文氏电桥振荡电路仿真实验报告

文氏电桥振荡电路仿真实验报告
文氏电桥振荡电路仿真实验报告

模拟电子技术课程

文氏电桥振荡器电路仿真实验报告

学号:515021910574 姓名:梁奥

一、 本仿真实验的目的

1.理解RC桥式正弦波震荡电路的原理和功能。

2.能够调节反馈电阻使电路产生正弦波振荡。

3.能够选择适当的RC参数选出特定频率。

4.能够选择适当的稳幅网络,实现稳幅功能,且失真较小。

二、 仿真电路

图2.1

注:集成运放使用LM324,其电源电压为±15V,图中Multisim默认为电源端4、11已接电源。XSC1示波器观察输出电压。

三、 仿真内容

(1)设计电路参数使 f0=500Hz。

(2)计算RC串并联选频网络的频响特性。

(3)使用二极管稳幅电路,使输出振荡波形稳幅,且波形失真较小。

四、 仿真结果

选择RF1=1kΩ,RF2=1.8kΩ,电路产生正弦波,起振过程如图4.1。由于二极管存在动态电阻,因此RF2与RF1的比值小于2。

图4.1

(1)由选频网络特性可知:

f

=

1

2πRC

因此,选择电阻R=31.8kΩ,电容C=0.01μF,经计算可得 f0理论值为500.7Hz。

实验结果为:

f

=

1

T

=498.0Hz。

图4.2

(2)已知RC 串并联网络的幅频特性为:

F i

相频特性为:

?F =?arctan 13f f 0?f 0f ?????

?

当 f =f 0时, F i

=13,

U f i =13U 0i , ?F =00

如图4.3所示

图4.3

通过一个电路图测试RC串并联电路的频率响应:

图4.4

输入为1kHz,1V的正弦信号,由XBP1可以看出:

图4.5

当 f=f0时,Uf为0.333mV。

图4.6

当 f=f0时, ?F=00。

(3)使用二极管稳幅网络,输出失真较小,见图4.2和图4.3。因为电流增大时,二极管动态电阻减小、电流减小时,二极管动态电阻增大。输出电压稳定。

五、 结论及体会

1.在最开始连接电路时,因为没有注意运放的同向反向输入端的位置,导致仿真不成功,

经过检查才发现并得以解决。细心很重要!

2.对Multisim的运用已经较为熟练,各个元件的选择也较成功。

3.由于示波器和XBP手动调cursor时,不太准确,键盘的←,→不知道为什么不能用,

导致测量有一定误差。

三相交流电路实验报告1

中国石油大学(华东)现代远程教育 实验报告 课程名称:电工电子学 实验名称:三相交流电路 实验形式:在线模拟 +现场实践 提交形式:在线提交实验报告 学生姓名:赵军学号: 年级专业层次:14 春石油开采技术高起专 学习中心:江苏油田学习中心 提交时间:2014 年 6 月8 日

一、实验目的 1 . 练习三相交流电路中负载的星形接法。 2 . 了解三相四线制中线的作用。 二、实验原理 1 . 对称三相电路中线、相电压和线、相电流的关系,三相电路中,负载的连接分为星形连接和三角形连接两种。一般认为电源提供的是对称三相电压。 ( 1 )星形连接的负载如图1 所示: 图1 星形连接的三相电路 A、B、C表示电源端,N为电源的中性点(简称中点),N'为负载的中性点。无论是三线制或四线制,流过每一相负载的相电流恒等于与之相连的端线中的线电流: (下标I 表示线的变量,下标p 表示相的变量) 在四线制情况下,中线电流等于三个线电流的相量之和,即 端线之间的电位差(即线电压)和每一相负载的相电压之间有下列关系:

当三相电路对称时,线、相电压和线、相电流都对称,中线电流等于零,而线、相电压满足: ( 2 )三角形连接的负载如图2 所示: 其特点是相电压等于线电压: 线电流和相电流之间的关系如下: 当三相电路对称时,线、相电压和线、相电流都对称,此时线、相电流满足: 2 . 不对称三相电路 在三相三线制星形连接的电路中,若负载不对称,电源中点和负载中点的电位不再相等,称为中点位移,此时负载端各相电压将不对称,电流和线电压也不对称。 在三相四线制星形连接的电路中,如果中线的阻抗足够小,那么负载端各相电压基本对称,线电压也基本对称,从而可看出中线在负载不对称时起到了很重要的作用。但由于负载不对称,因此电流是不对称的三相电流,这时的中线电流将不再为零。 在三角形连接的电路中,如果负载不对称,负载的线、相电压仍然对称,但线、相电流不再 对称。 如果三相电路其中一相或两相开路也属于不对称情况。

文氏桥电路产生正弦波,方波要点

电子线路课程设计 院部: 专业: 姓名: 学号: 指导教师: 完成时间:

电子线路课程设计任务书姓名班级指导老师

目录 目录 (1) 第1章引言 (1) 第2章基本原理 (2) 2.1基本文氏振荡器 (2) 2.2振荡条件 (2) 第3章参数设计及运算 (4) 3.1结构设计 (4) 3.2参数计算 (5) 第4章仿真效果与实物 (8) 心得体会 (9) 参考文献 (9)

第1章引言 无论是从数学意义上还是从实际的意义上,正弦波都是最基本的波形之一——在数学上,任何其他波形都可以表示为基本正弦波的傅里叶组合;从实际意义上来讲,它作为测试信号、参考信号以及载波信号而被广泛的应用。在运算放大电路中,最适于发生正弦波的是文氏电桥振荡器和正交振荡器。

第2章 基本原理 2.1 基本文氏振荡器 基本文氏电桥反馈型振荡电路如图1所示,它由放大器即运算放大器与具有频率选择性的反馈网络构成,施加正反馈就产生振荡。运算放大器施加负反馈就为放大电路的工作方式,施加正反馈就为振荡电路的工作方式。图中电路既应用了经由R 3和R 4的负反馈,也应用了经由串并联RC 网络的正反馈。电路的特性行为取决于是正反馈还是负反馈占优势。 图2-1 将这个电路看作一个同相放大器,它对V p 进行放大,其放大倍数为 o 3p 4 V R A 1V R = =+ 在这里为了简化我们假设运算放大器是理想的。令,R 1=R 2=R,C 1=C 2=C 。反过来,V p 是由运算放大器本身通过两个RC 网络产生的,其值为V P =[Z P /(Z P +Z 1)]V o 。式中Z p =R ∥﹙1/j2πfC ﹚, Z 1/2s R j fC π=+。展开后可以得到 ()()o p 00V 1V 3//B jf j f f f f = = +- 上式中 01/2f fC π=。信号经过整个环路的总增益是()T jf AB =或者表示为

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

稳幅文氏电桥正弦波发生器说课讲解

* 课程设计报告 题目:文氏电桥正弦波振荡 学生姓名:** 学生学号:*** 系别:电气信息工程学院专业:通信工程 届别:2014届 指导教师:** 电气信息工程学院制 2013年5月

文氏电桥正弦波振荡 学生:** 指导教师:** 电气信息工程学院通信工程专业 1 课程设计的任务与要求 1.1 课程设计的任务 1. 培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。 2. 学习较复杂的电子系统设计的一般方法,提高基于模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。 3. 进行基本技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。 1.2 课程设计的要求 (1)熟悉multisim的使用方法,掌握文氏电桥正弦波振荡原理,以此为基础在软件中画出电路图。 (2)绘制出文氏电桥正弦波振荡的波形,观察其波形,通过对分析结果来加强对其原理的理解。 (3)在老师的指导下,独立完成课程设计的全部内容,并按要求编写课程设计论文,文中能正确阐述和分析设计和实验结果。 1.3 课程设计的研究基础(设计所用的基础理论) 以文氏电桥正弦波振荡电路仿真为例,分析了基本及稳幅文氏电桥正弦波发生器的特点,并采用Multisim 10软件对文氏电桥正弦波发生器进行了仿真,仿真结果与理论分析结果一致。软件仿真在课堂教学、电路设计、及实验教学中的应用,使得课堂教学信息量饱满,设计、实验变得轻松,使教学的效果得到提升,在教学领域具有重要的推广、应用价值。 在自控、测量、无线电通讯、测量等技术领域中,需用到波形发生器,较常用的是正弦波振荡器和多谐振荡器两大类。采用Multisim10仿真软件对正弦波振荡器进行仿真,该软件是NI 公司下属的Electronics WorkbenchGroup 发布的交

电路仿真实验报告

单片机原理及接口技术电路仿真实验报告 实验一:独立式键盘与LED显示示例 例4—17: 功能:数码管的数据端与P0口引脚采用正序,试编写程序,分别实现功能:上电后数码管显示“P”,按下任何键后,显示从“0”开始每隔1秒加1,加至“F”后,数码管显示“P”,进入等待按键状态。 Keil编程: 电路图: 初始状态时:

3 秒后:程序: TEMP EQU 30H ORG 0000H JMP START ORG 0100H START:MOV SP,#5FH MOV P0,#8CH MOV P3,#0FFH NOKEY:MOV A,P3 CPL A JZ NOKEY MOV TEMP,P3 CALL D10ms MOV A,P3 CJNE A,TEMP,NOKEY MOV R7,#16 MOV R2,#0 LOOP:MOV A,R2 MOV DPTR,#CODE_P0 MOVC A,@A+DPTR MOV P0,A INC R2 SETB RS0 CALL D_1S CLR RS0 DJNZ R7,LOOP JMP START D_1S:MOV R6,#100 D10:CALL D10ms DJNZ R6,D10 RET D10ms:MOV R5,#10 D1ms:MOV R4,#249 DL:NOP NOP DJNZ R4,DL DJNZ R5,D1ms RET CODE_P0:DB 0C0H,0F9H,0A4H,0B0H,99H, 92H,82H,0F8H DB 80H,90H,88H,83H,0C6H,0A1 H,86H,8EH END 例4—18: 功能:执行程序时,先显示“P” 1、按键K0按下后,数码管显示拨动开关S3~S0对应的十进制值; 2、按键K1按下后,P0口数码管显示拨动开关S3~S0对应的十六进制值; 3、按键K2按下后,P2口数码管显示拨动开关S3~S0对应的十六制值;

电路仿真实验报告42016年度

电路仿真实验报告 实验一直流电路工作点分析和直流扫描分析 一、实验目的 (1)学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。 (2)学习使用Pspice进行直流工作点的分析和直流扫描的操作步骤。 二、原理与说明 对于电阻电路,可以用直观法列些电路方程,求解电路中各个电压和电流。Pspice软件是采用节点电压法对电路进行分析的。 使用Pspice软件进行电路的计算机辅助分析时,首先编辑电路,用Pspice的元件符号库绘制电路图并进行编辑。存盘。然后调用分析模块、选择分析类型,就可以“自动”进行电路分析了。 三、实验示例 1、利用Pspice绘制电路图如下 2、仿真 (1)点击Psipce/New Simulation Profile,输入名称; (2)在弹出的窗口中Basic Point是默认选中,必须进行分析的。点击确定。 (3)点击Pspice/Run(快捷键F11)或工具栏相应按钮。 (4)如原理图无错误,则显示Pspice A/D窗口。

(5)在原理图窗口中点击V,I工具栏按钮,图形显示各节点电压和各元件电流值如下。 四、选做实验 1、直流工作点分析,即求各节点电压和各元件电压和电流。 2、直流扫描分析,即当电压源的电压在0-12V之间变化时,求负载电阻R l中电流虽电压源的变化

曲线。 曲线如图: 直流扫描分析的输出波形3、数据输出为: V_Vs1 I(V_PRINT1) 0.000E+00 1.400E+00 1.000E+00 1.500E+00 2.000E+00 1.600E+00 3.000E+00 1.700E+00 4.000E+00 1.800E+00 5.000E+00 1.900E+00 6.000E+00 2.000E+00 7.000E+00 2.100E+00 8.000E+00 2.200E+00 9.000E+00 2.300E+00 1.000E+01 2.400E+00 1.100E+01 2.500E+00 1.200E+01 2.600E+00

文氏电桥正弦波发生器

目录 第1章摘要 (2) 第2章引言 (2) 第3章基本原理 (2) 3.1 基本文氏振荡器 (2) 3.2 振荡条件 (4) 第4章参数设计及运算 (5) 4.1 结构设计 (6) 4.2 参数计算 (7) 第5章结论 (9) 心得体会 (11) 参考文献 (11)

第1章摘要 本文中介绍了一种基于运算放大器的文氏电桥正弦波发生器。经测试,该发生器能产生频率为100-1000Hz的正弦波,且能在较小的误差范围内将振幅限制在2.5V以内。 第2章引言 无论是从数学意义上还是从实际的意义上,正弦波都是最基本的波形之一——在数学上,任何其他波形都可以表示为基本正弦波的傅里叶组合;从实际意义上来讲,它作为测试信号、参考信号以及载波信号而被广泛的应用。在运算放大电路中,最适于发生正弦波的是文氏电桥振荡器和正交振荡器。 第3章基本原理 3.1 基本文氏振荡器 基本文氏电桥反馈型振荡电路如图1所示,它由放大器即运算放大器与具有频率选择性的反馈网络构成,施加正反馈就产生振荡。运算放大器施加负反馈就为放大电路的工作方式,施加正反馈就为振荡电路的工作方式。图 中电路既应用了经由R 3和R 4 的负反馈,也应用了经由串并联RC网络的正反馈。 电路的特性行为取决于是正反馈还是负反馈占优势。

图1 将这个电路看作一个同相放大器,它对V p 进行放大,其放大倍数为 o 3p 4 V R A 1V R = =+ 在这里为了简化我们假设运算放大器是理想的。令,R 1=R 2=R,C 1=C 2=C 。反过来, V p 是由运算放大器本身通过两个RC 网络产生的,其值为V P =[Z P /(Z P +Z 1)]V o 。式中Z p =R ∥﹙1/j2πfC ﹚,Z 1/2s R j fC π=+。展开后可以得到 ()()o p 00V 1V 3//B jf j f f f f = = +- 上式中01/2f fC π=。信号经过整个环路的总增益是()T jf AB =或者表示为 ()()34 001/3//R R T jf j f f f f += +- 这是一个带通函数,因为它在高频和低频处均趋于零。它的峰值出现在0f f =处,其值为 ()34 1/3R R T jf += ()T jf 为实数表明了一个频率为 0f 的信号经过环回路一周后,其净相移为零。 根据()T jf 的大小,可有三种不同的可能性:

电工电子综合实验1--裂相电路仿真实验报告格 2

电子电工综合实验论文 专题:裂相(分相)电路 院系:自动化学院 专业:电气工程及其自动化 姓名:小格子 学号: 指导老师:徐行健

裂相(分相)电路 摘要: 本实验通过仿真软件Mulitinism7,研究如何将一个单相的交流分裂成多相交流电源的问题。用如下理论依据:电容、电感元件两端的电压和电流相位差是90度,将这种元件和与之串联的电阻当作电源,这样就可以把单相交流源分裂成两相交流电源、三相电源。同时本实验还研究了裂相后的电源接不同的负载时电压、功率的变化。得到如下结论: 1.裂相后的电源接相等负载时两端的电压和负载值成正相关关系; 2.接适当的负载,裂相后的电路负载消耗的功率将远大于电源消耗的功率; 3.负载为感性时,两实验得到的曲线差别较小,反之,则较大。 关键词:分相两相三相负载功率阻性容性感性 引言 根据电路理论可知,电容元件和电感元件最容易改变交流电的相位,又因它们不消耗能量,可用作裂相电路的裂相元件。所谓裂相,就是将适当的电容、电感与三相对称负载相配接,使三相负载从单相电源获得三相对称电压。而生活和工作中一般没有三相动力电源,只有单相电源,如何利用单相电源为三相负载供电,就成了值得深入研究的问题了。 正文 1.实验材料与设置装备 本实验是理想状态下的实验,所有数据都通过在电路专用软件Multisim 7中模拟实验测得的;所有实验器材为(均为理想器材) 实验原理: (1). 将单相电源分裂成两相电源的电路结构设计 把电源U1分裂成U1和U2输出电压,如下图所示为RC桥式分相电压原理,可以把输入电压分成两个有效值相等,相位相差90度的两个电压源。 上图中输出电压U1和U2与US之比为

文氏桥振荡电路

文氏桥振荡电路 一、问题背景 将RC串并联选频网络和放大器结合起来即可构成RC振荡电路,放大器件可采用集成运算放大器。 RC串并联选频网络接在运算放大器的输出端和同相输入端 之间,构成正反馈,接在运算放大器的输出端和反相输入端之间的电阻,构成负反馈。正反馈电路和负反馈电路构成一文氏电桥电桥。 文氏电桥振荡器的优点是:不仅振荡较稳定,波形良好,而且振荡频率在较宽的范围内能方便地连续调节。 二、问题简介 由文桥选频电路和同相比例器组成的正弦波发生器如图1 所示。(1)若取R1=15kΩ,试分析该振荡电路的起振条件(R f的取值);(2)仿真观察R f取不同值时,运放同相输入端和输出端的电压波形; 图1 由文桥选频电路和放大器组成正弦波发生器的电路原理图

(3)若在反馈回路中加入由二极管构成的非线性环节(如图2所示),仿真观察R2取不同值时,运放同相输入端和输出端的电压波形。也可同时改变R f和R2的值。 图2 加入非线性环节的正弦波发生器的电路原理图 三、理论分析 (1)由图一的电路可以看出,电路在回路网络中加入了文氏选频网络,下面对文氏选频网络进行理论上的分析,从电路总提取文氏电路如图三所示。 图3 文氏选频网络

图中o U 是运放的输出量,f U 是反馈量。为了能够使电路振荡起 来,就必须通过选定参数即确定频率,使得在某一频率下o U 和 f U 同 相。 那么,当信号频率很低时,有 1R C ω>> 故将会有f U 的相位超前o U 的相位,当频率接近0时,相位超前接近于 90度。相反地,当信号频率很高以至于趋于无穷大时,可以得出 f U 的 相位滞后o U 的相位几乎-90度。 所以,在信号频率由0到无穷大的变化过程中,必然有某一个频率,使得输出量与反馈量同相,从而形成正反馈。下面就具体来求解此振荡频率。 由反馈系数 1//11//f o R U j C F U R R j C j C ωωω==++ 整理可得 1 13()F j CR CR ωω=+- 若电路的信号频率为f ,令特征频率 01 2f RC π= 代入F 的表达式,可以得到 001 3()F f f j f f =+-。

电源仿真实验报告.

电子技术软件仿真报告 组长: 组员: 电源(一)流稳压电源(Ⅰ)—串联型晶体管稳压电源 1.实验目的 (1)研究单相桥式整流、电容滤波电路的特性。 (2)掌握串联型晶体管稳压电源主要技术指标的测试方法。 2.实验原理 电子设备一般都需要直流电源供电。除少数直接利用干电池和直流发电机提供直流电外,大多数是采用把交流电(市电)转变为直流电的直流稳压电源。

直流稳压电源由电源变压器、整流、滤波和稳压电路四部分组成,其原理框图如图7.18.1所示。电网供给的交流电源Ui(220V,5OHz)经电源变压器降压后,得到符合电路需要的交流电压U2;然后由整流电路变换成方向不变、大小随时间变化的脉动电压U3;再用滤波器滤去其交流分量,就可得到比较平直的直流电压Ui。但这样的直流输出电压还会随交流电网电压的波动或负载的变动而变化。在对直流供电要求较高的场合,还需要用稳压电路,以保证输出直流电压更加稳定。 图7.18.2所示为分立元件组成的串联型稳压电源的电路图。其整流部分为单相桥式整流、电容滤波电路。稳压部分为串联型稳压电路它由调整元件(晶体管V1)、比较放大器(V2,R7)、取样电路(R1,R2,RP)、基准电压(V2,R3)和过流保护电路(V3及电阻R4,R5,R6)等组成。整个稳压电路是一个具有电压串联负反馈的闭环系统。其稳压过程为:当电网电压波动或负载变动引起输出直流电压发生变化时,取样电路取出输出电压的一部分送入比较放大器,并与基准电压进行比较,产生的误差信号经V2放大后送至调整管V1的基极,使调整管改变其管压降,以补偿输出电压的变化,从而达到稳定输出电压的目的。 由于在稳压电路中,调整管与负载串联,因此流过它的电流与负载电流一样大。当输出电流过大或发生短路时,调整管会因电流过大或电压过高而损坏坏,所以需要对调整管加以保护。在图7.18.2所示的电路中,晶体管V3,R4,R5及R6组成减流型保护电路,此电路设计成在Iop=1.2Io时开始起保护作用,此时输出电路减小,输出电压降低。故障排除后应能自动恢复正常工作。在调试时,若保护作用提前,应减小R6的值;若保护作用迟后,则应增大R6的值。 稳压电源的主要性能指标: (1)输出电压Uo和输出电压调节范围 调节RP可以改变输出电压Uo。 (2)最大负载电流Iom (3)输出电阻Ro 输出电阻Ro定义为:当输入电压Ui(指稳压电路输入电压)保持不变,由于负载变化而引起的输出电压变化量与输出电流变化量之比,即 (4)稳压系数S(电压调整率)

电工电子学实验报告_实验三_三相交流电路.doc

一、实验目的 1.学习三相交流电路中三相负载的连接。 2.了解三相四线制中线的作用。 3.掌握三相电路功率的测量方法。 二、主要仪器设备 1.实验电路板 2.三相交流电源 3.交流电压表或万用表 4.交流电流表 5.功率表 6.单掷刀开关 7.电流插头、插座 三、实验内容 1.三相负载星形联结 按图 3-2 接线,图中每相负载采用三只白炽灯,电源线电压为220V。 图3-2 三相负载星形联结 (1) 测量三相四线制电源的线电压和相电压,记入表3-1( 注意线电压和相电压的关系) 。 U UV/V U VW/V U WU/V U UN/V U VN/V U WN/V 219218 220127 127127 表 3-1 (2)按表 3-2 内容完成各项测量,并观察实验中各白炽灯的亮度。表中对称负载时为每相开亮三 只灯;不对称负载时为 U相开亮一只灯, V 相开亮两只灯, W相开亮三只灯。 测量值相电压相电流中线电流中点电压负载情况U UN’ /V U VN’ /V U WN’ /VI U/AI V/AI W/A I N/A U N’N/V 对称有中线124 124 124 0 负载无中线125 125 123 1 不对称有中线126 125 124

负载 无中线 167 143 78 50 表 3-2 2. 三相负载三角形联结 按图 3-3 连线。测量功率时可用一只功率表借助电流插头和插座实现一表两用, 具体接法见图 3-4 所示。接好实验电路后,按表 3-3 内容完成各项测量,并观察实验中白炽灯的亮度。表中对称负载和不 对称负载的开灯要求与表 3-2 中相同。 图 3-3 三相负载三角形联结 图 3-4 两瓦特表法测功率 测量值 线电流 (A) 相电流 (A) 负载电压 (V) 功率 (W) 负载情况 I U I V I W I UV I VW I WU UV VW WU 1 2 U U U P P 对称负载 213 212 215 -111 -109 不对称负载 220 217 216 表 3-3

文氏电桥正弦波振荡电路

文氏电桥正弦波振荡电路(2007-05-22 09:33:33) (这是一个很基本也很简单的电路,但很多细节的东西还值得去仔细研究,那次小组会面对老师的提问我没能讲清楚,没有被批评的够惨,但我的确认识到了自己的不足,下来后我好好把这个电路研究了一下,总结出了这些知识。希望所有的同行在做一个项目的时候,不能为了完成任务而去做,有的东西有必要把细节的东西好好研究一下,多问几个为什么,这样才能真正的学到东西,积累经验,在掌握好基础知识的基础上再研究新问题,那才是真正意义上的科研。可能下面的总结会有遗漏之处,欢迎大家提出问题,共同学习。) 文氏电桥正弦波振荡电路 (2007.4.27总结) 一、振荡原理 如上图所示,信号Xi经过一个放大环节A放大后得到放大信号Xo=A*Xi。 如果在上图中加一个反馈环节,如下图所示: Xo经过反馈环节F后得到反馈信号Xf=A*F*Xi。当反馈信号Xf与输入信号Xi幅值和相位都相同时,即以Xf作为输入Xi,则可以在输出端维持原有的信号Xo,也就是自激。所以,要使得上图中的系统平衡,则应有A*F=1。 即|A*F|=1(幅度平衡条件) 且Ψa+Ψf=2*n*PI (n为整数)Ψa和Ψf分别为A、F的幅角,此式说明反馈环节F 是一个正反馈。

A*F=1是振荡平衡的条件,也就是可维持等幅振荡输出;如果A*F<1,则电路的振荡输出将越来越小,直到停止振荡;如果A*F>1,振荡电路的输出将越来越大,直到电路中器件达到饱和或者截止。所以电路维持等幅振荡的唯一条件是A*F=1。 二、振荡的建立和稳定 前面讨论的自激振荡条件,是假设先给振荡电路的放大环节有一个外加的输入信号。但实际振荡电路一般不会外加激励信号。 对于一个正弦波振荡器来说,有一个选频网络,所以振荡电路只可能在某一个频率f0下满足相位平衡的条件(在后面的内容中将会对此做详细的叙述)。放大电路中存在噪声或干扰(例如接通直流电源时电路中就会产生电压或者电流的瞬变过程),它的频谱范围很广,必然包括振荡频率的分量。这些噪声和干扰经过选频网络选频后,只有f0这一频率分量满足相位平衡条件,只要此时A*F>1则可以增幅振荡,将此信号放大,建立起振荡。而除了 f0之外的其他频率的分量则衰减。 所以电路起振的条件为A*F>1且Ψa+Ψf=2*n*PI(n为整数)。除了要求电路的相位满足条件之外还要满足|A*F|>1。 从A*F>1到A*F=1:接通电源后,频率为f0的分量将逐渐增大,当幅值达到一定程度后,放大环节的非线性期间就会接近甚至进入非线性工作区(饱和区或者截止区),这时候放大增益A将逐渐下降,输出波形产生失真,所以经过选频网络后其输入也将随之下降。形成失真振荡。所以为了避免失真振荡,应尽量避免放大器件进入非线性工作区。解决办法是在放大器件在没有进入非线性工作期前加稳幅环节,使A*F从大于1逐渐减小到1,从而达到稳幅振荡的目的。 三、文氏电桥振荡电路

电路仿真实验报告

本科实验报告实验名称:电路仿真

实验1 叠加定理的验证 1.原理图编辑: 分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(Group:Indicators, Family:VOLTMETER 或AMMETER)注意电流表和电压表的参考方向),并按上图连接; 2. 设置电路参数: 电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源I1为10A。 3.实验步骤: 1)、点击运行按钮记录电压表电流表的值U1和I1; 2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2; 3)、点击停止按钮记录,将直流电压源的电压值设置为12V,

将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3; 4.根据叠加电路分析原理,每一元件的电流或电压可以看成是每一个独立源单独作用于电路时,在该元件上产生的电流或电压的代数和。 所以,正常情况下应有U1=U2+U3,I1=I2+I3; 经实验仿真: 当电压源和电流源共同作用时,U1=-1.6V I1=6.8A. 当电压源短路即设为0V,电流源作用时,U2=-4V I2=2A 当电压源作用,电流源断路即设为0A时,U3=2.4V I3=4.8A

所以有U1=U2+U3=-4+2.4=-1.6V I1=I2+I3=2+4.8=6.8A 验证了原理 实验2 并联谐振电路仿真 2.原理图编辑: 分别调出接地符、电阻R1、R2,电容C1,电感L1,信号源V1,按上图连接并修改按照例如修改电路的网络标号; 3.设置电路参数: 电阻R1=10Ω,电阻R2=2KΩ,电感L1=2.5mH,电容C1=40uF。信号源V1设置为AC=5v,Voff=0,Freqence=500Hz。 4.分析参数设置: AC分析:频率范围1HZ—100MHZ,纵坐标为10倍频程,扫描

三相交流电路实验报告-百度文库(精)

三相交流电路实验报告-百度文库(精)

中国石油大学(华东)现代远程教育 实验报告 课程名称:电工电子学 实验名称:三相交流电路 实验形式:在线模拟+现场实践 提交形式:在线提交实验报告 学生姓名:毕义合学号:12952112061 年级专业层次:网络12春高起专 学习中心:建设工程分院函授站 提交时间: 2013 年 6 月 23 日

一、实验目的 1. 练习三相交流电路中负载的星形接法。 2. 了解三相四线制中线的作用。 二、实验原理 1. 对称三相电路中线、相电压和线、相电流的关系,三相电路中,负载的连接分为星形连接和三角形连接两种。一般认为电源提供的是对称三相电压。 (1)星形连接的负载如图1所示: 图1 星形连接的三相电路

A、B、C表示电源端,N为电源的中性点(简称中点),N' 为负载的中性点。无论是三线制或四线制,流过每一相负载的相电流恒等于与之相连的端线中的线电流: (下标I表示线的变量,下标p表示相的变量) 在四线制情况下,中线电流等于三个线电流 的相量之和,即 端线之间的电位差(即线电压)和每一相负载的相电压之间有下列关系: 当三相电路对称时,线、相电压和线、相电流都对称,中线电流等于零,而线、相电压满足: (2)三角形连接的负载如图2所示:

其特点是相电压等于线电压: 线电流和相电流之间的关系如下: 当三相电路对称时,线、相电压和线、相电 流都对称,此时线、相电流满足: 2.不对称三相电路 在三相三线制星形连接的电路中,若负载不对称,电源中点和负载中点的电位不再相等,称

为中点位移,此时负载端各相电压将不对称,电流和线电压也不对称。 在三相四线制星形连接的电路中,如果中线的阻抗足够小,那么负载端各相电压基本对称,线电压也基本对称,从而可看出中线在负载不对称时起到了很重要的作用。但由于负载不对称,因此电流是不对称的三相电流,这时的中线电流将不再为零。 在三角形连接的电路中,如果负载不对称,负载的线、相电压仍然对称,但线、相电流不再对称。 如果三相电路其中一相或两相开路也属于不对称情况。 3.三相负载接线原则 连接后加在每相负载上的电压应等于其额定

RC文氏电桥振荡电路知识分享

R C文氏电桥振荡电路

RC文氏电桥振荡器的电路如图1所示,RC串并联网络是正反馈网络,由运算放大器、R3和R4负反馈网络构成放大电路。 C1R1和C2R2支路是正反馈网络,R3R4支路是负反馈网络。C1R1、C2R2、R3、R4正好构成一个桥路,称为文氏桥。 图1 RC文氏电桥振荡器 RC串并联选频网络的选频特性 RC串并联网络的电路如图2所示。RC串联臂的阻抗用Z1表示,RC并联臂的阻抗用Z2表示。 图2 RC串并联网络 RC串并联网络的传递函数为

式(1) 当输入端的电压和电流同相时,电路产生谐振,也就是式(1)是实数,虚部为0。令式(1)的虚部为0,即可求出谐振频率。 谐振频率 对于文氏RC振荡电路,一般都取R=R1 = R2,C=C1 = C2时,于是谐振角频率: 频率特性幅频特性 相频特性 文氏RC振荡电路正反馈网络传递函数的幅度频率特性曲线和相位频率特性曲线如图3所示。

(a) 幅频特性曲线 (b) 相频特性曲线 图3 RC串并联网络的频率响应特性曲线 反馈系数当满足R=R1 = R2,C=C1 = C2条件,且当f=f0时的反馈系数 当满足R=R1 = R2,C=C1 = C2条件,且当f=f0时的反馈系数 此时反馈系数 与频率f0的大小无关,此时的相角 jF=0°。文氏RC振荡电路可以通过双连电位器或双连电容器来调节振荡电路的频率,即保证R=R1 = R2,C=C1 = C2始终同步跟踪变化,于是改变文氏桥RC振荡电路的频率时,不会影响反馈系数和相角,在调节频率的过程中,不会停振,也不会使输出幅度改变。 根据振荡条件丨AF丨>1,在谐振时,放大电路的电压增益应该Au=3。由图1可知,RC串并联网络的反馈信号加在运算放大器的同相输入端,运算放大器的电压增益由R3和R4确定,是电压串联负反馈,于是应有 振荡的建立和幅度的稳定 振荡的建立 所谓振荡的建立,就是要使电路自激,从而产生持续的振荡输出。由于电路中存在噪声,噪声的频谱分布很广,其中也包括f0及其附近一些频率成分。由于噪声的随机性,有时正有时负,有时大一些有时小一些。为了保证这种微弱的信号,经过放大通过正反馈的选频网络,使输出幅度愈来愈大,振荡电路在起振时应有比振荡稳定时更大一些的电压增益,即丨AF丨>1,所以Au f>3,丨AF丨>1称为起振条件。 通过热敏元件稳定输出幅度 加入R3、R4支路,电路是串联电压负反馈,其放大倍数

单相半波整流电路仿真实验报告

单相半波整流电路仿真实验报告 一、实验目的和要求 1.掌握晶闸管触发电路的调试步骤与方法; 2.掌握单相半波可控整流电路在电阻负载和阻感负载时的工作; 3.掌握单相半波可控整流电路MATLAB的仿真方法,会设置各个模块的参数。 二、实验模型和参数设置 1. 总模型图: 有效值子系统模型图: 平均值子系统模型图:

2.参数设置 晶闸管:Ron=1e-3,Lon=1e-5,Vf=,Ic=0,Rs=500, Cs=250e-9.电源:Up=100*, f=50Hz. 脉冲发生器:Amplitude=5, period=, Pulse Width=2 情况一:R=1Ω,L=10mH; a=0°or a=60°; 情况二:L=10mH; a=0°or a=60°; 三、波形记录和实验结果分析 (1)R=1Ω,L=10mH; a=0°时的波形图: (2)R=1Ω,L=10mH; a=60°时的波形图:

(3)L=10mH; a=0°时的波形图: (4)L=10mH; a=60°时的波形图:

在波形图中,从上到下依次代表电源电压、脉冲发生器电压、晶闸管的电流,、晶闸管两端电压、负载电流和负载两端电压。 分析对比这四张图可以知道,由于负载中有电感,因此晶闸管截止的时刻并不在电压源为负值的时刻,而是在流过晶闸管的电流为零的时刻;同时,在对比中可以发现在电感相同的情况下,电阻负载的存在会使关断时间提前。 1.计算负载电流、负载电压的平均值: 以R=1Ω,L=10mH时 o α = 负载电压的平均值为如下: o α 60 = 负载电压的平均值为如下:

multisim电路仿真实验报告

模拟电子技术课程 multisim 仿真 一、目的 2.19 利用multisim 分析图P2.5所示电路中b R 、c R 和晶体管参数变化对Q 点、u A ? 、i R 、o R 和om U 的影响。 二、仿真电路 晶体管采用虚拟晶体管,12V C C V =。 1、当5c R k =Ω, 510b R k =Ω和1b R M =Ω时电路图如下(图1): 图 1 2、当510b R k =Ω,5c R k =Ω和10c R k =Ω时电路图如下(图2)

图 2 3、当1b R M =Ω时, 5c R k =Ω和10c R k =Ω时的电路图如下(图3) 图 3 4、当510b R k =Ω,5c R k =Ω时,β=80,和β=100时的电路图如下(图4)

图 4 三、仿真内容 1. 当5c R k =Ω时,分别测量510b R k =Ω和1b R M =Ω时的C E Q U 和u A ? 。由于输出电压很小,为1mV ,输出电压不失真,故可从万用表直流电压(为平均值)档读出静态管压降C E Q U 。从示波器可读出输出电压的峰值。 2. 当510b R k =Ω时,分别测量5c R k =Ω和10c R k =Ω时的C E Q U 和u A ? 。 3. 当1b R M =Ω时,分别测量5c R k =Ω和10c R k =Ω时的C E Q U 和u A ? 。 4. 当510b R k =Ω,5c R k =Ω时,分别测量β=80,和β=100时的C E Q U 和u A ? 。 四、仿真结果 1、当5c R k =Ω,510b R k =Ω和1b R M =Ω时的C E Q U 和u A ? 仿真结果如下表(表1 仿真数据)

实验七 文氏桥正弦振荡器

实验七 文氏桥正弦振荡器 一、 实验目的 1.掌握振荡条件和稳幅措施。 2.研究文氏桥网络的选频特性和传输特性。 3. 学习文氏桥振荡器的调试与测试技术。 二、 实验原理 1. 振荡器的振荡条件 振荡过程是一个正反馈过程,振荡常常是一个微扰引起的,如果这个微扰经过反馈,弱于原输入的讯号,循环一次减弱一次,直至消亡,即为负反馈或环增益小于1, 无法起振。如果经过反馈后的信号强于原来的输入讯号,循环一次增强一次,振幅越来越大,直至晶体管的非线性或外部稳幅系统限制了它的振幅为止。我们把这个放大与反馈的过程表达为 ? ? F A ,即称为环路增益,简称环增益。电压放大倍数?A 与反馈系数? F 都是复数: A F j j e A A e F F φφ? ? ? ? == 7-1 ??F A =) (F A j e F A φφ+? ? 7-2 令 A A =? , F F =? ,因此 起振条件有两个: 振幅条件: 1>AF (6-3) 相位条件:2 n=0,1,2A F n φφπ+= (6-4) 起振以后,振幅逐渐增大,但由于晶体管的非线性或稳幅系统起控,A 逐渐变小,达到一个平衡状态,此时1=AF ,所以振荡器的振幅平衡条件为: 1=AF (6-5) A 与F 都是频率的函数,在某个频率上,这两个条件都满足了,这个频率便是振荡器的

振荡频率。 2. 文氏桥正弦振荡器 文氏桥振荡器是低频振荡器中最常见的一种电路。它使用的元件只需电阻、电容,而不需要难于制作的电感元件,且波形比较好,故得到广泛应用。文氏桥原是电学中的交流电桥,用来测量电容的容量,以及交流电频率的电桥。原名是维恩电桥(Wien Bridge ),我国简称为文氏桥。 这个电桥的电路如图7-1(a )所示 图7-1 文氏电桥 如果电桥的R 1=R 2=R ,C 1=C 2=C ,R 4=2R 3,那么从A 、C 两端输入一个频率为:12f R C π=的正弦波电压,B 、D 两端的电压便为零。 我们可以将这个桥路分解为图7-1(b )与7-1(c )两个网络。网络(b )具有以下的传输函数F b (j ω): ) 1 (11 )(2 1121 22 1R C R C j C C R R V V j F F i o b c ???- +++= = =? ? ? (6-6) 上式仅在2112 1 0C R C R ωω- =时,F(j ω)才能成为实数,此时的ω0为: 021012 1 C R C R ωω= 有 2 01212 1 C C R R ω= (6-7) 如果选R 1=R 2=R ,C 1=C 2=C ,(6-7)式可以简化为: 01R C ω= 或RC f π210= (6-8) 此时的F b 为极大值: 3 1)(==o b bm F F ? (6-9) 由于虚部为零,故此时的相位为

集成运算放大器组成的RC文氏电桥振荡器

厦门大学电子线路实验报告 实验名称:实验十一、集成运算放大器组成的RC文氏电桥振荡器系别: 班号: 学生学号: 学生姓名: 实验时间:2014年 9 月 25 日 报告完成时间:2014年 9 月 27日 指导教师意见:

实验十一 集成运算放大器组成的RC 文氏电桥振荡器 一、 实验目的 1、 掌握产生自激振荡的振幅平衡条件和相位平衡条件; 2、 了解文氏电桥振荡器的工作康及起振条件和稳幅原理。 二、 实验仪器 1、 示波器 1台 2、 函数信号发生器 1台 3、 直流稳压电源 1台 4、 数字万用表 1台 5、 多功能电路实验箱 1台 6、 交流毫伏表 1台 三、 实验原理 1、 产生自激的条件:一般振荡器由放大器和正反馈网络组成。振荡器产生自激必须满足两个 基本条件: (1) 振荡平衡条件:反馈信号的振幅应该等于输入信号的振幅,即: VF=Vi ; (2) 相位平衡条件:反馈信号与输入信号应同相位,相位差应为: ψ=Ψa+ψf =±2n π(n=0、1、2……) 2、 RC 串-并联网络的选频特性: RC 串-并联网络如图1(a )所示,电压传输系数为: 2 1122 ()121211(1)(21) 11222112 R j R C F R R C R j C R j C j R C R C C R ωωωωω++==+++++-+ 当R1=R2=R ,C1=C2=C 时,上式为: 1 ()1 3() F j RC RC ωω+= +- 若令上式虚部为零,即得到谐振频率fo 为:1 2fo RC π= 当f=fo 时,传输系数最大且相移为0,即:Fmax=1/3,?f=0。 传输系数F 的幅频特性如图2(b )(c )所示。为满足振幅平衡条件,要求放大器|A|=3,为满足相位平衡条件,要求放大器为同相放大。

电路仿真实验报告

本科实验报告 实验名称:电路仿真 实验1 叠加定理的验证 1.原理图编辑: 分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(Group:Indicators, Family:VOLTMETER 或

AMMETER)注意电流表和电压表的参考方向),并按上图连接; 2. 设置电路参数: 电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源 I1为10A。 3.实验步骤: 1)、点击运行按钮记录电压表电流表的值U1和I1; 2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2; 3)、点击停止按钮记录,将直流电压源的电压值设置为12V,将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3; 4.根据叠加电路分析原理,每一元件的电流或电压可以看成是每一个独立源单独作用于电路时,在该元件上产生的电流或电压的代数和。 所以,正常情况下应有U1=U2+U3,I1=I2+I3; 经实验仿真: 当电压源和电流源共同作用时,U1=-1.6V I1=6.8A. 当电压源短路即设为0V,电流源作用时,U2=-4V I2=2A 当电压源作用,电流源断路即设为0A时,U3=2.4V I3=4.8A

所以有U1=U2+U3=-4+2.4=-1.6V I1=I2+I3=2+4.8=6.8A 验证了原理 实验2 并联谐振电路仿真 2.原理图编辑: 分别调出接地符、电阻R1、R2,电容C1,电感L1,信号源V1,按上图连接并修改按照例如修改电路的网络标号; 3.设置电路参数: 电阻R1=10Ω,电阻R2=2KΩ,电感L1=2.5mH,电容C1=40uF。信号源V1设置为AC=5v,Voff=0,Freqence=500Hz。 4.分析参数设置: AC分析:频率范围1HZ—100MHZ,纵坐标为10倍频程,扫描点数为10,观察输出节点为Vout响应。 TRAN分析:分析5个周期输出节点为Vout的时域响应。 实验结果: 要求将实验分析的数据保存 (包括图形和数据),并验证结果是否正确,最后提交实验报告时需要将实验结果附在实验报告后。 根据并联谐振电路原理,谐振时节点out电压最大且谐振频率为w0=1/LC=1000 10,f0=w0/2 =503.29Hz 谐振时节点out电压 * 理论值由分压公式得u=2000/(2000+10)*5=4.9751V.

相关文档
最新文档