冉绍尔-汤姆森效应实验

冉绍尔-汤姆森效应实验
冉绍尔-汤姆森效应实验

中国石油大学 近代物理 实验报告 成绩:

冉绍尔-汤姆森效应实验

【实验目的】

1、 了解电子碰撞管的设计原则,掌握电子与原子的碰撞规则和测量的原子散射截面的方法。

2、 测量低能电子与气体原子的散射几率Ps 与电子速度的关系。

3、 测量气体原子的有效弹性散射截面Q 与电子速度的关系,测定散射截面最小时的电子能量。

4、 验证冉绍尔-汤森效应,并学习用量子力学理论加以解释。

【实验原理】

一、理论原理

冉绍尔对各种气体进行了测量,发现无论哪种气体的总有效散射截面都和碰撞电子的速度有关。它们的总有效散射截面对电子速度的关系曲线V F Q =(V 为加速电压值)具有相同的形状,称为冉绍尔曲线。要解释冉绍尔效应需要用到粒子的波动性质,即把电子与原子的碰撞看成是入射粒子在原子势场中的散射,其散射程度用总散射截面来表示。

二、测量原理

图B8-3 测量气体原子总散射截面的原理图

当灯丝加热后,就有电子自阴极逸出,设阴极电流I K ,加速电压的作用下,部分电子在到达栅极之前,被屏极接收,形成电流I S1;部分穿越屏极形成电流I 0,由于屏极与板极P 之间是一个等势空间,所以电子穿越矩形孔后就以恒速运动,受到气体原子散射的电子则到达屏极,形成散射电流I S2;而到达板极P 形成板流I P ,因此有10S K I I I +=;

21S S S I I I +=;20S P I I I +=。电子在等势区内的散射概率为0

1I I P P

S -

=。 另外???

? ??++-

=-

=f I I I I I f P S

P P S P

S 111111

,1

S I I f =

为了测量几何因子f ,我们把电子碰撞管的管端部分浸入温度为77K 的液氮中,这时,管内掉气体冻结,在这种低温状态下,气体原子的密度很小,对电子的散射可以忽略不计,几何因子f 就等于这时的板流I P *

与屏流I S *

之比,

即**S P I I f =。所以P

S P

S P P S I I I I I I P ++-=***1

电子总有效散射截面Q 和散射几率有如下的简单关系

)exp(1QL P S --=

式中L 为屏极隔离板矩形孔到板极之间的距离。由(22)式和(23)式可以得到

)

()

(ln *

**

P S P P S P I I I I I I QL ++=

因为L 为一个常数,所以做)

()(***

ln P S P

P S P I I I I I I ++和c E 的关系曲线,即可以得到电子总有效散射截面与电子速度的

关系。

【实验装置】

冉绍尔-汤森效应实验仪主机两台(一台为电源组,另一台是微电流计和交流测量装置),电子碰撞管(包括管固定支架),低温容器(盛放液氮用,液氮温度77K ),一台双踪示波器。

【实验内容】

2、将灯丝电压E f 调至2.63V ,直流加速电压E a 调至0.20V ,补偿电压E c 调至0.34V 。

3、 从0.20-9.00V 逐渐增加加速电压E a ,列表记录每一点对应的电流I c (即I P )和I S 的大小。根据公式做

a a S E E P --的关系图,测量低能电子与气体原子的散射几率P S 随电子能量变化的关系。

4、 画出E f =2.63V 下几何因子f 随加速电压0

a a E E -的变化曲线,分析两者的关系。

5、 利用前面计算出的P S 值,测量E f =2.00V 下的I P 和I S 并计算几何因子f 随加速电压0

a a E E -的变化,画出曲线,并与E f =2.63V 下的f 比较。

表B8-1 室温下测量加速电压与板极电压、栅极电压的关系

【注意事项】

由于实验条件所限,没有低温环境,因此,本实验忽略低温测量,即不需要测量I P *

和I S *

,这里直接给出E f =2.63V 和各E a 下的值,如表B8-1所示。

【数据处理】

利用公式**S P I I f =和P

S P

S P P S I I I I I I P ++-=*

**1计算各个不同点的f 和Ps 值如表2 所示

分析:从图1可以看出,Ps 的值随着0a a E E -的增大先减小后有一个小的增加,

然后再在减小,

Ea ?Ea0

在0

a a E E -值大约为1.05左右的时候出现了最小值,约为0.52,即书中所说的透明状态,电子几乎与气体不发生碰撞。在1.1左右P S 突然增加之后又减小。f 的值随着0a a E E -的增大基本上呈现减

小的趋势,但在减小的过程中会出现个别的突然增大的现象,在这一点f 的值会突然增大,最主要是因为,此时的Is*变化不是很大,而Ip*相对增加量相比要大得多,因此出现了f 值得猛增的现象。而对于一些突增的点,则是因为实验的误差引起的,因为在测量数据的时候,仪器表的示数会发生不断的跳动,又时记录的数据并非此时稳定时的真实数据,所以导致在记录数据时出现了一些错误!

另外 ,测出Ef=2.00V 时的Ip 、Is 得知,利用Ef=2.63时的Ps 值且利用公式:

???

?

??++-=-=f I I I I I f P S P P S P S 111111可以计算出此时各个点的f 值,其结果如下表:

此时便可作出Ef=2.00时的f 随着0

a a E E 的变化曲线如图

通过图2的变化曲线和图3的变化曲线比较可以看出,此时的f 值先随 Ea ?Ea0的增大而增大,然后减小,在 Ea ?Ea0约为1.34左右的时候,f 达到最大值。在 Ea ?Ea0约为2.6左

右之后,f 基本上保持在0.0245左右不再变化。

【思考题】

1、 影响电子实际加速电压值的因素有哪些?有什么修正方法?

答:影响电子实际加速电压值的因素有外界的电场、磁场、灯丝电压还有电子在加速场中和气体分子的碰撞等等,增加了一个补偿电压Ec=0.34V ,以消除这些因素的影响。

2、屏极隔板小孔以及板极的大小对散射概率和弹性散射截面的测量有什么影响?

答:屏极隔板小孔越大,则可以穿过屏极隔板的电子数目越多,相对的被吸收的电子数目就会减少,则此时f 值会增大,弹性散射概率会相应减小(从实验中数据可以看出,f 越大,Ps 越小)弹性散射界面会相应增大。反之,Ps 增大,Q 减小。板极越大,I s1导致f 减小,则Ps 会相应减小,Q 变大。

【实验总结】

实验中主要研究了气体的散射截面积与速度的变化关系,通过实验数据可知不同的速度有不同的散射截面积。可以看出,随着电子动能的增大,散射概率会先相应的减小,动能为1ev时会出现一个最小值,即文中所说的透明状态,之后Ps在随着电子动能的增大而增大,而这些与冉绍尔-汤森实验的理论基础相符。知道了电子与原子之间的碰撞已经不能用经典物理中的刚体碰撞模型来解释,应用量子力学理论解释。通过本次试验,可以了解电子碰撞管的设计原理。通过本次试验,我们可以感受到微观世界已不同于宏观世界,要想真正了解微观世界的奥秘需要我们转变固有的思想,利用量子力学知识去探索发现神秘的微观领域。

冉绍尔汤森效应实验

实验5-3 冉绍尔-汤森效应实验 作者:任学智 同组者:关希望 指导老师:周丽霞 一. 引言 1921年,德国物理学家冉绍尔(Carl Ramsauer )用磁偏转法分离出单一速度的电子,对极低能量0.75~1.1eV 的电子在各种气体中的平均自由程做了研究。结果发现,氩气(Ar )气中的平均自有程e λ远大于经典力学的理论计算值。以后,他又把电子能量扩展到100eV 左右,发现Ar 原子对电子的弹性散射截面Q (与e λ成反比)随电子能量的减小而增大,在10eV 左右达到极大值,而后又随着电子能量的减小而减小。 1922年,现代气体放电理论的奠基人、英国物理学家汤森(J.S.Townsend )和贝利(Bailey )也发现了类似的现象。进一步的研究表明,无论哪种气体原子的弹性散射截面(或电子平均自由程),在低能区都与碰撞电子的能量(或运动速度v )明显相关,而且类似的原子具有相似的行为,这就是著名的冉绍尔-汤森效应。 冉绍尔-汤森效应在当时是无法解释的。因为经典的气体分子运动论把电子看成质点,把气体原子看成刚性小球,它们之间碰撞的散射截面仅决定于原子的尺寸,电子的平均自由程也仅决定于气体原子大小及其密度 n ,都与电子的运动速度无关。不久,在德布罗意波粒二相性假设(1924年)和量子力学理论(1925~1928年)建立后,人们认识到,电子与原子的碰撞实际上是入射电子波在原子势场中的散射,是一种量子效应,以上实验事实才得到了圆满的理论解释。 冉绍尔-汤森效应是量子力学理论极好的实验例证,通过该实验,可以了解电子碰撞管的设计原则,掌握电子与原子的碰撞规则和测量原子散射截面的方法,测量低能电子与气体原子的散射几率以及有效弹性散射截面与电子速度的关系。 本实验的目的主要有:了解电子碰撞管的设计原则,掌握电子与原子的碰撞规则和测量的原子散射截面的方法;测量低能电子与气体原子的散射几率Ps 与电子速度的关系;测量气体原子的有效弹性散射截面Q 与电子速度的关系,测定散射截面最小时的电子能量;验证冉绍尔-汤森效应,并学习用量子力学理论加以解释。 二. 实验原理 1.理论原理 冉绍尔在研究极低能量电子(0.75eV —1.1eV )的平均自由程时,发现氩气中电子自由程比用气体分子运动论计算出来的数值大得多。后来,把电子的能量扩展到一个较宽的围进行观察,发现氩原子对电子的弹性散射总有效截面Q 随着电子能量的减小而增大,约在10eV 附近达到一个极大值,而后开始下降,当电子能量逐渐减小到1eV 左右时,有效散射截面Q 出现一个极小值。也就是说,对于能量为1eV 左右的电子,氩气竟好像是透明的。电子能量小于1eV 以后Q 再度增大。此后,冉绍尔又对各种气体进行了测量,发现无论哪种气体的总有效散射截面都和碰撞电子的速度有关。并且,结构上类似的气体原子或分子,它们的总有效散射截面对电子速度的关系曲线V F Q =(V 为加速电压值)具有相同的形状,称为冉绍尔曲线。图B8-1为氙(Xe ),氪(Ke ),氩(Ar )三种惰性气体的冉绍尔曲线。图中横坐标是与电子速度成正比的加速电压平方根值,纵坐标是散射截面Q 值,这里采用原子单位,其中a 0为原子的玻尔半径。图中右方的横线表示用气体分子运动论计算出的Q 值。显然,用两个钢球相碰撞的模型来描述电子与原子之间的相互作用是无法解释冉绍尔效应的,因为这种模型得出的散射截面与电子能量无关。要解释冉绍尔效应需要用到粒子的波动性质,即把电子与原子的碰撞看成是入射粒子在原子势场中的散射,其散射程度用总散射截面来表示。

光电效应实验报告

南昌大学物理实验报告 学生姓名:黄晨学号:5502211059 专业班级:应用物理学111班班级编号:S008实验时间:13时00 分第3周星期三座位号:07 教师编号:T003成绩: 光电效应 一、实验目的 1、研究光电管的伏安特性及光电特性;验证光电效应第一定律; 2、了解光电效应的规律,加深对光的量子性的理解; 3、验证爱因斯坦方程,并测定普朗克常量。 二、实验仪器 普朗克常量测定仪 三、实验原理 当一定频率的光照射到某些金属表面上时,有电子从金属表面逸出,这种现象称为光电效应,从金属表面逸出的电子叫光电子。实验示意图如下 图中A,K组成抽成真空的光电管,A为阳极,K为阴极。当一定频率v的光射到金属材料做成的阴极K上,就有光电子逸出金属。若在A、K两端加上电压后光电子将由K定向的运动到A,在回路中形成电流I。 当金属中的电子吸收一个频率为v的光子时,便会获得这个光子的全部能量,如果这些能量大于电子摆脱金属表面的溢出功W,电子就会从金属中溢出。按照能量守恒原理有

南昌大学物理实验报告 学生姓名:黄晨学号:5502211059 专业班级:应用物理111 班级编号:S008实验时间:13 时00分第03周星期三座位号:07 教师编号:T003成绩:此式称为爱因斯坦方程,式中h为普朗克常数,v为入射光频。v存在截止频率,是的 吸收的光子的能量恰好用于抵消电子逸出功而没有多余的动能,只有当入射光的频率大于截止频率时,才能产生光电流。不同金属有不同逸出功,就有不同的截止频率。 1、光电效应的基本实验规律 (1)伏安特性曲线 当光强一定时,光电流随着极间电压的增大而增大,并趋于一个饱和值。 (2)遏制电压及普朗克常数的测量 当极间电压为零时,光电流并不等于零,这是因为电子从阴极溢出时还具有初动能,只有加上适当的反电压时,光电流才等于零。

冉绍尔—汤森效应实验

中国石油大学近代物理实验实验报告成绩: 班级:应物11—4 姓名:辛拓同组者:武丁仓教师:亓鹏 冉绍尔—汤森效应实验 【实验目的】 1、了解电子碰撞管的设计原则,掌握电子与原子的的碰撞规则和测量的原子散射截面的方法。 2、测量低能电子与气体原子的散射几率Ps与电子速度的关系。 3、测量气体原子的有效弹性散射截面Q与电子速度的关系,测定散射截面最小时的电子能量。 4、验证冉绍尔—汤森效应,并学习用量子力学理论加以解释。 【实验原理】 1、理论原理 电子与原子的碰撞实际上市入射电子波在原子势场中的散射,是一种量子效应。冉绍尔在研究极低能量电子(0.75eV-1.1eV)的平均自由程时,发现氩气中电子自由程比用气体分子运动论计算出来的数值大得多。后来,把电子的能量扩展到一个较宽的范围内进行观察,发现氩原子对电子的弹性散射总有效截面Q随着电子能量的减小而增大,约在10eV附近达到一个极大值,而后开始下降,当电子能量逐渐减小到1eV左右时,有效散射截面Q出现一个极小值。也就说,对于能量为1eV左右的电子,氩气竟好像是透明的。电子能量小于1eV以后Q再度增大。此后,冉绍尔又对各种气体进行了测量,发现无论哪种气体的总有效散射截面都和碰撞电子的速度有关。并且,结构 V为加速电 压值)具有相同的形状,称为冉绍尔曲线。 2、测量原理 当灯丝加热后,就有电子自阴极逸出,设阴极电流为I k,电子在加速电压的作用下,有一部分电子在到达栅极之前,被屏板接收,形成电流I S1;有一部分穿越屏板上的矩形孔,形成电流I0,由于屏板上的矩形孔与板极P之间是一个等势空间,所以电子穿越矩形孔后就以恒速运动,受到气体原子散射的电子到达屏板,形成散射电流I S2;而未受到散射的电子则到达板极P,形成板流I P,因此有 I k = I0+ I S1 I S = I S1 + I S2 I0 = I P + I S2 电子在等势区内的散射概率为 Ps=1?Ip/Io 可见,只要测量出I P和I0即可以求得散射几率。

(整理)5光电效应实验.

光电效应实验 一定频率的光照射在金属表面时, 会有电子从金属表面逸出,这种现象称为光电效应。1887年赫兹发现了光电效应现象,以后又经过许多人的研究,总结出一系列实验规律。1905年,爱因斯坦在普朗克能量子假设的基础上,提出了光量子理论,成功地解释了光电效应的全部规律。 实验原理 光电效应的实验原理如图1所示。用强度为P 的单色光照射到光电管阴极K 时,阴极释放出的光电子在电场的加速作用下向阳极板A 迁移,在回路中形成光电流。 图1 实验原理图 图2 光电管同一频率不同光强的 伏安特性曲线 用实验得到的光电效应的基本规律如下: 1、 光强P 一定时,改变光电管两端的电压AK U ,测量出光电流I 的大小,即可得 出光电管的伏安特性曲线。随AK U 的增大,I 迅速增加,然后趋于饱和,饱和 光电流m I 的大小与入射光的强度P 成正比。 2、 当光电管两端加反向电压时,光电流将逐步减小。当光电流减小到零时,所对 应的反向电压值,被称为截止电压U 0(图2)。这表明此时具有最大动能的光 电子刚好被反向电场所阻挡,于是有 0202 1eU mV =(式中m 、V 0、e 分别为电子的质量、速度和电荷量)。(1) 不同频率的光,其截止电压的值不同(图3)。 3、 改变入射光频率ν时,截止电压U 0随之改变,0U 与ν成线性关系(图4)。实 验表明,当入射光频率低于0ν(0ν随不同金属而异,称为截止频率)时,不论光 的强度如何,照射时间多长,都没有光电流产生。

图3光电管不同频率的伏安特性曲线 图4截止电压U 0与频率ν的关系 4、光电效应是瞬时效应。即使入射光的强度非常微弱,只要频率大于0ν,在开始照射后立即有光电子产生,延迟时间最多不超过910-秒。 经典电磁理论认为,电子从波阵面上获得能量,能量的大小应与光的强度有关。因此对于任何频率,只要有足够的光强度和足够的照射时间,就会发生光电效应,而上述实验事实与此直接矛盾。显然经典电磁理论无法解释在光电效应中所显示出的光的量子性质。 按照爱因斯坦的光量子理论,光能是集中在被称之为光子的微粒上,但这种微粒仍然保持着频率(或波长)的概念,频率为ν的光子具有能量ν=h E ,h 为普朗克常数。当光束照射金属时,是以光粒子的形式打在它的表面上。金属中的电子要么不吸收能量,要么就吸收一个光子的全部能量νh ,而无需积累能量的时间。只有当这能量大于电子摆脱金属表面约束所需的逸出功A 时,电子才会以一定的初动能逸出金属表面。按照能量守恒原理,爱因斯坦提出了著名的光电效应方程: A mV hv +=2021 (2) 式中,A 为金属的逸出功,202 1mV 为光电子获得的初始动能。 由该式可见,入射到金属表面的光频率越高,逸出的电子动能越大。光子的能量A h 0<ν时,电子不能脱离金属,因而没有光电流产生。产生光电效应的最低频率(截止频率)是h A 0=ν。 将(2)式代入(1)式中可得: A h eU 0-ν= (3) )(00v v e h U -= 此式表明截止电压0U 是频率ν的线性函数。只要用实验方法得出不同的频率的截止电压,由直线斜率和截距,就可分别算出普朗克常数h 和截止频率0ν。基于此,在爱因斯坦光量子理论提出约十年后,密立根用实验证实了爱因斯坦的光电效应方程,并精确地测定了普朗克常数。两位物理大师在光电效应等方面的杰出贡献,分别于1921

冉绍尔-汤森效应

冉绍尔-汤森效应 ——验证和测量气体原子散射截面与电子能量的关系 摘要:实验研究发现,电子与气体原子发生碰撞,散射截面的大小与电子的速度有关,惰性气体(Ar、Kr、Xe)原子对电子的弹性散射截面存在极大值与极小值;无论哪种气体原子的弹性散射截面,在低能区都与碰撞电子的能量明显有关,而且相似原子具有相似的行为,称为冉绍尔-汤森效应。冉绍尔-汤森效应是量子力学理论极好的实验验证,通过实验可以研究分析,气体分子对低能电子的弹性散射几率以及散射截面和电子平均自由程与电子能量的关系。 关键词:电子能量散射截面充气闸流管加速电压室温与液氮条件 实验历史背景:早在1921年,德国物理学家冉绍尔用磁偏转法分离出单一速度的电子,对极低能量0.75~1.1eV的电子在各种气体中的平均自由程作了研究。结果发现,Ar气中的平均自由程远大于经典热力学的理论计算值。惰性气体(主要讨论Ar)原子对电子的弹性散射截面在10eV左右存在极大值;同时在能量约为0.37eV时,电子的自由程出现极大值;在能量降到约0.2eV时,Ar的散射截面呈现极小值,且接近于零。无论哪种气体原子的弹性散射截面,在低能区都与碰撞电子的能量明显有关,而且相似原子具有相似的行为。 在经典理论中,散射截面与电子的运动速度无关,而冉绍尔与汤森的实验结果表明它们是相关的,需要用量子力学理论作出合理解释。 左图为氩、氪、氙的冉绍尔曲线

实验原理: 1.散射截面 设想B粒子杂乱分布在一个很薄的平面层上,单位面积上平均有n个粒子,当一个A粒子垂直入射到这一平面层,可能会通过与B粒子的相互作用而离开入射束。将这一事件的发生概率记为P,定义散射截面:σ=P/n . 在厚层下,经过路程x而散射的概率Ps(x)=1-exp(-x/λ).在经典物理学中,粒子的平均自由程等于总散射截面nσ的倒数(λ=1/nσ)。 2.测量原理 测量气体原子总散射截面的原理图 灯丝被加热,电子自阴极逸出,设阴极电流为I k ,电子在加速电压的作用下,有 一部分电子在到达栅极之前,被屏极接收,形成电流I s1 ;有一部分穿越屏极上的 矩形孔,形成电流I ,由于屏极上的矩形孔与板极P之间是一个等势空间,所以电子穿越矩形孔后就以恒速运动,受到气体原子散射的电子则到达屏极,形成散 射电流I s2;而未受到散射的电子则到达板极P,形成透射电流I p . 电子在等势区内的散射概率为: P S =1-I p /I I p 可以直接测得,至于I 则需要用间接的方法测定。由于阴极电流I k 分成两部分 I 0和I s1 ,它们与I k 成比例,定义几何因子f , f= I / I s1 几何因子f是由电极间相对张角及空间电荷效应所决定,即f与管子的几何结构及所用的加速电压、阴极电流有关。由以上2式得到: P S = 1-(1/f)*( I p / I s1 )

(整理)光电效应实验86125

第1章仪器介绍 LB-PH3A光电效应(普朗克常数)实验仪由汞灯及电源、光阑与滤色片、光电管、测试仪(含光电管电源和微电流放大器)构成,实验仪结构如图1所示,测试仪的调节面板如图2所示。 汞灯刻度尺光阑与滤色片光电管 图1 实验仪结构图 图2 测试仪前面板图 LB-PH3A光电效应(普朗克常数)实验仪有以下特点: 1.在微电流测量中采用高精度集成电路构成电流放大器。对测量回路而言,放大器近似于理想电流表,对测量回路无影响。精心设计、精心选择元器件、精心制作,使电流放大器达到高灵敏度、高稳定性,使测量准确度大大提高。 2.采用了新型结构的光电管。由于其特殊结构使光不能直接照射到阳极,由阴极反射到阳极的光也很少,加上采用新型的阴、阳极材料及制造工艺,使得阳极反向电流大大降低,暗电流水平也很低。 3.设计制作了一组高性能的滤色片。保证了在测量一组谱线时无其余谱线的干扰,避免了谱线相互干扰带来的测量误差。 4.由于仪器的稳定性好且无谱线间的相互干扰,测出的I - U特性曲线平滑、重复性好。

5.通过改变实验仪的电压档位的方式,利用光电效应测量普朗克常数、光电管伏—安特性以及验证饱和光电流与入射光强成正比等实验。 6.本仪器可用三种不同方法测量普朗克常数(拐点法、零电流法、补偿法),因此有较好的可比性。 7.采用上述测量方法,不但使得U0测量快速、重复性好,而且据此计算出的h误差不大于3 %。 其技术参数如下: 1.微电流放大器: 电流测量范围:10-7 ~ 10-13 A,分6档,三位半数字显示 零漂:开机20分钟后,30分钟内不大于满读数的± 0. 2 %(10-13 A档) 2.光电管工作电源: 电压调节范围:-2 ~ +2 V,-2 ~ +20 V,分两档,三位半数字显示 不稳定度≤0. 1 % 3.光电管: 光谱响应范围:340 ~ 700 nm 最小阴极灵敏度≥1 μA(-2 V≤U AK≤0 V) 阳极:镍圈 暗电流I ≤5 × 10-12 A(-2 V≤U AK≤0 V) 4.滤光片组: 5组,中心波长为:365. 0 nm,404. 7 nm,435. 8 nm,546. 1 nm,578. 0 nm 5.汞灯: 可用谱线:365. 0 nm,404. 7 nm,435. 8 nm,546. 1 nm,578. 0 nm 6.测量误差≤3 % 第2章实验目的与原理 光电效应是,一定频率的光照射在金属表面时,会有电子从金属表面逸出的现象。在光电效应中,光显示出它的粒子性,这种现象对于认识光的本质,具有极其重要的意义。 1887年赫兹发现了光电效应现象,以后又经过许多人的研究,总结出一系列实验规律。由于这些规律用经典的电磁理论无法圆满地进行解释,爱因斯坦于1905年应用并发展了普朗克的量子理论,首次提出了“光量子”的概念,并成功地解释了光电效应的全部规律。十年后,密立根用实验证实了爱因斯坦的光量子理论,精确地测定了普朗克常数。两位物理大师因在光电效应等方面的杰出贡献,分别于1921年和1923年获得诺贝尔物理学奖。光电效应实验和光量子理论在物理学的发展史中具有重大而深远的意义。利用光电效应制成了许多光电器件,在科学和技术上得到了极其广泛的应用。

(2)光电效应的基本规律

(2)光电效应的基本规律 2012-4-3 命题人:邓老师 学号________. 姓名________. 第Ⅰ卷(选择题) 一.选择题 (请将你认为正确的答案代号填在Ⅱ卷的答题栏中,本题共25小题) 1. 已知某单色光的波长为λ,在真空中的传播速度为c,普朗克常量为h,则该电磁波辐射的能量子的值为( ) A.hcλ B. c h λ C. λ h D. λhc 2. 在做光电效应实验中,某金属被光照射发生了光电效应,实验测出了光电子的最大初动能E K 与入射光的频率ν的关系如图所示,由实验图像可求出( ) A.该金属的逸出功 B.该金属的极限频率 C.单位时间内逸出的光电子数 D.普朗克恒量 3. 某金属在一束绿光的照射下发生了光电效应( ) A.若增加绿光的照射强度,则单位时间内逸出的光电子数不变 B.若增加绿光的照射强度,则逸出的光电子最大初动能增加 C.若改用紫光照射,则逸出的光电子的最大初动能增加 D.若改用紫光照射,则单位时间内逸出的光电子数目一定增加 4. 下列说法正确的是( ) A.光的干涉现象说明光具有粒子性,能发生光电效应现象说明光有波动性 B.电磁波谱中波长最长的γ射线,波长最短的是无线电波 C.光子具有波粒二象性,实物粒子只具有粒子性,不具有波动性 D.通常说光波是一种概率波,意思是光子在空间分布的概率是受波动规律支配的 5. 表1给出了各色光在真空中的波长和频率,表2给出了几种金属的极限频率υ0和极限波长λ0,请你判断下列说法正确的是( ) 表1 A.用黄光和绿光照射金属钾表面时都能发生光电效应 B.用绿光照射钾发射出的某光电子P 与用紫光照射钾发射出的某光电子Q 相比,P 的动能一定小于Q 的动 能 C.黄光能使表中的4种金属发生光电效应 D.用蓝光照射铯和钾时,发射出光电子的最大初动能分别为E k 1和E k2,E k 1一定大于E k 2 6. 一束细平行光经过玻璃三棱镜后分解为互相分离的三束光(如图所示),分别照射到相同的金属板a 、b 、c 上,如图所示,已知金属板b 有光电子放出,则可知( ) A.板a 一定不放出光电子 B.板a 一定放出光电子 C.板c 一定不放出光电子 D.板c 一定放出光电子 7. 某单色光从真空射入某介质时( ) A.波长变长,速度变小,光量子能量变小 B.波长变长,速度变大,光量子能量不变 C.波长变短,速度变小,光量子能量不变 D.波长变短,速度变小,光量子能量变大 8. 分别用波长为λ和 34 λ的单色光照射同一金属板,发出的光电子的最大初动能之比为1:2,以h 表示普朗克 常量,c 表示真空中的光速,则此金属板的逸出功为( ) a c b

冉绍尔-汤森效应实验

冉绍尔-汤森效应实验 【摘要】 加速电子与充氙闸流管中的氙原子碰撞,电子被散射,把闸流管先后浸入77K 液氮和在室温下测俩观众的栅极及板极电流。得出散射概率、散射截面与电子能量的关系,低能电子与气体原子的散射几率与电子速度的关系,验证冉绍尔-汤森效应。用量子力学解释这一效应 测量氙原子的电离电位。 【实验原理】 当灯丝加热后,就有电子自阴极逸出,设阴极电流为K I ,电子在加速电压的作用下,有一部分电子在到达栅极之前,被屏极接收,形成电流1S I ;有一部分穿越屏极上的矩形孔,形成电流0I ,由于屏极上的矩形孔与板极P 之间是一个等势空间,所以电子穿越矩形孔后就 以恒速运动,受到气体原子散射的电子则到达屏极,形成散射电流2S I ;而未受到散射 的电子则到达板极P ,形成板流P I ,因此有 10S K I I I += 2 1S S S I I I += 20S P I I I += 电子在等势区内的散射概率为: 01I I P P S - = (1) 可见,只要分别测量出P I 和0I 即可以求得散射几率。从上面论述可知,P I 可以直接测得,至于0I 则需要用间接的方法测定。由于阴极电流K I 分成两部分1S I 和0I ,它们不仅与K I 成比例,而且他们之间也有一定的比例关系,这一比值称为几何因子f ,即有

10 S I I f = (2) 几何因子f 是由电极间相对张角及空间电荷效应所决定,即f 与管子的几何结构及所用的加速电压、阴极电流有关。将式(2)带入(1)式得到 111S P S I I f P - = (3) 为了测量几何因子f ,我们把电子碰撞管的管端部分浸入温度为77K 的液氮中,这时,管内掉气体冻结,在这种低温状态下,气体原子的密度很小,对电子的散射可以忽略不计, 几何因子f 就等于这时的板流*P I 与屏流* S I 之比,即 * * =S P I I f (4) 如果这时阴极电流和加速电压保持与式(1)和(2)时的相同,那么上式中的f 值与式(3)中掉相等,因此有 * * -=P S S P S I I I I P 11 (5) 设L 为出射孔S 到板极P 之间的距离,则 )exp(1QL P S --= (6) 当f<<1时,由(5)、(6)两式得 ??? ? ??-=** P S S P I I I I L Q ln 1 测量不同的加速电压Ea 下的Ps 的值,即可由上式得到总有效散射截面Q 与a E 的关系曲线。 使用直流加速电压的测量线路图

冉绍尔-汤森德效应

冉绍尔——汤森德效应 摘要:冉绍尔——汤森德效应是在研究低能电子的平均自由程时发现的一种气体原子与电子弹性碰撞的散射截面Q与电子能量密切相关的现象。此现象与经典理论相矛盾,需要用量子理论解释。 关键词:散射截面碰撞概率加速电压补偿电压电离电位 一、引言 1921年德国物理学家冉绍尔在研究低能电子的平均自由程时发现:在惰性气体中,当电子的能量降到几个电子伏时,气体原子与电子弹性碰撞的散射截面Q(与平均自由程成反比)迅速减小;当电子能量约为1电子伏时,Q出现极小值,而且接近零。如果继续减少电子能量,则Q迅速增大,这说明弹性散射截面与电子能量密切相关。 1922年英国物理学家汤森德把电子能量进一步降低,用另外的方法研究平均自由程随电子速度变化的情况,也发现类似现象。随后,冉绍尔用实验证明了汤森德的结果。 冉绍尔——汤森德效应在当时无法解释,因为经典理论认为气体原子与电子弹性碰撞的散射截面仅决定于原子的尺寸,而与电子的运动速度无关,只有在波粒二象性和量子力学建立后,这种效应才得到圆满解释。因此冉绍尔——汤森德效应也验证了量子力学的正确性。 图1 惰性气体的冉绍尔曲线 如图1所示的是Xe、Kr、Ar三种惰性气体的冉绍尔曲线。因为电子的速度与加速电压V的平方根成正比,故横坐标采用平方根√V表示,纵坐标为散射截面Q,采用原子单位。由图1可以看出,结构相近的物质,其冉绍尔曲线的形状相似。 二、冉绍尔——汤森德效应的理论描述

在量子力学中,碰撞现象也称作散射现象。粒子的碰撞过程有弹性碰撞与非弹性碰撞两大类。在弹性碰撞过程中,粒子A 以波矢k 2|k|= mE (1) 沿Z 入射到靶粒子B (即散射中心)上,受B 粒子作用偏离原方向而散射,散射程度可用总散射截面Q 表示。 讨论粒子受辏力场弹性散射的情况。取散射中心为坐标原点;设入射粒子与散射中心之间的相互作用势能为U (r ),当r → ∞时,U (r )趋于零,则远离散射中心处的波函数Ψ由入射粒子的平面波Ψ1和散射粒子的球面散射波Ψ2组成 12() ikr ikz r e e f r ψψψθ→∞→+=+ (2) 这里考虑的是弹性散射,所以散射波的能量没有改变,即其波矢k 的数值不变。θ为散射角, 即粒子被散射后的运动方向与入射方向之间的夹角;f(θ)称散射振幅。 总散射截面 220|()|2|()|sin Q f d f d π θπθθθ =Ω=?? (3) 利用分波法求解满足式(3)边界条件的薛定谔方程 2 2 ()2U r E m ψψ??-?+= ??? (4) 可求得散射振幅为 1 ()(21)(cos )sin i e l l l f l P e k δ θθδ∞ == +∑ (5) 从而得到总散射截面 2 00 4(21)sin l l l l Q Q l k π δ ∞ ∞ ====+∑∑ (6) 中心力场中,波函数可表成不同角动量l 的入射波和出射波的相干叠加,l =0, 1, 2…的分波,分别称为s , q , d …分波。势场U (r )的作用仅使入射粒子散射后的每一个分波各自产生相移δl 。δl 可通过解径向方程 2222212(1)()()()0l l d d m l l r R r k U r R r r dr dr r +????+--=???????? (7) 求得,要满足 1()sin()2l l kr l R r kr kr πδ→∞→ -+ (8) 这样,计算散射截在Q 的问题就归结为计算各分波的相移δl ;式(6)中的Q l 为第l 个分波的散射截面。 在冉绍尔-汤森德效应实验里,U (r )为电子与原子之间的相互用势,可以把惰性气体的势场近似地看成一个三维方势阱 ,()0,U r a U r r a -≤?=?>? (9) U 0代表势阱深度,a 表征势阱宽度。对于低能散射,ka <<1,δl 随l 增大而迅速减少,仅需

光电效应物理实验报告

光电效应 实验目的: (1)了解光电效应的规律,加深对光的量子性的理解 (2)测量普朗克常量h。 实验仪器: ZKY-GD-4 光电效应实验仪 1 微电流放大器 2 光电管工作电源 3 光电管 4 滤色片 5 汞灯 实验原理: 原理图如右图所示:入射光照射到光电管阴极K上,产生 的光电子在电场的作用下向阳极A迁移形成光电流。改变外加 电压V AK,测量出光电流I的大小,即可得出光电管得伏安特性曲线。 1)对于某一频率,光电效应I-V AK关系如图所示。从图中 可见,对于一定频率,有一电压V0,当V AK≤V0时,电流为0, 这个电压V0叫做截止电压。 2)当V AK≥V0后,电流I迅速增大,然后趋于饱和,饱和光电流IM的大小与入射光的强度成正比。 3)对于不同频率的光来说,其截止频率的数值不同,如右图:

4) 对于截止频率V0与频率的关系图如下所示。V0与成正比关系。当入射光的频率低于某极限值时,不论发光强度如何大、照射时间如何长,都没有光电流产生。 5)光电流效应是瞬时效应。即使光电流的发光强度非常微弱,只要频率大于,在开始照射后立即就要光电子产生,所经过的时间之多为10-9s的数量级。 实验内容及测量: 1 将4mm的光阑及365nm的滤光片祖昂在光电管暗箱光输入口上,打开汞灯遮光盖。从低到高调节电压(绝对值减小),观察电流值的变化,寻找电流为零时对应的V AK值,以其绝对值作为该波长对应的值,测量数据如下: 波长/nm365577 频率 / 截止电压/V 频率和截止电压的变化关系如图所示:

由图可知:直线的方程是:y= 所以: h/e=× , 当y=0,即时,,即该金属的 截止频率为。也就是说,如果入射光如果频率低于上值时,不管光强多大 也不能产生光电流;频率高于上值,就可以产生光电流。 根据线性回归理论: 可得:k=,与EXCEL给出的直线斜率相同。 我们知道普朗克常量, 所以,相对误差: 2 测量光电管的伏安特性曲线 1)用的滤色片和4mm的光阑 实验数据如下表所示: 4mm光阑 I-V AK的关系 V AK I V AK I V AK I V AK I V AK I V AK I

光电效应实验报告

佛山科学技术学院 实 验 报 告 课程名称 实验项目 专业班级 姓名 学 号 指导教师 成绩 日 期 年 月 日 一、实验目的 1.了解光电效应的规律,加深对光的量子性的理解; 2.测量光电管的伏安特性曲线; 3.学习验证爱因斯坦光电效应方程的实验方法,测量普朗克常数。 二、实验仪器 光电效应(普朗克常数)实验仪(详见本实验附录A ),数据记录仪。 三、实验原理 1.光电效应及其基本实验规律 当一定频率的光照射到某些金属表面时,会有电子从金属表面即刻逸出,这种现象称为光电效应。从金属表面逸出的电子叫光电子,由光子形成的电流叫光电流,使电子逸出某种金属表面所需的功称为该金属的逸出功。 研究光电效应的实验装置示意图如图1所示。GD 为光电管,它是一个抽成真空的玻璃管,管内有两个金属电极,K 为光电管阴极,A 为光电管阳极;G 为微电流计;V 为电压表;R 为滑线变阻器。单色光通过石英窗口照射到阴极上时,有光电子从阴极K 逸出,阴极释放出的光电子在电场的加速作用下向阳极A 迁移形成光电流,由微电流计G 可以检测光电流的大小。调节R 可使A 、K 之间获得连续变化的电压AK U ,改变AK U ,测量出光电流I 的大小,即可测出光电管的伏安特性曲线,如图2(a)、(b)所示。

图2 光电效应的基本实验规律 光电效应的基本实验规律如下: (1)对应于某一频率,光电效应的AK -I U 关系如图2(a)所示。从图中可见,对一定的频率,有一电压0U ,当AK 0U U ≤时,光电流为零,这个相对于阴极的负值的阳极电压0U ,称为截止电压。 (2)当AK 0U U ≥后,I 迅速增加,然后趋于饱和,饱和光电流M I 的大小与入射光的强度P 成正比,如图2(b)所示。 (3)对于不同频率的光,其截止电压的值不同,如图2(a)所示。 (4)截止电压0U 与频率v 的关系如图2(c)所示。0U 与ν成正比。当入射光频率低于某极限值0v (随不同金属而异)时,无论光的强度如何,照射时间多长,都没有光电流产生。 (5)光电效应是瞬时效应。即使入射光的强度非常微弱,只要频率大于0v ,在开始照射后立即有光电子产生,所经过的时间至多为910-秒的数量级。 2.爱因斯坦光电效应方程 上述光电效应的实验规律无法用电磁波的经典理论解释。为了解释光电效应现象,爱因斯坦根据普朗克的量子假设,提出了光子假说。他认为对于频率为ν的光波,每个光子的能量为E h ν=,h 为普朗克常数。当光子照射到金属表面上时,一次性为金属中的电子全部吸收,而无须积累能量的时间。电子把该能量的一部分用来克服金属表面对它的吸引力,另一部分就变为电子离开金属表面后的动能,按照能量守恒原理,爱因斯坦提出了著名的光电效应方程 201 2 h m W νυ=+ (1) 式中,W 为被光线照射的金属材料的逸出功,2 012m υ为从金属逸出的光电子的最大初动能。 由式(1)可知,入射到金属表面的光频率越高,逸出的电子动能越大,所以即使阳极电位比阴极电位低(即加反向电压)时,也会有电子落入阳极形成光电流,直至阳极电位低于截止电压,光电

高中物理光电效应知识点汇总

一、光电效应和氢原子光谱 知识点一:光电效应现象 1.光电效应的实验规律 (1)任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于这个极限频率则不能发生光电效应. (2)光电子的最大初动能与入射光的强度无关,其随入射光频率的增大而增大. (3)大于极限频率的光照射金属时,光电流强度(反映单位时间发射出的光电子数的多少)与入射光强度成正比. (4)金属受到光照,光电子的发射一般不超过10-9 _s. 2.光子说 爱因斯坦提出:空间传播的光不是连续的,而是一份一份的,每一份称为一个光子,光 子具有的能量与光的频率成正比,即:ε=hν,其中h =6.63×10-34 J·s. 3.光电效应方程 (1)表达式:hν=E k +W 0或E k =hν-W 0. (2)物理意义:金属中的电子吸收一个光子获得的能量是hν,这些能量的一部分用来 克服金属的逸出功W 0,剩下的表现为逸出后电子的最大初动能E k =12 mv 2 . 知识点二: α粒子散射实验与核式结构模型 1.卢瑟福的α粒子散射实验装置(如图13-2-1所示) 2.实验现象 绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但少数α粒子发生了大角度偏转,极少数α粒子甚至被撞了回来.如图13-2-2所示. α粒子散射实验的分析图 3.原子的核式结构模型 在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转. 知识点三:氢原子光谱和玻尔理论 1.光谱 (1)光谱:用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱. (2)光谱分类 有些光谱是一条条的亮线,这样的光谱叫做线状谱. 有的光谱是连在一起的光带,这样的光谱叫做连续谱. (3)氢原子光谱的实验规律. 巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R (122-1 n 2)(n =3,4,5,…), R 是里德伯常量,R =1.10×107 m -1,n 为量子数.

2.1-冉绍尔效应

实验冉绍尔—汤森德效应 一、引言 1921年德国物理学家冉绍尔(C. Ramsaüer)在研究低能电子的平均自由程时发现:在惰性气体中,当电子能量降到几个电子伏时,气体原子核电子弹性碰撞的散射截面Q(它与平均自由程λ成反比)迅速减小;当电子能量约为1电子伏时,Q出现极小值,而且接近零。如果继续减小电子能量,则Q迅速增大,这说明弹性散射截面与电子能量密切相关。 1922年英国物理学家汤森德(. Townsend)把电子能量进一步降低,用另外的方法研究λ随电子速度变化的情况,亦发现类似的现象。随后,冉绍尔用实验证实了汤森德的结果。后来,把气体原子的弹性散射截面在低能区与碰撞电子能量密切相关的现象称为冉绍尔—汤森德效应。

冉绍尔—汤森德效应在当时无法解释, 因为经典的气体分子运动把电子看作质点, 把气体原子看作刚性小球,它们之间碰撞的 散射截面仅决定于原子的尺寸,而与电子的 运动速度无关。只有德布罗意波粒二象性假 设和量子力学建立后,这种效应才得到圆满 的理论解释。因此,冉绍尔—汤森德效应称 为量子力学理论极好的实验佐证。 图1是Xe,Kr,Ar三种惰性气体的冉绍尔曲线。因为电子速度与加速电压V的平方根成正比,故横坐标用V表示,纵坐标为散射截面Q,采用原子单位。由此可见,结构相近的物质,其冉绍尔曲线的形状相似。 二、实验目的 1. 通过测量氙原子与低能电子的弹性散射几率,考察弹性散射截面与电子能量的关系,了解有关原子势场的信息。 2. 学习研究低能电子与气体弹性散射所采用的实验方法。 三、实验原理

1. 冉绍尔—汤森德效应的理论描述 在量子力学中,碰撞现象也称为散射现象。离子的碰撞过程有弹性碰撞和非弹性碰撞两大类。 在弹性碰撞过程中,粒子A 以波矢k ( mE 2= k )沿Z 方向入射到靶粒子B (即散射中心)上,受B 粒子作用偏离原方向而散射,散射程度可用总散射截面Q 表示。 讨论粒子受中心力场弹性散射的情况。取散射中心为坐标原点;设入射粒子与散射中心之间的相互作用势能为U (r )。当r →∞时,U (r )趋于零。则远离散射中心处的波函数Ψ由入射粒子的平面波Ψ1和散射粒子的球面散射波Ψ2组成 ()r e f e ΨΨΨikr ikz r θ+=+??→?∞→21 这里考虑的是弹性散射,所以散射波的能量没有改变,即其波矢k 的数值不变。θ称为散射角,即粒子被散射后的运动方向与入射方向之间的夹角;f (θ)称为散射振幅。 总散射截面 ()?Ω=d 2 θf Q 利用分波法求解满足前式边界条件的薛定谔方程

光电效应实验规律的理解

光电效应实验规律的理解 1.有一束紫外线照射某金属时不能产生光电效应,可能使金属产生光电效应的措施是() A.改用频率更小的紫外线照射 B.改用X射线照射 C.改用强度更大的原紫外线照射 D.延长原紫外线的照射时间 答案B 2.(多选)已知某金属发生光电效应的截止频率为νc,则() A.当用频率为2νc的单色光照射该金属时,一定能产生光电子 B.当用频率为2νc的单色光照射该金属时,所产生的光电子的最大初动能为hνc C.当照射光的频率ν大于νc时,若ν增大,则逸出功增大 D.当照射光的频率ν大于νc时,若ν增大一倍,则光电子的最大初动能也增大一倍 答案AB 解析该金属的截止频率为νc,则可知逸出功W0=hνc,逸出功由金属自身性质决定,与照射光的频率无关,因此C错误;由光电效应的实验规律可知A正确;由光电效应方程E k=hν-W0,将W0=hνc代入可知B正确,D错误. 3.用光照射某种金属,有光电子从金属表面逸出,如果光的频率不变,而减弱光的强度,则() A.逸出的光电子数减少,光电子的最大初动能不变 B.逸出的光电子数减少,光电子的最大初动能减小 C.逸出的光电子数不变,光电子的最大初动能减小 D.光的强度减弱到某一数值,就没有光电子逸出了 答案A 解析光的频率不变,表示光子能量不变,仍会有光电子从该金属表面逸出,逸出的光电子的最大初动能也不变;而减弱光的强度,逸出的光电子数就会减少,选项A正确. 4.(多选)如图1所示,电路中所有元件完好,但光照射到光电管上,灵敏电流计中没有电流通过,其原因可能是() 图1 A.入射光太弱 B.入射光波长太长

C.光照时间短 D.电源正、负极接反 答案BD 解析入射光波长太长,入射光的频率低于截止频率时,不能发生光电效应,故选项B正确;电路中电源反接,对光电管加了反向电压,若该电压超过了遏止电压,也没有光电流产生,故选项D正确.

冉绍尔-汤姆森效应实验

中国石油大学 近代物理 实验报告 成绩: 冉绍尔-汤姆森效应实验 【实验目的】 1、 了解电子碰撞管的设计原则,掌握电子与原子的碰撞规则和测量的原子散射截面的方法。 2、 测量低能电子与气体原子的散射几率Ps 与电子速度的关系。 3、 测量气体原子的有效弹性散射截面Q 与电子速度的关系,测定散射截面最小时的电子能量。 4、 验证冉绍尔-汤森效应,并学习用量子力学理论加以解释。 【实验原理】 一、理论原理 冉绍尔对各种气体进行了测量,发现无论哪种气体的总有效散射截面都和碰撞电子的速度有关。它们的总有效散射截面对电子速度的关系曲线V F Q =(V 为加速电压值)具有相同的形状,称为冉绍尔曲线。要解释冉绍尔效应需要用到粒子的波动性质,即把电子与原子的碰撞看成是入射粒子在原子势场中的散射,其散射程度用总散射截面来表示。 二、测量原理 图B8-3 测量气体原子总散射截面的原理图 当灯丝加热后,就有电子自阴极逸出,设阴极电流I K ,加速电压的作用下,部分电子在到达栅极之前,被屏极接收,形成电流I S1;部分穿越屏极形成电流I 0,由于屏极与板极P 之间是一个等势空间,所以电子穿越矩形孔后就以恒速运动,受到气体原子散射的电子则到达屏极,形成散射电流I S2;而到达板极P 形成板流I P ,因此有10S K I I I +=; 21S S S I I I +=;20S P I I I +=。电子在等势区内的散射概率为0 1I I P P S - =。 另外??? ? ??++- =- =f I I I I I f P S P P S P S 111111 ,1 S I I f = 。

光电效应实验报告

佛山科学技术学院 实验报告 课程名称实验项目 专业班级姓名学号 指导教师成绩日期年月日 一、实验目的 1.了解光电效应的规律,加深对光的量子性的理解; 2.测量光电管的伏安特性曲线; 3.学习验证爱因斯坦光电效应方程的实验方法,测量普朗克常数。 二、实验仪器 光电效应(普朗克常数)实验仪(详见本实验附录A),数据记录仪。 三、实验原理 1.光电效应及其基本实验规律 当一定频率的光照射到某些金属表面时,会有电子从金属表面 即刻逸出,这种现象称为光电效应。从金属表面逸出的电子叫 光电子,由光子形成的电流叫光电流,使电子逸出某种金属表 面所需的功称为该金属的逸出功。 研究光电效应的实验装置示意图如图1所示。GD为光电管,它 是一个抽成真空的玻璃管,管内有两个金属电极,K为光电管阴 极,A为光电管阳极;G为微电流计;V为电压表;R为滑线变 阻器。单色光通过石英窗口照射到阴极上时,有光电子从阴极K 逸出,阴极释放出的光电子在电场的加速作用下向阳极A迁移 形成光电流,由微电流计G可以检测光电流的大小。调节R可使A、K之间获得连续变化的电压AK U,改变 AK U,测量出光电流I的大小,即可测出光电管的伏安特性曲线,如图2(a)、(b)所示。 图2 光电效应的基本实验规律 光电效应的基本实验规律如下: (1)对应于某一频率,光电效应的 AK -I U关系如图2(a)所示。从图中可见,对一定的频率,有一 图1 光电效应实验示意图

实验原理(原理文字叙述和公式、原理图)四.实验步骤五、实验数据和数据处理六.实验结果七.分析讨论(实验结果的误差来源和减小误差的方法、实验现象的分析、问题的讨论等)八.思考题

冉绍尔-汤姆森效应实验

中国石油大学近代物理实验报告成绩: 班级:姓名:同组者:教师: 实验B8 冉绍尔-汤姆森效应实验 【实验目的】 1、了解电子碰撞管的设计原则,掌握电子与原子的碰撞规则和测量的原子散射截面的方法。 2、测量低能电子与气体原子的散射几率Ps与电子速度的关系。 3、测量气体原子的有效弹性散射截面Q与电子速度的关系,测定散射截面最小时的电子能量。 4、验证冉绍尔-汤森效应,并学习用量子力学理论加以解释。 【实验原理】 一、理论原理 冉绍尔在研究极低能量电子(0.75eV—1.1eV)的平均自由程时,发现氩气中电子自由程比用气体分子运动论计算出来的数值大得多。后来,把电子的能量扩展到一个较宽的范围内进行观察,发现氩原子对电子的弹性散射总有效截面Q随着电子能量的减小而增大,约在10eV附近达到一个极大值,而后开始下降,当电子能量逐渐减小到1eV左右时,有效散射截面Q出现一个极小值。也就是说,对于能量为1eV左右的电子,氩气竟好像是透明的。电子能量小于1eV以后Q再度增大。此后,冉绍尔又对各种气体进行了测量,发现无论哪种气体的总有效散射截面都和碰撞电子的速度有关。并且,结构上类似的气体原子或分子,它们的总有效散射截面对电子速度的关系曲线Q (V为加速电压值)具有相同的形状,称为冉绍尔曲线。图B8-1为氙(Xe),氪(Ke),氩(Ar)三种V F 惰性气体的冉绍尔曲线。图中横坐标是与电子速度成正比的加速电压平方根值,纵坐标是散射截面Q值,这里采用原子单位,其中a0为原子的玻尔半径。图中右方的横线表示用气体分子运动论计算出的Q值。显然,用两个钢球相碰撞的模型来描述电子与原子之间的相互作用是无法解释冉绍尔效应的,因为这种模型得出的散射截面与电子能量无关。要解释冉绍尔效应需要用到粒子的波动性质,即把电子与原子的碰撞看成是入射粒子在原子势场中的散射,其散射程度用总散射截面来表示。 图B8-1 Xe、Kr、H气体对电子的散射截面 二、测量原理

相关文档
最新文档