ICP-MS原理介绍

ICP-MS原理介绍
ICP-MS原理介绍

ICP-MS原理部分

概述

ICP-MS是一种灵敏度非常高的元素分析仪器,可以测量溶液中含量在ppb或ppb以下的微量元素。广泛应用于半导体、地质、环境以及生物制药等行业中。

ICP-MS全称是电感藕合等离子体质谱,它是一种将ICP技术和质谱结合在一起的分析仪器。ICP利用在电感线圈上施加的强大功率的高频射频信号在线圈内部形成高温等离子体,并通过气体的推动,保证了等离子体的平衡和持续电离,在ICP-MS中,ICP起到离子源的作用,高温的等离子体使大多数样品中的元素都电离出一个电子而形成了一价正离子。

质谱是一个质量筛选和分析器,通过选择不同质核比(m/z)的离子通过来检测到某个离子的强度,进而分析计算出某种元素的强度。

ICP-MS的发展已经有20年的历史了,在长期的发展中,人们不断的将新的技术应用于ICP-MS的设计中,形成了各类ICP-MS。ICP-MS主要分为以下几类:四极杆ICP-MS,高分辨ICP-MS(磁质谱),ICP-tof-MS。本文主要介绍四极杆ICP-MS。

主要组成部分

图1是ICP-MS的主要组成模块。

图1 ICP-MS主要组成模块

样品通过离子源离子化,形成离子流,通过接口进入真空系统,在离子镜中,负离子、

中性粒子以及光子被拦截,而正离子正常通过,并且达到聚焦的效果。在分析器中,仪器通过改变分析器参数的设置,仅使我们感兴趣的核质比的元素离子顺利通过并且进入检测器,在检测器中对进入的离子个数进行计数,得到了最终的元素的含量。

各部分功能和原理

1.离子源

离子源是产生等离子体并使样品离子化的部分,离子源结构如图2所示,主要包括RF

图 2 离子源的组成

工作线圈、等离子体、进样系统和气路控制四个组成部分。样品通过进样系统导入,溶液样品通过雾化器等设备进入等离子体,气体样品直接导入等离子体,RF工作线圈为等离子体提供所需的能量,气路控制不断的产生新的等离子体,达到平衡状态,不断的电离新的离子。下面对X-7ICP-MS的具体部件进行介绍。

1)进样系统

进样系统组成框图如图3所示。

图3 X-7进样系统原理

蠕动泵:蠕动泵把溶液样品比较均匀的送入雾化器,并同时排除雾化室中的废液。通过控制蠕动泵的转速,可以得到理想的进样速度,样品提升速度一般为0.7~1ml/min.如果不采用蠕动泵,由于雾化器中雾化气体的流动,也可以提取样品,样品的自然提取速度为0.6ml/min左右,随着雾化气流速的变化而改变。

雾化器和雾化室:雾化器的作用是使样品从溶液状态变成气溶胶状态,因为只有气状的图4:直角雾化器同心圆雾化器

样品才可以直接进入炬管的等离子体中。常用的雾化器按照结构的不同分为几类,常用的雾化器有同心圆雾化器和直角雾化器。如图4所示:

在X-7ICP-MS中,使用的是同心圆雾化器,同心圆雾化器与直角雾化器相比,可以提供极佳的稳定性和灵敏度,尤其适合检测浓度较低的溶液,缺点是容易堵塞,耐盐性较差。其它的一些公司(如VG)采用的雾化器可以提供最大高达20%的耐盐性,但是由于在等离子产生后通过的采样锥和截取锥的孔径非常的小,样品中溶质量必须小于0.2%,最好小于0.1%因此,雾化器的耐盐性并不能提高ICP-MS的耐盐性,所以同心圆雾化器是一种比较理想的雾化器。

由于等离子体对直径较大的微粒的放电效率较差,因此要求进入炬管的气溶胶状的样品液滴有均匀和细小的几何尺寸。为了达到这个目的,仪器中采用了雾室,雾室是一个气体流过的通道,当气溶胶通过时,直径大于10um的液滴将被冷凝下来,从废液管排出。雾室的另一个目的是柔化雾化器喷出的气溶胶,最终使其均匀的进入等离子体。目前主要的雾室设计是圆柱型雾室,在X-7ICP-MS中采用的是一种独特的锥型雾室,雾化气溶胶在雾室中撞击到一个玻璃球上,大直径的液滴将被沉积下来,从玻璃球上流下,并被到处雾室,较小的液滴绕过玻璃球,从雾室尖端的小孔中流出。这种雾室的设计很好的避免了死体积的影响。

2)等离子体炬管

炬管是产生等离子体装置,炬管的主要结构如下图5所示:

图5等离子体炬管

炬管主要有三层结构,外层的叫做外管,其次是内管,中间的是中心管。外管中通的是大流量的氩气,叫做冷却气,冷却气提供给等离子体气体源源不断的Ar原子,在等离子体中不断的电离放热,产生的Ar离子在射频线圈中振荡碰撞,从而维持了很高的温度,伴随着大量离子留出等离子体,又有很多Ar原子流入,从而达到了一种平衡。冷却气的流量大概为13~15L/min。在内管中流动的气体叫做辅助气,也是氩气,它的作用是给等离子体火焰向前的推力,实现不断的电离,也很好的了中心管,以免过高的温度使其熔化。辅助气的流量为0.5~1L/min。中心管中流出的是从雾室排出的样品溶液的气溶胶。

从图5可以看到溶液气溶胶在中心管中随着接近火焰在形态上的改变。气溶胶->干化(固体颗粒)->气化(气体)->原子化(化合物离解)->离子化(电离成1价离子)。图6也说明了炬管的结构和等离子体工作原理,等离子体工作时,首先提供强大的射频电压到RF工作线圈,然后利用高压使气体放电产生火化,少量离子在电磁场作用下聚集并相互碰撞,很快就使更多的原子电离,最终形成了稳定的火焰。

图6 等离子体火焰的产生炬管详细结构

3)冷却和气体控制

由于等离子的高温(高达8000~10000度),足以熔化任何物质,所以在仪器中多处采用水冷,RF工作线圈是中空的,用来作为冷却水的通道。在雾室中采用半导体冷却器,对一般无机溶液,温度为4度左右(这个温度下,直径较大的液滴可以更好的冷凝下来),对有机溶液,可以达到-10度。需要水冷的部分有:接口、工作线圈、RF工作线圈、半导体制冷器。在ICP-MS中,最基本的气体是氩气,它被作为冷却气(cool gas)、辅助气(aux gas)和雾化气(nebulizer gas),其它可能使用的气体包括氢气,氨气,氦气(用于cct)和氧气(用于消除有机物中的C)。

2.真空系统

ICP-MS主要用来检测物种的痕量元素,空气中的灰尘含有大量的各种元素,因此在仪器中真空的要求是很高的。从进样系统到炬管,仪器一直是在常压下工作的,在仪器点火之前,氩气可以驱除管路中的空气。当离子产生后,对这些离子的聚焦、传输和选择分析就必须要求良好的真空系统,以免在过程中的粘污。仪器为了达到从常压向真空系统的过渡,提供了三级真空系统,来逐步的达到很高的真空度。真空系统如下图7所示:

图7 真空系统图

X-7ICP-MS有一个机械泵和一个分子涡流泵,机械泵用于抽低真空,分子泵用于抽高真空。机械泵直接与expansion chamber(扩张室,因为离子超声速射流)相连接,分子泵工作端与分析室2(主要是四极杆和检测器)相连结,出口端和机械泵相连。在扩张室和分析室

1中间有一个slide valve,扩张室和机械泵中间连有expansion valve,分子泵和机械泵工作端连有backing valve。三级真空系统保证了仪器从大气到低真空再到高真空的过渡,而三个阀门保证了仪器在工作状态和待机状态的稳定和两个状态之间的过渡。

表1 仪器的三级真空系统的气压

表2 仪器的三个状态与阀门的关系表

3.接口

接口部分由两个锥体组成,前面的是采样锥(sample cone),后面的是截取锥(skimmer)。如下图所示:

图8 接口部分示意图

取样锥的孔径大概是0.8~1.2mm(在X-7中为1.1mm),截取锥的孔径为0.4~0.8mm(为0.7mm)左右。经过两个锥体,只有非常小的一部分离子进入离子透镜。

在采样锥处,由于电子速度快,所以大量电子很快打到锥上,因此采样锥表面为负电性,所以空间电荷区是正电性的。由于气体压力的突然下降,所以在两锥之间,产生了离子的超声射流,所以两锥之间成为扩张室。在通过采样锥的离子中,只有大约1%的离子可以通过截取锥。进入离子镜的正离子都具有相同的速度,因此动能和质量成正比。

4.离子镜

在ICP-MS中,产生的1000,000个离子中,只有1个能够最终到达检测器,这是由于每级的效率决定的,在这样低效率的传输下,去除各种干扰就变得更加重要了,离子镜的主要目的是去除电子和中性微粒的影响,并对正电子实现聚焦。离子镜的结构如图9所示。当离子从截取锥喷出时,在进入离子镜之前,能量较小的离子会更多的被真空抽走。

图9 离子透镜结构图

等离子体首先进入的是截取透镜(extraction lens),截取透镜具有很强的负电势,所以电子无法通过,被真空抽走。在后面是几级离子聚焦透镜,离子聚焦透镜的原理是:安装两个电极板或圆筒,在两个电极之间形成了透镜状的等场强线,当边缘离子入射到电场时,受电场影响,向中心移动,随后出射运动方向又恢复到了向前,实现了位置上的聚焦。ICP-MS 在产生离子的同时,也产生大量光子,由于光子也可以被检测器检测和计数,所以在离子透镜的末端,是一个偏转透镜,用于去除光子干扰。(一般来讲,采样锥离子流为0.1A,截取锥电流为1mA)

在x-7ICP-MS中,透镜组如下图:

图10 x-7离子镜的组成

5.质量分析器

质量分析器是不同种类的质谱仪的主要区别之处,四极杆分析器是一种成熟的质量分析仪器,利用了四极杆对不同核质比的元素离子的筛选作用,达到顺序分析离子质量的目的。

图11 四极杆原理图

四极杆的主要原理如下图所示:

四极杆的两对电极,分别加上了正负直流电压和相位差为180度的射频信号,离子在四极杆中旋转、振荡,当合理设置直流电压的大小和射频电压的幅度后,只有特定核质比范围的离子才能通过四极杆,而其它离子将偏转,最终打在四极杆上损失掉,从而实现了质量选择。

更详细的筛选过程见下图:

图12 四极杆工作电压和质量分析的关系

图中显示的是工作电压和质量分析的稳定区域图,A、B是两种不同核质比的元素离子,A的核质比小于B(因为B只有在更高的电压下才能稳定通过),两者在一定的直流电压和射频电压下可以顺利通过,形成了形状相似的稳定区域图,在绿色的overlap区域内,两种离子无法被四极杆准确区分,在蓝色区域内A可以通过,在黄色内B可以通过。当四极杆工作时,一般保证F(dc)/F(rf)=const,因此途中的过圆点的直线表示了四极杆能够达到的所有的工作状态,当直线的斜率如蓝线所示时,A、B两种离子可以被很好分离,由于两者稳定区域的电压相差较远,所以得到了较高的分离度,而红线表示的是较低的分离度。分离度是质谱仪最重要的一个指标之一,X-7ICP-MS的一般分离度在0.7左右,最高分离度为0.3左右。作为无机分析仪器,足以分辨出不同质量数的各种离子,但是对那些具有相同

质量数的不同元素离子,则无法辨别,这也是四极杆质谱的一个弱点,因此在质量分析中形成了大量的同位素和多元子分子干扰。

四极杆对低动能离子更为有效,如果离子能量太高,则离子通过四极杆的速度将加快,最终导致峰将展宽。在四极杆的入口和出口处,仅施加射频可以使全谱离子通过,但可以使离子向中心聚焦。

图13 扫描方式跳峰方式四极杆有两个工作模式,即顺序扫描方式和跳峰方式,如下图所示:

当四极杆工作在扫描方式,直流电压和射频电压幅度成比例连续变化,每个时刻都选择对应的连续变化的核质比的离子通过。当工作在跳峰模式,两个电压也不连续的跳变,每个时刻都选择感兴趣的某个核质比的离子通过。

6.检测器

每个时刻,通过四极杆的离子流可以认为具有单一的核质比,检测器的目的是对这些离子计数,来得到离子的相对的强度。

通常使用的检测器是一种电子倍增器,如下图所示:

图14 电子倍增器原理

它的结构类似于光电倍增管,由很多串联的电极板构成,这些电极称为打拿极(dynode),每两个打拿极都均匀分担着外加的高压。当离子入射到第一个打拿极时,和电极碰撞,离子消失,同时产生了自由电子,电子在电场作用下向下一级电极板移动,并打出更多的电子,如此形成了倍增效应。当一个离子入射时,将最终在输出端形成一个脉冲信号。

检测器通过对一定时间内的脉冲信号的计数可以得到离子强度的相对值,检测器工作在数字检测方式。当离子强度较大时,达到产生的电子脉冲互相重叠时,脉冲数目便无法计算了,即达到了饱和,此时检测器可以切换到模拟检测方式(累计信号),如下图所示。

图15 模拟和数字测量模式

第一性原理计算原理和方法

第二章 计算方法及其基本原理介绍 化学反应的本质就是旧键的断裂与新建的形成,参与成键原子的电子壳层重新组合就是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似,就不可能求解其Schrodinger 方程。这些近似使一般量子力学方程简化为现代电子计算机可以求解的方程。这些近似与关于分子波函数的方程形成计算量子化学的数学基础。 2、1 SCF-MO 方法的基本原理 分子轨道的自洽场计算方法 (SCF-MO)就是各种计算方法的理论基础与核心部分,因此在介绍本文计算工作所用方法之前,有必要对其关键的部分作一简要阐述。 2、1、1 Schrodinger 方程及一些基本近似 为了后面介绍各种具体在自洽场分子轨道(SCF MO)方法方便,这里将主要阐明用于本文量子化学计算的一些重要的基本近似,给出SCF MO 方法的一些基本方程,并对这些方程作简略说明,因为在大量的文献与教材中对这些方程已有系统的推导与阐述[1-5]。 确定任何一个分子的可能稳定状态的电子结构与性质,在非相对论近似下,须求解 R AB =R 图2-1分子体系的坐标

定态Schrodinger 方程 ''12121212122ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??????? ?-++?-?-∑∑∑∑∑∑≠≠ (2、1) 其中分子波函数依赖于电子与原子核的坐标,Hamilton 算符包含了电子p 的动能与电子p 与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 (2、2) 以及原子核的动能 ∑?-=A A A N M H 2121? (2、3) 与电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? (2、4) 式中Z A 与M A 就是原子核A 的电荷与质量,r pq =|r p -r q |,r pA =|r p -R A |与R AB =|R A -R B |分别就是电子p 与q 、核A 与电子p 及核A 与B 间的距离(均以原子单位表示之)。上述分子坐标系如图2、1所示。可以用V(R,r)代表(2、2)-(2、4)式中所有位能项之与 ∑∑∑-+=≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,1 2121),( (2、5) 原子单位 上述的Schrodinger 方程与Hamilton 算符就是以原子单位表示的,这样表示的优点在于简化书写型式与避免不必要的常数重复计算。在原子单位的表示中,长度的原子单位就是Bohr 半径

第一性原理简介

第一性原理是什么 第一性原理怎么用 1什么是第一性原理 根据原子核和电子互相作用的原理及其基本运动规律,运用,从具体要求出发,经过一些近似处理后直接求解的算法,称为第一性原理。广义 的第一原理包括两大类,以Hartree-Fock自洽场计算为基础的从头算和 (DFT计算。 从定义可以看出第一性原理涉及到量子力学、、Hartree-Fock自洽场、等许多对我来说很陌生的物理化学定义。因此我通过向师兄请教和上网查资料一点点的了解并学习这些知识。 2第一性原理的作用 以密度泛函理论(DFT)为基础以及在此基础上发展起来的简单而具有一定精度的局域密度近似(LDA)和广义梯度近似(GGA)的第一性原理电子结构计算方法,与传统的解析方法一样,不但能够给出描述体系微观电子特性的物理量如波函数、态密度、费米面、电子间互作用势等,以及在此基础上所得到的体现体系宏观物理特性的参量如结合能、电离能、比热、电导、光电子谱、穆斯堡尔谱等等,而且它还可以帮助人们预言许多新的

物理现象和物理规律。密度泛函计算的一些结果能够与实验直接进行比较一些应用程序的发展乃至商业软件的发布,导致了基于密度泛函理论的第 一原理计算方法的广泛应用。 密度泛函理论(DFT)为第一性原理中的一类,在物理系、化学、材料科学以及其他工程领域中,密度泛函理论(DFT及其计算已经快速发展成 为材料建模模拟的一种“标准工具”。 密度泛函理论可以计算预测固体的晶体结构、晶格参数、能带结构、态密度(DOS、光学性能、磁性能以及原子集合的总能等等。 3第一性原理怎么用 目前我所学到的利用第一性原理的软件为Material Studio 、VASP软件。其中Materials Studio (简称MS是专门为材料科学领域研究者幵发的一款可运行在PC上的模拟软件。使化学及材料科学的研究者们能更方便地建立三维结构模型,并对各种晶体、无定型以及高分子材料的性质及相关过程进行深入的研究。模拟的内容包括了催化剂、聚合物、固体及表面、晶体与衍射、化学反应等材料和化学研究领域的主要课题。 模块简介 Materials Studio 采用了大家非常熟悉的Microsoft标准用户界面, 允许用户通过各种控制面板直接对计算参数和计算结果进行设置和分析。 目前,Materials Studio 软件包括如下功能模块: Materials Visualizer: 提供了搭建分子、晶体及高分子材料结构模型所需要的所有工具,可以操作、观察及分析结构模型,处理图表、表格或文本等形式的数据,并提供软件的基本环境和分析工具以及支持Materials Studio 的其他产品。是Materials Studio 产品系列的核心模块。 Discover: Materials Studio 的分子力学计算引擎。使用多种分子力学和动力学 方法,以仔细推导的力场作为基础,可准确地计算出最低能量构型、分子体系的结构和动力学轨迹等。

ICPMS原理介绍(doc X页)

ICPMS原理介绍(doc X页) ICP-MS中文培训资料 1理论原理 2硬件组成及功能讲解 1 ICP-MS原理部分 概述 ICP,MS是一种灵敏度非常高的元素分析仪器,可以测量溶液中含量在ppb或ppb以下的微量元素。广泛应用于半导体、地质、环境以及生物制药等行业中。 ICP,MS全称是电感藕合等离子体质谱,它是一种将ICP技术和质谱结合在一起的分析仪器。ICP利用在电感线圈上施加的强大功率的高频射频信号在线圈内部形成高温等离子体,并通过气体的推动,保证了等离子体的平衡和持续电离,在ICP,MS中,ICP起到离子源的作用,高温的等离子体使大多数样品中的元素都电离出一个电子而形成了一价正离子。 质谱是一个质量筛选和分析器,通过选择不同质核比(m/z)的离子通过来检测到某个离子的强度,进而分析计算出某种元素的强度。 ICP,MS的发展已经有20年的历史了,在长期的发展中,人们不断的将新的技术应用于ICP,MS的设计中,形成了各类ICP,MS。ICP,MS主要分为以下几类:四极杆ICP,MS,高分辨ICP,MS(磁质谱),ICP,tof,MS。本文主要介绍四极杆ICP,MS。主要组成部分 图1是ICP,MS的主要组成模块。 接口 离子镜分析器

离子源检测器 图1 ICP,MS主要组成模块 样品通过离子源离子化,形成离子流,通过接口进入真空系统,在离子镜中,负离子、中性粒子以及光子被拦截,而正离子正常通过,并且达到聚焦的效果。在分析器中,仪器通 2 过改变分析器参数的设置,仅使我们感兴趣的核质比的元素离子顺利通过并且进入检测器,在检测器中对进入的离子个数进行计数,得到了最终的元素的含量。 各部分功能和原理 1. 离子源 离子源是产生等离子体并使样品离子化的部分,离子源结构如图2所示,主要包括RF 图 2 离子源的组成

数据库简介

第三章数据库 数据库是数据管理的最新技术,是计算机科学的重要分支。今天,信息资源已成为各个部门的重要财富和资源。建立一个满足各级部门信息处理要求的行业有效的信息系统也成为一个企业或组织生存和发展的重要条件。因此,作为信息系统核心和基础的数据库技术得到越来越广泛的应用,从小型单项事务处理系统到大型信息系统,从联机事务处理到联机分析处理,从一般企业管理到计算机辅助设计与制造(CAD/CAM)、计算机集成制造系统(CIMS)、办公信息系统(OIS)、地理信息系统(GIS)等,越来越多新的应用领域采用数据库存储和处理他们的信息资源。对于一个国家来说,数据库的建设规模、数据库信息量的大小和使用频度已成为衡量这个国家信息化程度的重要标志。 3.1 数据库知识概述 数据库技术是数据信息管理技术的最新成果,被广泛地应用于国民经济、文化教育、企业管理以及办公自动化等方面,为计算机的应用开辟了广阔的天地。本节将详细介绍有关数据库系统的基本概念。 3.1.1 数据库系统基本概念 1)数据(Data) 数据是数据库中存储的基本对象。数据在大多数人头脑中的第一个反应就是数字。其实数字只是最简单的一种数据,是数据的一种传统和狭义的理解。广义的理解,数据的种类很多,包括文字、图形、图像、声音、视频、学生的档案记录等。 数据就是描述事物的符号记录。描述事物的符号可以是数字,也可以是文字、图形、图像、声音、语言等,数据有多种表现形式,都可以经过数字化后存入计算机。 数据的形式还不能完全表达其内容,需要经过解释。所以数据和关于数据的解释是不可分的,数据的解释是指对数据含义的说明,数据的含义称为数据的语义,数据与其语义是不可分的。 2)数据库(DataBase,简称DB) 所谓数据库是指长期储存在计算机内的、有组织的、可共享的数据集合。数据库中的数据按一定的数据模型组织、描述和存储,具有较小的冗余度、较高的数据独立性和易扩展性,并可以为各种用户共享。 3)数据库管理系统(DataBase Management System,简称DBMS) 数据库管理系统是数据库系统的一个重要组成部分。它是位于用户与操作系统之间的一层数据管理软件。主要包括以下几方面的功能。 ●数据定义功能 DBMS提供数据定义语言(Data Definition Language,简称DDL),通过它可以方便地对数据库中的数据对象进行定义。 ●数据操纵功能 DBMS还提供数据操纵语言(Data Manipulation Language,简称DML),可以使用DML 操纵数据实现对数据库的基本操作,如查询、插入、删除和修改等。 ●数据库的运行管理 数据库在建立、运用和维护时由数据库管理系统统一管理、统一控制,以保证数据的安全性、完整性、多用户对数据的并发使用及发生故障后的系统恢复。

数据库技术的发展(一)

数据库技术的发展(一) (总分:15.00,做题时间:90分钟) 一、{{B}}选择题{{/B}}(总题数:5,分数:5.00) 1.采用扩展关系数据模型的方法建立的数据库系统,称做 ______。 (分数:1.00) A.对象-关系数据库系统√ B.扩展关系数据库系统 C.拓展关系数据库系统 D.以上都不正确 解析: 2.下列哪一种结构是支持并行数据库系统最好的结构? ______。 (分数:1.00) A.共享内存 B.共享磁盘 C.无共享√ D.层次模式 解析: 3.下面属于并行数据库系统目标的是 ______。Ⅰ.高性能Ⅱ.高可用性Ⅲ.高扩充性 (分数:1.00) A.Ⅰ和Ⅱ B.Ⅱ和Ⅲ C.Ⅰ和Ⅲ D.Ⅰ、Ⅱ和Ⅲ√ 解析: 4.下列属于粗粒度并行机特点的是 ______。 (分数:1.00) A.拥有大量的处理器 B.共享一个主存√ C.单个事务运行得更快 D.数据库一般将一个查询分配到多个处理器上 解析: 5.操作型数据和分析型数据具有不同的特征,下列哪一个是操作型数据的特征? ______。 (分数:1.00) A.可更新的√ B.历史的(包括过去数据) C.支持管理决策的 D.面向主题的 解析: 二、{{B}}填空题{{/B}}(总题数:5,分数:10.00) 6.在客户机/服务器工作模式中,客户机可以使用{{U}} 【1】 {{/U}}向数据库服务器发送查询命令。(分数:2.00) 填空项1:__________________ (正确答案:结构化查询语言/SQL) 解析: 7.分布式数据库系统与集中式数据库系统最大的区别是分布式数据库中的数据{{U}} 【2】 {{/U}} 存储在多个场地。 (分数:2.00)

如何分析能带图及第一性原理的计算

分析能带图 能带结构是目前采用第一性原理(从头abinitio)计算所得到的常用信息,可用来结合解释金属、半导体和绝缘体的区别。能带可分为价带、禁带和导带三部分,倒带和价带之间的空隙称为能隙,基本概念如图所示: 如何能隙很小或为0 ,则固体为金属材料,在室温下电子很容易获得能量而跳跃至传倒带而导电;而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至传导带,所以无法导电。一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料距能导电。 能带用来定性地阐明了晶体中电子运动的普遍特点。价带(valence band),或称价电带,通常指绝对零度时,固体材料里电子的最高能量。在导带(conduction band)中,电子的能量范围高于价带,而所有在传导带中的电子均可经由外在的电

场加速而形成电流。对与半导体以及绝缘体而言,价带的上方有一个能隙(band gap),能隙上方的能带则是传导带,电子进入传导带后才能在固体材料内自由移动,形成电流。对金属而言,则没有能隙介于价带与传导带之间,因此价带是特指半导体与绝缘体的状况。 费米能级(fermi level)是绝对零度下的最高能级。根据泡利不相容原理,一个量 子态不能容纳两个或两个以上的费米子(电子),所以在绝度零度下,电子将从低到高依次填充各能级,除最高能级外均被填满,形成电子态的“费米海”。“费米海” 中每个电子的平均能量为(绝对零度下)为费米能级的3/5。海平面即是费米能级。一般来说,费米能级对应态密度为0的地方,但对于绝缘体而言,费米能级就位于价带顶。成为优良电子导体的先决条件是费米能级与一个或更多的能带相交。 能量色散(dispersion of energy)。同一个能带内之所以会有不同能量的量子态, 原因是能带的电子具有不同波向量(wave vector),或是k-向量。在量子力学中, k-向量即为粒子的动量,不同的材料会有不同的能量-动量关系(E-K relationship)。能量色散决定了半导体材料的能隙是直接能隙还是间接能隙。如导带最低点与价带最高点的K值相同,则为直接能隙,否则为间接能隙。 能带的宽度。能带的宽度或三度,即能带最高和最低能级之间的能量差,是一个非常重要的特征,它是由相互作用的轨道之间的重叠来决定的,因而反应出轨道之间的重叠情况,相邻的轨道之间重叠越大,带宽就越大。

第一性原理

第二章 第一性原理计算方法与软件介绍 19世纪末,科学家们发现经典力学和经典电动力学在描述物质的微观系统时存在明显不足,对实验中的许多现象不能做出真正合理的解释。鉴于此,20世纪初物理学家们在旧量子论的基础上建立了量子力学,主要研究原子、分子、凝聚态物质等内部微观粒子的结构、运动规律等性质,目前已广泛应用于物理、化学、材料等学科领域。随着量子力学理论的不断完善,并结合日趋成熟的计算机技术,量子计算模拟成为了现代科学中必不可少的研究手段之一。第一性原理计算(First-principles calculation),亦称为从头算(Ab-initio calculation)。该计算方法可根据量子力学基本原理,基于密度泛函理论对材料微观体系的状态和性质进行理论上的预测,且计算过程中不需要使用任何经验参数,只需要一些基本物理量(电子电荷质量e 、电子静止质量m 0、光速c 、普朗克常数h 、波尔兹曼常数k B )。本工作所选用的计算程序为Materials Studio 软件中的CASTEP 量子力学模块,该模块是基于密度泛函理论的从头算量子力学程序。本章节将简要的介绍密度泛函理论和CASTEP 计算模块。 2.1密度泛函理论概述 第一性原理主要的研究对象是多原子体系。它依据量子力学原理,且在无任何实验参数引入的情况下,将多原子体系当作由自由电子和原子核组成的多粒子体系进行处理。然而,关于量子力学中多粒子体系处理的出发点则为著名的薛定谔方程(Schr?dinger Equation)。Schr?dinger 方程是量子力学的一个基本方程,也是第一性原理计算方法的核心,它是由奥地利物理学家薛定谔(Schr?dinger)于1926年提出的。该方程可用于描述微观粒子的运动规律,故亦被称为薛定谔波动方程(Schr?dinger Wave Equation),其定态方程描述如下: 2 2[()]()(,)2V r r,t i r t t ψψμ?-?+=? (2-1) 式中?为约化普朗克(Plank)常数;μ和V(r)分别表示粒子质量和势场;r 和t 则为体系中所有电子与原子核的位置坐标;Ψ(r,t)是系统波函数,即运动的微观粒子

第一性原理简介

第一性原理是什么? 第一性原理有什么用? 第一性原理怎么用? 怎样将第一性原理与实 践结合起来? 什么是第一性原理?1原理,量子力学根据原子核和电子互相作用的原理及 其基本运动规律,运用第一性称为经过一些近似处理后直接求解薛定谔方程的算法,从具体要求出发,计算为基础的从头算。广义的第一原理包括两大类,以

Hartree-Fock自洽场原理DFT)计算。密度泛函理论和(自从定义可以看出第一性原理涉及到量子力学、薛定谔方程、Hartree-Fock因此我通过向师兄密度泛函理论等许多对我来说很陌生的物理化学定义。洽场、请教和上网查资料一点点 的了解并学习这些知识。 2第一性原理的作用为基础以及在此基础上发展起 来的简单而具有一定精(DFT)以密度泛函理论,的第一性原理电子结构计算方法 和广义梯度近似(GGA)度的局域密度近似(LDA)不但能够给出描述体系微观电子特性的物理量如波函与传统的解析方法一样,以及在此基础上所得到的体现体系宏,数、态密度、费米面、电子间互作用势等,穆斯堡尔谱等等比热、电导、观物理特性的参量如结合能、电离能、光电子谱、密度泛函计算的一些而且它还可以帮助人们预言许多新的物理现象和物理规律。. 导致了,结果能够与实验直接进行比较,一些应用程序的发展乃至商业软件的发布基于密度泛函理论的第一原理计算方法的广泛应用。为第一性原理中的一类,在物理系、化学、材料科学以(DFT)密度泛函理论)及其计算已经快速发展成为材料建模DFT及其他工程领域中,密度泛函理论(模拟的一种“标准工具”。密度泛函理论可以计算预测固体的晶体结构、晶格参数、能带结构、态密度(DOS)、 光学性能、磁性能以及原子集合的总能等等。 3第一性原理怎么用?其中ASP、软件。V目前我所学到的利用第一性原理的软件为Material Studio)是专门为材料科学领域研究者开发的一款可运行在MSMaterials Studio(简称使化学及材料科学的研究者们能更方便地建立三维结构模型,上的模拟软件。PC模拟无定型以及高分子材料的性质及相关过程进行深入的研究。并对各种晶体、的内容包括了催化剂、聚合物、固体及表面、晶体与衍射、化学反应等材料和化学研究领域的主要课题。模块简介Materials Studio采用了大家非常熟悉的Microsoft标准用户界面,允许用户通过各种控制面板直接对计算参数和计算结果进行设置和分析。目前,Materials Studio软件包括如下功能模块: Materials Visualizer: 提供了搭建分子、晶体及高分子材料结构模型所需要的所有工具,可以操作、观察及分析结构模型,处理图表、表格或文本等形式的数据,并提供软件的基本环境和分析工具以及支持Materials Studio的其他产品。是Materials Studio产品系列的核心模块。 Discover: Materials Studio的分子力学计算引擎。使用多种分子力学和动力学方法,以仔细推导的力场作为基础,可准确地计算出最低能量构型、分子体系的结构和动力学轨迹等。. COMPASS: 支持对凝聚态材料进行原子水平模拟的功能强大的力场。是第一个由凝聚态性质以及孤立分子的各种从头算和经验数据等参数化并经验证的从头算力场。可以在很大的温度、压力范围内精确地预测孤立体系或凝聚态体系中各种分子的结构、构象、振动以及热物理性质。 Amorphous Cell: 允许对复杂的无定型系统建立有代表性的模型,并对主要性质进行预测。通过观察系统结构和性质之间的关系,可以对分子的一些重要性质有更深入的了解,从

第一性原理计算原理和方法精编

第一性原理计算原理和 方法精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

第二章 计算方法及其基本原理介绍 化学反应的本质是旧键的断裂和新建的形成,参与成键原子的电子壳层重新组合是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似,就不可能求解其Schrodinger 方程。这些近似使一般量子力学方程简化为现代电子计算机可以求解的方程。这些近似和关于分子波函数的方程形成计算量子化学的数学基础。 SCF-MO 方法的基本原理 分子轨道的自洽场计算方 法(SCF-MO)是各种计算方法的理论基础和核心部分,因此在介绍本文计算工作所用方法之 前,有必要对其关键的部分作 一简要阐述。 Schrodinger 方程及一些基本近似 为了后面介绍各种具体在自洽场分子轨道(SCF MO)方法方便,这里将主要阐明用于本文量子化学计算的一些重要的基本 R AB =R 图2-1分子体系的坐标

近似,给出SCF MO 方法的一些基本方程,并对这些方程作简略说明,因为在大量的文献和教材中对这些方程已有系统的推导和阐述[1-5]。 确定任何一个分子的可能稳定状态的电子结构和性质,在非相对论近似下,须求解定态Schrodinger 方程 ''12121212122ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??????? ?-++?-?-∑∑∑∑∑∑≠≠ () 其中分子波函数依赖于电子和原子核的坐标,Hamilton 算符包含了电子p 的动能和电子p 与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 以及原子核的动能 ∑?-=A A A N M H 2121? 和电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? 式中Z A 和M A 是原子核A 的电荷和质量,r pq =|r p -r q |,r pA =|r p -R A |和R AB =|R A -R B |分别是电子p 和q 、核A 和电子p 及核A 和B 间的距离(均以原子单位表示之)。上述分子坐标系如图所示。可以用V(R,r)代表-式中所有位能项之和 ∑∑∑-+=≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,12121),( 原子单位

第一性原理计算原理和方法

第二章 计算方法及其基本原理介绍 化学反应的本质是旧键的断裂和新建的形成,参与成键原子的电子壳层重新组合是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似, 确定任何一个分子的可能稳定状态的电子结构和性质,在非相对论近似下,须求解定态Schrodinger 方程 ''12121212122 ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??? ?????-++?-?-∑∑∑∑∑∑≠≠ (2.1) 其中分子波函数依赖于电子和原子核的坐标,Hamilton 算符包含了电子p 的动能和电子p

与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 (2.2) 以及原子核的动能 ∑?-=A A A M H 2? (2.3) 和电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? (2.4) 式中Z A 和M A 是原子核A 的电荷和质量,r pq =|r p -r q |,r pA =|r p -R A |和R AB =|R A -R B |分别是电子p 和q 、核A 和电子p 及核A 和B 间的距离(均以原子单位表示之)。上述分子坐标系如图2.1所示。可以用V(R,r)代表(2.2)-(2.4)式中所有位能项之和 ∑∑∑-+= ≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,1 2121),( (2.5) 原子单位 上述的Schrodinger 方程和Hamilton 算符是以原子单位表示的,这样表示的优点在于简化书写型式和避免不必要的常数重复计算。在原子单位的表示中,长度的原子单位是Bohr 半径 能量是以Hartree 为单位,它定义为相距1Bohr 的两个电子间的库仑排斥作用能 质量则以电子制单位表示之,即定义m e =1 。

ICPMS仪器操作

1.开机注意事项 1. 1检查气体纯度: - 氩气 Ar>%, 或更高 -碰撞气He >% 准备充足的工作气体: - 氩气:气罐中Ar实际容量>5% - DRC, KED气体:使用量非常小,DRC一般~min, KED2~ 5ml/min 检查气体压力. 氩气 90~110 psi /碰撞气: 15(+-5) psi/反应气 : 15(+-5) psi 检查炬管及接口是否清洁并且完好 - 如果炬管上有固体的沉积则需要清洗或者更换炬管 - 如果炬管变形需要立刻更换炬管 - 炬管的清洗可以使用稀硝酸或者异丙醇、丙酮等有机溶剂浸泡或超声清洗 - 如果锥变脏,则需要将锥拆下进行清洗或者更换干净的锥体,可以使用棉签沾取 2%稀硝酸擦拭锥的表面,或者使用异丙醇、丙酮等有机溶剂进行超声清洗。清洗 完成后用去离子水进行冲洗。清洗前请将O型圈取下,酸或者有机溶剂会导致O型 圈使用寿命变短。 - 检查采样锥垫圈及O型圈是否完好,如果发现裂痕或者破损,则需要更换新的采样锥垫圈或者O型圈。 检查RF线圈,如果发现线圈锈蚀或者破损,请咨询工程师后进行更换或者清洗。 检查蠕动泵管的状态。如果出现明显的磨损,或者破裂则需要立刻更换泵管。 更换泵管后注意蠕动泵的转动方向,确定进液和排液正确。 检查冷却水是否工作正常,确保循环水无变色或者菌类滋生。 检查冷却水,压力,温度。 - 水量:70-80%的总体积 - 压力: psi - 温度:18℃± 2℃ 在准备开机点火工作之前确定NexION已经处于Ready状态;仪器面板左侧的LED 灯呈绿色开启状态。 打开NexION软件,在仪器运行界面查看“仪表”参数,确定真空度是否正常,通常仪器待机状态的真空度为 - 007托尔及以下。如果真空正常,可以通过软件开 启等离子体,通常等离子的点火是在点击等离子体Strat按钮以后60秒,然后在20 秒之内稳定,并且打开真空阀门。 使用2-5%硝酸对仪器清洗10分钟,等离子体点火以后,仪器的真空度一般为 - 006托尔或者更低。 仪器的优化 (SmartTune 智能优化向导) 在程序菜单依次激活Realtime, RptView, SmartTune, Conditions菜单,通过调整窗 口位置使所有窗口都很容易看到,确定仪器正在吸入的Setup溶液中包括如下元 素:Li, Be, Mg, Fe, In, Ce, Pb, U,然后依次进行如下项目的优化: Torch Alignment →Torch Sampling Depth →Nebulizer gas flow STD/KED [NEB] →QID STD/DRC →QID KED mode (如果需要使用到) → Daily performance Check 仪器的日常性能检查主要提供仪器状态的参考,用户应该根据不同的分析要求判定仪器的性能状况,日常性能检查达到要求即可进行样品测试。 创建分析方法,建立运行列表(如果有自动进样器),选择报告模板,并在Dataset中创建数据保存目录。 在测定之前使用2%~5%HNO3对仪器进行清洗,然后依次测定空白、标准系列,

第一性原理计算

实验一、第一性原理计算 1. 实验目的 (1) 掌握第一性原理和密度泛涵的计算方法; (2) 学会使用Visualizer 的各种建模和可视化工具; (3) 熟悉CASTEP 模块的功能。 2. 实验原理 CASTEP 是基于密度泛涵理论平面波赝势基础上的量子力学计算。 密度泛涵理论的基本思想是原子、分子和固体的基本物理性质可以用粒子密度函数进行描述。可以归纳为两个基本定理: 定理1:粒子数密度函数是一个决定系统基态物理性质的基本参量。 定理2:在粒子数不变的条件下能量对密度函数变分得到系统基态的能量。不计自旋的全同费米子的哈密顿量为:H T U V =++ 其中动能项为:()()T dr r r ψψ+=??? 库仑作用项为:11'()(')()(')2 ' U drdr r r r r r r ψψψψ++=-? V 为对所有粒子均相同的局域势u(r)表示的外场影响:()()()V dru r r r ψψ+=?粒子数密度函数为: ()()()r r r ρψψ+=ΦΦ 对于给定的()r υ,能量泛函[]E ρ定义为: []()()E dr r r T U ρυρ=+Φ+Φ ?;[]F T U ρ=Φ+Φ系统基态的能量: ' ''''[]''''[][]()()[][]()()[] E T U V G E F dr r r E G G F dr r r E G ρρυρφρυρρΦ=Φ+Φ+ΦΦ==+>?=+=? 3. 实验内容 材料的电子结构计算; 4. 实验设备和仪器 (1) 硬件:多台PC 机和一台高性能计算服务器。 软件:主要利用Materials studio 软件包里的Materials Visualizer 和CASTEP 模块 5. 实验步骤

第一性原理

第一章引言 在21世纪的今天,全球都面对着资源的短缺和环境的污染这两大问题。氢能源的出现,不仅仅解决了能源短缺的问题(氢能源是二次能源),同时氢能源的使用对环境几乎是没有任何的污染(氢气和氧气的反应产物只有水)。因此,从上个世纪70年代就开始关注氢能源的研发。到21世纪的今天氢能源也逐渐开始走上舞台,但是对于氢能源在应用过程中会出现的问题也亟待解决。 本章内容之一将主要介绍氢能源应用中面临的一个严峻的问题——氢气的 。其二,存储,我们将会详细的论述最新出现的一种储氢材料:储氢合金——AlH 3 简述历年来在实验和理论上对于该材料在常压下的研究成果。同时,提出对于在高压条件下进行研究的必要性以及在现阶段的成果,指出我们理论研究的AlH 3 必要性。最后,将简单的介绍高压物理学在当今学科发展中的重要性以及高压物理的发展历史,当然我们将会简述由于现实实验条件上的限制,高压物理的理论研究对于材料性能的分析和高压物理未来发展方向上的重要性和必然性。 §1.1储氢材料简介 伴随着人类社会的发展和进步,人类赖以生存的环境却让全世界都开始担忧。环境的破坏的危机以及能源的短缺的意识,迫使人们一方面去寻求新的能源,另一方面又要考虑新能源对环境所造成的破坏问题。于是氢能源作为存储量丰富,无公害,无污染的新型能源而得到了全球的关注。在以氢作为能源媒介的氢能体系中,氢的存储和氢的运输成为氢能源的实际应用中的关键环节。近年来,人们注意到储氢合金由于其材料结构上的优势而成为一种新型的储氢功能材料。由于某些合金具备特殊的晶体结构,能够使氢原子很容易的进入晶格间隙中并且形成金属氢化物,由于这种氢与金属的结合力很弱,在加热的时候,氢就能从金属中释放出来。但是这些储氢合金的储氢量很大,可以存储比其自身体积要大上1000-1300倍的氢。目前,对于储氢合金的研究也进行的如火如荼。 1.1.1氢能 随着全球人口急增,人类的能源消耗大幅度的增长;而作为主要能源的煤炭和石油,它们又都是不可再生的能源,其储量极为有限。另外,大量矿物能源的燃烧,造成大气污染、"酸雨"和"温室效应"等环境问题。因此,从20世纪60年代以来,人类为了解决未来能源的供应和生存环境问题,高呼"能源革命"。"

数据库访问技术简介

数据库访问技术简介 数据库中的数据存放在数据库文件中,我们要从数据库文件中获取数据,先要连接并登陆到存放数据库的服务器。一般来说,访问数据库中的数据有两种方式:一是通过DBMS (Data Base Management System,数据库管理系统)提供的数据库操作工具来访问,如通过SQL Server 2000的查询设计器来提交查询,或者通过SQL Server 2000的企业管理工具来访问。这种方式比较适合DBA对数据库进行管理;二是通过API(Application Programming Interface, 应用编程接口)来访问数据库,这种方式适合在应用程序中访问数据库。 在数据库发展的初期,各个开发商为自己的数据库设计了各自不同的DBMS,因此不同类型的数据库之间数据交换非常困难。为了解决这个问题,Microsoft提出了ODBC(Open Data Base Connectivity,开放数据库互连)技术,试图建立一种统一的应用程序访问数据库接口,使开发人员无需了解程序内部结构就可以访问数据库。 1、Microsoft提出的系列数据库访问技术 1.1、ODBC ODBC是微软公司开放服务结构中有关数据库的一个组成部分,它建立了一组规范,并提供了一组对数据库访问的标准API。应用程序可以使用所提供的API来访问任何提供了ODBC驱动程序的数据库。ODBC规范为应用程序提供了一套高层调用接口规范和基于动态链接的运行支持环境。ODBC已经成为一种标准,目前所有的关系数据库都提供了ODBC 驱动程序,使用ODBC开发的应用程序具有很好的适应性和可移植性,并且具有同时访问多种数据库系统的能力。这使得ODBC的应用非常广泛,基本可用于所有的关系数据库。 要使用ODBC,先要了解以下概念:ODBC驱动管理器、ODBC驱动程序、数据源。它们都是ODBC的组件。ODBC组件之间的关系如图1所示。

第一性原理计算

钙钛矿型PbZrO3电子能带结构的第一性原理计算 班级:s1467 姓名:学号:201421801014 锆酸铅(PbZrO3)是最早发现的反铁电体之一,在工业上的一个重要应用是其固溶物Pb(Zr,Ti)O3。由于反铁电材料在相开关、电荷存储、电流源、电容、微电子及微型机电设备等方面有重要应用,其电子结构和物理特性一直为人们所关注。PbZrO3的有三个不同的相,在233℃以上为立方顺电相,具有钙钛矿结构,所属的空间群为Pm3m;当晶体处于233℃以下,将发生氧八面体的扭曲畸变和阳离子相对于O的移动,形成结构相变;230~233℃为正交铁电相,而230℃以下的基态为正交晶系,空间群为Pbam。基态正交相中离子移动主要由Pb、O之间的相对位移提供,由于相邻晶格之间Pb-O的位移相反,因此其为反铁电体。 1、原理及计算 采用第一性原理局域密度近似下的投影缀加平面波方法精确计算并比较了钙钛矿材料PbZrO3低温正交相(反铁电相)、高温立方相(顺电相)的电子能带结构,计算了PbZrO3材料正交相、立方相的电子结构。PbZrO3立方相的空间群为Pm3m,计算采用实验得到的晶格常量为a=4.11nm,Wyckoff坐标为Pb:(0,0,0),Zr:(0.5,0.5,0.5),O:(0.5,0.5,0)。正交相的空间群为Pmam,采用的晶格常数a=5.9411nm,b=11.8024nm,c=8.2564nm,各原子坐标见表1。正交相和立方相的多面体结构模型如图1所示。平面波截断能取为500eV,布里渊区积分分别采用5×5×5及7×3×5的K点网格,高斯展宽因子为0.1eV。 表1 正交相PbZrO3原胞内的原子位置

液相色谱与原子吸收联用的应用进展

液相色谱与原子吸收联用 的应用进展 姓名:##### 班级:##### 学号:#####

液相色谱与原子吸收联用的应用进展 摘要:本文综述了近五年来国内外液相色谱、原子吸收联用的应用进展,参考了三十余篇文献。介绍了液相色谱与原子吸收联用的特点、现状及其发展前景。 关键词:液相色谱;原子吸收;联用技术; 分析仪器的发展历史与分析化学的发展密切相关,21世纪将进一步迈进信息智能化和仿生化。21世纪分析化学的发展方向是向高灵敏度、高选择性(复杂体系)、快速、自动、简便、经济。对分析仪器而言,一方面要降低仪器的信噪比;另一方面是各类分析仪器的联用,特别是分离仪器和检测器的连用,使前者的分离功能和后者的识别功能很好地结合。1、应用背景 液相色谱法(Liquid Chromatography /LC)是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析[1][2]。这种分析方法分析快速、灵敏、选择性好、易于自动化、适用性强、应用范围广,是分离分析热不稳定和难挥发性化合物的有效方法[3-6]。 黎其万等[7]采用WatersNova-parkC18色谱柱,0.02mol/L乙酸铵甲醇溶液为流动相,柱温30℃,流速1.0mL/L的色谱条件测定油浸酱菜中的糖精钠,测定结果是相关系数为0.9982,回收率90.6%~105.2%,相对标准偏差4.6%~5.8%。 叶文文等[8]利用UPLC色谱柱为ACQUITY UPLC BEH C18 1.0mm×50mm 1.7m乙腈-水二元梯度洗脱模式流速为0.1ml/min,紫外检测波长42nm建立了32批不同产地白术样品的UPLC指纹图谱白术药材有32个共有峰多数峰可达到较好的分离各批次白术药材间共有峰的相对保留时间RSD均1.0%药材间相似度均90%。 此外,超高效液相色谱在中药含量测定方面的研究还有诸多的报道[9-18]。 原子吸收光谱是由Walsh A于1955年创立的一种新型仪器分析方法,按照所用的原子化方法的不同,可分为(1)火焰原子吸收法(FAAS),(2)石墨炉原子吸收法(GFAAS),(3)石英炉原子化法,可以在较低的温度下原子化,包括汞蒸气原子化、氢化物原子化和挥发物原子化[19]。原子吸收法的优点是:检出限低,特效性好、分析速度快、仪器简单、价格便宜等。原子吸收光谱法用于测定样品中的各种元素,在金属离子限度检测和稀有元素测定中有重要的应用。

第一性原理计算方法讲义

第一性原理计算方法 引言 前面讲述的有限元和有限差分等数值计算方法中,求解的过程中需要知道一些物理参量,如温度场方程中的热传导系数和浓度场方程中的扩散系数等,这些参量随着材料的不同而改变,需要通过实验或经验来确定,所以这些方法也叫做经验或者半经验方法。而第一性原理计算方法只需要知道几个基本的物理参量如电子质量、电子的电量、原子的质量、原子的核电荷数、布朗克常数、波尔半径等,而不需要知道那些经验或半经验的参数。第一性原理计算方法的理论基础是量子力学,即对体系薛定额方程的求解。 量子力学是反映微观粒子运动规律的理论。量子力学的出现,使得人们对于物质微观结构的认识日益深入。原则上,量子力学完全可以解释原子之间是如何相互作用从而构成固体的。量子力学在物理、化学、材料、生物以及许多现代技术中得到了广泛的应用。以量子力学为基础而发展起来的固体物理学,使人们搞清了“为什么物质有半导体、导体、绝缘体的区别”等一系列基本问题,引发了通讯技术和计算机技术的重大变革。目前,结合高速发展的计算机技术建立起来的计算材料科学已经在材料设计、物性研究方面发挥着越来越重要的作用。 但是固体是具有?1023数量级粒子的多粒子系统,具体应用量子理论时会导致物理方程过于复杂以至于无法求解,所以将量子理论应用于固体系统必须采用一些近似和简化。绝热近似(Born-Oppenheimei 近似)将电子的运动和原子核的运动分开,从而将多粒子系统简化为多电子系统。Hartree-Fock 近似将多电子问题简化为仅与以单电子波函数(分子轨道)为基本变量的单粒子问题。但是其中波函数的行列式表示使得求解需要非常大的计算量;对于研究分子体系,他可以作为一个很好的出发点,但是不适于研究固态体系。1964年,Hohenberg和Kohn提出了严格的 密度泛函理论(Density Functional Theory, DFT )。它建立在非均匀电子气理论基础之上,以粒子数密度(『)作为基本变量。1965年,Kohn和Sham提出Kohn-Sham方程将复杂的多电子问题及其对应的薛定谔方程转化为相对简单的单电子问题及单电子Kohn-Sham方程。将精确的密度泛函理 论应用到实际,需要对电子间的交换关联作用进行近似。局域密度近似(LDA、广义梯度近似(GGA 等的提出,以及以密度泛函理论为基础的计算方法(赝势方法、全电子线形缀加平面波方法(FLAPW)等、的提出,使得密度泛函理论在化学和固体物理中的电子结构计算取得了广泛的应用,从而使得固体材料的研究取得长足的进步。 第一性原理计算方法的应用 1、体系的能量

第一节第一性原理计算方法综述

第一性原理计算的理论方法 随着科技的发展,计算机性能也得到了飞速的提高,人们对物理理论的认识也更加的深入,利用计算机模拟对材料进行设计已经成为现代科学研究不可缺少的研究手段。这主要是因为在许多情况下计算机模拟比实验更快、更省,还得意于计算机模拟可以预测一些当前实验水平难以达到的情况。然而在众多的模拟方法中,第一性原理计算凭借其独特的精度和无需经验参数而得到众多研究人员的青睐,成为计算材料学的重要基础和核心计算。本章将介绍第一性原理计算的理论基础,研究方法和ABINIT软件包。 1.1 第一性原理 第一性原理计算( 简称从头计算,the abinitio calculation) ,指 从所要研究的材料的原子组分出发,运用量子力学及其它物理规律,通过自洽计算来确定指定材料的几何结构、电子结构、热力学性质和光学性质等材料物性的方法。基本思想是将多原子构成的实际体系理解成为只有电子和原子核组成的多粒子系统,运用量子力学等最基本的物理原理最大限度的对问题进行”非经验”处理。【1】第一性原理计算就只需要用到五个最基本的物理常量即( m o.e.h.c.k b ) 和元素周期表中各组分元素的电子结构,就可以合理地预测材料的许多物理性质。用第一性原理计算的晶胞大小和实验值相比误差只有几个百分点,其他性质也和实验结果比较吻合,体现了该理论的正确性。

第一性原理计算按照如下三个基本假设把问题简化: 1.利用Born-Oppenheimer 绝热近似把包含原子核和电子的多粒子问题转化为多电子问题。 2.利用密度泛函理论的单电子近似把多电子薛定谔方程简化为比较容易求解的单电子方程。 3.利用自洽迭代法求解单电子方程得到系统基态和其他性质。以下我将简单介绍这些第一性原理计算的理论基础和实现方法:绝热近似、密度泛函理论、局域密度近似(LDA)和广义梯度近似(GGA)、平面波及赝势方法、密度泛函的微扰理论、热力学计算方法和第一性原理计算程序包ABINIT。 1.2量子力学与Born-Oppenheimer 近似固体是由原子核和核外的电子组成的,在原子核与电子之间,电子与电子之间,原子核与原子核之间都存在着相互作用。从物理学的角度来看,固体是一个多体的量子力学体系【2】,相应的体系哈密顿量可以写成如下形式: H (r,R) E H(r ,R) (1-1) 其中r,R 分别代表所有电子坐标的集合、所有原子核坐标的集合。在不计外场作用下,体系的哈密顿量日包括体系所有粒子( 原子核和电子) 的动能和粒子之间的相互作用能,即 H H e H N H e N (1-2) 其中,以是电子部分的哈密顿量,形式为: 22 1 e2 H e(r) r2i 1 e(1-3)

相关文档
最新文档