厚壁冷弯方矩管和热轧H型钢轴压极限承载力的对比研究

厚壁冷弯方矩管和热轧H型钢轴压极限承载力的对比研究
厚壁冷弯方矩管和热轧H型钢轴压极限承载力的对比研究

4.2 轴心受压构件承载力计算

4.2 轴心受压构件承载力计算 按照箍筋配置方式不同,钢筋混凝土轴心受压柱可分为两种:一种是配置纵向钢筋和普通箍筋的柱(图4.2.1a),称为普通箍 筋柱;一种是配置纵向钢筋和螺旋筋(图 4.2.1b)或焊接环筋(图4.2.1c)的柱,称为 螺旋箍筋柱或间接箍筋柱。 需要指出的是,在实际工程结构中,几 乎不存在真正的轴心受压构件。通常由于荷 载作用位置偏差、配筋不对称以及施工误差 等原因,总是或多或少存在初始偏心距。但 当这种偏心距很小时,如只承受节点荷载屋 架的受压弦杆和腹杆、以恒荷载为主的等跨 多层框架房屋的内柱等,为计算方便,可近 似按轴心受压构件计算。此外,偏心受压构 件垂直于弯矩作用平面的承载力验算也按轴心受压构件计算。 一、轴心受压构件的破坏特征 按照长细比的大小,轴心受压柱可分为短柱和长柱两类。对方形和矩形柱,当≤8时属于短柱,否则为长柱。其中为柱的计算长度,为矩形截面的短边 尺寸。 1.轴心受压短柱的破坏特征 配有普通箍筋的矩形截面短柱,在轴向压力N作用下整个截面的应变基本上是均匀分布的。N较小时,构件的压缩变形主要为弹性变形。随着荷载的增大,构件变形迅速增大。与此同时,混凝土塑性变形增加,弹性模量降低,应力增长逐渐变慢,而钢筋应力的增加则越来越快。对配置HPB235、HRB335、HRB400、RRB400级热轧钢筋的构件,钢筋将先达到其屈服强度,此后增加的荷载全部由混凝土来承受。在临近破坏时,柱子表面出现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏(图4.2.2)。破坏时混凝土的应力达到棱柱体抗压强度。当短柱破坏时,混凝土达到极限压应变=0.002,相应的纵向钢

桩基承载力计算公式(老规范)

一、嵌岩桩单桩轴向受压容许承载力计算公式 采用嵌岩的钻(挖)孔桩基础,基础入持力层1~3倍桩径,但不宜小于1.00m,其单桩轴向受压容许承载力[P]建议按《公路桥涵地基与基础设计规范》JTJ024—85第4.3.4条推荐的公式计算。 公式为:[P]=(c1A+c2Uh)Ra 公式中,[P]—单桩轴向受压容许承载力(KN); Ra—天然湿度的岩石单轴极限抗压强度(KPa),按表4.2 查取,粉砂质泥岩:Ra =14460KPa;砂岩:Ra =21200KPa h—桩嵌入持力层深度(m); U—桩嵌入持力层的横截面周长(m); A—桩底横截面面积(m2); c1、c2—根据清孔情况、岩石破碎程度等因素而定的系数。挖孔桩取c1=0.5,c2=0.04;钻孔桩取c1=0.4,c2=0.03。 二、钻(挖)孔桩单桩轴向受压容许承载力计算公式 采用钻(挖)孔桩基础,其单桩轴向受压容许承载力[P]建议按《公路桥涵地基与基础设计规范》JTJ024—85第4.3.2条推荐的公式计算。 公式为:[]()R p A Ul Pσ τ+ = 2 1 公式中,[P] —单桩轴向受压容许承载力(KN); U —桩的周长(m); l—桩在局部冲刷线以下的有效长度(m); A —桩底横截面面积(m2),用设计直径(取1.2m)计算;

p τ— 桩壁土的平均极限摩阻力(kPa),可按下式计算: ∑==n i i i p l l 11ττ n — 土层的层数; i l — 承台底面或局部冲刷线以下个土层的厚度(m); i τ— 与i l 对应各土层与桩壁的极限摩阻力(kPa),按表 3.1查取; R σ— 桩尖处土的极限承载力(kPa),可按下式计算: {[]()}322200-+=h k m R γσλσ []0σ— 桩尖处土的容许承载力(kPa),按表3.1查取; h — 桩尖的埋置深度(m); 2k — 地面土容许承载力随深度的修正系数,据规范表 2.1.4取为0.0; 2γ— 桩尖以上土的容重(kN/m 3); λ— 修正系数,据规范表4.3.2-2,取为0.65; 0m — 清底系数,据规范表4.3.2-3,钻孔灌注桩取为 0.80,人工挖孔桩取为1.00。

极限状态承载力计算

极限状态承载力计算 1)和载效应组合计算 承载能力极限状态组合(基本组合): 00(1.2 1.4) 1.0(1.210.35 1.413.20)30.90()d Gk Qk M M M kN m γγ=+=-??+?=-? 00(1.2 1.4) 1.0(1.215.20 1.438.83)72.60()d Gk Qk V M M kN γγ=+=??+?= 作用短期效应组合(不计冲击力): 0.710.350.713.2019.59()sd Gk Qk M M M kN m =+=+?=? 作用长期效应组合(不计冲击力): 0.710.350.513.2016.95()ld Gk Qk M M M kN m =+=+?=? 承载能力极限状态组合(偶然组合,不同时组合汽车竖向力): 10.3588.5898.93()d Gk ck M M M kN m =+=+=? 2)正截面抗弯承载力 ①基本组合 对于矩形截面其正截面抗弯承载能力应符合《公预规》式(5.2.1-1)规定: 00()2 ud cd x M f bx h γ≤- sd s cd f A f bx = 受压区高度应符合0b x h ξ≤,查看《公预规》表5.2.1得0.56b ξ=。设0223h mm =可得到: 020*******.90 =0.2230.22322.41000 6.27()121.5ud cd b M x h h f b mm h mm γξ=-- ?-- ?=<= 2s 1000 6.2722.4 502()280 A mm ??= = 其中1000b mm =,0217h mm =,33s a mm =,22.4cd f MPa =,280cd f MPa =。 实际每延米板配10束2根12φ,则222262502s A mm mm =>,满足要求。 ②偶然组合 对于矩形截面其正截面抗弯承载能力应符合《公预规》式(5.2.1-1)规定:

(完整版)支架承载力计算

支架竖向承载力计算: 按每平方米计算承载力, 中板恒载标准值:f=2.5*0.4*1*1*10=10KN ; 活荷载标准值N Q = (2.5+2 )*1*1=4.5KN ; 则:均布荷载标准值为: P1=1.2*10+1.4*4.5=18.3KN ; 根据脚手架设计方案,每平方米由2根立杆支撑,单根承载力标准值为100.3KN ,故:P1=18.3/2=9.15KN<489.3*205=100.3KN 。满足要求。 或根据中板总重量(按长20m 计算)与该节立杆总数做除法, 中板恒载标准值:f=2.5*0.4*10*20*19.6=3920KN ; 活荷载标准值NQ = (2.5+2 )*20*19.6=1764KN ; 则:均布荷载标准值为: P1=1.2*3920+1.4*1764=7173KN ; 得P1=7173KN<100.3*506=50750KN 。 满足要求。 支架整体稳定性计算: 根据公式: [] N f A σ?≤= 式中: N -立杆的轴向力设计值,本工程取15.8kN ; -轴心受压构件的稳定系数,由长细比λ决定,本工程λ=136,故=0.367; λ-长细比,λ=l 0 /i =2.15/1.58*100=136; l 0-计算长度,l 0=kμh =1.155*1.5*1.2=2.15m ;

k-计算长度附加系数,取 1.155;μ-单杆计算长度系数 1.55;h-立杆步距0.75m。 i-截面回转半径,本工程取1.58cm; A-立杆的截面面积,4.89cm2; f-钢材的抗压强度设计值,205N/mm2。 σ=15.8/(0.367*4.89)=88.04N/mm2<[f]=205N/mm。 满足要求. 支架水平力计算 支架即作为竖向承力支架,也作为侧墙内撑支架,因此需计算支架水平支撑力,即侧墙施工时产生的侧压力。 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。通过理论和实践,可按下列二式计算,并取其最小值: F=0.22γc t0β1β2V1/2 F= γc*H 式中 F------新浇筑混凝土对模板的最大侧压力(KN/m2) γc------混凝土的重力密度(kN/m3)取26 kN/m3 t0------新浇混凝土的初凝时间(h),可按实测确定。当缺乏实验资料时,可采用t=200/(T+15)计算;t=200/(25+15)=5 T------混凝土的温度(°)取25° V------混凝土的浇灌速度(m/h);取2m/h H------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);取5.0m β1------外加剂影响修正系数,不掺外加剂时取1.0; β2------混凝土塌落度影响系数,当塌落度小于30mm时,取0.85;50—

承载能力极限状态计算

一,为什么进行承载能力极限状态计算?? 答:承载能力极限状态是已经破坏不能使用的状态。正常使用极限状态是还可以勉强使用,承载能力极限状态是根据应力达到破坏强度,为了使建筑避免出现这种状态从而进行计算,使建筑数值高于极限承载能力状态的数值。 二,承载能力极限状态计算要计算那些方面?? 答:1作用效应组合计算;2正截面承载力的计算;3斜截面承载力计算;4扭曲截面承载力计算;5受冲击切承载力计算;6局部受压承载力计算。 三,1作用效应组合计算所用到的公式及其作用: 其效应组合表达式为: ) (2 111 00∑∑==++=n j QjK Qj C K Q Q m i GiK Gi ud S S S S γψγγγγ 跨中截面设计弯矩 M d =γG M 恒+γq M 汽+γq M 人 支点截面设计剪力 V d =γG V 恒+γG1V 汽+γG2V 人 2正截面承载力的计算所用到的公式及其作用:

(1)T形截面受弯构件位于受压区的翼缘计算宽度,应按下列三者中最小值取用。 翼缘板的平均厚度h′f =(100+130)/2=115mm ①对于简支梁为计算跨径的1/3。 b′f=L/3=19500/3=6500mm ②相邻两梁轴线间的距离。 b′f = S=1600mm ③b+2b h+12h′f,此处b为梁的腹板宽,b h为承托长度,h′f为不计承托的翼缘厚度。 b′f=b+12h′f=180+12×115=1560mm (2)判断T形截面的类型 设a s=120mm,h0=h-a s=1300-120=1180mm;

mm N M mm N h h h b f d f f f cd -?=>-?=- ??='- ''60601022501000.2779) 2 115 1180(11515608.13)2(γ 故属于第一类T 形截面。 (3)求受拉钢筋的面积A s mm h mm x x x x h x b f M f f cd d 11517.92:) 2 1180(15608.13102250) 2(:600='<=-?=?-'=解得根据方程γ 2 708728017 .9215608.13mm f x b f A sd f cd s =??= '= 满足多层钢筋骨架的叠高一般不宜超过0.15h~0.20h 的要求。 梁底混凝土净保护层取32mm ,侧混凝土净保护层取32mm ,两片焊接平面骨架间距为: ?? ?=>>=?-?-mm d mm mm 4025.1404.448.352322180 §2.2正截面抗弯承载力复核 ⑴跨中截面含筋率验算 mm a s 60.1137238) 4.188.35432(804)8.35232(6434=+?++?+= h 0=h -a s =1300-113.60=1186.40mm ???=>>=>=?== %19.0/45.0%2.0%39.340.11861807238 min 0sd td s f f bh A ρρ ⑵判断T 形截面的类型 N A f N h b f s sd f f cd 331064.202628072381072.247511515608.13?=?=>?=??=''

4.2 轴心受压构件承载力计算

轴心受压构件承载力计算 按照箍筋配置方式不同,钢筋混凝土轴心受压柱可分为两种:一种是配置纵向钢筋和普通箍筋的柱(图4.2.1a),称为普通箍筋 柱;一种是配置纵向钢筋和螺旋筋(图)或 焊接环筋(图4.2.1c)的柱,称为螺旋箍筋柱或 间接箍筋柱。 需要指出的是,在实际工程结构中,几 乎不存在真正的轴心受压构件。通常由于荷 载作用位置偏差、配筋不对称以及施工误差 等原因,总是或多或少存在初始偏心距。但 当这种偏心距很小时,如只承受节点荷载屋 架的受压弦杆和腹杆、以恒荷载为主的等跨 多层框架房屋的内柱等,为计算方便,可近 似按轴心受压构件计算。此外,偏心受压构件垂直于弯矩作用平面的承载力验算也按轴心受压构件计算。 一、轴心受压构件的破坏特征 按照长细比的大小,轴心受压柱可分为短柱和长柱两类。对方形和矩形柱,当≤8时属于短柱,否则为长柱。其中为柱的计算长度,为矩形截面的短边尺寸。 1.轴心受压短柱的破坏特征 配有普通箍筋的矩形截面短柱,在轴向压力N作用下整个截面的应变基本上是均匀分布的。N较小时,构件的压缩变形主要为弹性变形。随着荷载的增大,构件变形迅速增大。与此同时,混凝土塑性变形增加,弹性模量降低,应力增长逐渐变慢,而钢筋应力的增加则越来越快。对配置HPB235、HRB335、HRB400、RRB400级热轧钢筋的构件,钢筋将先达到其屈服强度,此后增加的荷载全部由混凝土来承受。在临近

破坏时,柱子表面出现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏(图4.2.2)。破坏时混凝土的应力达到棱柱体抗压强度。当短柱破坏时,混凝土达到极限压应变=,相应的纵向钢筋应力值=E s=2×105×mm2=400N/mm2。因此,当纵向钢筋为高强度钢筋时,构件破坏时纵向钢筋可能达不到屈服强度。设计中对于屈服强度超过400N/mm2的钢筋,其抗压强度设计值只能取400N/mm2。显然,在受压构件内配置高强度的钢筋不能充分发挥其作用,这是不经济的。 2.轴心受压长柱的破坏特征 对于长细比较大的长柱,由于各种偶然因素造成的初始偏心距的影响是不可忽略的,在轴心压力N作用下,由初始偏心距将产生附加弯矩,而这个附加弯矩产生的水平挠度又加大了原来的初始偏心距,这样相互影响的结果,促使了构件截面材料破坏较早到来,导致承截能力的降低。破坏时首先在凹边出现纵向裂缝,接着混凝土被压碎,纵向钢筋被压弯向外凸出,侧向挠度急速发展,最终柱子失去平衡并将凸边混凝土拉裂而破坏(图4.2.3)。试验表明,柱的长细比愈大,其承截力愈低,对于长细比很大的长柱,还有可能发生“失稳破坏”。 由上述试验可知,在同等条件下,即截面相同,配筋相同,材料相同的条件下,长柱承载力低于短柱承载力。在确定轴心受压构件承截力计算公式时,规范采用构件

木方__立杆_承载力的计算

木方按照均布荷载下连续梁计算。 1.荷载的计算 (1)钢筋混凝土板自重(kN/m): q11 = 25.000×0.120×0.300=0.900kN/m (2)模板的自重线荷载(kN/m): q12 = 0.300×0.300=0.090kN/m (3)活荷载为施工荷载标准值与振捣混凝土时产生的荷载(kN/m): 经计算得到,活荷载标准值 q2 = (1.000+2.000)×0.300=0.900kN/m 静荷载 q1 = 1.20×0.900+1.20×0.090=1.188kN/m 活荷载 q2 = 1.4×0.900=1.260kN/m 2.木方的计算 按照三跨连续梁计算,最大弯矩考虑为静荷载与活荷载的计算值最不利分配的弯矩和,计算公式如下: 均布荷载 q = 2.203/0.900=2.448kN/m 最大弯矩 M = 0.1ql2=0.1×2.45×0.90×0.90=0.198kN.m 最大剪力 Q=0.6×0.900×2.448=1.322kN 最大支座力 N=1.1×0.900×2.448=2.424kN 木方的截面力学参数为 本算例中,截面惯性矩I和截面抵抗矩W分别为: W = 4.00×7.00×7.00/6 = 32.67cm3; I = 4.00×7.00×7.00×7.00/12 = 114.33cm4; (1)木方抗弯强度计算 抗弯计算强度 f=0.198×106/32666.7=6.07N/mm2 木方的抗弯计算强度小于13.0N/mm2,满足要求! (2)木方抗剪计算 [可以不计算] (3)木方挠度计算 最大变形 v =0.677×0.990×900.04/(100×9500.00× 1143333.4)=0.405mm

钢管桩承载力验算

北延桥钢管桩验算 验算部位: 选取全桥最不利荷载处-中支点墩柱一侧5m范围进行验算。 5m范围内钢管桩数量: 顺桥向,按施工单位提供的钢管桩顺桥向支点位置5m,跨中位置6.5m间距可知,此段5m 范围内共计考虑顺桥向1排钢管桩。 横桥向,按施工单位提供图示,横桥向6根钢管桩,入土20m。 按上所述,顺桥向5m、横桥向18m桥宽范围内(桥梁面积90m2),共计6根钢管桩,桩入土20m。 一、施工单位提供的各项荷载值如下: 恒载: 1、底模、侧模采用竹胶板 覆膜竹胶板自重:0.34kn/m2 2、顺桥向木枋(5×10)间距30cm 自重:0.10kn/m2 3、横桥向木枋(12×12)间距60cm 自重:0.30kn/m2 4、支架体系(碗扣式) 自重:1.74kn/m2(腹板处) 自重:1.06kn/m2(底板、翼缘板处) 5、平台满铺木枋(15×15) 自重:1.20kn/m2 6、纵联I36C工字钢(间距1.0m) 自重:0.712kn/m2 7、横梁I36C工字钢(双拼) 43m宽平台每排钢管桩受横联工字钢自重61.23kn 活载: 1、施工机具及人员荷载:2.5kn/m2 2、倾倒混凝土产生的荷载(泵送):4.0kn/m2 3、混凝土振捣产生的荷载:2.0kn/m2

二、钢管桩受载计算 考虑荷载分项系数 恒载 1.0 活载1.0 组合后荷载值F 总=1.0*261+1.0*77=338吨 此处为纵向1排,横向6列,故 单根钢管桩荷载值F=338/6=57吨 三、单根钢管桩抗力 本次计算按试桩后对桩侧修正摩阻系数考虑 选取整个钢管桩范围内最不利钻孔ZK6计算,按桩入土20m ,顶标高0.808m ,底标高-19.192m 。 按《公路桥涵地基与基础设计规范》5.3.3第2条沉桩的承载力计算公式计算桩侧 桩周u=PI()*0.6=1.88m ai 为振动沉桩对各土层桩侧摩阻力的影响系数,按规范取值0.7 各桩侧 l q sik ∑计算如下表(各项qsik 均为考虑试桩后的修正值) : )(2/1][p pk r i sik i a A q a l q ua R +=∑

标准滚动轴承承载能力计算

标准滚动轴承承载能力计算 在跟踪架通用轴系中,标准滚动轴承是重要的部件,轴承的承载能力计算是轴系设计中的关键问题。采用通用轴系后,地平式跟踪架水平轴两端的轴承主要承受径向载荷,同时承受一定量的轴向载荷。垂直轴上的轴承要承载垂直轴及上部转体的负荷,载荷较大;另一方面垂直轴为了满足强度和刚度的要求,轴径一般较大,轴承的尺寸与轴要相互配合,因此使用时必须考虑轴承的尺寸和轴向承载能力。同时为了减少跟踪架的成本,尽量采用轴承厂批量生产的轴承。 角接触球轴承按公称接触角分为15°、25°、40°三种类型,公称接触角越大,轴向承载能力越强。 目前批量生产的角接触球轴承,尺寸最大是接触角为25°的7244AC,其外形尺寸为220 ×400×65。 下表中给出了7244AC 轴承的相关参数 轴承额定载荷选取的流程为: (1)计算滚动轴承的当量载荷 在实际应用中,根据跟踪架承载状况先估算出轴承承受的径向载荷和轴向载荷,则可计算出此时轴承的当量动载荷P 为: 式中X ——径向动载荷系数; Y ——轴向动载荷系数; ——载荷系数。 (2)基本额定动载荷 C 选取 计算出轴承实际工作时的当量载荷后,当轴承的预期使用寿命选定,轴 承最大转速n可知时,可计算出轴承应具有的基本额定动载荷C′,在手册中选择轴承时,所选轴承应满足基本额定载荷 C > C′。

式中 ——温度系数,可从机械设计手册中查得; ε——寿命指数,球轴承取3,滚子轴承取10/3。 由于角接触轴承的径向承载能力大于轴向承载能力,而其在垂直轴上的应用主要承受较大轴向载荷,因此必须考虑其轴向承载能力。 (3)轴承受轴向载荷时承载能力分析 在轴承转速不高时,可以忽略钢球离心力和陀螺力矩的影响,钢球与内外套圈的接触角相等。 由赫兹接触理论得到轴承滚动体与内外滚道的接触变形和负荷之间的相互关系,可以表示为 式中 —滚动体与内外滚道接触变形总量; K —系数; Q —滚动体承受载荷; t —指数,线接触时为0.9,点接触时为2/3。

(完整word版)钢管落地脚手架计算书

钢管落地脚手架计算书 采用品茗安全计算软件计算;本工程为深圳市龙岗区第二人民医院综合楼改造工程,总建筑面积6570m2,建筑总高度为39.8米,建筑总层数为地下一层、地上十二层,一层层高4.5m,二层层高4m,三~十一层层高均为3m,十二层层高为4m。 扣件式钢管落地脚手架的计算依据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)、《建筑地基基础设计规范》(GB 50007-2011)、《建筑结构荷载规范》(GB 50009-2012)、《钢结构设计规范》(GB 50017-2003)等编制。 一、参数信息: 1.脚手架参数 双排脚手架搭设高度为 44.2 m,立杆采用单立管; 搭设尺寸为:立杆的横距为 1.05m,立杆的纵距为1.5m,大小横杆的步距为1.8 m; 内排架距离墙长度为0.20m; 大横杆在上,搭接在小横杆上的大横杆根数为 2 根; 脚手架沿墙纵向长度为 150.00 m; 采用的钢管类型为Φ48×3.5; 横杆与立杆连接方式为单扣件;取扣件抗滑承载力系数为 1.00; 连墙件采用两步两跨,竖向间距 3.6 m,水平间距3 m,采用扣件连接; 连墙件连接方式为双扣件; 2.活荷载参数 施工均布活荷载标准值:2.000 kN/m2;脚手架用途:装修脚手架; 同时施工层数:2 层; 3.风荷载参数 本工程地处广东深圳市,基本风压0.75 kN/m2; 风荷载高度变化系数μz为1.00,风荷载体型系数μs为1.13; 脚手架计算中考虑风荷载作用; 4.静荷载参数 每米立杆承受的结构自重标准值(kN/m):0.1248;

脚手板自重标准值(kN/m2):0.300;栏杆挡脚板自重标准值(kN/m):0.110; 安全设施与安全网(kN/m2):0.005; 脚手板类别:冲压钢脚手板;栏杆挡板类别:栏杆、冲压钢脚手板挡板; 每米脚手架钢管自重标准值(kN/m):0.038; 脚手板铺设总层数:12; 5.地基参数要求 若地基土类型为:素填土;地基承载力标准值(kPa):120.00; 立杆基础底面面积(m2):0.20;地基承载力调整系数:1.00。 本工程原地基土类型为混凝土,地基承载力大于120,满足要求! 二、大横杆的计算: 按照《扣件式钢管脚手架安全技术规范》(JGJ130-2011)第5.2.4条规定,大横杆按照三跨连续梁进行强度和挠度计算,大横杆在小横杆的上面。将大横杆上面的脚手板自重和施工活荷载作为均布荷载计算大横杆的最大弯矩和变形。 1.均布荷载值计算

建筑结构应按承载能力极限状态和正常使用极限状态设计

第一章概述 建筑结构应按承载能力极限状态和正常使用极限状态设计。前者指结构或构件达到最大承载力或达到不适于继续承载的变形时的极限状态;后者为结构或构件达到正常使用的某项规定限值时的极限状态[1]。钢结构可能出现的承载能力极限状态有:①结构构件或连接因材料强度被超过而破坏;②结构转变为机动体系;③整个结构或其中一部分作为刚体失去平衡而倾覆;④结构或构件丧失稳定;⑤结构出现过度塑性变形,不适于继续承载;⑥在重复荷载下构件疲劳断裂。其中稳定问题是钢结构的突出问题,在各种类型的钢结构中,都可能遇到稳定问题,因稳定问题处理不利造成的事故也时有发生。 1.1钢结构的失稳破坏 钢结构因其优良的性能被广泛地应用于大跨度结构、重型厂房、高层建筑、高耸构筑物、轻型钢结构和桥梁结构等。如果钢结构发生事故则会造成很大损失。 1907年,加拿大圣劳伦斯河上的魁北克桥,在用悬臂法架设桥的中跨桥架时,由于悬臂的受压下弦失稳,导致桥架倒塌,9000t钢结构变成一堆废铁,桥上施工人员75人罹难。大跨度箱形截面钢桥在1970年前后曾出现多次事故[2]。 美国哈特福德市(Hartford City)的一座体育馆网架屋盖,平面尺寸92m×110m,该体育馆交付使用后,于1987年1月18日夜突然坍塌[3]。由于网架杆件采用了4个等肢角钢组成的十字形截面,其抗扭刚度较差;加之为压杆设置的支撑杆有偏心,不能起到预期的减少计算长度的作用,导致网架破坏[4]。20世纪80年代,在我国也发生了数起因钢构件失稳而导致的事故[5]。 科纳科夫和马霍夫曾分析前苏联1951—1977年期间所发生的59起重大钢结构事故,其中17起事故是由于结构的整体或局部失稳造成的。如原古比雪夫列宁冶金厂锻压车间在1957年末,7榀钢屋架因压杆提前屈曲,连同1200 m2屋盖突然塌落。 高层建筑钢结构在地震中因失稳而破坏也不乏其例。1985年9月19日,墨西哥城湖泊沉淀区发生8.1级强震,持时长达180s,只隔36h又发生一次7.5级强余震。震后调查表明,位于墨西哥城中心区的Pino Suarez综合楼第4层有3根钢柱严重屈曲(失稳),横向X形支撑交叉点的连接板屈曲,纵向桁架梁腹杆屈曲破坏[6]。1994年发生在美国加利福尼亚州Northridge的地震震害表明,该地区有超过100座钢框架发生了梁柱节点破坏[7],对位于Woodland Hills地区的一座17层钢框架观察后发现节点破坏很严重[8],竖向支撑的整体失稳和局部失稳现象明显。1995年发生在日本Hyogoken-Nanbu的强烈地震中,钢结构发生的典型破坏主要有局部屈曲、脆性断裂和低周疲劳破坏[9]。 对结构构件,强度计算是基本要求,但是对钢结构构件,稳定计算比强度计算更为重要。强度问题与稳定问题虽然均属第一极限状态问题,但两者之间概念不同。强度问题关注在结构构件截面上产生的最大内力或最大应力是否达到该截面的承载力或材料的强度,因此,强度问题是应力问题;而稳定问题是要找出作用与结构内部抵抗力之间的不稳定平衡状态,即变形开始急剧增长的状态,属于变形问题。稳定问题有如下几个特点: (1)稳定问题采用二阶分析。以未变形的结构来分析它的平衡,不考虑变形对作用效应的影响称为一阶分析(FOA—First Order Analysis);针对已变形的结构来分析它的平衡,则是二阶分析(SOA—Second Order Analysis)。应力问题通常采用一阶分析,也称线性分析;稳定问题原则上均采用二阶分析,也称几何非线性分析。 (2)不能应用叠加原理。应用叠加原理应满足两个条件:①材料符合虎克定律,即应力与应变成正比;②结构处于小变形状态,可用一阶分析进行计算。弹性稳定问题不满足第二个条件,即对二阶分析不能用叠加原理;非弹性稳定计算则两个条件均不满足。因此,叠加原理不适用于稳定问题。 (3)稳定问题不必区分静定和超静定结构。对应力问题,静定和超静定结构内力分析方法

偏心受压构件承载力计算

轴心受压构件承载力计算 一、偏心受压构件破坏特征 偏心受压构件在承受轴向力N和弯矩M的共同作用时,等效于承受一个偏心距为e0=M/N的偏心力N的作用,当弯矩M相对较小时,e0就很小,构件接近于轴心受压,相反当N相对较小时,e0就很大,构件接近于受弯,因此,随着e0的改变,偏心受压构件的受力性能和破坏形态介于轴心受压和受弯之间。按照轴向力的偏心距和配筋情况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。 1.受拉破坏 当轴向压力偏心距e0较大,且受拉钢筋配置不太多时,构件发生受拉破坏。在这种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。当N增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加宽,裂缝截面处的拉力全部由钢筋承担。荷载继续加大,受拉钢筋首先达到屈服,并形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减小。最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图4.3.1)。此时,受压钢筋一般也能屈服。由于受拉破坏通常在轴向压力偏心距e0较大发生,故习惯上也称为大偏心受压破坏。受拉破坏有明显预兆,属于延性破坏。 2.受压破坏 当构件的轴向压力的偏心距e0较小,或偏心距e0虽然较大但配置的受拉钢筋过多时,就发生这种类型的破坏。加荷后整个截面全部受压或大部份受压,靠近轴向压力一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。随着荷载 逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变εcu被压碎,受压钢筋的应力也达到f y′,远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。由于受压破坏通常在轴向压力偏心距e0较小时发生,故习惯上也称为小偏心受压破坏。受压破坏无明显预兆,属脆性破坏。

影响稳定承载力的因素

稳定承载力的影响因素 摘要:从理想弹性轴心受压构件失稳形式及各自稳定承载力计算公式出发,分析影响其稳定承载能力的因素,进一步分析各因素如何影响稳定承载力,为稳定承载力设计提供科学依据。 关键字:轴心受压 失稳形式 影响因素 引言 正如大家所知,理想弹性轴心受压直杆的失稳形式有弯曲屈曲、扭转屈曲和弯扭屈曲。各种失稳形式所对应的稳定承载力计算公式如式1-3所示。 对于双对称轴杆件,如工字型截面杆件,通常发生弯曲屈曲。 22 E EI N l π= (1) 对于十字形截面,抗扭性能比较差,容易发生扭转屈曲。 222 01t EI N GI i l ωφπ? ? =+ ??? (2) 对于单对称轴截面,如T 形截面构件,由于剪心和形心不重合,产生的剪力不经过截面剪心,容易发生弯扭失稳。 21142y y y y y N N N N N k k N N N φ φ φφ??????=+-+- ? ????????? 201s y k i ?? =- ??? (3) 式中:t GI 是杆件自由扭转刚度;EI ω是杆件约束扭转刚度;0i 是截面关于剪心的极回转半径;s y 是剪心的坐标;y N 是单轴对称截面按欧拉公式计算的绕对称轴y 轴的弯曲屈曲临界力。 只要构件有足够的抗弯和抗扭能力,构件就不会发生弯扭失稳。为此,控制 抗弯和抗扭失稳是最基础也是最为重要的。 由公式可见,影响受压构件的稳定承载力的因素主要是材料特性、截面特性和边界条件,以上公式是以理想弹性为假定得到的,实际还存在初始缺陷,为此应该考虑初始缺陷的影响。下面逐一进行说明。 1 材料特性 E 、G 都是材料的特性。从上述的计算公式中可以清晰地看到它们对稳定承载力的影响。弹性模量和切线模量越大,受压杆件抗弯扭能力越强,稳定承载力就越高。 2 截面形式和尺寸 2.1构件尺寸 截面尺寸越大,构件长度越短稳定承载力越强,这毋庸置疑,但是可能造成 N l

钢管桩标准节设计承载力计算

钢管桩标准节设计承载力计算 一、φ630钢管桩 钢管桩直径630mm,壁厚8mm。考虑锈蚀情况,壁厚按照6mm进行计算。其截面特性为: 回转半径ix=22.062cm 考虑钢管桩横联间距为10米,即钢管桩的自由长度按10m计算,钢管桩一端固定,一端自由,自由长度系数为2.0,则计算长度为2*10=20m。 钢管桩的长细比:λ=L/ix=20/0.22=90.7 查《钢结构设计规范》表C--2得:φ=0.616 考虑钢材的容许应力为[σ]=180MPa 1.1 最大轴向力计算

[]6 2 0.2192.5180100.6160.01180.364*10t N N a N N N A W σσφ-??= +=+===??? 求得:935.1N KN = 1.2 横联计算 根据以上计算结果,按照900KN 轴向力,180KN.m 弯矩来设计横联。横联竖向间距为10米。 1.2.1 2[28a 横联 采用2[28a 作为横联,按照最大长细比[λ]=100来控制。 []=100=1001002 2.33466 4.66y y L i L i cm λ= =??==米 强度复核: 按照桩顶承受18KN 的水平力计算,由λ=100查《钢结构设计规范》表C--2得:φ=0.555 []2 2 18000==4.05215/0.55524010N MPa f N mm A ?≤=??? 则采用2[28a 作为横联的时候,最大间距取4.6米。 1.2.2 φ42.6钢管横联 采用φ42.6钢管横联(考虑锈蚀,壁厚为4mm )作为横联,按照最大长细比[λ]=100来控制。

三角形钢管悬挑脚手架计算书

三角形钢管悬挑脚手架计算书 计算依据: 1、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 2、《建筑结构荷载规范》GB50009-2012 3、《钢结构设计规范》GB50017-2003 4、《施工技术》期 由于国家未对钢管悬挑脚手架作出相应规定,故本计算书参考《施工技术》期编制,仅供参考。 一、参数信息 1.脚手架参数 悬挑梁离地高度20m,双排脚手架架体高度为 m; 搭设尺寸为:立杆的纵距为,立杆的横距为,立杆的步距为 m; ( 内排架距离墙长度为; 横向水平杆在上,搭接在纵向水平杆上的横向水平杆根数为 2 根; 三角形钢管支撑点竖向距离为 m; 采用的钢管类型为Φ48×3; 横杆与立杆连接方式为单扣件; 单扣件连墙件布置取一步一跨,竖向间距 m,水平间距 m,采用扣件连接; 连墙件连接方式为双扣件; 2.活荷载参数 施工均布荷载(kN/m2):;脚手架用途:装修脚手架; 同时施工层数:2 层; 3.风荷载参数 % 本工程地处浙江杭州市,查荷载规范基本风压为m2,风压高度变化系数μ 为,风荷 z 为; 载体型系数μ s 计算中考虑风荷载作用; 4.静荷载参数

每米立杆承受的结构自重荷载标准值(kN/m):; 脚手板自重标准值(kN/m2):;栏杆挡脚板自重标准值(kN/m):; 安全设施与安全网自重标准值(kN/m2):;脚手板铺设层数:5 层; 脚手板类别:冲压钢脚手板;栏杆挡板类别:冲压钢脚手板挡板; 二、横向水平杆的计算 横向水平杆按照简支梁进行强度和挠度计算,横向水平杆在纵向水平杆的上面。按照上面的脚手板和活荷载作为均布荷载计算横向水平杆的最大弯矩和变形。 1.均布荷载值计算 * = m ; 横向水平杆的自重标准值:P 1 = ×3=m ; 脚手板的荷载标准值:P 2 活荷载标准值:Q=1×3=m; 荷载的计算值:q=×+×+×=m; 横向水平杆计算简图 2.强度计算 最大弯矩考虑为简支梁均布荷载作用下的弯矩, 计算公式如下: =ql2/8 M qmax =×8=·m; 最大弯矩 M qmax … /W =mm2; 最大应力计算值σ=M qmax 横向水平杆的最大弯曲应力σ =mm2小于横向水平杆的抗弯强度设计值 [f]=205N/mm2

6容许应力法和承载能力极限状态法在钢结构设计中的区别

容许应力法和概率(极限状态)设计法 在钢结构设计中的应用 中铁五局集团公司经营开发部肖炳忠 内容提要 本文简要介绍了容许应力法、破坏阶段法、极限状态法、概率(极限状态)设计法四个结构设计理论,并且列出了我们经常用的容许应力法和概率(极限状态)设计法的实用表达式和参数选用,通过对上述两种方法参数的比较,总结出我们在工程施工中临时结构设计的实用办法和注意事项,以期望提高广大现场施工技术人员的设计水平的目的。 1、前言 我们在钢结构设计中经常用到容许应力法和概率(极限状态)设计法,有些没有经验的技术人员在设计计算中经常将二者混淆,因此有必要将两种设计计算方法进行介绍和比较,供广大技术人员参考。 2、四种结构设计理论简述 、容许应力法 容许应力法将材料视为理想弹性体,用线弹性理论方法,算出结构在标准荷载下的应力,要求任一点的应力,不超过材料的容许应力。材料的容许应力,是由材料的屈服强度,或极限强度除以安全系数而得。 容许应力法的特点是: 简洁实用,K值逐步减小; 对具有塑性性质的材料,无法考虑其塑性阶段继续承载的能力,设计偏于保守; 用K使构件强度有一定的安全储备,但K的取值是经验性的,且对不同材料,K值大并不一定说明安全度就高; 单一K可能还包含了对其它因素(如荷载)的考虑,但其形式不便于对不同的情况分别处理(如恒载、活载)。 、破坏阶段法 设计原则是:结构构件达到破坏阶段时的设计承载力不低于标准荷载产生的构件内力乘以安全系数K。 破坏阶段法的特点是: 以截面内力(而不是应力)为考察对象,考虑了材料的塑性性质及其极限强度; 内力计算多数仍采用线弹性方法,少数采用弹性方法; 仍采用单一的、经验的安全系数。 、极限状态法 极限状态法中将单一的安全系数转化成多个(一般为3个)系数,分别用于考虑荷载、荷载组合和材料等的不定性影响,还在设计参数的取值上引入概率和统计数学的方法(半概率方法)。 极限状态法的特点是: 在可靠度问题的处理上有质的变化。这表现在用多系数取代单一系数,从而避免了单一系数笼统含混的缺点。 继承了容许应力法和破坏阶段法的优点; 在结构分析方面,承载能力状态以塑性理论为基础;正常使用状态以弹性理论为基础; 对于结构可靠度的定义和计算方法还没法给予明确回答。 、概率(极限状态)设计法

受压构件承载力计算复习题(答案)详解

受压构件承载力计算复习题 一、填空题: 1、小偏心受压构件的破坏都是由于 而造成 的。 【答案】混凝土被压碎 2、大偏心受压破坏属于 ,小偏心破坏属 于 。 【答案】延性 脆性 3、偏心受压构件在纵向弯曲影响下,其破坏特征有两 种类型,对长细比较小的短柱属于 破坏,对长细比较大的细长柱,属于 破坏。 【答案】强度破坏 失稳 4、在偏心受压构件中,用 考虑了纵向弯曲的 影响。 【答案】偏心距增大系数 5、大小偏心受压的分界限是 。 【答案】b ξξ= 6、在大偏心设计校核时,当 时,说明s A '不屈 服。 【答案】s a x '2 7、对于对称配筋的偏心受压构件,在进行截面设计时, 和 作为判别偏心受压类型的唯一依据。

【答案】b ξξ≤ b ξξ 8、偏心受压构件 对抗剪有利。 【答案】轴向压力N 9、在钢筋混凝土轴心受压柱中,螺旋钢筋的作用是使截面中间核心部分的混凝土形成约束混凝土,可以提高构件的______和______。 【答案】承载力 延性 10、偏心距较大,配筋率不高的受压构件属______受压情况,其承载力主要取决于______钢筋。 【答案】大偏心 受拉 11、受压构件的附加偏心距对______受压构件______受压构件影响比较大。 【答案】轴心 小偏心 12、在轴心受压构件的承载力计算公式中,当f y <400N /mm 2 时,取钢筋抗压强度设计值f y '=______;当f y ≥400N /mm 2时,取钢筋抗压强度设计值f y '=______N /mm 2。 【答案】f y 400 二、选择题: 1、大小偏心受压破坏特征的根本区别在于构件破坏时,( )。 A 受压混凝土是否破坏 B 受压钢筋是否屈服 C 混凝土是否全截面受压 D 远离作用力N 一侧钢筋是否屈服

1承载能力极限状态

1承载能力极限状态:包括①结构构件或连接因强度超过而破坏。②结构或其一部分作为刚体而失去平衡(如倾覆、滑移)③在反复荷载下构件或连接发生疲劳破坏。 2正常使用的极限状态:包括①构件在正常使用条件下产生过度变形,导致影响正常使用或建筑外观。②构件过早产生裂缝或裂缝发展过宽。③动力荷载下结构或构件产生过大振幅等。 3预应力混凝土构件的混凝土最低强度等级不应低于C40。 4细长压杆的临界力公式柱的一端固定一端自由时,L0=2L,L为杆件的实际长度;两端固定时,L0=0.5L;一端固定一端铰支时,L0=0.7L;两端铰支时,L0=L.均布荷 载作用下悬臂梁的最大变形公式(),矩形截面梁的惯性矩 5要求设计使用年限为50年的钢筋混凝土及预应力混凝土结构,其纵向受力钢筋的混凝土保护层厚度不应小于钢筋的公称直径,一般为15~40mm(保护层最小厚度:一类环境,板墙壳≤C20的20mm,≥C25的15mm;梁≤C20的30mm,≥C25的25mm;柱均为30mm)6一类环境设计年限50年的结构混凝土:最小保护层厚度,最大水灰比0.65,最小水泥用量225kg/m3,最低混凝土强度等级C20,最大氯离子含量点水泥用量1.0%,最大碱含量(kb/m3)(不限制) M抗≥(1.2~1.5)M倾 7现行抗震设计规范适用于抗震设防烈火度为6、7、8、9度地区。三个水准“小震不坏,中震可修,大震不倒”。抗震设计根据功能重要性分为甲,乙,丙,丁四类。大量的建筑物属于丙类。 8多层砌体房屋的抗震构造措施:①设置钢筋混凝土构造柱;②设置钢筋混凝土圈梁与构造柱连接起来,增强房屋的整体性;③墙体有可靠的连接,楼板和梁应有足够的搭接长度和可靠连接④加强楼梯间的整体性 框架结构的抗震构造措施:框架结构震害的严重部位多发生在框架梁柱节点和填充墙处;一般柱震害重于梁,柱顶震害重于柱底,角柱震害重于内柱,短柱震害重于一般柱。框架设计成延性框架,遵守强柱、强节点、强锚固,避免短柱、加强角柱,框架沿高度不宜突变,避免出现薄弱层,控制最小配筋率,限制配筋最小直径等原则。构造上采取受力筋锚固适当加长,节点处箍筋适当加密等措施。 导热系数小于0.25W/(m.K)的材料称为绝热材料 防水隔离层:楼板四周除门洞外,混凝土翻边高度不应小于120mm。防水隔离层不得做在与墙交接处,应翻边高度不宜小于150mm。孔洞四周和平台临空边缘,翻边高度不宜小于100mm。 楼梯平台上部及下部过道处的净高不应小于2米,梯段净高不应小于2.2米.楼梯踏步最小宽度和最大宽度:住宅共用楼梯0.25m,0.18m;幼儿园小学校等楼梯0.26m,0.15m。 散水的坡度可为3%~5%。散水宜为600~1000mm,无组织排水,散水宽度可按檐口线放出200~300mm。散水与外墙之间宜设缝,缝宽可为20~30mm,缝内应填弹性膨胀防水材料。 女儿墙:与屋顶交接处必须做泛水(高度≥350mm),压檐板上表面应向屋顶方向倾斜10%,并出挑≥60mm。 防火门、防火窗应划分为甲、乙、丙三级。其耐火极限:甲级为1.2h,乙级为0.9h,丙级为0.6h。 六大常用水泥的初凝时间均不得短于45min,硅酸盐水泥的终凝时间不得长于6.5h,其他五类常用水泥的终凝时间不得长于10h。初凝时间不符合规定者为废品,终凝时间不符合规定者为不合格品。

相关文档
最新文档