主梁主要尺寸的确定及强度校核

主梁主要尺寸的确定及强度校核
主梁主要尺寸的确定及强度校核

已知数据:起重量Q ;跨度L ;大车运行速度q v ;起重机工作类型5A 级;大车运行机构采用集中驱动方式;小车轨距xc L ;小车轮距xc B ;起升速度v .

1. 主要尺寸的确定

1) 大车轮距 L K ??

? ??=51~81 2) 主梁高度(理论值) 18

L H =

3) 端梁高度 ()H H 6.0~4.00= 4) 主梁支撑截面的腹板高度0h (可根据端梁高度0H 适当选取) 5) 桥架端部梯形高度 L C ???

?

?=51~101 6) 主梁腹板高度h (可根据主梁计算高度H 适当选取) 7) 确定主梁截面尺寸

①主梁中间截面各构件板厚根据表4-1(查得腹板厚δ和上下盖板厚1δ)推荐确定

②主梁两腹板壁间距根据下面的关系式来决定 5.3H b >

and 50

L b > ③盖板宽度 402++=δb B

④主梁的实际高度 12δ+=h H ⑤主梁支撑截面的实际高度 1002δ+=h H 8) 加劲板的布置尺寸

①主梁端部(梯形部分)大加劲板的间距 h a ≈'

②主梁端部(梯形部分)小加劲板的间距 2

'

1a a =

③主梁中部(矩形部分)大加劲板的间距 h a )2~5.1(= ④主梁中部(矩形部分)小加劲板的间距 2

1a a = ⑤如果

160>δ

h

,在离上盖板()h 25.0~2.0处设置水平加劲杆,可采用角钢

2.主梁的计算

1)计算载荷确定

①主梁由于桥架自重引起的均布载荷 L

G q q

l 2

=

2

q G (半个桥架的自重)可查图4-11曲线得到

②查表4-3得主梁由于集中驱动大车运行机构的长传动轴系引起的均布载荷 y q ③查表4-3得运行机构中央驱动部件重量引起的集中载荷 d G

④主梁的总均布载荷 y l q q q +=' ⑤主梁的总计算均布载荷 '

4q q ?= 4?为冲击系数,可以根据实际情况,按下述方法确定:

a. 如果轨道公差在标准规定的围以, 14=?

b. 根据运行速度和轨头错位高差计算, h v 058.010.14+=?

式中 v :小车运行速度(m/s )

h :轨道接头处的轨面高差(mm )

C. 根据运行速度和钢轨接头有接缝但无高差计算 av +=03.14?

式中 v :运行速度(m/min )

a :系数,钢轨接头焊平或钢轨无接缝,a=0.001;钢轨有敞露接缝a=0.002 ⑥作用在一根主梁上的小车两个车轮的轮压值根据表4-4选用'

2'

1,P P

⑦考虑动力系数2?的小车车轮的计算轮压值为 '

121P P ?= '

222P P ?= 2?为动力系数,取值方法如下:

a .当s m v h /2.0≤时, min 22??=

b .当s m v h /2.0>时, ()2.02min 22-+=h v β?? 式中 h v :稳定起升速度(m/s )

2β:起升状态级别系数(见表4-5) min 2?:起升载荷最小动载系数(见表4-6) 2)主梁垂直最大弯矩

由公式4-12计算主梁垂直最大弯矩

()

04212

004421

max

242l G q L

P P L l G G qL L B L P P M d xc P G ???+?

?? ??++??????-++??? ??-+=+

C#语句:

Math .Pow(p1+p2*(l-Bxc)/L+(q*L+&4*Gd)/2-&4*G0*l0/L,2)/4*((P1+P2)/L+q/2)+&4*G0*l0

0G 为司机操纵室的重量;0l 为作用位置,即重心距支点的距离 3)主梁水平最大弯矩

由公式4-18计算主梁水平最大弯矩 ()g

a M

M P G g ?=+max max '

'

8.0

q

t v

a =

为大车起动,制动加速度平均值,()s t q 8~6= ()max ''

P G M +为不计冲击系数4?和动力系数2

?时主梁垂直最大弯矩,由下式算得:

()0

04''2'12

0044'2''1max 242''l G q L P P L l G G L q L B L P P M d xc P G ???+???

? ??++?

?????-++??? ??-+=+

C#语句:

Math .Pow(p1+p2*(l-Bxc)/L+(q*L+&4*Gd)/2-&4*G0*l0/L,2)/4*((P1+P2)/L+q/2)+&4*G0*l0

4)主梁的强度验算

①由于垂直和水平方向最大弯矩同时作用,在主梁跨中截面的盖板中引起的最大弯曲正应

力为

()()

[]∏++≤+

=

+=σσσσy

g x

P G g P G W M W M max max

x W 为主梁跨中截面对水平重心轴线x-x 的抗弯截面模数,其近似值为: h B h W x ??

?

??+=13δδ y W 为主梁跨中截面对水平重心轴线y-y 的抗弯截面模数,其近似值为: b h B W y ??

?

??+=δδ31

由表2-19可查得Q235钢的叙用应力为[]MPa s

4.16533

.1220

33

.1===∏σσ

②主梁跨端在最大剪力()

P Q Q +max 作用下引起腹板中最大剪应力为:

()

[]∏+≤??=τδ

τ20max max x P G I S Q

()

P Q Q +max

为主梁支撑截面所受的最大剪力,由公式4-13计算

()

L

l L G G qL L B L P P Q d xc P G 0

442

1max 2-+++-+=+?? C#语句:

P1+P2*(L-Bxc)/L+(q*L+&4*Gd)/2+&4*G0*(L-l0)/L

0x I 为主梁端部支撑截面对水平重心轴线x-x 的惯性矩,其近似值为: 232001000

0H h B h H W I x x ???

?

??+==δδ C#语句:

(h0*$/3+B*$1)*h0*H0/2

S 为主梁端部支撑截面半面积对水平重心轴线x-x 的静矩,其近似值为: ??

? ??++?=22422

10100δδδh B h h S 由表2-24查得A3钢的许用剪应力为[][]MPa 6.953

==

∏στ

5)主梁的垂直刚度验算

主梁在满载小车轮压作用下,在跨中所产生的最大垂直桡度可按公式4-23计算

()[]

x

EI a L P f 4846113

231ββ+-+=

C#语句:

P1* Math .Pow(L,3)*(1+a*(1-6* Math .Pow(b,2)+4* Math .Pow(b,3)))/48*E*Ix

0.11

2

≤=

P P a L

B xc

=

β 2

H W I x x ?

≈ 允许的桡度值由公式4-22得

[]L f ??

?

??=10001

~

7001 6)主梁的水平刚度验算

主梁在大车运行机构起、制动惯性载荷作用下,产生的水平最大桡度可按公式4-25计算

y

g y

g g EI L q EI L P f 3844843+

=

其中 g P 为作用在主梁上的集中惯性载荷 ()()

'

2'

102.0~01.0P P v P g +=

g q 为作用在主梁上的均布惯性载荷 ()'

02.0~01.0vq q g =

2

B

W I y y ?

= 主梁水平桡度的许用值为 []

2000

L f g =

表4-4 小车轮压值

表4-52β和2?值

《建筑结构试验》实验报告

《建筑结构试验》实验报告 班级: 学号: 姓名: 南昌航空大学土木工程试验中心 二○一○年四月

目录 试验一电阻应变片的粘贴及防潮技术试验二静态电阻应变仪的使用及接桥试验三电阻应变片灵敏系数的测定 试验四简支钢筋混凝土梁的破坏试验

试验一电阻应变片的粘贴及防潮技术 姓名:学号:星期第讲第组 实验日期:年月日同组者: 一、实验目的: 1.掌握电阻应变片的选用原则和方法; 2.学习常温用电阻应变片的粘贴方法及过程; 3.学会防潮层的制作; 4.认识并理解粘贴过程中涉及到的各种技术及要求对应变测试工作的影响。 二、实验仪表和器材: 1.模拟试件(小钢板); 2.常温用电阻应变片; 3.数字万用表; 4.兆欧表; 5.粘合剂:T-1型502胶,CH31双管胶(环氧树脂)或硅橡胶; 6.丙酮浸泡的棉球; 7.镊子、划针、砂纸、锉刀、刮刀、塑料薄膜、胶带纸、电烙铁、焊锡、焊锡膏等小工具; 8.接线柱、短引线 三、简述整个操作过程及注意事项: 1.分选应变片。在应变片灵敏数K相同的一批应变片中,剔除电阻丝栅有形状缺陷,片内有气泡、霉斑、锈点等缺陷的应变片,将电阻值在120±2Ω范围内的应变片选出待用。 2.试件表面处理。去除贴片位置的油污、漆层、锈迹、电镀层,用丙酮棉球将贴片处擦洗干净,至棉球洁白为止,以保证应变片能够牢固的粘贴在试件表面。 3.测点定位。应变片必须准确地粘贴在结构或试件的应变测点上,而且粘贴方向必须是要测量的应变方向。 4.应变片粘贴。注意分清应变片的正、反面,保证电阻栅的中心与十字交叉点对准。应变片贴好后,先检查有无气泡、翘曲、脱胶等现象,再用数字万用表的电阻档检查应变片有无短路、断路和阻值发生突变(因应变片粘贴不平整导致)的现象。 5.导线固定。接线柱粘帖不要离应变片太远,接线柱挂锡不可太多,导线挂锡一端的裸露线芯不能过长,以31mm为宜。引出线不要拉得太紧,以免试件受到拉力作用后,接线柱与应变片之间距离增加,使引出线先被拉断,造成断路;也不能过松,以避免两引出线互碰

等强度梁应变测定实验

等强度梁应变测定实验 SQ1001804A004 李扬 一.实验目的 1. 熟练掌握电阻应变片测量应变的原理; 2. 熟练掌握本型号电阻应变仪的使用,掌握多点测量方法; 3. 测定等强度梁上已粘贴应变片处的应变,验证等强度梁各横截面上应变(应力) 相等。 二.实验仪器和设备 1. YJ-4501A/SZ 静态数字电阻应变仪; 2. 等强度梁实验装置一台; 3. 温度补偿块一块。 三.实验原理和方法 等强度梁实验装置如图1所示,图中1为等强度梁座体,2为等强度梁,3为等强度梁上下表面粘贴的四片应变片,4为加载砝码(有5个砝码,每个200克),5为水平调节螺钉,6为水平仪,7为磁性表座和百分表。等强度梁的变形由砝码4加载产生。等强度梁材料为高强度铝合金,其弹性模 量272m G N E =。等强度梁尺寸见图2。 图1 图2 等强度梁表面应力计算公式为 ()() x W x M =σ , ()()62h x b x W = 四.实验步骤

1.采用多点单臂半桥接线法,将等强度梁上四个应变片分别接在应变仪背面1~ 4 通道的接线柱A 、B 上,补偿块上的应变片接在接线柱B 、C 上(见图3)。 2.载荷为零时,按顺序将应变仪每个通道的初始显示应变置零,然后按每级200克逐级加载至1000克,记录各级载荷作用下的读数应变。 3. 反复做三遍。 电桥多点接线原理 应变仪上多点测量接法 图3 五.实验结果处理 1.以表格形式处理实验结果,根据实验数据计算各测点1000g 载荷作用下的实验 应力值,并计算出理论应力值;计算实验应力值与理论应力值的相对误差。 2.比较实验值与理论值,理论上等强度梁各横截面上应变(应力)应相等。 3.计算任意一片应变片测量的线性度和重复性。 实验数据记录和结果处理参考表 相对误差指: %100理论应变值 理论应变值 实验应变值 表1

工程力学材料力学_知识点_及典型例题

作出图中AB杆的受力图。 A处固定铰支座 B处可动铰支座 作出图中AB、AC杆及整体的受力图。 B、C光滑面约束 A处铰链约束 DE柔性约束 作图示物系中各物体及整体的受力图。 AB杆:二力杆 E处固定端 C处铰链约束

(1)运动效应:力使物体的机械运动状态发生变化的效应。 (2)变形效应:力使物体的形状发生和尺寸改变的效应。 3、力的三要素:力的大小、方向、作用点。 4、力的表示方法: (1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!) (2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。 5、约束的概念:对物体的运动起限制作用的装置。 6、约束力(约束反力):约束作用于被约束物体上的力。 约束力的方向总是与约束所能限制的运动方向相反。 约束力的作用点,在约束与被约束物体的接处 7、主动力:使物体产生运动或运动趋势的力。作用于被约束物体上的除约束力以外的其它力。 8、柔性约束:如绳索、链条、胶带等。 (1)约束的特点:只能限制物体原柔索伸长方向的运动。 (2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。() 9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。 (1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。 (2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。() 10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。 约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。()11、固定铰支座 (1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。

梁弯曲正应力测量实验报告

厦 门 海 洋 职 业 技 术 学 院 编号:XH03J W024-05/0 实训(验) 报告 班级: 姓名: 座号: 指导教师: 成绩: 课程名称: 实训(验): 梁弯曲正应力测量 年 月 日 一、 实训(验)目的: 1、掌握静态电阻应变仪的使用方法; 2、了解电测应力原理,掌握直流测量电桥的加减特性; 3、分析应变片组桥与梁受力变形的关系,加深对等强度梁概念的理解。 二、 实训(验)内容、记录和结果(含数据、图表、计算、结果分析等) 1、实验数据: (1) 梁的尺寸: 宽度b =9mm ;梁高h=30mm ;跨度l =600mm;AC 、BD:弯矩a=200m m。测点距轴z 距离: 21h y ==15mm;42h y ==7.5mm ;3y =0cm ;-=-=44h y 7.5mm;-=-=2 5h y 15mm;E=210Gpa 。 抗弯曲截面模量W Z =b h2/6 惯性矩J Z =bh 3 /12 (2) 应变)101(6-?ε记录:

(3) 取各测点ε?值并计算各点应力: 1ε?=16×10-6 ;2ε?=7×10-6 ;3ε?= 0 ;4ε?=8×10-6 ;5ε?=15×10 - 6 ; 1σ?=E 1ε?=3.36MPa;2σ?=E 2ε?=1.47MP a;3σ?=0 ; 4σ?=E 4ε?=1.68MPa;5σ?=E 5ε?=3.15MPa ; 根据ΔM W=ΔF ·a/2=5 N ·m 而得的理论值: 1σ?=ΔM W/W Z =3.70MPa;2σ?=ΔMWh/4(J Z)=1.85M Pa ;3σ?=0 ; 4σ?=ΔM W h/4(J Z )=1.85MPa;5σ?=ΔMW /W Z=3.70MPa; (4) 用两次实验中线形较好的一组数据,将平均值ε?换算成应力εσ?=E ,绘在坐标 方格纸上,同时绘出理论值的分布直线。

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3 =[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

材料力学习题与答案

第一章 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 可以从河流花样的反“河流”方向去寻找裂纹源。 解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素 与以下三个方面相联系的因素都会影响到屈服强度 位错增值和运动 晶粒、晶界、第二相等

外界影响位错运动的因素 主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构) 单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。 派拉力: 位错交互作用力 (a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。)2.晶粒大小和亚结构 晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。 晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。 屈服强度与晶粒大小的关系: 霍尔-派奇(Hall-Petch) σs= σi+kyd-1/2 3.溶质元素 加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。 4.第二相(弥散强化,沉淀强化) 不可变形第二相

等强度梁实验

实验一:等强度梁实验 一、实验目的: 1、验证变截面等强度实验 2、掌握用等强度梁标定灵敏度的方法 3、学习静态电阻应变仪的使用方法 二、实验设备: 材料力学多功能实验台、等强度梁 三、实验原理 利用电阻应变片测定构件的表面应变,再根据应变—应力关系(即电阻-应变效应)确定构件表面应力状态的一种实验应力分析方法。 这种方法是以粘贴在被测构件表面上的电阻应变片作为传感元件,当构件变形时,电阻应变片的电阻值将发生相应的变化,利用电阻应变仪将此电阻值的变化测定出来,并换算成应变值或输出与此应变值成正比的电压(或电流)信号,由记录仪记录下来,就可得到所测定的应变或应力。 四、实验内容与步骤 1.把等强度梁安装于实验台上,注意加载点要位于等强度梁的轴对称中心。 2.将传感器连接到BZ2208-A测力部分的信号输入端,将梁上应变片的导线分别接至应变仪任1-3通道的A、B端子上,公共补偿片接在公共补偿端子上。检查并纪录各测点的顺序。 3.打开仪器,设置仪器的参数,测力仪的量程和灵敏度。 4.本实验取初始载荷P0=20N,P max=100N,ΔP=20N,以后每增加载荷20N,记录应变读数εi,共加载五级,然后卸载。再重复测量,共测三次。取数值较好的一组,记录到数据列表中。 5.未知灵敏度的应变片的简单标定:沿等强度梁的中心轴线方向粘贴未知灵敏度的应变片,焊接引出导线并将引出导线接4通道的A、B端子,重复以上3.4 步。 6.实验完毕,卸载。实验台和仪器恢复原状。 五、实验报告

六、实验结论 1、验证变截面等强度实验 2、掌握用等强度梁标定灵敏度的方法 3、学习静态电阻应变仪的使用方法

回弹法测砼强度值的计算方法和步骤

回弹法测砼强度值的计算方法和步骤在学习计算方法和步骤之前,先了解几个术语: 1、测区:检测结构或构件砼抗压强度时的一个检测单元。 2、测点:在测区内进行的一个检测点。 3、测区砼强度换算值:由测区的平均回弹值和碳化深度值通过测强度曲线或查表得到的该检测单元(测区)的现龄期砼抗压强度值。 回弹法检测砼强度试用于工程结构普通砼抗压强度的检测。砼强度值的确定分为如下几个步骤:1、回弹值测量2、碳化深度值测量3、回弹值计算4、砼强度的计算 一、回弹值测量 1、一般规定:结构或物件砼强度检测可采用下列两种方式,其适用范围及结构或构件数量应符合下列规定: (1)、单个检测:适用于单个结构或构件的检测。 (2)、批量检测:适用于相同的生产工艺条件下,砼强度等级相同,原材料、配合比、成型工艺、养护条件基本一致且龄期相近的同类结构或构件,按批进行检测的结构构件。抽检数量不得少于同批构件总数的30%且不得少于10件。 2、每一结构或构件的测区应符合下列规定: (1)、每一结构或构件测区数量应不少于10个。对某一方向尺寸小于4.5米,且另一方向尺寸小于0.3米的构件其测区数量可适当减少,但不应少于5个。 (2)、相邻两测区的间距应控制在2米以内。测区离构件端部或施

工缝边缘的距离不宜大于0.5米,且不宜小于0.2米。 (3)、测区应选在使回弹仪处于水平方向检测砼浇筑侧面,当不能满足这一要求时,可使回弹仪处于非水平方向检测砼强度浇筑侧面、表面或底面。但回弹值需修正。 (4)、测区宜选在构件的两个对称可测面上,也可选在一个可测面上,且应均匀分布。在构件的重要部位及薄弱部位必须布置测区,并应避开预埋件。 (5)、测区的面积不宜大于0.04㎡。 (6)、检测面应为砼表面,并应清洁平整,不应有疏松层、浮浆、油垢、涂层以及蜂窝、麻面。必要时可用砂轮清除疏松层和杂物,且不应有残留的粉末或碎屑。 3、回弹值测定 (1)、检测时,回弹仪的轴线应始终垂直于结构或构件的检测面。缓慢施压,准确读数,快速复位。 (2)、测点宜在测区范围内均匀分布。相邻两测点的净距不宜小于20mm。测点距外露钢筋、预埋件的距离不宜小于30mm。测点不应在气孔或外露石子上,同一测点只应弹一次,每一测区应取16个回弹值。 二、碳化深度测量值 1、回弹值测量完毕后,应在有代表性的位置上测量碳化深度值。 测点不应小于构件测区数的30%,取其平均值为该构件的每测区的碳化深度值,当碳化深度最大值与最小值之差大于2.0mm

平键的选择和计算资料

平键的选择和计算

第六章:平键的选择和计算 6.1:高速轴与V 带轮用键连接 1、选用圆头普通平键(A 型) 按轴的直径d=45mm,及带轮宽mm 3552=B ,据文献得键的键 宽b ?键高h 为914?,长度mm 45=L 的键。 2、强度校核 键材料选择45钢,V 带轮材料为铸铁,查表得键联接的 许用应力[]MPa P 80~70=σ,键的工作长度 mm h k mm L l 5.495.05.0382 14452b -=?===-==, 挤压应力 []安全)(8.3845 385.4171.14920002000P I P MPa kld T σσ<=???== 6.2:低速轴与大齿轮用键连接 1、选用圆头普通平键(A 型) 按轴的直径d=64mm,据文献得键的键宽b ?键高h 为1118?,长度mm 63=L 的键。 2、强度校核 键材料选择45钢,大齿轮的材料也为45钢,查表得键联接的许用应力[]MPa P 150~120=σ,键的工作长度 mm h k mm L l 5.5115.05.0542 18632b -=?===-==, 挤压应力

[]安全)(77.7764 545.517.73920002000P II P MPa kld T σσ<=???== 6.3:低速轴与联轴器用键连接 1、选用圆头普通平键(A 型) 按轴的直径d=50mm ,据文献查得键的的键宽b ?键高h 为914?,长度mm 63=L 的键。 2、强度校核 键材料选择45钢,联轴器的材料为钢,查表得键联接的许用应力[]MPa P 150~120=σ,键的工作长度 mm h k mm L l 5.495.05.0562 14632b -=?===-==, 挤压应力 []安全)(33.11750 565.417.73920002000P II P MPa kld T σσ<=???==

材料力学复习总结

《材料力学》第五版 刘鸿文 主编 第一章 绪论 一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。 二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能 力。 三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。 第二章 轴向拉压 一、轴力图:注意要标明轴力的大小、单位和正负号。 二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。注意此规定只适用于轴力,轴力是内力,不适用于外力。 三、轴向拉压时横截面上正应力的计算公式:N F A σ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。 四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22 αστα= 注意角度α是指斜截面与横截面的夹角。 五、轴向拉压时横截面上正应力的强度条件[],max max N F A σσ=≤ 六、利用正应力强度条件可解决的三种问题:1.强度校核[],max max N F A σσ=≤ 一定要有结论 2.设计截面[],max N F A σ≥ 3.确定许可荷载[],max N F A σ≤ 七、线应变l l ε?=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA ?= 注意当杆件伸长时l ?为正,缩短时l ?为负。 八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及] [r τ值见下表: 表1 轴的材料和许用扭转切应力 空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 T τ[]T τ

根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册~17. ][1σ为脉动循环应力时许用弯曲应力(MPa)具体数值查机械设计手册 2.2.3按弯扭合成强度条件计算 由于前期轴的设计过程中,轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置均已经确定,则轴上载荷可以求得,因而可按弯扭合成强度条件对轴进行强度校核计算。 一般计算步骤如下: (1)做出轴的计算简图:即力学模型 通常把轴当做置于铰链支座上的梁,支反力的作用点与轴承的类型及布置方式有关,现在例举如下几种情况: 图1 轴承的布置方式 当L e d L 5.0,1≤/=,d e d L 5.0,1/=>但不小于(~)L ,对于调心轴承e=0.5L 在此没有列出的轴承可以查阅机械设计手册得到。通过轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置,计算出轴上各处的载荷。通过力的分解求出各个分力,完成轴的受力分析。 ][7.1][≤1-0σσσ== W M ca

塔设备设计说明书

《化工设备机械基础》 塔设备设计 课程设计说明书 学院:木工学院 班级:林产化工0 8 学号: 姓名:万永燕郑舒元 分组:第四组 目录 前言............................................................... 错误!未定义书签。 摘要 (2) 关键字 (2) 第二章设计参数及要求 (2) 1.1符号说明 (2) 1.2.设计参数及要求 (3) 3 3 第二章材料选择 (4) 2.1概论 (4) 2.2塔体材料选择 (4) 2.3 裙座材料的选择 (4) 第三章塔体的结构设计及计算 (5) 3.1 按计算压力计算塔体和封头厚度 (5) 3.2 塔设备质量载荷计算 (5) 3.3 风载荷和风弯矩 (6) 3.4 地震弯矩计算 (7) 3.5 各种载荷引起的轴向应力 (7) 3.6 塔体和裙座危险截面的强度与稳定校核 (8) 3.7 塔体水压试验和吊装时的应力校核 (9) 3.7.1 水压试验时各种载荷引起的应力 (9) 9 3.8塔设备结构上的设计 (10) 10 10 板式塔的总体结构 (11) 小结 (11) 附录 (11) 附录一有关部件的质量 (11)

附录二矩形力矩计算表 (12) 附录三螺纹小径与公称直径对照表 (12) 参考文献 (12) 前言 摘要 塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。 板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便 关键字 塔体、封头、裙座、。 第二章设计参数及要求 1.1符号说明 Pc ----- 计算压力,MPa; Di ----- 圆筒或球壳内径,mm; [Pw]-----圆筒或球壳的最大允许工作压力,MPa; δ ----- 圆筒或球壳的计算厚度,mm; δn ----- 圆筒或球壳的名义厚度,mm; δe ----- 圆筒或球壳的有效厚度,mm;

等强度梁校核实验报告

等强度梁校核实验报告 姓名余开学学号406013616003 专业力学日期2016.12.6指导老师兰志文 一、实验目的: 1.认识等强度梁的原理和概念; 2.学会通过应变实验校核等强度梁; 3.增强实验动手能力。 二、实验设备: 1.微机控制电子万能试验机; 2.静态电阻应变仪; 3.游标卡尺; 4.钢尺。 三、实验原理: 图1

等强度梁:每个截面上的最大正应力都达到材料的容许应力的梁。 设梁截面为矩形且高度=h 常数,由强度条件 []σσ≤= )() (max x W x M 式中 2 )(6 1 )(2 1 )(h x b x W Fx x M == 得到 []x h F x b 2 3)(σ= 即得到截面的宽度)(x b 与x 成正比。 实验方法:根据胡克定律 E E σεε σ= = 所以等强度梁在同一个荷载上,每个截面上的轴向应变应该相等,即反映到应变仪上相应通道的值相同。 四、实验步骤: 1.试件准备。按照黏贴应变片和等强度梁实验的要求,黏贴好应变片。测量试件尺寸和各个测点到加载点的距离。 2.接通应变仪电源,将等强度梁上所测各点的应变片和温度补偿片按1/4桥接线法接通应变仪,并调整好仪器。 3.试验加载。编制试验方案,开始试验,记录相应的应变数据。 4.完成全部试验后,卸载荷载,关闭仪器设备电源。整理试验现场。 五、实验数据记录与处理: 表1.试件原始尺寸(mm ) 24.38 30.44 36.90 E=200GPa

图2 理论值计算原理: 假设试件是等强度梁,则在同一个F 作用下在变截面段各个截面的最大应力值相等,且等于m 截面的最大应力值。 即 F E bh a E bh Fa E m n n m 2236 21 ====σεσσ 其中GPa E mm h mm b mm a 200;32.16;00.15;00.19==== 根据数据对比,误差太大,可能是我们选取的力作用点不合适,需要调整a 的大小。

键的强度计算

键的强度计算 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

键连接的选择和计算 1.键的选择 I 轴齿轮1处选择普通平头平键 键128,12,8,40b mm h mm L mm ?===; 联轴器处选择普通平头平键 键87,8,7,32b mm h mm L mm ?===; II 轴齿轮2处选择普通平头平键 键149,14,9,36b mm h mm L mm ?===; 齿轮3处选择普通平头平键 键149,14,9,70b mm h mm L mm ?===; III 轴齿轮4处选择普通平头平键 键2012,20,12,70b mm h mm L mm ?===; 联轴器处选择普通平头平键 键1610,16,10,70b mm h mm L mm ?===; 2.键的强度计算 假定载荷在键的工作面上均匀分布,普通平键联接的强度条件为 3 210[]P P T kld σσ?=≤ 查表6-2得,钢材料在轻微冲击下的许用挤压应力为100~120MPa ,所以取

[]120P MPa σ= (1) I 轴齿轮1上键的强度计算 1111170.180.50.58440T N m k h mm l L mm =?==?=== 所以 3 1270.181022[]44040 P P MPa σσ??==≤?? 满足强度条件 I 轴联轴器上键的强度计算 1111170.180.50.57 3.532T N m k h mm l L mm =?==?=== 所以 3 1270.181050[]3.53225 P P MPa σσ??==≤?? 满足强度条件 (2). II 轴上齿轮2处键的强度计算 22222317.70.50.59 4.536T N m k h mm l L mm =?==?=== 所以 32 2317.71087[]4.53645 P P MPa σσ??==≤?? 满足强度条件 II 轴上齿轮3处键的强度计算

等强度等截面梁弯曲实验报告

等强度等截面梁弯曲实验报告 实验目的: 1、了解电阻应变片的原理和静态电阻应变仪的工作原理。 2、初步掌握利用电阻应变片和静态电阻应变仪测定指定点应变的方法(即电测法)。 3、利用电测法测定等强度矩形截面梁横截面上的最大正应力及泊松比。 4、验证横截面上最大正应力的计算公式及泊松比。 实验设备: 电阻应变片、等强度矩形截面梁、静态电阻应变仪。 实验原理: 1、电阻应变片的原理 1)、电阻应变片工作原理是基于金属导体的应变效应, 即金属导体在外力作用下发生机械变形时,其电阻值随着所 受机械变形(伸长或缩短)的变化而发生变化象。 2)、当试件受力在该处沿电阻丝方向发生变形时,电 阻丝也随着一起变形(伸长或缩短),因而使电阻丝的电阻 发生改变(增大或缩小)。 2、静态电阻应变仪工作原理

电阻应变仪是将电阻变化转换为电压(或电流)的变化,并进行放大,然后转换成应变数值的电子仪器。电阻变化转换成电压(或电流)信号主要是通过应变电桥(惠斯顿电桥)来实现的。 3、等强度矩形截面梁 设梁的长度为l,高度为h,固定端宽度为b,在梁的右端加一集中力,若各横截面上的最大正应力相等,则: Fx/(yh2/6)= Fl/(bh2/6) 于是: y=bx/l 故等强度矩形截面梁的上下表面应该是如上图的三角形。 实验步骤: 1、主要参数 1)、梁:Q235钢,E=210GPa,l=300mm,h=5mm,b=50mm,x1=60mm,x2=180mm。 2)、荷载:每个砝码10N,砝码托盘1.3N。 2、进行实验 1)、粘贴应变片:可分别在梁的上下表面各处沿轴向和横向粘贴应变片(不做)。

测试技术实验报告(完整)

测试技术实验报告 班级: 姓名: 学号: 河南科技大学机电工程学院测控教研室 二O一一年五月

实验一 测量电桥静态特性测试报告 同组人: 时间: 一、实验目的 1. 熟悉静态电阻应变仪的工作原理和使用方法 2. 熟悉测量电桥的三种接法,验证公式04n y e e δε= 3. 分析应变片组桥与梁受力变形的关系,加深对等强度梁概念的理解 4. 验证温度对测量的影响并了解消除方法 二、实验设备 静态电阻应变仪、等强度梁、砝码、应变片 三、实验原理 等强度梁受外力变形时,贴在其上的应变片的电阻也随之发生相应的变化。应变片连接在应变仪测量桥的桥臂上,则应变片电阻的变化就转换为测量电桥输出电压的变化,应变仪采用“零位法”进行测量。它采用双桥电路,一个是测量桥,另一个为读数桥。当测量桥有电压输出时,调整读数桥的刻度盘,使仪表指针为零。则此时读数桥读数与桥臂系数之比即为试件的实验应变值。 四、实验数据整理 在等强度梁上逐级加载、卸载,并把三种电桥接法的测量结果填入表1。 表1 三种电桥接法的测量结果处理

注:理论应变2 =E bh ε理,其中10b =;h=6mm ;E=2×1011N/m 2 五、问答题 1、 试分析实验中同一载荷下,半桥接法相对于单臂和全桥接法的仪器输出有什么不同 半桥接法时,仪器输出是单臂接法仪器输出的2倍,是全桥接法仪器输出的1/2,单臂接法时01R U =U 4R ?± ,半桥时01R U =U 2R ?±,全桥时0R U =U R ?±。同时,由上图数据可以看出,每对应一个负荷时,半桥接法时的仪器输出是单臂时的2倍,全桥的1/2。 2、 单臂测量时若试件温度升高,仪器输出(指针)如何变化说明变化的原因。 仪器输出将变大。当试件受力且试件温度升高时,输出电压F T 0R R 1U = +4R R ???? ??? , R 为试件电阻,而本实验输出的是应变片的应变ε,F T 1R R 1=+S R R ε???? ??? ,若试件温度升高时,则没有温度影响 T R R ?,F 2R =SR ε?,显然,温度升高的变化1ε大于温度没有升高时的变化2ε,故试件温度升高时,仪器输出将变大。 3、 某等强度梁受力及布片如图所示,试问该如何组桥能测出力F 若将该梁换成等截面梁, 又该如何布片如何组桥方能测出力F

等强度梁电测试验设计试验报告

等强度梁电测试验设计试验报告 一、实验目的和要求 1、通过试验设计验证给定试样为等强度梁。 2、试样不能被破坏,即进入屈服。 二、试验设备和仪器 1、微机控制电子万能试验机、静态电阻应变仪。 2、数字万用表。 3、游标卡尺,电烙铁等。 三、实验原理和方法 图3-1 理论计算示意图 1、等强度梁定义:为了使受弯梁截面的弯曲正应力相同,即随着弯矩的改变,对应的改变截面尺寸,以保持梁的应力的不变。 2、以悬挑梁为例,以上图试样为试件,进行理论以及试验验证试样为等强度梁。 3、建立如图所示笛卡尔坐标系,对试样进行分析:

由错误!未找到引用源。,若需使得强度相同,必定有错误!未找到引用源。为一常数值。 有:错误!未找到引用源。 使得;错误!未找到引用源。与b线性相关,恰好悬臂梁的弯矩与其自由端的距离成正比,使b为变量,即可验证试样为等强度梁。 在l区段验证有: 而错误!未找到引用源。 与x无关,则必定有:错误!未找到引用源。 此时:错误!未找到引用源。与x无关,则按照此理论设计实验方案,验证试样为等强度梁。

四、实验步骤 1、依据试验理论,测量出试样的截面参数,并假定钢材为Q235,屈服强度为错误!未找到引用源。,确定加载方案,并在电子万能试验机上编辑实验方案。 2、在试样上粘贴电阻应变片,并焊接好接线。具体电阻应变片的粘贴位置如图所示: 3、在试验机上装夹试样,按照1/4桥接线法接线。试样的装夹如下图所示:

4、运行试验方案,记录实验数据 5、卸下试样,还原实验仪器,整理现场。 五、实验注意事项 1、装夹是注意两个试样必须基本等高,加载点亦须一样,以保证受力均衡。 六、实验数据及处理结果 试验数据测量以及处理如下: 表6-1 截面尺寸测量表 表6-2 a值计算表 表6-3 试验数据理论值表

平键连接的选择与强度校核

平键连接的选择与强度校核传递较大转矩时,可采用由两个1:100 的上、下面互相平行.需两边打人。定心性差 Z、 的单边倾斜楔键组成的切向键连接。键 ,适用于不要求准确定心、低速运转的场 2.平键连接的选择与强度校核 1)健的选择 平键是标准件,其本身不需要设计,只需根据具体情况选择即可。选择键时应考虑类型和尺寸两个方面。键的类型选择应考虑键连接的结构特点、使用要求和工作条件;键的尺寸选择应考虑是否符合标准规格和强度要求。在尺寸选择中,考虑键的主要尺寸,即键的截面尺寸(一般以键宽bX键高h表示)和键长L,键的截面尺寸b Xh按轴的直径d由标准中选定;键的长度L一般应等于或略短于轮毅的长度。一 般轮毅的长度可取为L'=,-- (1.5-2)d,这里d为轴的直径.同时键长也应符合标准 规定的长度系列(见表7-1及附表7-1)重要的键连接在选出键的类型和尺寸后,还 应进行强度校核计算。 键的材料通常用45钢,如果强度不够,通常采用双键.两个平键最好沿周向相 隔1800布置;两个半圆键应布置在轴的同一母线上;两个楔键则应布置在沿周向相隔第7章粕毅连接 125 900---1200.考虑到载荷分布的不均匀性,在强度校核中可按].5个键计算. 3.花键连接 花键连接是由轴上加工出多个纵向键齿的花键轴和轮毅孔上加工出同样的键齿槽组成。工作时靠键齿的侧面互相挤压传递转矩.花键连接具有承载能力强、对轴 和毅的强度削弱程度小、定心精度高和导向性好等优点。其缺点是需要专用设备加工,成本较高。因此,花键连接适用于定心精度要求高和载荷较大的场合.在汽车、拖拉机、航空航天等工业中都获得广泛的应用。 花键已标准化,按齿廓的不同,可分矩形花键和渐开线花键。

《材料力学》期末复习题

1、解释:形变(应变)强化、弹性变形、刚度、弹性不完整性、弹性后效、弹性滞后、Bauschinger效应、应变时效、韧性、脆性断裂、韧性断裂、平面应力状态、平面应变状态、低温脆性、高周疲劳、低周疲劳、疲劳极限、等强温度、弹性极限、疲劳极限、应力腐蚀开裂、氢脆、腐蚀疲劳、蠕变极限、持久强度、松弛稳定性、磨损。 2.弹性滞后环是由于什么原因产生的。材料的弹性滞后环的大小对不同零件有不同的要求? 弹性滞后环是由于材料的加载线和卸载线不重合而产生的。对机床的底座等构件,为保证机器的平稳运转,材料的弹性滞后环越大越好;而对弹簧片、钟表等材料,要求材料的弹性滞后环越小越好。3.断口的三个特征区?微孔聚集型断裂、解理断裂和沿晶断裂的微观特征分别为? 断口的三要素是纤维区、放射区和剪切唇。微孔聚集型断裂的微观特征是韧窝;解理断裂的微观特征主要有解理台阶和河流和舌状花样;沿晶断裂的微观特征为石状断口和冰糖块状断口。 4.应力状态系数α值大小和应力状态的软硬关系。为测量脆性材料的塑性,常选用应力状态系数α值(大)的实验方法,如(压缩)等。 5. 在扭转实验中,塑性材料的断口方向及形貌,产生的原因?脆性材料的断口的断口方向及形貌,产生的原因? 在扭转试验中,塑性材料的断裂面与试样轴线垂直;脆性材料的断裂面与试样轴线成450。 6. 材料截面上缺口的存在,使得缺口根部产生(应力集中)和(双(三)向应力),试样的屈服强度(升高),塑性(降低)。 7. 低温脆性常发生在具有什么结构的金属及合金中,在什么结构的金属及合金中很少发现。 低温脆性常发生在具有体心立方结构的金属及合金 中,而在面心立方结构的金属及合金中很少发现。 8. 按断裂寿命和应力水平,疲劳可分为?疲劳断口的典型特征是? 9.材料的磨损按机理可分为哪些磨损形式。 10. 不同加载试验下的应力状态系数分别为多少? 11. 材料的断裂按断裂机理可分为?按断裂前塑性变形大小可分为? 答:材料的断裂按断裂机理分可分为微孔聚集型断裂,解理断裂和沿晶断裂;按断裂前塑性变形大小分可分为延性断裂和脆性断裂。微孔聚集型断裂的微观特征是韧窝;解理断裂的微观特征主要有解理台阶和河流和舌状花

等强度梁应变测定实验

等强度梁应变测定实验Last revision on 21 December 2020

等强度梁应变测定实验 SQ1001804A004 李扬 一.实验目的 1. 熟练掌握电阻应变片测量应变的原理; 2. 熟练掌握本型号电阻应变仪的使用,掌握多点测量方法; 3. 测定等强度梁上已粘贴应变片处的应变,验证等强度梁各横截面上应变(应力)相 等。 二.实验仪器和设备 1. YJ-4501A/SZ 静态数字电阻应变仪; 2. 等强度梁实验装置一台; 3. 温度补偿块一块。 三.实验原理和方法 等强度梁实验装置如图1所示,图中1为等强度梁座体,2为等强度梁,3为等强度梁上下表面粘贴的四片应变片,4为加载砝码(有5个砝码,每个200克),5为水平调节螺钉,6为水平仪,7为磁性表座和百分表。等强度梁的变形由砝码4加载产生。等强度梁材料为高强度等强度 铝合金,其弹性模量272m GN E =。梁尺寸见图2。 图1 图2 等强度梁表面应力计算公式为 ()() x W x M =σ , ()()62h x b x W = 四.实验步骤

1.采用多点单臂半桥接线法,将等强度梁上四个应变片分别接在应变仪背面1~ 4通道的接线柱A 、B 上,补偿块上的应变片接在接线柱B 、C 上(见图3)。 2.载荷为零时,按顺序将应变仪每个通道的初始显示应变置零,然后按每级200克逐级加载至1000克,记录各级载荷作用下的读数应变。 3. 反复做三遍。 电桥多点接线原理 应变仪上多点测量接法 图3 五.实验结果处理 1.以表格形式处理实验结果,根据实验数据计算各测点1000g 载荷作用下的实验应力 值,并计算出理论应力值;计算实验应力值与理论应力值的相对误差。 2.比较实验值与理论值,理论上等强度梁各横截面上应变(应力)应相等。 3.计算任意一片应变片测量的线性度和重复性。 实验数据记录和结果处理参考表 相对误差指: %100理论应变值 理论应变值 实验应变值 表1 应变 载荷(g) R 1 (με) R 2 (με) 1 2 3 平均 1 2 3 平均 0 -1 0 0 0 0 -1 200 81 83 81 -82 -82 -83 400 161 163 162 162 -164 -163 -164 600 242 243 243 -245 -245 -246 800 322 324 325 -327 -327 -328 1000 402 403 406 -408 -409 -408 续表1 应变 载荷(g) R 3 (με) R 4 (με)

相关文档
最新文档