聚丙烯酰胺、聚丙烯酸甲酯来说,按C=O的伸缩振动谱带波数高低,依次是聚丙烯酰胺、聚丙烯酸、聚丙烯酸甲酯。 12、为什么可以用红外光谱技术来判断两种聚合物的相容性?p14 13、对于伸缩振动,氢键会使基团的吸收频率下降,谱带变宽;对于弯曲振动,氢键会使基团的吸收频率升高,谱带变窄。

14、共轭效应会造成基团的吸收频率降低。 16、叙述傅立叶变换红外光谱仪工作原理。会画图2-7的原理图。 17、简述红外光谱定量分析的基础。p25 19、接枝共聚物和相应均聚物的共混物的红外谱图是相同的,可以用共混物模拟接枝共聚物。 22、如何用红外光谱鉴别(1)PMMA和PS;(2)PVC和PP;(3)环氧树脂和不饱和聚酯。 24、写出透过率和吸光度的定义式,并标明各符号意义。 第三章激光拉曼散射光谱法 2、与红外光谱相比,拉曼光谱有什么优缺点? 3、名词:拉曼散射,瑞利散射,斯托克斯线,反斯托克斯线,拉曼位移, 4、红外吸收的选择定则是分子振动时只有伴随有分子偶极矩发生变化的振动才能产生红外吸收;拉曼活性的选择定则是分子振动时只有伴随有分子极化度发生变化的振动才能产生红外吸收。 5、对多数吸收光谱,只有频率和强度两个基本参数,但对激光拉曼光谱还有一个重要参数,即去偏振度或退偏振比。 7、如果一个化合物的红外和拉曼光谱中没有波数相同的谱带,说明该化合物具有对称中心。 8、拉曼光谱在聚合物结构研究中有哪些应用? 第四章紫外光谱

2013年聚合物结构及性能测试试题集 2

《聚合物结构及性能测试》基础习题 第一篇波谱分析 第一章红外光谱 1、红外光谱试验中有哪几种制样方法?分别适应于哪种类型的样品?对于那些易于溶解 的聚合物可以采用哪一种制样方法?对于那些不容易溶解的热塑性聚合物可以采用哪一种制样方法?对于那些仅仅能在溶剂中溶胀的橡胶样品,可以采用哪一种制样方法? 对于粘稠的低聚物和黏合剂可以采用哪种方法制样? 2、红外光谱图的表示方法,即纵、横坐标分别表示什么? 3、记住书中红外光谱中各种键的特征频率范围。 6、红外光谱图中,基团的特征频率和键力常数成___正比____,与折合质量成___反比____。 7、官能团区和指纹区的波数范围分别是1300-4000cm-1和400-1300cm-1。 9、论述影响吸收谱带位移的因素。 10、在红外谱图中C=O的伸缩振动谱带一般在1650-1900cm-1,该谱带通常是含C=O 聚合物的最强谱带;对于聚丙烯酸、聚丙烯酰胺、聚丙烯酸甲酯来说,按C=O的伸缩振动谱带波数高低,依次是聚丙烯酰胺、聚丙烯酸、聚丙烯酸甲酯。 12、为什么可以用红外光谱技术来判断两种聚合物的相容性? 13、对于伸缩振动,氢键会使基团的吸收频率下降,谱带变宽;对于弯曲振动,氢键会使基团的吸收频率升高,谱带变窄。 14、共轭效应会造成基团的吸收频率降低。 16、接枝共聚物和相应均聚物的共混物的红外谱图是相同的,可以用共混物模拟接枝共聚物。 17、如何用红外光谱鉴别(1)PMMA和PS;(2)PVC和PP;(3)环氧树脂和不饱和聚酯。 19、写出透过率和吸光度的定义式,并标明各符号意义。 、问答题 1. 某化合物的红外谱图如下。试推测该化合物是否含有羰基 (C=O),苯环及双键 (=C=C=)?为什么? 2.简单说明下列化合物的红外吸收光谱有何不同? A. CH3-COO-CO-CH3 B. CH3-COO-CH3

高聚物结构与性能的关系

高聚物结构与性能的关系 1. 高聚物的结构 按研究单元的不同分类,高聚物结构可分为两大类:一类为高聚物的链结构,即分子内的结构,是研究一个分子链中原子或基团之间的几何排列;另一类为高聚物的分子聚集态结构,即分子间的结构,是研究单位体积内许多分子链之间的几何排列。对高聚物材料来说,链结构只是间接影响其性能,而分子聚集态结构才是直接影响其性能的因素。 1.1 高聚物链结构 高聚物的链结构包括近程结构和远程结构。近程结构是指结构单元的化学组成、立体异构、连接顺序、以及支化、交联等;远程结构是指高分子链的构象、分子量等。 高聚物链结构是决定高聚物基本性质的主要因素,各种高聚物由于链结构不同其性质则完全不同。例如,聚乙烯柔软容易结晶,聚苯乙烯硬而脆不能结晶;全同立构聚丙烯在常温下是固休,可以结晶,而无规立构聚丙烯在常温下则为粘稠的液体等。 1.2 高聚物的聚集态结构 高聚物的分子聚集态结构包括晶态、非晶态、液晶态、取向态等;高聚物的分子聚集态结构是在加工成型过程中形成的,是决定高聚物制品使用性能的主要因素。即使具有相同链结构的同一种高聚物,由于加工成型条件的不同,其成型品的使用性能就有很大差别。例如,结晶取向程度不同直接影响纤维和薄膜的力学性能;结晶大小和形态不同可影响塑料制品的耐冲击强度,开裂性能和透明性。 因此对高聚物材料来说,链结构只是间接影响其性能,而分子聚集态结构才是直接影响其性能的因素。研究高聚物分子聚集态结构的意义就在于了解高聚物分子聚集态结构的特征,形成条件及其与材料性能之间的关系,以便人为地控制加工成型条件得到具有预定结构和性能的材料,同时为高聚物材料的物理改性和材料设计建立科学基础。 2.高聚物结构与力学性能的关系 2.1链结构与力学性能的关系 不同的高聚物,有不同的分子结构,当然会显示出不同的材料性能出来。聚

聚合物结构与性能

1、分析HIPS结构组成、加工原理、结构特点与性能 高抗冲聚苯乙烯,是将少量聚丁二烯接技到聚苯乙烯基体上。具有“海岛结构”,基体是塑料,分散相是橡胶 .具有诸多的特性 : ①耐冲击聚苯乙烯为热塑性树脂; ②无臭、无味、硬质材料、成形后尺寸安定性良好; ③有优秀的高介电性绝缘性; ④为非晶质低吸水性材料; ⑤其光泽性良好易于涂装。 2、分析ABS结构组成、结构特点、性能 ABS树脂是丙烯酸、丁二烯和苯乙烯的三元共聚物。共聚的方式是无规共聚与接枝共聚相结合:它可以是以丁苯橡胶为主链,将苯乙烯、丙烯腈接在支链上;也可以是丁腈橡胶为主链,将苯乙烯接在支链上;也可以以苯乙烯-丙烯腈的共聚物为主链,将丁二烯和丙烯腈接在支链上等等。ABS三元接枝共聚物兼有三种组分的特性。其中丙烯腈有氰基,能使聚合物耐化学腐蚀,提高制品的抗张强度和硬度;丁二烯能使聚合物呈现橡胶状的韧性,这是材料抗张强度增强的主要因素;苯乙烯的高温流动性能好,便于加工成型,且可改善制品的表面光洁度,是一种性能优良的热塑性塑料。 3、聚合物的增韧增强 增韧:①橡胶增韧,如通过橡胶增韧苯乙烯-丙烯腈共聚物树脂,制备性能优良的ABS工程塑料。②刚性无机填料增韧,如纳米碳酸钙粒子增韧高密度聚乙烯。③热塑性塑料增韧,如热塑性塑料增韧双马来酰亚胺树脂。④液晶聚合物增韧,如热致性液晶聚合物增韧环氧树脂。 增强:添加无机纳米粒子如TiO2、SiO2、Al2O3、CaCO3 等和橡胶纳米粒子以及蒙脱土等片状硅酸盐等形成聚合物基纳米复合材料;添加纤维状填料如碳纤维、石墨纤维、硼纤维和单晶纤维-晶须或短玻璃纤维等。 4、PE结构、材料的加工原理 聚乙烯的分子是长链线型结构或支结构,为典型的结晶聚合物。在固体状态下,结晶部分与无定型共存。结晶度视加工条件和原处理条件而异,一般情况下,密度高结晶度就越大。LDPE结晶度通常为

聚合物结构与性能考试

《聚合物结构与性能》考试复习提纲 1、通过人类五次产业革命的学习给予了我们哪些启发? ①科技发展越来越快,对人类社会的影响也越来越大 ②科学技术成为推动国家发展不可或缺的因素 ③近代科学技术更多地关注在纳米以及生物、宇宙等未知领域 ④随着科学的发展,人们更关注新型材料的研究,为人类更好的服务 2、通过对21世纪人类所面临的八大领域问题的了解,你对人类未来前景有什么看法? ①新技术的产生和发展往往是“连锁反应”,全面爆发,相互激发,形成技术的“群体革命”,可以看出所有革新都是为了生活的更好,只有适应大自然,合理改造自然。才是出路之所以在! ②出现一些问题是很正常的,应考虑走低碳的可持续发展道路,这样才能长治久安 3、为什么说新型材料科学与工程是发展八大领域的先导? ①新材料是人类文明的基石,为各领域提供材料基础,各领域的发展离不开材料,材料是 八大领域发展的先导。 ②新材料的产生深刻影响了人类的生产生活方式。材料对国民经济和国防建设起着关键的 支撑作用,而新材料是高技术领域的重要组成部分。 ③材料科学每前进一小步,人类文明就前进一大步。 4、表述四大材料各自的特征及不同功能,请用材料中电子的行为来论述其内在机理。 ①金属材料 特点:导电性能优良,强度、硬度高,高温变形,耐磨,加工性能好等。 内在机理:原子核较重,核外电子云较密集,金属原子最外层电子处于自由运动状态,每个电子可和若干个电子随时作用形成金属键。 ②无机非金属材料 特点:耐高温、耐腐蚀、韧性低、可塑性差、加工困难、强度高、电学特性和光学特性。内在机理:电子被束缚在个别原子上,不可自由移动,故呈现脆性。 ③高分子材料 特点:高分子材料按特性分为橡胶、塑料、纤维、涂料、粘合剂等,不同材料有各自的特性内在机理:分子量大,分子量分布具有多分散性,合成制备方法、成型加工工艺多样化。④复合材料 特点:在一个特定的基体中,填充有一种或多种填充体,既能保留原组分或材料的主要特色,并通过复合效应获得原组分所不具备的性能,可以通过材料设计使各组分的性能相互补充并彼此关联,从而获得新的优越性能。 功能机理:各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同要求。

聚合物结构与性能

一、名词解释(5个) 聚合物分子(高聚物分子,通常简称为高分子):(1)这些部分是由相对低分子质量的分子衍生的单元(所谓的单体单元或链节) (2)并且只有一种或少数几种链节(3)这些需要的链节多重重复重现。 长周期:在纤维轴方向片晶和非晶能重复出现的最短距离,即片晶和非晶的平均厚度之和缚结分子:连结至少两个晶体的分子。 初期结晶:是指液态或气态初步形成晶体的过程 预先成核:晶核预先存在,成核速率与时间无关。 二、概念的区别与联系(4对) 1、微构象与宏构象 微构象:分子中的一小部分由于一个或数个键的内旋转所引起的构象。 宏构象:表示在单键周围的原子和原子基团的旋转产生的空间排列。 2、玻璃化转变温度与熔融温度 玻璃化转变温度:非晶态聚合物或部分结晶聚合物中非晶相发生玻璃化转变所对应的温度。熔融温度:晶体物质由固态向液态转变时固液两相共存的温度。 3. 应力与应变 应力:受力物体截面上内力的集度,即单位面积上的内力。 应变:物体内任一点因各种作用引起的相对变形。 4、质量结晶度与体积结晶度 质量结晶度:X-射线被高聚物中原子散射的强度与原子所处的状态无关,原子的聚集状态只决定衍射线的位置与形状,不影响总强度。因此可以认为非晶部分的质量与结晶部分的质量之比,等于非晶部分的衍射强度与结晶部分的衍射强度之比。即()。理论上,只要知道晶区和非晶区衍射的X射线的总强度,就可计算结晶度。在实际工作中,只能在一定的角度范围收集衍射强度数据,无法收集到样品衍射或散射X射线的总强度。这样,在所收集的数据中,晶区或非晶区对衍射强度的贡献可能偏高或偏低。所以,应加入比例常数即,,式中,K为比例常数。 体积结晶度:用X-射线衍射法体积结晶度。根据微原纤结构模型即可测得结晶度式中,D为晶片厚度,L为长周期。 三、球晶的光学性质与其内部结构的关系 在正交偏光显微镜下,球晶呈现特有的黑十字消光图像及明暗相间的消光环,其中黑十字消光图像反映的是球晶中晶片的径向生长,消光环反映的是球晶中晶片的扭曲生长。 四、什么是超分子结构?超分子结构参数有哪些?用简述或图示法说明用X-射线图确定超分子结构参数的基本依据。 答:超分子结构:高分子链之间通过强的或弱的相互作用所形成的聚集体。 结构参数:1.结晶度 2. 取向度 3 .晶粒尺寸 4.长周期 X-射线可测定质量结晶度和体积结晶度。 假设:X-射线被高聚物中原子散射的强度与原子所处的状态无关,原子的聚集状态只决定衍射线的位置与形状,不影响总强度。因此可以认为非晶部分的质量与结晶部分的质量之比,等于非晶部分的衍射强度与结晶部分的衍射强度之比。 理论上,只要知道晶区和非晶区衍射的X射线的总强度,就可根据上式计算结晶度。在实际工作中,只能在一定的角度范围收集衍射强度数据,无法收集到样品衍射或散射X射线的总强度。这样,在所收集的数据中,晶区或非晶区对衍射强度的贡献可能偏高或偏低。所以,

材料结构与性能复习题答案(仅供参考)讲课稿

1 钢分类的方法有哪几种?钢中常用合金元素有哪些是强碳化物形成元素?中强碳化物形成元素? 钢的分类方法有5种:1)按化学成分,有碳素钢(低碳钢,中碳钢,高碳钢),合金钢;2)按质量,有普通钢,优质钢,高级优质钢;3)按用途,有结构钢,工具钢,特殊钢;4)按炼钢方法,有转炉钢,平炉钢,电炉钢;5)按浇筑前脱氧程度,有镇静钢,沸腾钢,半镇静钢。 强碳化合物形成元素:Hf,Zr,Ti,Ta,Nb,V 中强碳化合物形成元素:W,Mo 2 合金钢的主要优点是什么?常用以提高钢淬透性的元素有哪些?强烈阻碍奥氏体晶粒长大的元素有哪些?提高回火稳定性的元素有哪些? 合金钢主要优点:优异的力学性能和其他性能,既有高的强度,又有足够韧性和塑性。 提高钢淬透性的元素:B,Mn,Cr,Mo,Si,Ni 强烈阻碍奥氏体晶粒长大的元素:Hf,Zr,Ti,Ta,Nb,V 提高回火稳定性的元素:V,Nb,Cr,Mo,W 3 解释下列现象:(1)大多数合金钢的热处理温度比相同含碳量的碳素钢高;(2)大多数合金钢比相同含碳量的碳素钢具有较高的回火稳定性;(3)含碳量为0.4%、含铬量为12%的铬钢属于过共析钢,而含碳量为1.5%、含铬量为12%的铬钢属于莱氏体钢;(4)高速钢在热断货热轧后经空冷获得马氏体钢。 1) 热处理目的是让碳及合金元素充分溶解,合金元素扩散速度慢,另外合金元素形成的碳化物溶解需要更高温度和时间。 2) 由于合金钢中含有较多的碳化物形成元素如,Cr、W、Mo、Ti、V等,它们与碳有较强的亲和力,使碳化物由马氏体向奥氏体溶解时,合金元素扩散困难,加之合金碳化物的稳定性高,使碳化物的溶解比较困难,合金钢在加热时需要较高的温度和较长的时间。因此,合金钢具有较高的回火稳定性。 3) 按照金相组织来看,含碳量为0.4%、含铬量为12%的铬钢平衡态是渗碳体加珠光体,含碳量为1.5%、含铬量为12%的铬钢平衡态出现莱氏体。 4)由于高速钢的合金元素含量高,C曲线右移,一般合金元素越高临界冷却速度越小,淬透性越好,当空冷的冷却速度大于临界冷却速度时,空冷即可获得马氏体。 4 有资料表明,南京长江大桥采用16Mn钢比普通碳素钢节约钢材15%,简要解释原因。低合金高强度钢是在碳素工程钢基础上加入少量合金元素(Mn,Si,Ti,Nb,V,Al等)形成的,以此获得较好的塑性,韧性,焊接性能,性能的提高使得在相同的工程条件要求下大大降低了钢材的使用量。16Mn属于低合金高强度结构钢,这类钢适应大型工程结构,减轻结构重量,提高使用的可靠性及节约钢材,因此与碳素钢相比可以节省15%材料。 5 试比较45钢与40Cr钢的应用范围,以此说明合金元素Cr在调质钢中的作用。 45钢属优质碳素结构钢,大量的模具生产会用到,做模具钢使用。 40Cr钢经调质后用于制造承受中等负荷及中等速度工作的机械零件,如汽车的转向节;经淬火及中温回火后用于制造承受高负荷、冲击及中等速度工作的零件,如齿轮;经淬火及低温回火后用于制造承受重负荷、低冲击及具有耐磨性、截面上实体厚度在25mm以下的零件,如蜗杆;经调质并高频表面淬火后用于制造具有高的表面硬度及耐磨性而无很大冲击的零件,如套筒;此外,这种钢又适于制造进行碳氮共渗处理的各种传动零件,如直径较大和低温韧性好的齿轮和轴。 Cr能增加钢的淬透性,提高钢的强度和回火稳定性,具有优良的机械性能。 6 说明渗碳钢、调质钢、弹簧钢、轴承钢的化学成分、最终热处理及组织、性能特点。 渗碳钢:一般都是低碳钢,碳的质量分数一般在0.12%-0.25%范围,主要合金元素有Ni,Cr,Mn

21聚合物材料的动态力学性能测试

实验15 聚合物材料的动态力学性能测试 在外力作用下,对样品的应变和应力关系随温度等条件的变化进行分析,即为动态力学分析。动态力学分析能得到聚合物的动态模量( E′)、损耗模量(E″)和力学损耗(tanδ)。这些物理量是决定聚合物使用特性的重要参数。同时,动态力学分析对聚合物分子运动状态的反应也十分灵敏,考察模量和力学损耗随温度、频率以及其他条件的变化的特性可得到聚合物结构和性能的许多信息,如阻尼特性、相结构及相转变、分子松弛过程、聚合反应动力学等。 1. 实验目的 (1)了解聚合物黏弹特性,学会从分子运动的角度来解释高聚物的动态力学行为。 (2)了解聚合物动态力学分析(DMA)原理和方法,学会使用动态力学分析仪测定多频率下聚合物动态力学温度谱。 2. 实验原理 高聚物是黏弹性材料之一,具有黏性和弹性固体的特性。它一方面像弹性材料具有贮存械能的特性,这种特性不消耗能量;另一方面,它又具有像非流体静应力状态下的黏液,会损耗能量而不能贮存能量。当高分子材料形变时,一部分能量变成位能,一部分能量变成热而损耗。能量的损耗可由力学阻尼或内摩擦生成的热得到证明。材料的内耗是很重要的,它不仅是性能的标志,而且也是确定它在工业上的应用和使用环境的条件。 如果一个外应力作用于一个弹性体,产生的应变正比于应力,根据虎克定律,比例常数就是该固体的弹性模量。形变时产生的能量由物体贮存起来,除去外力物体恢复原状,贮存的能量又释放出来。如果所用应力是一个周期性变化的力,产生的应变与应力同位相,过程也没有能量损耗。假如外应力作用于完全黏性的液体,液体产生永久形变,在这个过程中消耗的能量正比于液体的黏度,应变落后于应力90o,如图2-61(a)所示。聚合物对外力的响应是弹性和黏性两者兼有,这种黏弹性是由于外应力与分子链间相互作用,而分子链又倾向于排列成最低能量的构象。在周期性应力作用的情况下,这些分子重排跟不上应力变化,造成了应变落后于应力,而且使一部分能量损耗。图2-61(b)是典型的黏弹性材料对正弦应力的响应。正弦应变落后一个相位角。应力和应变可以用复数形式表示如下。 σ*=σ0exp(iωt) γ*=γ0 exp[i (ωt-δ) ] 式中,σ0和γ0为应力和应变的振幅;ω是角频率;i是虚数。用复数应力σ*除以复数形变γ*,便得到材料的复数模量。模量可能是拉伸模量和切变模量等,这取决于所用力的性质。为了方便起见,将复数模量分为两部分,一部分与应力同位相,另一部分与应力差一个90o 的相位角,如图2-61(c)所示。对于复数切变模量 E*=E′+i E″(2-60) 式中 E′=∣E*∣cosδ E″=∣E*∣sinδ 显然,与应力同位相的切变模量给出样品在最大形变时弹性贮存模量,而有相位差的切变模量代表在形变过程中消耗的能量。在一个完整周期应力作用内,所消耗的能量△W与所贮存能量W之比,即为黏弹性物体的特征量,叫做内耗。它与复数模量的直接关系为

聚合物结构与性能

1. 假定PMMA 样品由相对分子质量100000和400000两个单分散组分以1:2的质量比组成,求它的n M 和w M ,并计算分布指数d 。 解:假定A 的质量为1,B 的质量为2,则 n M =∑∑i i i n M n =∑i i M N =B B A A M N M N + =B B A A M n n M n n 总总+ =100000400000210000011000001?++400000400000210000014000002?+ =200000 w M =∑∑i i i i M n M n 2=∑i i M w =B B A A M w M w + =4000003210000031?+?=300000 5.1200000300000===n w M M d 2. 简述凝胶渗透色谱的体积排除机理。 答:凝胶渗透色谱的核心部件是一根装有多孔性颗粒的柱子。假定颗粒内部的空洞体积为i V ,颗粒的粒间体积为0V ,(0V V i +)是色谱柱内的空间。假如高分子的体积比空洞的尺寸大,任何空洞它都进不去,只能从颗粒的粒间流过,其淋出体积0V V e =。假如高分子的体积很小,远远小于所有的空洞尺寸,则淋出体积。i e V V V +=0假如高分子的体积是中等大小,则高分子可进入较大的孔而不能进入较小的孔,这样,它不但可以在粒间体积扩散还可以进入部分空洞体积中去,因此它的淋出体积e V 大于0V 而小于(0V V i +),以上说明淋出体积e V 仅仅由高分子尺寸和颗粒的孔的尺寸决定,由此看来,高分子的分离完全是由于

体积排除效应所致,故称为体积排除机理。 一、简答题 1.聚丙烯中碳—碳单链是可以转动的,通过单键的转动能否把全同立构的聚丙烯变为“间 同立构”的聚丙烯?说明理由。 答:不能。全同立构和间同立构是两种不同的立体构型,构型是分子中由化学键所固定的原子在空间的几何排列,这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。单键的内旋转只能改变构象不能改变构型。所以通过单键的转动不能把全同立构的聚丙烯变为“间同立构”的聚丙烯。 2.为何采用均方末端距和均方回转半径而不是直接用平均末端距或平均回转半径以及轮 廓长度来描述高分子的尺寸? 答:因为柔性的高分子链在不断地热运动,它的形态是瞬息万变的,所以只能用平均值来表示,又因为末端距h是矢量,它的数值可正可负,所以要取h得平方的平均

而不是h的平均。轮廓长度是高分子链的伸直长度,由于热运动,分子链呈伸直构象的几率很小,而呈全取构象的几率较大。所以不能用轮廓长度来描述高分子尺寸,且自由结合链的尺寸比完全甚至连的尺寸nl要小得多。 二、计算题 已知:线形聚乙烯的相对分子质量为280 000,试计算: 1. 全伸直时大分子链的理论长度。(键长0.154nm,键角为109.5°)。 2. 看作Gauss链时的均方末端距; 3. 自由旋转链的均方末端距。 4. 用光散射法测得在θ溶剂中该聚乙烯链的均方根末端为56.7nm,求其空间位阻参数σ。 5. 由自由旋转链的均方末端距求均方旋转半径。 答:1. max 280000280000 2()0.1542()0.1543080 28 L Nl nm M ==?=?= 2. 222 0 474.32 h Nl nm == 3. 222 1cos1cos109.5 474.32949.65 1cos1cos109.5 fr h Nl nm θ θ -- ==?= ++ 4. ()() 11 2 222 /56.7/949.650.24 fr h h σ===

聚合物结构与性能复习题及答案解析

《聚合物结构与性能II 》复习题 修改 以下是每位老师给出的复习题,每位老师会从自己给的复习题中抽出1-2道作为最终考题 考试时间:12月4日(第十四周 周五)晚 6:00 武德珍老师 1、简述聚酰亚胺的结构与性能 基本结构: 基本性能: 1. 耐高温(Tg300℃以上,热分解温度500 ℃ 以上)和超低温(-269 ℃); 2. 优异的力学性能:拉伸强度:100MPa 以上,杜邦公司Kapton(均苯型)、 PMDA (均苯四甲酸二酐)/ODA (二胺基二苯醚)-PI 为250MPa ,日本宇部Upilex (联 苯型)为530MPa ; 3.优异的化学稳定性;耐有机溶剂,耐稀酸,不耐水解,可用于回收。 4.其它性能:高阻燃性,为自熄性聚合物,低热膨胀系数,很好的介电性(低介电常数和介电损耗),耐辐照,无毒。 2、简述制备聚酰亚胺无机纳米复合材料的方法(两种以上)及其特点 (1)原位一步法(in situ single-stage ) a .表面镀银:将制备好的PI 母体溶液-聚酰胺酸溶液(PAA) 和银盐溶液混合成均相的溶液,浇铸成膜后,在薄膜进行热处理固化形成PI 过程中,银离子可以在没有外加还原剂的情况下,通过热诱导作用而自动还原,并且银粒子迁移到聚合物的表面,在聚合物的表面形成银层。 b .制备PI/Fe2O3纳米复合材料薄膜 (2)离子交换法 首先将已经固化完全的PI 薄膜在碱液的作用下进行表面化学刻蚀,使表层一定厚度的PI 开环形成聚酰胺酸盐,再将其与金属盐的水溶液进行离子交换,形成金属离子掺杂的聚酰胺酸层,然后在氧气存在的情况下进行热固化。在热固化的过程中聚酰胺酸发生环化反应重新生成聚酰亚胺,同时金属离子在热和氧的作用下通过自动生成金属氧化物纳米粒子并聚集在PI 薄膜表面,从而得到PI/金属氧化物复合薄膜。 例如:a.直接离子交换自金属化制备表面镀银的pi b.化学处理离子交换法在pi 表面制备金属或者金属氧化物薄膜。 (3)原位掺杂法 制备聚酰亚胺/r-Fe203纳米复合材料薄膜 将适量PMDA 加入端氨基的纳米颗粒溶液中,反应后加入ODA ,反应三十分钟再加入当量的PMDA ,经过加热反应得到复合材料。 结论: 1.利用聚酰亚胺溶液或者前驱体聚酰胺酸的性质可以将金属离子成膜。 2.金属离子结合的前驱体聚酰胺酸经过化学处理或者热处理可以得到PI/金属或者金属氧化物纳米复合材料薄膜。 Ar N O O N O Ar'n

聚合物改性考试考试试题题

一、名称解释 20分 聚合物共混改性: 答:是以聚合物(聚合物或者共聚物)为改性剂,加入到被改性的聚合物材料(合成树脂,又叫基体树脂)中,采用合适的加工成型工艺,使两者充分混合,从而制得具有新颖结构特征和新颖性能的改性聚合物材料的改性技术。 相逆转: 答:聚合物共混物可在一定的组成范围内发生相的逆转,原来是分散相的组分变成连续相,而原来是连续相的组分变成分散相。在相逆转的组成范围内,常可形成两相交错、互锁的共连续形态结构,使共混物的力学性能提高。 热塑性塑料: 答:热塑性塑料是指加热后软化、可塑,冷却后硬化,再次加热可熔融软化,固化成型,具有反复可加工成型的特点。 增容作用: 答:使聚合物之间易于相互分散,能够得到宏观均匀的共混体系。改善聚合物之间相界面的性能,增加两相间的粘合力,使P-P共混物具有长期稳定的性能。 二、聚合物共混物的形态结构及特点 10分 答:单相连续结构:构成聚合物共混物的两个相或者多个相中只有一个相连续,其他的相分散于连续相中。单相连续结构又因分散相相畴的形状、大小以及与连续相结合情况的不同而表现为多种形式。 两相互锁或交错结构:这种结构中没有一相形成贯穿整个试样的连续相,而且两相相互交错形成层状排列,难以区分连续相和分散相。有时也称为两相共连续结构,包括层状结构和互锁结构。 相互贯穿的两相连续结构:共混物中两种组分均构成连续相,互穿网络聚合物(IPNs)是两相连续结构的典型例子。 三、聚合物共混物相容性分哪两类?各自的定义是什么?画出聚合物共混物的UCST、LCST相图。15分 答:分为热力学相容性和工艺相容性两类。 热力学相容性是指相互混合的组分以任意比混合,都能形成均相体系,这种相容性叫热力学相容性。 工艺相容性是指对于一些热力学相容性不太好的共混高聚物,经适当加工工艺,形成结构和性能稳定的共混高聚物,则称之为工艺相容性。 相图略 四、界面层的结构组成和独立相区的区别 10分 答:①界面层内两种分子链的分布是不均匀的,从相区内到界面形成一浓度梯度; ②界面层内分子链比各自相区内排列松散,因而密度稍低于两相聚合物的平均密度; ③界面层内往往易聚集更多的表面活性剂及其他添加剂等杂质,分子量较低的聚合物分子也易向界面层迁移。这种表面活性剂等低分子量物越多,界面层越稳定,但对界面粘结强度不利。 五、以PC/PP共混体系为例,举例说明哪些手段可以用来加强体系的相容性?10分 答:1. 通过共聚改变某聚合物的极性; 2. 通过化学改性的方法,在一组分或两组分上引入极性基团或反应基团; 3. 在某聚合物上引入特殊作用基团;加入第三组分进行增容; 4. 两相之间产生部分交联,形成物理或化学缠结; 5. 形成互穿网络结构(IPN); 6. 改变加工工艺,施加强烈的力剪切作用。 六、一般采有PP熔融接枝MAH单体,并挤出制备TPU/PP共混物,请阐明PP接枝MAH对共混物的形态结构及性能有何影响。为什么?10分 答:采用PP-g-MAH作为增容剂,熔融法制备TPU/PP共混物。发现,马来酸酐接枝聚丙烯是聚氨酯与聚丙烯共混体系有效的增容剂,有效地改善

相关文档
最新文档