定积分练习题

绝密★启用前 2014-2015学年度???学校1月月考卷 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息

2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.若220a x dx =?,230b x dx =?,20sin c xdx =?,则,,a b c 的大小关系是( ). A .a c b << B .a b c << C .c b a << D .c a b <<

2.曲线sin y x =,x ∈[0,2π]与直线y =0围成的两个封闭区域面积之和为( ) A .0 B .1 C .2 D .4 3.函数3x y =与x 轴,直线1=x 围成的封闭图形的面积为( ) A 4( ) A.2π+ B.2π- C.π D.2- 5.如图,阴影部分的面积是( ) A ..26.下列各命题中,不正确的是( ) A.若()f x 是连续的奇函数,则()0a a f x dx -=? B.若()f x 是连续的偶函数,则0()2()a a a f x dx f x dx -=??

C.若()f x 在[]a b ,上连续且恒正,则()0b a f x dx >? D.若()f x 在[]a b ,上连续,且()0b a f x dx >?,则()f x 在[]a b ,上恒正 7.若3sin , 11()2, 12x x x f x x ?+-≤≤=?<≤?,则21()f x dx -=?( ) A. 0 B. 1 C. 2 D. 3 8.若)(x f 在R 上可导,3)2('2)(2++=x f x x f ,则=?30)(dx x f ( ) A .16 B .18- C .24- D .54 9则10()f x dx =?( )

第II卷(非选择题)

请点击修改第II卷的文字说明

二、填空题(题型注释)

10

(其中e为自然对数的底数),则

()

e

f x dx

?=_____. 11的值为.

12,则

1

()

e

f x dx

=

?____________.

13.由两条曲线y=x2,y2与直线y=1围成平面区域的面积是________.14.由曲线2

y x

=与的边界所围成区域的面积为.

三、解答题(题型注释)

参考答案

1.D

【解析】

考点:微积分基本定理.

2.D

【解析】

3.B

【解析】

B . 考点:定积分的运算及应用.

4

.B

【解析】 故选B. 考点:定积分的运算

5.D

【解析】 故选D.

考点:定积分的应用.

6.D

【解析】

试题分析:奇函数关于原点成中心对称,其在区间)(a a ,-的图像与直线a x a x =-=,,x

轴围城的面积(考虑正负)之和为零;偶函数关于y 轴对称在y 轴两侧的面积应该相等,B

正确;C 显然正确;当在区间)(b a ,内负的面积少于正的面积时,

()0b a f x dx >?,但()

f x 在[]a b ,上可以为负.

考点:定积分.

7.C

【解析】 试题分析:

2123111()(sin )2f x dx x x dx dx --=++???

C.

考点:定积分.

8.B

【解析】

试题分析:∵f(x)=x 2

+2)2('f x+3,两边求导可得:'()22'(2)f x x f =+,令x=2可得'(2)4f =-,

f(x)=x 2-8x+3,

∴ 考点:导数的运用.

9.B

【解析】

试题

分析:设10()f x dx m =?,则2()2,

f x x m =

+

考点:定积分

10 【解析】 试题分

析:由题知

考点:定积分.

11.3

【解析】

所以3T =. 考点:定积分的计算.

12【解析】

考点:利用微积分基本定理求解定积分的知识. 13

【解析】

试题分析:由题意,两条曲线y=x2,y

2与直线y=1围成平面区域如下图中阴影部分,

则其面积为

考点:定积分的应用.

14

【解析】

试题分析:由题意所求区域为如图阴影

考点:定积分在几何中的应用.

定积分测试题及答案

定积分测试题及答案 班级: 姓名: 分数: 一、选择题:(每小题5分) 1.0=?( ) A.0 B.1 C.π D 4π 2(2010·山东日照模考)a =??02x d x ,b =??02e x d x ,c =??02sin x d x ,则a 、b 、c 的大小关系是( ) A .a

8.函数F (x )=??0 x t (t -4)d t 在[-1,5]上( ) A .有最大值0,无最小值 B .有最大值0和最小值-323 C .有最小值-323,无最大值 D .既无最大值也无最小值 9.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=??1 x 1t d t ,若f (x )

高等数学定积分应用习题答案

第六章 定积分的应用 习题 6-2 (A) 1. 求下列函数与 x 轴所围部分的面积: ] 3,0[,86)1(2+-=x x y ] 3,0[, 2)2(2x x y -= 2. 求下列各图中阴影部分的面积: 1. 图 6-1 3.求由下列各曲线围成的图形的面积: ; 1,)1(===-x e y e y x x 与 ; )0(ln ,ln ,0ln )2(>>====a b b y a y x x y 与 ;0,2)3(2==-=y x y x x y 与 ; )1(,2)4(22--==x y x y ;0,2)1(4)5(2=-=-=y x y x y 与 ; 2,)6(2x y x y x y ===与 ; )0(2sin ,sin 2)7(π≤≤==x x y x y ; 8,2 )8(222 (两部分都要计算)=+=y x x y

4.的图形的面积。 所围成与直线求由曲线e x e x y x y ====-,,0ln 1 5.的面积。处的切线所围成的图形和及其在点求抛物线)0,3()3,0(342--+-=x x y 6.的面积。处的法线所围成的图形及其在点求抛物线),2 (22p p px y = 7.形的面积。与两坐标轴所围成的图求曲线a y x =+ 8.所围图形的面积。求椭圆 12 2 2 2 =+ b y a x 9.。与横轴所围图形的面积(的一拱求由摆线)20)cos 1(),sin (π≤≤-=-=t t a y t t a x 10.轴之间的图形的面积。的切线的左方及下方与由该曲线过原点求位于曲线x e y x = 11.求由下列各方程表示的曲线围成的图形的面积: ;)0(sin 2)1(>=a a θρ ; )0()cos 2(2)2(>+=a a θρ ; 2cos 2)3(2(双纽线)θρ= 抛物体的体积。 轴旋转,计算所得旋转 所围成的图形绕及直线把抛物线x x x x ax y )0(4.12002>== 体的体积。 旋转轴旋转,计算所得两个轴及所围成的图形,分别绕由y x y x x y 0,2,.133=== 14.求下列已知曲线所围成的图形,按指定的轴旋转所产生的旋转体的体积: ;,0,,0)1(轴绕与x y a x x a x ch a y ==== ;,2sin )2(轴绕与x x y x y π = = ; ,)2 0(cos sin )3(轴绕与x x x y x y π ≤≤== ; 0,2,ln )4(轴绕与y y x x y === ;0,2)5(2轴绕与y y x y x x y ==-= ; , 16)5()6(22轴绕y y x =+- 。产生的旋转体的体积旋转 轴绕轴所围的图形处的切线和及其在求由抛物线x x x y )2,0()1(4.152-= 积。轴旋转所得旋转体的体所围图形绕求x y x y x 2223,4.16≥ ≤+ 求其体积。 , 图面都是等边三角形为底,垂直于长轴的截一立体以椭圆)26(125 100.1722 -≤+y x

不定积分练习题及答案

不定积分练习题 2 11sin )_________ 2 x d x -=?一、选择题、填空题:、( 2 2()(ln )_______x e f x x f x dx =?、若是的原函数,则: 3sin (ln )______x d x =?、 2 2 2 4()(tan )sec _________; 5(1,1)________; 6'()(),'()_________;1() 7(),_________;1 8()arcsin ,______() x x x e f x f x xd x d x y x x F x f x f a x b d x f e f x d x c d x x e xf x d x x c d x f x --===+== +==+=?? ??? ? ? 、已知是的一个原函数,则、在积分曲线族 中,过点的积分曲线是、则、设则、设 则____; 9'(ln )1,()________; 10()(,)(,)()______;()()()()11()sin sin ,()______; 12'()(),'()(),()_____()() ()() ()(f x x f x f x a b a b f x A B C D xf x d x x x xd x f x F x f x x f x f x d x A F x B x C x κ??=+== - = ===???、则、若在内连续,则在内必有导函数必有原函数必有界 必有极限 、若 则、若则)()()()c D F x x c ?+++ 13()[()]() ()[()]()() ()() () ()()d A d f x dx f x B f x dx f x dx d x C df x f x D df x f x c === = +????、下列各式中正确的是: (ln )14(),_______ 11() ()ln () () ln x f x f x e dx x A c B x c C c D x c x x -==++-+-+? 、设则:

定积分的证明题44题word文档良心出品

题目1证明题 容易 d x 证明丄 f (X _t) f Tt)dt = f(X)_ f (a)。 dx 'a 题目2证明题 容易 题目3证明题 一般 b 设函数 f(x)在[a,b ]内可导,且 f(a)=0,[ f(x)dx = 0 证明:在[a,b ]内至少存在一点E 使f(E )=0。 题目4证明题 一般 设f(X)= f(X +a). na 证明:当n 为正整数时 L f(x)dx= nj0f(x)dx 。 利用积分中值定理证明 :lim f 4 sin n xdx = 0。 」0

1 1 证明:x m (1-x)n dx = Lx n (1 —x)m dx 。 题目6证明题 一般 设f (x)在[a,b ]上有定义,且对[a,b ]上任意两点x, y, x — y |.则f (x)在[a,b ]上可积,且 1 2 题目7证明题 一般 设f(X)在[a,b ]上的连续,在(a,b)内可导,且f(a) = f (b) =0. 证明:4a|f(x)|dx

(a,b)内至少存在一点匕,设f (x)在[a,b]上正值,连续,则在 £ b 1 b 使J a f (x)dx = J E f (x)dx = —J a f (x)dx。 ■* 2 题目9证明题一般 丑丑 证明:0<FsinXxdxc『sin n xdx。 题目10证明题一般 1/ dx 兀 求证:一<〔<-。 20 2,3 6 2V4 —X +x 6

题目11证明题一般 设f(x)在区间(a,b)上连续,且在(a,b)内任一闭区间上积分为零,证明f(x)在(a,b)内恒等于零。 题目12证明题一般 若函数f(x)在[0,1]上连续, a 3 2 1 a2 (a A O)。 证明:J0x f(x )dx=5 J o xf (x)dx 题目13证明题一般 设函数f(x)和g(x)在[a,b]上连续, b 2 b 2 b 2 证明:[f f(x)g(x)dx]< f f (x)dx 订g (x)dx。 a a a 题目14证明题一般

不定积分例题及参考答案

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C -- ==-+? ★(2)dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)2 2x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +?

思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式, 通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134 (- +-)2 思路:分项积分。 解:3411 342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8)23( 1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 111 7248 8 x x ++==,直接积分。 解 : 715 8 88 .15x dx x C ==+? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1) (1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12)3x x e dx ?

(完整版)定积分的证明题

题目1证明题 容易 。证明 )()()()(a f x f dt t f t x dx d x a -='-? 解答_ 。 )()()()()()()()()()()()() ()()()( a f x f x f a f dt t f t x dx d dt t f a f x a dt t f a x t f t x t df t x dt t f t x x a x a x a x a x a -=+-='-=∴ +-=+-=-='-????? 题目2证明题 容易 。 利用积分中值定理证明 0sin lim :40 0=?→dx x n n π 解答_ 。 使 上存在点在由积分中值定理 0sin lim 0 sin lim 1sin 0sin lim 4 ]4 [0, ( )04( sin lim sin lim ,]4 ,0[, 40 00 40 =∴=∴<

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

§定积分的应用习题与答案

第六章 定积分的应用 (A ) 1、求由下列各曲线所围成的图形的面积 1)2 2 1x y =与822=+y x (两部分都要计算) 2)x y 1 =与直线x y =及2=x 3)x e y =,x e y -=与直线1=x 4)θρcos 2a = 5)t a x 3 cos =,t a y 3 sin = 1、求由摆线()t t a x sin -=,()t a y cos 1-=的一拱()π20≤≤t 与横轴所围成的图形的 面积 2、求对数螺线θ ρae =()πθπ≤≤-及射线πθ=所围成的图形的面积

3、求由曲线x y sin =和它在2 π= x 处的切线以及直线π=x 所围成的图形的面积和它绕 x 轴旋转而成的旋转体的体积 4、由3 x y =,2=x ,0=y 所围成的图形,分别绕x 轴及y 轴旋转,计算所得两旋转体 的体积 5、计算底面是半径为R 的圆,而垂直于底面上一条固定直径的所有截面都是等边三角形的 立体体积 6、计算曲线()x y -=33 3 上对应于31≤≤x 的一段弧的长度 7、计算星形线t a x 3 cos =,t a y 3 sin =的全长 8、由实验知道,弹簧在拉伸过程中,需要的力→ F (单位:N )与伸长量S (单位:cm )成

正比,即:kS =→ F (k 是比例常数),如果把弹簧内原长拉伸6cm , 计算所作的功 9、一物体按规律3 ct x =作直线运动,介质的阻力与速度的平方成正比,计算物体由0 =x 移到a x =时,克服介质阻力所作的功 10、 设一锥形储水池,深15m ,口径20m ,盛满水,将水吸尽,问要作多少功? 11、 有一等腰梯形闸门,它的两条底边各长10cm 和6cm ,高为20cm ,较长的底边与水 面相齐,计算闸门的一侧所受的水压力 12、 设有一长度为λ,线密度为u 的均匀的直棒,在与棒的一端垂直距离为a 单位处 有一质量为m 的质点M ,试求这细棒对质点M 的引力 (B) 1、设由抛物线()022 >=p px y 与直线p y x 2 3 = + 所围成的平面图形为D 1) 求D 的面积S ;2)将D 绕y 轴旋转一周所得旋转体的体积

§_5_定积分习题与答案

第五章 定积分 (A) 1.利用定积分定义计算由抛物线12 +=x y ,两直线)(,a b b x a x >==及横轴所 围成的图形的面积。 2.利用定积分的几何意义,证明下列等式: ? =1 12)1xdx 4 1) 21 2π = -? dx x ?- =π π0sin ) 3xdx ?? - =2 2 20 cos 2cos )4π ππ xdx xdx 3.估计下列各积分的值 ? 33 1arctan ) 1xdx x dx e x x ?-0 2 2)2 4.根据定积分的性质比较下列各对积分值的大小 ?2 1 ln )1xdx 与dx x ?2 1 2)(ln dx e x ?10)2与?+1 )1(dx x 5.计算下列各导数

dt t dx d x ?+20 2 1)1 ?+32 41)2x x t dt dx d ?x x dt t dx d cos sin 2)cos()3π 6.计算下列极限 x dt t x x ?→0 20 cos lim )1 x dt t x x cos 1)sin 1ln(lim )20 -+?→ 2 2 20 )1(lim )3x x t x xe dt e t ? +→ 7.当x 为何值时,函数? -=x t dt te x I 0 2 )(有极值? 8.计算下列各积分 dx x x )1 ()12 1 42? + dx x x )1()294+?

? --212 12) 1()3x dx ? +a x a dx 30 2 2) 4 ?---+2 11)5e x dx ?π20sin )6dx x dx x x ? -π 3sin sin )7 ? 2 )()8dx x f ,其中??? ??+=22 11)(x x x f 1 1>≤x x 9.设k ,l 为正整数,且l k ≠,试证下列各题: ?- =π π 0cos )1kxdx πππ =?-kxdx 2cos )2 ?- =?π π 0sin cos )3lxdx kx ?-=π π 0sin sin )4lxdx kx

定积分的证明题

定积分的证明题https://www.360docs.net/doc/3511853929.html,work Information Technology Company.2020YEAR

题目1证明题 容易 。证明 )()()()(a f x f dt t f t x dx d x a -='-? 解答_ 。 )()()()()()()()()()()()() ()()()( a f x f x f a f dt t f t x dx d dt t f a f x a dt t f a x t f t x t df t x dt t f t x x a x a x a x a x a -=+-='-=∴ +-=+-=-='-????? 题目2证明题 容易 。 利用积分中值定理证明 0sin lim :400=?→dx x n n π 解答_ 。 使 上存在点在由积分中值定理 0sin lim 0 sin lim 1sin 0sin lim 4 ]4 [0, ( )04( sin lim sin lim ,]4 ,0[, 40 00 40 =∴=∴<

定积分练习习题及标准标准答案.doc

第五章 定积分 (A 层次 ) 1. 2 sin x cos 3 xdx ; 2 . x 2 a 2 x 2 dx ; 3 . 3 dx ; a 1 x 2 1 x 2 1 4. 1 xdx ; 4 5. 5 4x 1 dx ; 1 dx ; x 1 6. 3 1 x 1 4 e 2 7. 1 dx ; dx ; 9 . 1 cos2xdx ; 8 . x 2 2x 2 x 1 ln x 2 10. x 4 sin xdx ; 11 . 2 4 cos 4 xdx ; 12 . 3 sin 2 x dx ; 5 x 2 5 x 4 2x 2 1 13. 3 x dx ; 14 . 4 ln x dx ; 15 . 1 xarctgxdx ; 2 1 4 sin x x 16. 2 e 2x cosxdx ; 17 x sin x 2 dx ; 18 e . 0 . 1 sin ln x dx ; 0 19. 2 cos x cos 3 xdx ; 20 . 4 sin x dx ; 21 . x sin x dx ; 4 0 1 sin x 0 1 cos 2 x 1 1 x 1 x 2 2 x ln dx ; 23 . 24 . 2 ln sin xdx ; 22. 0 1 x 1 x 4 dx ; 0 25. dx dx 0 。 1 x 2 1 x (B 层次 ) y t x 所决定的隐函数 对 的导数 dy 。 1.求由 cos 0 y x e dt tdt dx 2.当 x 为何值时,函数 I x x te t 2 dt 有极值? 3. d cos x 2 dt 。 cos t dx sin x 4.设 f x x 1, x 1 2 ,求 f x dx 。 1 2 , x 1 0 2 x x arctgt 2 5. lim 0 dt 。 x 2 x 1

定积分及其应用练习 带详细答案

定积分及其应用 题一 题面: 求由曲线2(2)y x =+与x 轴,直线4y x =-所围成的平面图形的面积. 答案:323 . 变式训练一 题面: 函数f (x )=???? ? x +2(-2≤x <0),2cos x ? ? ???0≤x ≤π2的图象与x 轴所围成的封闭图形的面积 为( ) A.5 2 B .2 C .3 D .4 答案:D. 详解: 画出分段函数的图象,如图所示,则该图象与x 轴所围成的封闭图形的面积为12×2×2+∫π 202cos x d x =2+2sin x |π20=4. 变式训练二 题面: 由直线y =2x 及曲线y =3-x 2围成的封闭图形的面积为( ) A .2 3 B .9-2 3 C.353 D.323 答案: 详解:

注意到直线y =2x 与曲线y =3-x 2的交点A ,B 的坐标分别是(-3,-6),(1,2),因此结合图形可知,由直线y =2x 与曲线y =3-x 2围成的封闭图形的面积为??-3 1 (3-x 2-2x )d x =? ????3x -13x 3-x 2??? 1 -3 =3×1-13×13-12- ? ?? 3× -3 -13× -3 3 ]- -3 2 =323,选D. 题二 题面: 如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( ). A .1 B .1 C .1 D .17 变式训练一 题面: 函数f (x )=sin(ωx +φ)的导函数y =f ′(x )的部分图象如图所示,其中,P 为图象与y 轴的交点,A ,C 为图象与x 轴的两个交点,B 为图象的最低点.

(完整版)定积分典型例题精讲

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞L =1lim n n →∞+L =34 =?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 比较1 2 x e dx ?,2 1 2 x e dx ?,1 2 (1)x dx +?. 分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又 1 22 1 ()()f x dx f x dx =-? ?,从而有2 111 2 2 2 (1)x x x dx e dx e dx +>>???. 解法2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ=++得1x e x >+.注意到 1 2 2 1 ()()f x dx f x dx =-? ?.因此 2 1 11 2 2 2 (1)x x x dx e dx e dx +>>? ??. 例4 估计定积分2 2x x e dx -?的值. 分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值.

定积分练习题及答案(基础)

第六章 定积分练习题及答案 一、填空题 (1) 根据定积分的几何意义,?-=+2 1)32(dx x 12 =-?dx x 2 024π ,=?π0 cos xdx ____0____ (2)设?-=1110)(2dx x f ,则?-=1 1)(dx x f _____5____, ?-=1 1)(dx x f ____-5___,?-=+1 1]1)(2[51dx x f 512 . (3) =?102sin dx x dx d 0 (4) =?2 2sin x dt t dx d 4sin 2x x 二、选择题 (1) 定积分?12 21ln xdx x 值的符号为 (B ) .A 大于零 .B 小于零 .C 等于零 .D 不能确定

三、计算题 1.估计积分的值:dx x x ?-+3 121 解:设1)(2+=x x x f ,先求)(x f 在]3,1[-上的最大、最小值, ,) 1()1)(1()1(21)(222222++-=+-+='x x x x x x x f 由0)(='x f 得)3,1(-内驻点1=x ,由3.0)3(,5.0)1(,5.0)1(==-=-f f f 知,2 1)(21≤≤- x f 由定积分性质得 221)()21(2313131=≤≤-=-???---dx dx x f dx 2.已知函数)(x f 连续,且?- =10)()(dx x f x x f ,求函数)(x f . 解:设 a dx x f =?10)(,则a x x f -=)(,于是 a adx xdx dx a x dx x f a -=-=-==????2 1)()(1 0101010, 得41=a ,所以4 1)(+=x x f . 3. dx x x x ?++1 31 222) 1(21 解:原式=dx x x dx x x x x )111()1(1213 121312222++=+++?? 3112+-= π 4. ?--1 12d x x x 解:原式=dx x x dx x x )()(1 020 12??-+-- 16 165]3121[]2131[10320123=+=-+-=-x x x x 5. ?--1 12d x x x 解:原式=dx x x dx x x )()(1 020 12??-+-- 16 165]3121[]2131[10320123=+=-+-=-x x x x 6. ?-1 02dx xe x

不定积分_定积分复习题与答案

上海第二工业大学 不定积分、定积分 测验试卷 姓名: 学号: 班级: 成绩: 一、选择题:(每小格3分,共30分) 1、设 sin x x 为()f x 的一个原函数,且0a ≠,则()f ax dx a ?应等于( ) (A )3sin ax C a x +; (B )2sin ax C a x +; (C )sin ax C ax +; (D )sin ax C x + 2、若x e 在(,)-∞+∞上不定积分是()F x C +,则()F x =( ) (A )12,0(),0x x e c x F x e c x -?+≥=?-+?? ===??-<>。令1()b a s f x dx =?,2()()s f b b a =- 31 [()()]()2 s f a f b b a =+-,则( ) (A )123s s s <<; (B )213s s s <<; (C )312s s s <<; (D )231s s s <<

定积分的证明题44题

题目1证明题 容易 。证明 )()()()(a f x f dt t f t x dx d x a -='-? 题目2证明题 容易 。利用积分中值定理证明 0sin lim :400=?→dx x n n π 题目3证明题 一般 。使内至少存在一点证明:在,内可导,且在设函数0) (f ],[0)(0)(],[)(='==?ξξb a dx x f a f b a x f b a 题目4证明题 一般 。为正整数时证明:当, 设??=+=a na dx x f n dx x f n a x f x f 0 0 )()( )()(

题目5证明题 一般 。证明: )1()1(1 0 1 0 ??-=-dx x x dx x x m n n m 题目6证明题 一般 。且 上可积在则有上任意两点且对上有定义在设2)(21)()()(,],[)( .)()(, ,],[,],[)(a b a f a b dx x f b a x f y x y f x f y x b a b a x f b a -≤---≤-? 题目7证明题 一般 。其中证明且内可导在上的连续在设 )(sup ,)()(4 :. 0)()(,),(,],[)( 2x f M a b M dx x f b f a f b a b a x f b x a b a '=-≤==<

题目8证明题 一般 。使, 内至少存在一点上正值,连续,则在在设???==b b dx x f dx x f dx x f b a b a x f a a )(21)()( ),( ],[ )(ξξξ 题目9证明题 一般 。证明: sin sin 0 202 01??<<+ππ xdx xdx n n 题目10证明题 一般 。求证:?<+-<1032 6421πx x dx

定积分及微积分基本定理练习题及答案

1.4定积分与微积分基本定理练习题及答案 1.(2011·一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系是 ( ) A .a2,c =??02sinxdx =- cosx|02=1-cos2∈(1,2), ∴c

定积分的证明题

题目1证明题 容易 d X 证明 (x -t) f (t)dt = f (x) - f (a) dx J a 解答_ X a (x-t)f (t)dt X = [(X —t)df(t) X X =(X 一 t)f(t) a + [ f(t)dt X = (^-X) f (a) + [ f (t)dt d X ^X a (X -t)f(t)dt --f(a) f(x) f (x) - f (a)。 题目2证明题 容易 由积分中值定理,在[0,…]上存在点',使 4 Iim 4 Sin n XdX= Iim Sin n ( 0) G 三[0,] n 》::0 n 匚 4 4 Iim Sin n 4 J 0 Q 0 . sin :: 1 .Iim Sin n =0 n _O π .Iim 4 Sin n XdX= 0。 —0 0 题目3证明题 一般 b 设函数 f (x)在[a,b ]内可导,且 f(a)=0, f(x)dx = 0 -a 证明:在[a,b ]内至少存在一点?使f 「)=0。 解答_ 由积分中值定理,在(a,b)存在一点'1,使 b [ f (x)dx = f (: 1)(b -a) = 0 f ( 1 ) =0 在区间[a , 1]上,应用罗尔定理,可知存 在一点 二(a , ' 1) (a,b)使f ( J=0b 题目4证明题 一般 设 f (x) = f (x +a), na a 证明:当n 为正整数时 0 f (x)dx = n .°f(x)dx 解答 利用积分中值定理证明 解答 π :Ijm 4 Sin n XdX 二 0 n 0 0

定积分测试题及答案(可编辑修改word版)

1 D , 3 9 , 5 9 , 3 7 , 5 7 4 定积分测试题及答案 班级:姓名:分数: 一、选择题:(每小题5 分) 1. ? 1-x2dx =() A.0 B.1 C. 2 2(2010·ft东日照模考)a=∫0的大小关系是( ) 2 x d x,b=∫0 2 e x d x,c=∫0sin x d x,则a、b、c A.a

1 6 6.(2010·湖南省考试院调研) -1 (sin x +1)d x 的值为( ) A .0 B .2 C .2+2cos1 D .2-2cos1 7. 曲线 y =cos x (0≤x ≤2π)与直线 y =1 所围成的图形面积是( ) A .2π B .3π C.3π 2 D .π x 8.函数 F (x )= ∫0 t (t -4)d t 在[-1,5]上( ) A .有最大值 0,无最小值 B .有最大值 0 和最小值-32 3 32 C .有最小值- ,无最大值 D .既无最大值也无最小值 3 x 9.已知等差数列{a }的前 n 项和 S =2n 2+n ,函数 f (x )= 1 ,若 n n f (x )

相关文档
最新文档