变频技术在热电厂循环泵上的应用及控制

变频技术在热电厂循环泵上的应用及控制
变频技术在热电厂循环泵上的应用及控制

变频技术在热电厂循环泵上的应用及控制

摘要:本文介绍变频器在热电厂循环水泵上的应用及控制,并通过山东丰源电力有限公司应用实例,采用变频调速来说明变频器在循环水泵上应用后取得的效果。

关键词:变频技术循环水泵控制

1、引言

山东丰源电力有限公司有四台循环水泵,其出口节门采用蝶阀,只有全开全关两个位置,冷却水流量调节采用开泵台数进行控制,由于季节及昼夜的温度差异,时常出现开两台流量不够,开三台流量过大的情况,不能保证汽轮机在经济运行方式下运行,同时浪费了大量电能和水资源,因此,山东丰原通达电力有限公司在循环泵上加装变频调节,控制方便,调节灵活,不仅很好的调节循环泵出口流量,还节约了能量,收到了良好的效果。

2、热电厂对循环泵的工况要求

山东丰源电力有限公司汽轮机尾部有一个冷凝器,用以冷却气轮机尾部蒸汽温度。蒸汽遇冷,形成真空,使气轮机蒸汽入口处与出口处压差增大,提高发电效率。在冷热交换循环供水系统中,是由循环水泵实现水资源的循环利用的,经热交换后的热水进入冷却塔进行冷却,使其水温降至允许值,然后又重复将冷却水输入凝汽器而循环使用,由于机组负荷经常变化,需要及时调整循环水流量,以保证机组的安全经济运行。即使在同一负荷的情况下,不同的外部环境也使得循环水流量的需求不同,就需要不断地调节循环泵的流量,达到汽机运行的要求。因此,热电厂循环泵加装变频调节很有必要。

3、循环水泵控制方案

循环泵由原来的直接工频运行改为变频器运行方式,节能、安全;根据冷凝器内真空度调整水流速,即调整循环泵转速,以改变冷凝器盘管中冷水的流量,从而改变冷却能力,以达到调节真空度的效果,实现经济稳定运行。

4、循环水泵工频运行方式下的缺点

接触器故障多:循环水泵频繁启动,接触器也频繁启动,减小了接触器的使用寿命。启动冲击大:电机启动时的电流比设计额定电流要大许多,且启动时间较常。

5、循环水泵加装变频改造

5.1循环水泵电机一次回路改造

变频器矢量控制的优点及应用

变频器矢量控制的优点及应用 矢量控制原理--应用采用矢量控制方式的通用变频器不仅可在调速范围上与直流电动机相匹配,而且可以控制异步电动机产生的转矩。由于矢量控制方式所依据的是准确的被控异步电动机的参数,有的通用变频器在使用时需要准确地输入异步电动机的参数,有的通用变频器需要使用速度传感器和编码器。鉴于电机参数有可能发生变化,会影响变频器对电机的控制性能,并根据辨识结果调整控制算法中的有关参数,从而对普通的异步电动机进行有效的矢量控制。 异步电动机矢量控制变频调速系统的开发,使异步电动机的调速可获得和直流电动机相媲美的高精度和快速响应性能。异步电动机的机械结构又比直流电动机简单、坚固,且转子无碳刷滑环等电气接触点,故应用前景十分广阔。现将其优点和应用范围综述如下:1、矢量控制系统的优点:动态的速响应直流电动机受整流的限制,过高的di/dt是不容许的。异步电动机只受逆变器容量的限制,强迫电流的倍数可取得很高,故速度响应快,一般可达到毫秒级,在快速性方面已超过直流电动机。 低频转矩增大一般通用变频器(VVVF控制)在低频时转矩常低于额定转矩,在5Hz以下不能带满负载工作。而矢鱿控制变频器由于能保持磁通恒定,转矩与it呈线性关系,故在极低频时也能使电动机的转矩高于额定转矩。 控制的灵活性直流电动机常根据不同的负载对象,选用他励、串励、复励等形式。它们各有不同的控制特点和机械特性。而在异步电动机矢量控制系统中,可使同一台电动机输出不同的特性。在系统内用不同的函数发生器作为磁通调节器,即可获得他励或串励直流电动机的机械特性。 使用矢量控制,可以使电机在低速,如(无速度传感器时)1Hz(对4极电机,其转速大约为30r/min)时的输出转矩可以达到电机在50Hz供电输出的转矩(最大约为额定转矩的150%)。 对于常规的V/F控制,电机的电压降随着电机速度的降低而相对增加,这就导致由于励磁

变频技术的发展趋势及其应用

变频技术的发展趋势及 其应用 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

变频技术的发展趋势及其应用 0引言 在工业生产及国计民生中电机的使用十分广泛,电机的传动方式一般分为直流电机传动及交流电机传动。过去由于交流电机实现调速较困难或某些调速方式低效不够理想,因而长期以来在调速领域大多采用直流电机,而交流电动机的优点在调速领域中未能得到发挥。交流电动机的调速方式一般有以下三种。 1)变极调速是通过改变电动机定子绕组的接线方式以改变电机极数实现调速,这种调速方法是有级调速,不能平滑调速,而且只适用于鼠笼电动机。 2)改变电机转差率调速其中有通过改变电机转子回路的电阻进行调速,此种调速方式效率不高,且不经济。其次是采用滑差调速电机进行调速,调速范围宽且能平滑调速,但这种调速装置结构复杂(一般由异步电机、滑差离合器和控制装置三部分组成),滑差调速电机是在主电机转速恒定不变的情况下调节励磁实现调速的,即便输出转速很低,而主电机仍运行在额定转速,因此耗电较多,另外励磁和滑差部分也有效率问题和消耗问题。较好的转差率调速方式是串级调速。3)变频调速通过改变电机定子的供电频率,以改变电机的同步转速达到调速的目的,其调速性能优越,调速范围宽,能实现无级调速。 目前我国生产现场所使用的交流电动机大多为非调速型,其耗能十分惊人。如采用变频调速,则可节约大量能源。这对提高经济效益具有十分重要的意义。 1变频调速技术的发展 上世纪50年代末,由于晶闸管(SCR)的研究成功,电力电子器件开始运用于工业生产,可控整流直流调速便成了调速系统中的主力军。但由于直流电机结构复

交流变频调速技术发展的现状及趋势

交流变频调速技术发展的现状及趋势 概述 交流电动机变频调速技术是在近几十年来迅猛发展起来的电力拖动先进技术,其应用领域十分广泛。为了适应科技的发展,将先进技术推广到生产实践中去,交流变频调速技术已成为应用型本科、高职高专电类专业的必修或选修课程。 变频调速技术概述,常用电力电子器件原理及选择,变频调速原理,变频器的选择,变频调速拖动系统的构建,变频技术应用概述,变频器的安装、维护与调试和变频器的操作实验。 在理论上以必需、够用为原则;精心选材,努力贯彻少而精、启发式的教学思想; 变频调速技术是一种以改变交流电动机的供电频率来达到交流电动机调速目的的技术。大家知道,从大范围来分,电动机有直流电动机和交流电动机。由于直流电动机调速容易实现,性能好,因此,过去生产机械的调速多用直流电动机。但直流电动机固有的缺点是,由于采用直流电源,它的滑环和碳刷要经常拆换,故费时费工,成本高,给人们带来不少的麻烦。因此人们希望,让简单可靠价廉的笼式交流电动机也能像直流电动机那样调速。这样就出现了定子调速、变极调速、滑差调速、转子串电阻调速和串极调速等交流调速方式;由此出现了滑差电机、绕线式电机、同步式交流电机。但其调速性能都无法和直流电动机相比。直到20世纪80年代,由于电力电子技术、微电子技术和信息技术的发展,才出现了变频调速技术。它的出现就以其优异的性能逐步取代其他交流电动机调速方式,乃至直流电动机调速系统,而成为电气传动的中枢。 要学习交流电动机的变频调速技术,必须有电力拖动系统的知识。因此,先温习电力拖动系统的基础知识。电力拖动系统由电动机、负载和传动装置三部分组成。描写电力拖动系统的物理量主要是转速,n和转矩T(有时也用电流,因转矩和电动机的电枢电流成正比)。两者之间的关系式称为机械特性。 交流电动机是电力拖动系统中重要的能量转换装置,用来实现将电能转换为机械能。长期以来人们一直在寻求对电动机转速进行调节和控制的方法,起初由于直流调速系统的调速性能优于交流调速系统,直流调速系统在调速领域内长期占居主导地位。 变频调速是通过变频器来实现的,对于变频器的容量确定至关重要。合理的容量选择本身就是一种节能降耗措施。根据现有资料和经验,比较简便的方法有三 种 对于可调速的电力拖动系统,工程上往往根据电动机电流形式分为直流调速系统和交流调速系统两类。它们最大的不同之出主要在于交流电力拖动免除了改变直流电机电流流向变化的机械向器——整流子。 20世纪70年代后,大规模集成电路和计算机控制技术的发展,以及现代控制理论的应用,使得交流电力拖动系统逐步具备了宽的调速范围、高的稳速范围、高的稳速精度、快的动态响应以及在四象限作可逆运行等良好的技术性能,在调速性能方面可以与直流电力拖动媲美。在交流调速技术中,变频调速具有绝对优

矢量控制变频器工作原理

矢量控制是20世纪70年代由前西德Blaschke等人首先提出来的对交流电动机的一种新的控制思想和控制技术,也是交流电动机的一种理想的调速方法。矢量控制的基本思想是将异步电动机的定子电流分为产生磁场的电流分量(励磁电流)和与其相垂直的产生转矩的电流分量(转矩电流)并分别加以控制。由于在这种控制方式中必须同时控制异步电动机定子电流的幅值和相位,即控制定子电流矢量,因此这种控制方式称为矢量控制方式。 矢量控制方式使对异步电动机进行高性能的控制成为可能。采用矢量控制方式的交流调速系统不仅在调速范围上可以与直流电动机相匹敌,而且可以直接控割异步毫乏t产生的转矩。所以已经在许多需要进行精密控制的领域得到了应用。 由于在进行矢量控制时需要准确地掌握对象电动机的有关参数,这种控制有式芝云主要用于厂家指定的变频器专用电动机的控制。但是,随着变频调速理论和技术的发曩以及现代控制理论在变频器中的成功应用,目前在新型矢量控制变频器中已经增加了自调整(autotuning)功能。带有这种功能的变频器在驱动异步电动机进行正常运转之前可以自动地对电动机的参数进行辨识并根据辨识结果调整控制算法中的有关参数,从而使得对普通的异步电动机进行有效的矢量控制也成为可能。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/3616201992.html,/

交流及变频调速技术试卷及答案

交流及变频调速技术 一、选择题;(20分) 1、正弦波脉冲宽度调制英文缩写是(A )。 A:PWM B:PAM C:SPWM D:SPAM 2、对电动机从基本频率向上的变频调速属于( A)调速。 A:恒功率 B:恒转矩 C:恒磁通 D:恒转差率 3、下列哪种制动方式不适用于变频调速系统( C)。 A:直流制动 B:回馈制动 C:反接制动 D:能耗制动 4、对于风机类的负载宜采用( A)的转速上升方式。 A:直线型 B:S型 C:正半S型 D:反半S型 5、N2系列台安变频器频率控制方式由功能码(C )设定。 A:F009 B:F010 C:F011 D:F012 6、型号为N2-201-M的台安变频器电源电压是( A)V。 A: 200 B:220 C:400 D:440 7、三相异步电动机的转速除了与电源频率、转差率有关,还与(B )有关系。 A:磁极数 B:磁极对数 C:磁感应强度 D:磁场强度 8、目前,在中小型变频器中普遍采用的电力电子器件是(D )。 A:SCR B:GTO C:MOSFET D:IGBT 9、IGBT属于(B )控制型元件。 A:电流 B:电压 C:电阻 D:频率 10、变频器的调压调频过程是通过控制( B)进行的。 A:载波 B:调制波 C:输入电压 D:输入电流 二:填空题(每空2分,20分) 1.目前变频器中常采用 IGBT 作为主开关器件。 2.三相异步电动机拖动恒转矩负载进行变频调速时,为了保证过载能力和主磁通不变,则U1应 随f1 U1\F1=常数按规律调节。 3.矢量控制的规律是 3/2变换、矢量旋转变换、坐标变换。 4.变频调速系统的抗干扰措施有: 合理布线,消弱干扰源,隔离干扰,准确接地 三:判断题(10分) ( 对 )1. 变频器的主电路不论是交-直-交变频还是交-交变频形式,都是采用电力电子器。( 错 )2.电流型变频器多用于不要求正反转或快速加减速的通用变频器中。 ( 对 )3. 变频器调速主要用于三相异步电动机。

PWM变频控制技术

PWM 变频控制技术 变频调速原理 变频器工作原理:变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。在诸多交流异步电动机调速技术中,如调压调速、变极调速、串级调速、滑差调速、变频调速等,其中由于变频调速具有的优点: (1)调速时平滑性好,效率高; (2)调速范围较大,精度高; (3)起动电流低,对系统及电网无冲击,节电效果明显; (4)易于实现过程自动化; 因此,变频调速技术是当前应用最广泛的一种调速技术。在中小功率的变频调速系统中使用最多的变压变频调速,简称U/F 控制,相应的变频调速控制器为电压源型变频调速器(VSI )。由电机学知识可知异步电动机的转速与电源频率有以下关系: )1(60s p f n -= (2-1) 式中:n —电机的转速(r/min ); p —磁极对数; s —转差率(%); f —电源频率(Hz )。 从式(2-1)可以看出,改变电源频率就可以改变电机转速。另外,根据的电势公式知道,外加电压近似地与频率和磁通的乘积成正比。即 φf C E U 1≈∝ (2-2) 式中C 1为常数。因此有: f U f E =∝φ (2-3) 若外加电压不变,则磁通随频率而改变,如频率下降,磁通会增加,造成磁路饱和,励磁电流增加,功率因数下降,铁心和线圈过热,显然这是不允许的。为此,要在降频的同时还要降压,这就要求频率与电压协调控制。此外,在很多场合为了保持在调速时,电动机产生最大转矩不变,也需要维持磁通不变,这亦由频率和电压协调控制来实现。通过改变异步电动机的供电频率,从而可以任意调节电机转速,实现平滑的无级调速。 SPWM 模式下交直交变频器工作原理 SPWM 波形就是在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。当正弦值为最大值时,脉冲的宽度一也最大,而脉冲间的间隔则最小。反之,当正弦值较小时,脉冲的宽度也小,而脉冲间的间隔则较大,如图所示。这样的电压脉冲系列可以使负载电流中的谐波成分大为减小,

变频器矢量控制的基本原理分析

变频器矢量控制的基本原理分析 矢量控制的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。基于转差频率控制的矢量控制方式同样是在进行U/f=恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。 无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。它的基本控制思想是根据输入的电动机的铭牌参数,按照一定的关系式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。

变频调速技术及应用复习提纲概要

复习提纲 1、根据公式,说明交流异步电动机和同步电动机调速的方法各有哪些? 交流电机同步转速 交流感应电机转速 交流异步电动机调速的方法:(1)变频调速(2)变极调速(3)变转差率调速 第一:改变感应电机的极对数p ,从而改变电动机的转速。这种方法只能一级一级地调速,不能平滑调节,而且电机体积较大,接线复杂,电机运行性能较差; 第二:改变感应电机转差率s 。绕线式感应电动机通过在转子中外加调速电阻,实现改变转差率,使得转速改变。缺点是调速电阻需要消耗一定能量,绕线式电动机结构较复杂,适用于中小容量电动机; 第三:改变电源频率f1。通过改变电源频率来改变交流电动机转速。是当前应用最广泛的交流调速技术。既适用于同步电机,也适用于感应电机。 交流同步电机转速 只有变频调速 根据交流异步电机的转速公式 n=n1(1-s)=60f1/p(1-s) 可知:交流异步电动机有以下三种基本调速方法: (1)改变定子极对数p 调速。 (2)改变电源频率f1调速。 (3)改变转差率s 调速。 ()()116011=-=-f n n s s p 1160=f n p 1160=f n p

2、按电动机能量类型可将异步电机调速分为几种类型? (1)转差功率消耗型调速系统 (2)转差功率馈送型调速系统 (3)转差功率不变型调速系统 3、现代交流调速系统由哪些部分组成? 现代交流调速系统的组成 4、目前应用最多、最广泛的交流调速方法是哪种?主要应用于哪些场合? 变频调速:改变电源频率f1。通过改变电源频率来改变交流电动机转速。是当前应用最广泛的交流调速技术。既适用于同步电机,也适用于感应电机。5、叙述异步电动机工作原理、铭牌的意义、旋转方向等 工作原理: 三相交流异步电动机工作原理:(1)当三相异步电机接入三相交流电源时,三相定子绕组流过三相对称电流产生的三相磁动势(定子旋转磁动势)并产生旋转磁场。(2)该旋转磁场与转子导体有相对切割运动,根据电磁感应原理,转子导体产生感应电动势并产生感应电流。(3)根据电磁力定律,载流的转子导体在磁场中受到电磁力作用,形成电磁转矩,驱动转子旋转,当电动机轴上带机械负载时,便向外输出机械能。电机的转速(转子转速)小于旋转磁场的转速,从而叫为异步电机。它和感应电机基本上是相同的。s=(ns-n)/ns。s为转差率,ns为磁场转速,n为转子转速。 三相异步电动机的转速永远低于旋转磁场的同步转速,使转子和旋转磁场间有相对运动,从而保证转子的闭合导体切割磁力线,感生电流,产生转矩。转速的差异是异步电机运转的必要条件。在额定情况下,转子转速一般比同步转速低2-5%。

变频调速技术

变频调速技术是一种以改变交流电动机的供电频率来达到交流电动机调速目的的技术,电力拖动系统由电动机、负载和传动装置。 直流电动机的工作原理:直流有2个独立绕组。定子和转子,定子绕组通入直流电,产生稳恒磁场,转子绕组通直流电,产生稳恒电流,定子的稳恒磁场和转子的电流相互作用,产生机械转矩,拖动转子旋转,且此机械转矩分别和定子的稳恒磁场和转子的电流成正比。直流电动机的调速特性:因为直流电机的定子路和转路相互独立,可以分别调节定子磁场的强弱和转子电流的大小,两者相互作用产生的机械转矩分别和定子的稳恒磁场和转子电流成正比。直流电动机的调速方法:调压调速,在额定转速以上弱磁调速,电枢电路串电阻r 调速。 三相异步交流电动机原理:定子绕组通入相位差为120的三相对称的交流电,产生不变磁场,此旋转磁场切割笼型导体,在转子中感应出电流,旋转磁场和感电流作用,产生机械转矩,拖动转子旋转。方法。。调频,改变磁极对数,改变转差率。 电力电子器件有哪些?SCR(可控硅)GTO(门极可关断晶闸管)IGBT(绝缘栅型双极型晶体管)IGCT(集成门极换流晶闸管)MOSFET(金属氧化物场效应管)SIT(静电感应晶体管)SITH (静电感应晶闸管) 晶闸管导通时必须同时具备的两个条件:1晶闸管的阳极A和阴极K之间加正向电压2晶闸管的门极G和阴极K之间加正向触发电压,具有足够的门极电流。 为什么说电力电子器件的发展是变频器发展的基础?变频器的逆变部分都基于允许通过电流大、耐受电压很高的器件。电力电子器件在逆变电路中主要用作开关使用,能够承受足够大的电压和电流而且可以频繁的开关,控制方便。晶闸管的特性,单向导电和正向导通,没有自关断能力。 IGBT的特性。1输入阻抗高,开关速度快,用作变频器件会使变频器的载波频率也较高。2开关波形比较平滑,电动机基本无电磁噪声,电动机的转矩增大3驱动电路简单,已经集成化4通态电压低,能承受高电压、大电流等5能耗小6增强了对常见故障的自处理能力,故障率大为减少。在瞬间断电时,驱动电源的电压衰减较慢,整个管子不易因进入放大区而损坏。 交流异步电动机变频调速原理。变频调速的最大特点是由三相异步电动机的转速公式n=(1-s)*60f/p知道,调节了三相交流电的频率,也就调节了同步转速,也就调节了异步电动机转子的转速。特点:电动机从高速到低速,其转速差率失踪保持最小的数值,因此变频调速时,异步电动机的功率因数都很高。 变频调速系统的控制方式。1在基频以下调速:保持气隙磁场最大值φm不变,让频率f1从基频f1N往下调,必须同时降低E1,使E1/f1保持不变,为变量,但定子绕组的感应电势不容易控制。可以通过控制U1/f1=常量的方式来控制E1/f1不变,达到调频调速的目的2在基频以上调速:让频率f1从基频f1N往上调时,不可能继续保持E1/f1的值不变,因电压U1不能超过额定电压U1N。这时,只能保持电压U1不变,结果是:使气隙磁通最大值φm随频率升高而降低,电动机的同时转速升高,最大转矩减少,输出功率基本不变。所以,基频以上调速属于弱磁恒功率调速。 SPWM型脉冲调制原理。在开关原件的控制端加上两种信号:三角载波uc和正弦调制波ur,当正弦调制波ur的值在某点上大于三角载波uc的值时,开关元件导通,输出矩形脉冲;反之,开关元件截止。改变正弦调制波ur的幅值,可以改变输出电压脉冲的宽窄,从而改变输出电压的相应时间间隔内的平均值的大小;改变正弦调制波ur的频率,可以改变输出电压的频率。变频器多采用SPWM控制原因:对于三厢逆变器,必须要有一个能产生相位上互差120°的三相变频变幅的正弦调制波发生器。载波三角波可以共享。逆变器输出三相频率和幅值都可以调节的脉冲波。

变频器的VF控制与矢量控制

变频器的V/F控制与矢量控制 U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。 V/F控制与矢量都是恒转矩控制。U/F相对转矩可能变化大一些。而矢量是根据需要的转矩来调节的,相对不好控制一些。对普通用途。两者一样。 1、矢量控制方式 矢量控制,最简单的说,就是将交流电机调速通过一系列等效变换,等效成直流电机的调速特性,就这么简单,至于深入了解,那就得深入了解变频器的数学模型,电机学等学科。 矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制。 在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。具体做法是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 2、V/F控制方式 V/F控制,就是变频器输出频率与输出电压的比值为恒定值或成比例。例如,50HZ时输出电压为380V的话,则25HZ时输出电压为190V。 变频器采用V/F控制方式时,对电机参数依赖不大,V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但是这种变

变频调速及其控制技术的现状与发展趋势

变频调速及其控制技术的现状与发展趋势 摘要:变频调速技术以其卓越的调速性能、显著的节电效果在各个领域得到广泛的应用,为节能降耗、改善控制性能、提高产品的产量和质量提供了重要手段。本文首先回顾了变频调速技术的发展历史和现状,然后总结了变频调速中的关键控制技术,并介绍了智能控制理论在变频调速系统中的应用情况,最后指出了变频调速技术的发展趋势。 关键字:变频调速技术矢量控制异步电动机PWM技术智能控制 1变频调速技术的发展历史及现状 变频调速技术涉及到电力、电子、电工、信息与控制等多个学科领域。随着电力电子技术、计算机技术和自动控制技术的发展,以变频调速为代表的近代交流调速技术有了飞速的发展。交流变频调速传动克服了直流电机的缺点,发挥了交流电机本身固有的优点(结构简单、坚固耐用、经济可靠、动态响应好等),并且很好地解决了交流电机调速性能先天不足的问题。交流变频调速技术以其卓越的调速性能、显著的节电效果以及在*****领域的广泛适用性,而被公认为是一种最有前途的交流调速方式,代表了电气传动发展的主流方向。交流调速技术为节能降耗、改善控制性能、提高产品的产量和质量提供了至关重要的手段。变频调速理论已形成较为完整的科学体系,成为一门相对独立的学科。变频装置有交-直-交系统和交-交系统两大类。

交-直-交系统又分为电压型和电流型,其中,电压型变频器在工业中应用最为广泛。本文所涉及的就是此类变频调速理论和技术。 20世纪是电力电子变频技术由诞生到发展的一个全盛时代。最初的交流变频调速理论诞生于20世纪20年代,直到60年代,由于电力电子器件的发展,才促进了变频调速技术向实用方向发展。70年代席卷工业发达国家的石油危机,促使他们投入大量的人力、物力、财力、去研究高效率的变频器,使变频调速技术有了很大的发展并得到推广应用。80年代,变频调速已产品化,性能也不断提高,发挥了交流调速的优越性,广泛地应用于工业各部门,并且部分取代了直流调速。进入90年代,由于新型电力电子器件如IGBT(绝缘栅双极晶体管Insolated Gate Bipolar Transistor),IGCT(集成门极换向型晶闸管Integrated Gate Commutated Thyristor)等的发展及性能的提高、计算机技术的发展,如由16位机发展到32位机以及DSP(数字信号处理器Digital signal processor)的诞生和发展等以及先进控制理论和技术的完善和发展(如磁场定向矢量控制、直接转矩控制)等原因,极大地提高了变频调速的技术性能,促进了变频调速技术的发展,使变频器在调速范围、驱动能力、调速精度、动态响应、输出性能、功率因数、运行效率及使用的方便性等方面大大超过了其它常规交流调速方式,其性能指标也超过了直流调速系统,达到取代直流调速系统的地步。目前,交流变频调速以其优越的性能而深受各行业的普遍欢迎,在电力、轧钢、造纸、化工、水泥、煤炭、纺织、铁路、食品、船舶、机床等传统工业的改造中和航天航空等新技术的发展应用中无不看

变频调速技术ACS6000概述

变频调速技术 现代工业生产过程中,各种设备的传动部件大都离不开电动机,且电动机的传动在许多场合要求能够调速。电动机的调速运行方式很多,以电动机类型分大致可分为直流调速与交流调速两种,而交流调速方式又可分为变极调速、改变转差率调速和变频调速等几种方式。 20世纪70年代后,大规模集成电路和计算机控制技术的发展,以及现代控制理论的应用,使得交流电力拖动系统逐步具备了宽的调速范围、高的稳速范围、高的稳速精度、快的动态响应以及在四象限作可逆运行等良好的技术性能,在调速性能方面可以与直流电力拖动媲美。在交流调速技术中,变频调速具有绝对优势,并且它的调速性能与可靠性不断完善,价格不断降低,特别是变频调速节电效果明显,而且易于实现过程自动化,深受工业行业的青睐。 1. 交流变频调速的优异特性 (1) 调速时平滑性好,效率高。低速时,特性静关率较高,相对稳定性好。 (2) 调速范围较大,精度高。 (3) 起动电流低,对系统及电网无冲击,节电效果明显。 (4) 变频器体积小,便于安装、调试、维修简便。 (5) 易于实现过程自动化。 (6) 必须有专用的变频电源,目前造价较高。 (7) 在恒转矩调速时,低速段电动机的过载能力大为降低。 2. 与其它调速方法的比较 这里仅就交流变频调速系统与直流调速系统做一比较。 在直流调速系统中,由于直流电动机具有电刷和整流子,因而必须对其进行检查,电机安装环境受到限制。例如:不能在有易爆气体及尘埃多的场合使用。此外,也限制了电机向高转速、大容量发展。而交流电机就不存在这些问题,主要表现为以下几点: 第一,直流电机的单机容量一般为12-14MW,还常制成双电枢形式,而交流电机单机容量却可以数倍于它。第二,直流电机由于受换向限制,其电枢电压最高只能做到一千多伏,而交流电机可做到6-10kV。第三,直流电机受换向器部分机械强度的约束,其额定转速随电机额定功率而减小,一般仅为每分钟数百转

浅谈变频器U/f控制与矢量控制应用

浅谈变频器U/f控制与矢量控制应用 【摘要】交流变频调速系统主要用于控制异步电动机的转速和转矩,具有动态响应好、工作效率高、输出特性好、使用方便等优点。本文主要介绍变频调速系统中常用的两种控制方式:U/f控制和矢量控制,并结合生产实际描述分析这两种控制模式在现场生产中的应用,提高大家对变频调速系统控制模式的认识。 【关键词】变频调速系统;U/f控制;矢量控制 1 变频调速系统U/f控制 1.1 U/f控制的概念 U/f控制即恒压频比控制方式,它是采用SPWM正弦脉宽调制技术控制半导体器件开通和关断,将直流电压转变为一定形状的电压脉冲序列,实现频率和电压的控制,在调节输出频率?的同时,调节输出电压U的大小,通过U和?配合实现不同类型的调频调压来进行调速。解决了只改变频率进行调速:频率上升时,主磁通下降,拖动转矩下降,电动机的拖动能力降低,对于恒转矩负载因拖不动而堵转;频率下降时,主磁通上升,引起主磁通饱和,励磁电流急剧升高,使通过定子绕组的电流大于定子绕组额定电流,电机发热严重。在变频调速中基频以下常采用U/f恒磁通(恒转矩)调速,基频以上调速由于变频器输出电压无法大于额定输入电压因此只能恒功率调速。 1.2 U/f控制特性及应用 U/f控制是变频调速系统应用最普遍的调速模式,它通过调节电机供电电源电压和频率来进行调速因此该调速系统的机械特性可平滑地上下移动,转差率不变,调速时有很高的运行效率,但在基频下U/f(等于常数)调速并不是真正的恒磁通(恒转矩)调速,当电机在低频、低速运行时,由于变频器输出电压成正比地下降,电机满负荷运行时定子绕组电阻上产生的压降在电机输入电压中占的比例增大,反电动势比例减小,用于形成主磁通的电压不足,造成主磁通下降,使拖动转矩不足,带负载能力下降。 应用U/f控制模式时,首先根据变频器所带负载的特性选用合适的U/f曲线,U/f曲线是描述变频器输出电压与频率关系的曲线,一般通用性变频器U/f曲线有:直线形U/f曲线(适用于恒转矩负载如传送带),1.5次形U/f曲线(适用于风机,泵类变转矩性负载)及自定义形U/f曲线;其次根据设备在生产过程中是否需要低速满负荷运行来考虑是否采用适量补偿输出电压即是否设置变频器转矩提升量。正确预置转矩提升量十分重要,预置太小,可能电机磁通不足,电机输出转矩过小而无法带动设备运转,预置太大,又可能在电机轻载时引起电机磁路饱和,变频器因输出过电流而跳闸。在现场预置时,应以电机负荷率作为初步设定依据;最后根据生产设备惯性的大小及对电机启动加减速时间的要求来预置

变频器矢量控制与VF控制区别

变频器矢量控制与VF控制区别 一、V/F控制方式 变频器采用V/F控制方式时,对电机参数依赖不大,一般强调“空载电流”的大小。由于我们采用矢量化的V/F控制方式,故做电机参数静止自整定还是有必要的。不同功率段的变频器,自学习后的空载电流占额定电流大小百分比也是不同的。 一般有如下百分比数据:5.5kW~15 kW,空载电流P9.05的值为30%~50%的电机额定电流;3.7 kW及以下的,空载电流P9.05的值为50%左右的电机额定电流;特殊情况时,0.4 kW、0.75 kW、1.5 kW,空载电流P9.05的值为70%~80%的电机额定电流;有的0.75 kW功率段,参数自整定后空载电流为电机额定电流的90%。空载电流很大,励磁也越大。 何为矢量化的V/F控制方式,就是在V/F控制时也将输入电流量进行解耦控制,使控制更加精确。 变频器输出电流包括两个值:空载电流和力矩电流,输出电流I的值为空栽电流Im和力矩电流It平方和后开2次方。故空载电流是影响变频器输出电流的主要因素之一。 V/F控制时输出电压与运行频率之比为一定值:即U/F=K(K为常数),P0.12=最大输出电压U,P0.15=基频F。三菱变频器资讯 上图中有个公式,描述转矩、转速、功率之间的关系。变频器在基频以下运行时,随着速度增快,可以输出恒定的转矩,速度增大不会影响转矩的输出;变频器在基频以上运行时,只能保证输出额定的功率,随着转速增大,变频器不能很好的输出足够大的力;有时候变频器速度更快,高速运行时,处于弱磁区,我们必须设置相应的参数,以便让变频器适应弱磁环境。 速度与出力,高速或者低速时,两者不可兼得,这里有个数据概念:调速范围,指满足额定转矩出力的最低频率与最高频率的比值。以前一般的VF控制方式调试范围为1:20~1:40,我司产品V/F控制调速范围可以达到1:100,能够满足更多范围的行业应用。在开环矢量时可以达到1:200,闭环矢量时达到1:1000,接近伺服的性能。 变频器V/F控制系统运行时,有两种方式进行转矩的提升: 1、自动转矩提升: 必须在P0.16=0且P4.00=0时,自动转矩提升才有效。其作用为:变频器V/F控制低频运行时,提高输出电压,抵消定子压降以产生足够的转矩,保证电机正常运行。自动转矩提升与变频器设置“空载电流”和静止学习的“定子电阻”有关系,变频器必须作电机参数静止自整定,才能更好的控制电机运行。变频器作自动转矩提升控制电机时,见上图所示输出电压和频率的线性关系,运行中因为负载变化对电压输出作适当的增减,由于响应时间的快慢,所以会出现出力不稳定因素。 2、手动转矩提升 设置P0.16为某一数值时,或者设置P4.00为非零时,手动转矩提升才有效。手动转矩提升只与变频器设置“空载电流”有关系,受电机其他参数设置影响较小。如下图所示,为手动转矩提升曲线图。变频器输出作手动转矩提升,其转矩出力在原来基础上成线性增加,所以出力稳定,不受负载变化的影响,出力稳定。但是转矩提升不益太大,转矩提升的幅度应根据负载情况适当设定,提升过多,在启动过程中将产生较大的电流冲击。 自动转矩提升只能满足一拖一的输出情况,当涉及一台变频器拖动多台电机时,V/F控制时必须采用手动转矩提升,即设置P0.16为非0值。 V/F控制时的有关性能参数调试: PA.02为V/F控制转差补偿增益,设置此参数时,可以参考电机额定转速P9.02来设定参数。该功能有助于变频器在负载波动及重载情况下保持电机转速恒定,即补偿由于负载波动而导致的电机转速增减,但是由于补偿本身的响应时间问题,导致系统出现不稳定因素增多,在系统波动较大的情况下,此功能码设置为0有一定效果。

变频器常用的几种控制方式

变频器常用的几种控制方 式 Prepared on 22 November 2020

变频器常用的几种控制方式 变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。 1、变频器简介 变频器的基本结构 变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU 以及一些相应的电路。 变频器的分类 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。 2、变频器中常用的控制方式 非智能控制方式 在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。

(1) V/f控制 V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。 V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。 (2) 转差频率控制 转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速和负载变动有良好的响应特性。 (3) 矢量控制 矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,以达到对电动机在d、q、0坐标轴系中的励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。通过控制各矢量的作用顺序和时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。例如形成开关次数最少的PWM波以减少开关损耗。目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。 基于转差频率的矢量控制方式与转差频率控制方式两者的定常特性一致,但是基于转差频率的矢量控制还要经过坐标变换对电动机定子电流的相位进行控制,使之满足一定的条件,以消除转矩电流过渡过程中的波动。因此,基于转差频率的矢量控制方式比转差

变频调速技术与应用试卷A卷

变频调速技术与应用试卷 A卷 Last revision on 21 December 2020

湖北交通职业技术学院2011-2012学年第二学期 变频调速技术与应用试题(A卷)班级: 100371 班姓名:_______________ 学号:________________ 一、选择题;(20分) 1、正弦波脉冲宽度调制英文缩写是(A )。 A:PWM B:PAM C:SPWM D:SPAM 2、对电动机从基本频率向上的变频调速属于( A)调速。 A:恒功率 B:恒转矩 C:恒磁通 D:恒转差率 3、下列哪种制动方式不适用于变频调速系统( C)。 A:直流制动 B:回馈制动 C:反接制动 D:能耗制动 4、对于风机类的负载宜采用( A)的转速上升方式。 A:直线型 B:S型 C:正半S型 D:反半S型 5、N2系列台安变频器频率控制方式由功能码(C )设定。 A:F009 B:F010 C:F011 D:F012 6、型号为N2-201-M的台安变频器电源电压是( A)V。 A: 200 B:220 C:400 D:440 7、三相异步电动机的转速除了与电源频率、转差率有关,还与(B )有关系。A:磁极数 B:磁极对数 C:磁感应强度 D:磁场强度 8、目前,在中小型变频器中普遍采用的电力电子器件是(D )。 A:SCR B:GTO C:MOSFET D:IGBT 9、IGBT属于(B )控制型元件。

A :电流 B :电压 C :电阻 D :频率 10、变频器的调压调频过程是通过控制( B )进行的。 A :载波 B :调制波 C :输入电压 D :输入电流 二:填空题(每空2分,20分) 1. 目前变频器中常采用 IGBT 作为主开关器件。 2. 三相异步电动机拖动恒转矩负载进行变频调速时,为了保证过载能力和主磁通不 变,则U1应随f1 U1\F1=常数 按规律调节。 3. 矢量控制的规律是 3/2变换 、 矢量旋转变换 、 坐标变换 。 4. 变频调速系统的抗干扰措施有: 合理布线,消弱干扰源,隔离干扰 ,准确接地 三:判断题(10分) ( 1 )1. 变频器的主电路不论是交-直-交变频还是交-交变频形式,都是采用电力电子 器。 ( 0 )2.电流型变频器多用于不要求正反转或快速加减速的通用变频器中。 ( 0 )3. 变频器调速主要用于三相异步电动机。 ( 1 )的智能化表现为可以实现控制、保护、接口3大功能,构成混合式功率集成电路。 ( 1 )5.转差率是指三相异步电动机同步转速与转子转速的差值比上同步转速 ( 1 )6. 通过通讯接口可以实现变频器与变频器之间进行联网控制。 ( 1 )7.电磁转矩的基本公式为9550M P T n = ( 1 )8.电动机的反电动势E1=1114.44f k N m N Φ ( 1 )9.交-交变频由于输出的频率低和功率因数低,其应用受到限制。

变频调速及控制技术的发展趋势

变频调速及控制技术的发展趋势 能源需求正极大地影响着全球经济发展。我国同样也面临着经济增长对能源需求的压力。九十年代我国高耗能产品的耗能量比发达国家高12-55%,能源综合利用效率仅为32%。 我国迫切需要提高能源利用效率。电机是能源消耗大户之一。我国电机总装机容量已达4亿千瓦,年耗电量达6000亿千瓦时,占工业耗电量的80%,然而直到目前,我国各类在用电机80%以上还是中小型异步电动机,可见我国在电机节能领域有非常大的潜力。电机节能技术最受瞩目的就是变频调速技术。但是,我国变频调速技术研究虽然非常活跃,然而产业化仍很不理想,外国产品几乎占据了我国变频调速技术市场的60%。 以下将着重介绍变频调速技术的最新发展概况。 变频调速技术的现状 20世纪是变频调速技术由诞生到发展的时代。特别是20世纪90年代以后,IGBT、IGCT (集成门极换向性晶闸管)等新型电力电子器件的发展、DSP(数字信号处理器)和ASIC (专用集成电路)的快速发展以及新颖控制理论和技术(如磁场定向矢量控制、直接转矩控制等)的完善,使变频调速系统在调速范围、调速精度、动态响应、功率因数、运行效率和使用方便等性能指标超过了直流调速系统,达到取代直流调速的地步,受到各行业的欢迎并取得显著的经济效益。 变频调速及控制技术的发展趋势 1.高压大功率的变频调速系统 在我国低压变频调速装置已得到用户的认可,市场总量已达2000年的约40亿人民币,并显示出其节能效果。据统计,我国低压(690V以下)电机数量是高压电机的几十倍,但耗能仅为高压电机的八分之一。近来国际上高压大电流功率器件的出现以及并、串联技术的发展,使高压大功率的变频调速得以实现,其使用效果平均节能可达30%,有着十分明显的

plc控制变频器调速

基 于 PLC 控 制 变 频 器 调 速 实 验 报 告 电控学院 电气

实训目的:本次实验针对电气工程及其自动化专业。通过综合实验,使学生对所学过的可编程控制器在电动机变频调速控制中的应用有一个系统的认识,并运用自己学过的知识,自己设计变频调速控制系统。要求用PLC控制变频器,通过光电编码器反馈速度信号达到电动机调速的精确控制,自己设计,自己编程,最后进行硬件、软件联机的综合调试,实现自己的设计思想。在整个试验过程中,摆脱以往由教师设计,检查处理故障的传统做法,由学生完全自己动手,互相查找处理故障,培养学生动手能力。学生实验应做到以下几点: 1. 通过电动机变频调速控制系统实验,进一步了解可编程控制器在电动机变频调速控制中的应用。 2. 通过系统设计,进一步了解PLC、变频器及编码器之间的配合关系。 3. 通过实验线路的设计,实际操作,使理论与实际相结合,增加感性认识,使书本知识更加巩固。 4. 培养动手能力,增强对可编程控制器运用的能力。 5. 培养分析,查找故障的能力。 6. 增加对可编程控制器外围电路的认识。 实训主要器件:欧姆龙CPM2AH-40CDR可编程控制器(PLC),欧瑞F1000-G系列变频器,三相异步电机 第一部分采样 转速的采样采用的是欧姆龙的光电编码器,结合PLC的高速计数器端子,实现高精度的采样。。 编码器是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是1还是0;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是1还是0,通过1和0的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。 欧姆龙(OMRON)编码器是用来测量转速的装置,光电式旋转编码器通过光电转换,可将输出轴的角位移、角速度等机械量转换成相应的电脉冲以数字量输出(REP)。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到

相关文档
最新文档