110KV继电保护课程设计

110KV继电保护课程设计
110KV继电保护课程设计

继电保护课程设计

题目:110KV继电保护课程设计

学院名称:电气工程学院

学生姓名:

班级:

学号:

指导老师:

职称:

2011年1月10日

目录

摘要 (5)

1 继电保护概述 (5)

1.1 系统运行方式的确定: (6)

1.2 变压器中性点接地选择原则 (7)

1.3 线路运行方式选择原则 (7)

1.4 流过保护的最大、电小短路电流计算方式的选择 (7)

2 电网各个元件参数计算及负荷电流计算 (8)

3 短路电流计算 (10)

3.1 短路电流计算步骤 (10)

3.2各短路点的短路计算 (11)

4 距离保护的整定计算 (19)

4.1 距离保护整定计算的方法及原理: (19)

4.2 各断路器的距离整定计算 (21)

5 输电线路的自动重合闸装置 (24)

6 对所选择的保护装置进行综合评价 (26)

6.1 对零序电流保护的评价 (26)

6.2 电流保护的综合评价 (27)

6.3 距离保护的综合评价 (27)

总结 (28)

参考文献 (29)

附件.................................................................................................................................. 错误!未定义书签。

110KV电网线路继电保护课程设计任务书

摘要

本次继电保护设计的是110kv电网线路上继电保护的方式进行的选择及整定计算。系统包括:两个发电厂和四个变压站分别构成辐射形多电源网络。主要对LAB、LAC线路进行相间继电保护方式、零序保护的选择和整定计算。

说明书主要对整定计算的原理、原则及计算结果表进行说明总结。设计内容包括:第一章继电保护概述,主要介绍了短路故障引起的后果和继电保护最新的主要任务以及本电网中的运行方式的选择、最大负荷电流的计算原理等。第二章电网各个元件参数计算及负荷电流计算,第三章短路电流计算步骤,第四章距离保护的整定计算,第五章输电线路的自动重合闸装置,第六章对所选择的保护装置进行综合评价,最后总结,包括此次课程设计查找的资料以及对继电保护最新的认识。

设计中的整定原则及原理是通用的,但是由于继电保护的形式和原理在不断跟新,即由感应、电磁式逐渐发展到集成、微机,由单一变量单一元件发展到复合多变量元件。因而整定也有发展变化,应当指出继电保护整定是一项系统工程,要依据系统结构的不同,运行方式的不同在满足继电保护四性的前提下采取最佳方案。

关键字:电力系统继电保护、短路计算、距离整定保护、零序网络

1 继电保护概述

随着电力系统的飞速发展,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段:继电保护的萌芽期、晶体管继电保护、集成运算放大器的集成电路保护和计算机继电保护。电力系统的运行中最常见也是最危险的故障是发生各种形式的各种短路。发生短路时可能会产生以下后果:

(1)电力系统电压大幅度下降,广大用户负荷的正常工作遭到破坏。

(2)故障处有很大的短路电流,产生的电弧会烧坏电气设备。

(3)电气设备中流过强大的电流产生的发热和电动力,使设备的寿命减少,甚至遭到破坏。

(4)破坏发电机的并列运行的稳定性,引起电力系统震荡甚至使整个系统失去稳定而解列瓦解。

因此在电力系统中要求采取各种措施消除或减少发生事故的可能性,一旦发生故障,必须迅速而有选择性的切除故障,且切除故障的时间常常要求在很短的时间内(十分之几或百分之几秒)。实践证明只有在每个元件上装设保护装置才有可能完成这个要求,而这种装置在目前使用的大多数是由单个继电器或继电器及其附属设备的组合构成的,因此称为继电保护装置,它能够反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发生告警信号。

继电保护的任务就是在系统运行过程中发生故障(三相短路、两相短路、单相接地等)和出现不正常现象时(过负荷、过电压、低电压、低周波、瓦斯、超温、控制与测量回路断线等),能够自动、迅速、有选择性且可靠的发出跳闸命令将故障切除或发出各种相应信号,从而减少故障和不正常现象所造成的停电范围和电气设备的损坏程度,保证电力系统安全稳定的运行。

本次的课程设计是针对电力系统110KV电网(环网)线路继电保护的设计,涉及的内容比较广泛,几乎综合了大学期间本专业所学的所有相关课程,既然是继电保护,就必然涉及到了强电与弱电的相互配合,故也串行了电子、通信、自动化等相关专业的知识。正因为其涉及的知识面广,故对于即将毕业的我们是一次很好的实习机会,也是一次培养对知识的综合运用的机会,更是一种挑战。

本设计是对电力系统110KV电网线路进行继电保护初步设计,首先对继电保护的现状、发展和趋势以及继电保护在电力系统中的作用作了简要的介绍;然后详细介绍了运行方式的选择,变压器中性点的接地方式,短路电流的计算,电流保护、差动保护和距离保护等多种线路保护的具体整定方法及计算,并对输电网络做了较详细的分析;最后介绍了电网线路的自动重合闸装置的配置原则。

1.1 系统运行方式的确定:

(1)一个发电厂有两台机组时,一般应考虑全停方式,一台检修,另一

台故障;当有三台以上机组时,则选择其中两台容量较大机组同时停用的方式。对水电厂,还应根据水库运行方式选择。

(2)一个发电厂、变电站的母线上无论接几台变压器,一般应考虑其中

容量最大的一台停用。

1.2 变压器中性点接地选择原则

(1)发电厂、变电所低压侧有电源的变压器,中性点均要接地。

(2)自耦型和有绝缘要求的其它变压器,其中性点必须接地。

(3)T接于线路上的变压器,以不接地运行为宜。

(4)为防止操作过电压,在操作时应临时将变压器中性点接地,操作完

毕后再断开,这种情况不按接地运行考虑。

1.3 线路运行方式选择原则

(1)一个发电厂、变电站线线上接有多条线路,一般考虑选择一条线路检修,另一条线路又故障的方式。

(2)双回路一般不考虑同时停用

1.4 流过保护的最大、电小短路电流计算方式的选择

(1)相间保护

对单侧电源的辐射形网络,流过保护的最大短路电流出现在最大运行方式;而最小短路电流,则出现在最小运行方式。

对于双电源的网络,一般(当取Z1=Z2时)与对侧电源的运行方式无关,可按单侧电源的方法选择。

(2)零序电流保护

对于单侧电源的辐射形网络,流过保护的最大零序短路电流与最小零序电流,其选择方法可参照相间短路中所述,只需注意变压器接地点的变化。

对于双电源的网络及环状网,同样参照相间短路中所述,其重点也是考虑变压器接地点的变化。

选取流过保护的最大负荷电流的原则

选取流过保护的最大负荷电流的原则如下:

(1)备用电源自动投入引起的增加负荷。

(2)并联运行线路的减少,负荷的转移。

(3)环状网络的开环运行,负荷的转移。

(4)对于双侧电源的线路,当一侧电源突然切除发电机,引起另一侧增加负

荷。

2 电网各个元件参数计算及负荷电流计算

基准值选择

基准功率:S

B =100MV·A,基准电压:V

B

=115kv。基准电流:I

B

=S

B

/1.732 V

B

=100

×103/1.732×115=0.502KA;基准电抗:Z

B =V

B

/1.732 I

B

=115×103/1.732×

502=132.25Ω;电压标幺值:E=E

(2)

=1.05 电网各元件等值电抗计算

(1) 线路AC等值电抗计算

正序以及负序电抗:X

LAC = X

AC

L

AC

=0.402×1=0.402Ω

X LAC*= X

AC

/ Z

B

=0.402/132.25=0.003

零序电抗:X

LAC0= 3X

LAC

=1.206Ω

X

LAC0*= X

LAC0

/ Z

B

=1.206/132.25=0.009

(2) 线路AS2等值电抗计算

正序以及负序电抗:X

LAS2= X

AS2

LAS

2

=0.402×5=2.01Ω

X

LAS2*= X

LAS2

/ Z

B

=2.01/132.25=0.015

零序电抗:X

LAS20

= 6.03Ω

X

L20*

= 3*0.015=0.045 (3) 线路AB等值电抗计算

正序以及负序电抗:X

LAB = X

AB

L

AB

=0.37×3=1.11Ω

X LAB*= X

LAB

/ Z

B

=1.11/132.25=0.008

零序电抗:X

LAB0

=3×1.11=3.33Ω

X

LAB0*= X

LAB0

/ Z

B

=3.33/132.25=0.024

(4)线路BS1等值电抗计算

正序以及负序电抗:X

LBS1= X

BS1

L

BS1

=0.37×6=2.22Ω

X

LBS1*= X

LBS1

/ Z

B

=2.22/132.25=0.017

零序电抗:X

LBS0

=3×2.22=6.66Ω

X

LBS0*= X

LABS0

/ Z

B

=6.66/132.25=0.051

变压器等值电抗计算

(1) 变压器T1、T2等值电抗计算

X T1= X

T2

=(U

K

%/100)×(V

N

2/ S

N

)≈98.76Ω

X T1*= X

T2*

=X

T1

/ Z

B

=98.76/132.25=0.747

(2) 变压器T3/T4等值电抗计算

X T3= X

T4

= (U

K

%/100)×(V

N

2/ S

N

)≈62.98Ω

X T3*= X

T3*

= X

T3

/ Z

B

=62.98/132.25=0.476

(3) 变压器T6、T7等值电抗计算

X T6= X

T7

=(U

K

%/100)×(V

N

2/ S

N

)≈39.95Ω

X T6*=X

T5*

=0.302

发电机等值电抗计算

发电机G1、G2电抗标幺值计算

X G1= X

G2

=0.711*132.25=94.03Ω

X G1* = X

G2*

=0.711

最大负荷电流计算

(1) A母线最大负荷电流计算

最大负荷电流计算(拆算到110KV)

I

fhA ·max = P

fhAmax

V

av

2 / 1.732 U=25/1.732×115≈0.1569KA;

(2) B母线最大负荷电流计算

最大负荷电流计算(拆算到110KV)

I fhB·max = P

fhBmax

V

av

2 / 1.732 U=63/1.732×115≈0.3954KA

短路电流计算

短路计算的目的

a、选择电气设备的依据;

b、继电保护的设计和整定;

c、电气主接线方案的确定;

d、进行电力系统暂态稳定计算,研究短路对用户工作的影响;

3 短路电流计算

3.1 短路电流计算步骤

1.确定计算条件,画计算电路图

1)计算条件:系统运行方式,短路地点、短路类型和短路后采取的措施。

2)运行方式:系统中投入的发电、输电、变电、用电设备的多少以及它们之间的连接情况。

根据计算目的确定系统运行方式,画相应的计算电路图。

选电气设备:选择正常运行方式画计算图;

短路点取使被选择设备通过的短路电流最大的点。

继电保护整定:比较不同运行方式,取最严重的。

2.画等值电路,计算参数;

分别画各段路点对应的等值电路。

3.网络化简,分别求出短路点至各等值电源点之间的总电抗

由于短路电流计算是电网继电保护配置设计的基础,因此分别考虑最大运行方式时各线路未端短路的情况,最小运行方下时各线路未端短路的情况。

电网等效电路图如图3.1所示

图3.1电网等效电路图

3.2各短路点的短路计算

D1短路流经保护501的短路计算:

图3.2 d1短路的等值网络图

最大运行方式的短路:

KA

I I X E

I

X X X X X X X X X b d ff d g t t g g t t g ff 723.044.144

.1729

.0))((1)

1(1

22112211)1(====

=+++++=*

最小运行方式下的两相短路:

)

2()2(ff X =729.0))((2

2112211)1(=+++++=

g t t g g t t g ff X X X X X X X X X

72.0)

2()

2()1(*)2(1

=+=ff ff f X X E

I

KA I I I b f f 362

.0*)2(1)2(1== 由于最小运行方式下河最小运行方式下的短路电流等值图相同,可得最小运行方式下的两相短路的电流为最大运行方式的短路电流的一半。

D2短路流经保护502的短路计算:

图3.3 d2短路的等值网络图

最大运行方式的短路:

KA

I

I

X

E

I

X

X

X

X

X

X

X

X

X

X

b

d

ff

d

LAC

g

t

t

g

g

t

t

g

ff

720

.0

434

.1

434

.1

732

.0

)

)(

(

2

)1(

2

2

2

1

1

2

2

1

1

)1(

=

=

=

=

=

+

+

+

+

+

+

=

*

最小运行方式下的两相短路:

由501同理可得:KA

I

I

d

f

36

.0

2

1

2

)2(

2

=

=

两相短路的零序电流:

图3.4 两相短路的零序电流等值网络图

KA

I I I X E I X X X X X X X X X X X X X X X X X X X X X X X X b ff ff ff ff TC

TB TA TC

TB TA ff LAC T T T T TC

T T T T TA LAB T T T T TB

36.265.52/02.0383.03238

.0175.0008.03151.03)0()0()0()0()

0(21214

33

46

565=====++==?++==+==?+=?++=**

D3短路流经保护503的短路计算:

图3.5 d2短路的等值网络图

最大运行方式的短路:

KA

I I X E

I X X X X X X X X X X X b d ff d LAS LAC g t t g g t t g ff 706.0406.1406

.1747

.0))((3)

1(3222112211)1(====

=+++++++=*

最小运行方式下的两相短路:同上KA I I d f 353.02

1

3)2(3==

两相短路的零序电流:

图3.6 两相短路的零序电流等值网络图

KA

I I I X E I X X X X X X X X X X X X X X X X X X X X X X X X X b ff ff ff ff LAS TC

TB TA TC

TB TA ff LAC T T T T TC

LAB T T T T TB T T T T TA 109.815.16/065.03383.03175.0008.03151.03238

.0)0()0()0()0(2)

0(2

12165654

33

4=====+++==?++==?+=?++==+=**

D4短路流经保护502的短路计算: 最大运行方式的短路:

图3.7 最大运行方式下d4短路的等值网络图

KA

I I X E

I X X X X X X X X X X X b d ff d T LAC g t t g g t t g ff 543.008.108

.197

.02/))((4)

1(4322112211)1(====

=+++++++=*

图208.1))((32

2112211*)

1()*2()

2(=+++++++=

=T LAC t g t g t g t g ff ff X X X X X X X X X X X

X

435.0*

)

1()*2()2()*2(4

=+=ff ff f X X E

I

KA I I I b f f 218.0)*2(4)2(4==

D5短路流经保护504的短路计算:

图3.9 d5短路的等值网络图

最大运行方式的短路:

KA

I I X E

I X X X X X X X X X X X b d ff d LAB LAC g t t g g t t g ff 712.0419.1419

.174

.0))((5)

1(522112211)1(====

=+++++++=*

最小运行方式下的两相短路:

同理由501可得:KA I I

d f 356.02

1

25)2(5

==

两相短路的零序电流:

图3.10 两相短路的零序电流等值网络图

374

.0

151

.0

238

.0

2

1

2

1

6

5

6

5

4

3

3

4

=

+

=

=

+

=

=

+

=

T

T

T

T

TC

T

T

T

T

TB

T

T

T

T

TA

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

08

.0

3

3

)

3

(

]

3

3

)

3

([

)0(

=

+

?

+

+

?

+

?

+

?

+

+

?

+

?

+

=

TB

LAB

TA

LAC

TC

TA

LAC

TC

TB

LAB

TA

LAC

TC

TA

LAC

TC

ff

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

KA

I

I

I

X

E

I

b

ff

ff

ff

ff

59

.6

125

.

13

/

)0(

)0(

)0(

)0(

=

=

=

=

*

*

D6短路流经保护505的短路计算:

图3.11 d6短路的等值网络图

最大运行方式的短路:

KA

I

I

X

E

I

X

X

X

X

X

X

X

X

X

X

X

X

b

d

ff

d

T

LAB

LAC

g

t

t

g

g

t

t

g

ff

537

.0

07

.1

07

.1

891

.0

2/

)

)(

(

6

)1(

6

3

2

2

1

1

2

2

1

1

)1(

=

=

=

=

=

+

+

+

+

+

+

+

+

=

*

最小运行方式下的两相短路:

KA

I

I

I

X

X

E

I

X

X

X

X

X

X

X

X

X

X

X

X

X

b

f

f

ff

ff

f

T

LAB

LAC

t

g

t

g

t

g

t

g

ff

ff

253

.0

504

.0

042

.1

)

)(

(

*)2(

6

)2(

6

*

)1(

*)2(

)2(

*)2(

6

5

2

2

1

1

2

2

1

1

*

)1(

*)2(

)2(

=

=

=

+

=

=

+

+

+

+

+

+

+

+

=

=

两相短路的零序电流:

图3.12 两相短路的零序电流等值网络图

238

.0

4

3

3

4=

+

=

T

T

T

T

TA X

X

X

X

X

151

.0

6

5

6

5=

+

=

T

T

T

T

TB X

X

X

X

X

383

.0

3

2

1

2

1=

?

+

+

=

LAC

T

T

T

T

TC

X

X

X

X

X

X

KA

I I I X E I X X X X X X X X X X X X b ff ff ff ff LBS TB

TAC TB TAC ff LAB TA TC TA TC TAC 024.402.8/131.03171.03)0()0()0()0(1)

0(1=====++==++=**

D7短路流经保护506的短路计算:

图3.13 d7短路的等值网络图

最大运行方式的短路:

KA

I I X E

I X X X X X X X X X X X X b d ff d LBS LAB LAC g t t g g t t g ff 696.0387.1387

.1757

.0))((7)

1(7122112211)1(====

=++++++++=*

最小运行方式下的两相短路:

KA

I I I X X E

I

X X X X X X X X X X X X

X b f f ff ff f LBS LAB LAC t g t g t g t g ff ff 348.0693.0757

.0))(()*2(7)2(7*

)

1()*2()2()*2(7

22

2112211*)

1()*2()

2(===+==++++++++=

=

流经保护各短路点的短路电流计算如表:

4 距离保护的整定计算

4.1 距离保护整定计算的方法及原理:

距离保护第一段 1.动作阻抗

(1)对输电线路,按躲过本线路末端短路来整定,即取

AB K dz

Z k Z '='?1 图4.1 电力系统接线图

2.动作时限

0≈'t 秒。

距离保护第二段 1.动作阻抗

(1)与下一线路的第一段保护范围配合,并用分支系数考虑助增及外汲电流对测量阻抗的影响,即

()BC k fz AB k dz

Z K K Z K Z '+''=''?1

12C

A B A '图3-50 电力系统接线图

A

Z 'B

A B

Z

B

C

Z Z 'Z ''Z '''00.5t Z 'Z ''Z '

''00.5t 3

A

Z

式中fz K 为分支系数

min ???? ??=AB

BC

fz I

I K

(2)与相邻变压器的快速保护相配合

()B fz AB k dz

Z K Z K Z +''=''?1

取(1)、(2)计算结果中的小者作为1?''dz

Z 。 2. 动作时限

保护第Ⅱ段的动作时限,应比下一线路保护第Ⅰ段的动作时限大一个时限阶段,即

t t t t ?≈?+'=''2

1

3.灵敏度校验

5.1≥''=AB

dz lm

Z Z K

如灵敏度不能满足要求,可按照与下一线路保护第Ⅱ段相配合的原则选择动作阻抗,即

这时,第Ⅱ段的动作时限应比下一线路第Ⅱ段的动作时限大一个时限阶段,即

t t t ?+''=''21

距离保护的第三段 1.动作阻抗

按躲开最小负荷阻抗来选择,若第Ⅲ段采用全阻抗继电器,其动作阻抗为

min

.1.1

fh zq h k

dz

Z K K K Z '''='''

2.动作时限

保护第Ⅲ段的动作时限较相邻与之配合的元件保护的动作时限大一个时限阶段,即

t t t ?+'''='''2

继电保护课程设计(完整版)

继电保护原理课程设计报告评语: 考勤(10) 守纪 (10) 设计过程 (40) 设计报告 (30) 小组答辩 (10) 总成绩 (100) 专业:电气工程及其自动化 班级:电气1004 姓名:王英帅 学号:201009341 指导教师:赵峰 兰州交通大学自动化与电气工程学院 2013年7月18日

1 设计原始资料 1.1 具体题目 如下图所示网络,系统参数为: 3115/E =? kV ,G115X =Ω、G310X =Ω,160L =km ,340L =km ,B-C 50L =km , C-D 30L =km ,D-E 20L =km ,线路阻抗0.4Ω/km , I rel 1.2K =、III rel rel 1.15K K II ==,A 300I m ax C.-B =、C-D.max 200A I =、D-E.max 150A I =,SS 1.5K =,re 0.85K = G1 G3 98 4 51 2 3 A B C D E L1L3 1.2 要完成的任务 我要完成的是对保护5和保护3进行三段电流保护的整定设计,本次课程设计通过对线路的主保护和后备保护的整定计算来满足对各段电流及时间的要求。 2 设计的课题内容 2.1 设计规程 根据规程要求110kV 线路保护包括完整的三段相间距离保护、三段接地距离保护、三段零序方向过流保护和低频率保护,并配有三相一次重合闸功能、过负荷告警功能,跳合闸操作回路。在本次课程设计中涉及的是三段过流保护。其中,I 段、II 段可方向闭锁,从而保证了保护的选择性。 2.2 本设计保护配置 2.2.1 主保护配置 主保护:反映整个保护元件上的故障并能最短的延时有选择的切出故障的保护。在本设计中,I 段电流速断保护、II 段限时电流速断保护作为主保护。 2.2.2 后备保护配置

110KV线路继电保护课程设计15431汇编

第1章绪论 电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段:继电保护的萌芽期、晶体管继电保护、集成运算放大器的集成电路保护和计算机继电保护。继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化的发展。 随着计算机硬件的迅速发展,微机保护硬件也在不断发展。电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护。 继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信号量,当突变量到达一定值时,起动逻辑控制环节,发出相应的跳闸脉冲或信号。对电力系统继电保护的基本性能要求是有选择性,速动性,灵敏性,可靠性。 这次课程设计以最常见的110KV电网线路保护设计为例进行分析设计,要求对整个电力系统及其自动化专业方面的课程有综合的了解。特别是对继电保护、电力系统、电路、发电厂的电气部分有一定的研究。重点进行了电路的化简,短路电流的求法,继电保护中电流保护、距离保护的具体计算。 1.1 继电保护 电力系统的运行中最常见也是最危险的故障是发生各种形式的各种短路。发生短路时可能会产生以下后果: 1、电力系统电压大幅度下降,广大用户负荷的正常工作遭到破坏。 2、故障处有很大的短路电流,产生的电弧会烧坏电气设备。 3、电气设备中流过强大的电流产生的发热和电动力,使设备的寿命减少,甚至遭到破坏。 4、破坏发电机的并列运行的稳定性,引起电力系统震荡甚至使整个系统失去稳定而解列瓦解。 因此在电力系统中要求采取各种措施消除或减少发生事故的可能性,一旦发生故障,必须迅速而有选择性的切除故障,且切除故障的时间常常要求在很短的时间内(十分之几或百分之几秒)。实践证明只有在每个元件上装设保护装置才有可能完成这个要求,而这种装置在目前使用的大多数是由单个继电器或继电器及其附属设备的组合构成的,因此称为继电保护装置,它能够反应电力系统中电气元件发生故障或不正常运行状

继电保护课程设计

目录 电力系统继电保护课程设计任务书 (1) 一、设计目的 (1) 二、课题选择 (1) 三、设计任务 (1) 四、整定计算 (1) 五、参考文献 (2) 输电线路三段式电流保护设计 (3) 一、摘要 (3) 二、继电保护基本任务 (3) 三、继电保护装置构成 (4) 四、继电保护装置的基本要求 (4) 五、三段式电流保护原理及接线图 (6) 六、继电保护设计 (7) 1.确定保护3在最大、最小运行方式下的等值电抗 (7) 2.相间短路的最大、最小短路电流的计算 (8) 3.整定保护1、2、3的最小保护范围计算 (8) 4.整定保护2、3的限时电流速断保护定值,并校验灵敏度 (9) 5.保护1、2、3的动作时限计算 (11) 参考文献: (12)

电力系统继电保护课程设计任务书 一、设计目的 1、巩固和加深对电力系统继电保护课程基础理论的理解。 2、对课程中某些章节的内容进行深入研究。 3、学习工程设计的基本方法。 4、学习设计型论文的写作方法。 二、课题选择 输电线路三段式电流保护设计 三、设计任务 1、设计要求 熟悉电力系统继电保护、电力系统分析等相关课程知识。 2、原理接线图 四、整定计算 ,20,3/1151Ω==G X kV E φ

,10,1032Ω=Ω=G G X X L1=L2=60km ,L3=40km, LB-C=30km,LC-D=30km, LD-E=20km,线路阻抗0.4Ω/km, 2.1=I rel K ,=∏rel K 15.1=I ∏rel K , 最大负荷电流IB-C.Lmax=300A, IC-D.Lmax=200A, ID-E.Lmax=150A, 电动机自启动系数Kss=1.5,电流继电器返回系数Kre=0.85。 最大运行方式:三台发电机及线路L1、L2、L3同时投入运行;最小运行方式:G2、L2退出运行。 五、参考文献 [1] 谷水清.电力系统继电保护(第二版)[M].北京:中国电力出版社,2013 [2] 贺家礼.电力系统继电保护[M].北京:中国电力出版社,2004 [3] 能源部西北电力设计院.电力工程电气设计手册(电气二次部分).北京: 中国电力出版社,1982 [4] 方大千.实用继电保护技术[M].北京:人民邮电出版社,2003 [5] 崔家佩等.电力系统继电保护及安全自动装置整定计算[M].北京:水利电 力出版社,1993 [6] 卓有乐.电力工程电气设计200例[M].北京:中国电力出版社,2002 [7] 陈德树.计算机继电保护原理与技术[M].北京:水利电力出版社,1992

电力系统继电保护课程设计

课程设计报告 课程名称电力系统继电保护 设计题目110kV线路距离保护的设计 设计时间2016-2017学年第一学期 专业年级电气134班 姓名王学成 学号 2013011983 提交时间 2016年12月19日 成绩 指导教师何自立许景辉 水利与建筑工程学院

第1章、概述 (2) 1.1距离保护配置 (2) 1.1.1主保护配置 (2) 1.1.2后备保护配置 (3) 1.2零序保护配置 (4) 1.2.1零序电流I段(速断)保护 (4) 1.2.2零序电流II段保护 (5) 第2章、系统分析 (5) 2.1故障分析 (5) 2.1.1故障引起原因 (5) 2.1.2故障状态及其危害 (5) 2.1.3 短路简介及类别 (6) 2.2输电线路保护主要形式 (7) (1)电流保护 (7) (2)低电压保护 (7) (3)距离保护 (7) (4)差动保护 (7) 2.3对该系统的具体分析 (8) 2.3.1对距离保护的分析 (8) 2.3.2对零序保护的分析 (8) 2.4整定计算 (8) 2.4.1距离保护的整定计算 (8) 2.4.2零序保护的整定计算 (14) 2.4.3结论 (20) 2.5原理图及动作分析 (20) 2.5.1原理图 (20) 2.5.2动作分析 (22) 第3章、总结 (22)

摘要 距离保护是以距离测量元件为基础构成的保护装置,又称阻抗保护。当系统正常运行时,保护装置安装处的电压为系统的额定电压,电流为负载电流,而发生短路故障时,其电压降低、电流增大。因此,电压和电流的比值,在正常状态下和故障状态下是有很大变化的。由于线路阻抗和距离成正比,保护安装处的电压与电流之比反映了保护安装处到短路点的阻抗,也反映了保护安装处到短路点的距离。所以可按照距离的远近来确定保护装置的动作时间,这样就能有选择地切除故障。 本设计为输电线路的距离保护,简述了输电线路距离保护的原理具体整定方法和有关注意细节,对输电网络距离保护做了详细的描述,同时介绍了距离保护的接线方式及阻抗继电器的分类,分析了系统振荡系统时各发电机电势间的相角差随时间周期性变化和短路过渡电阻影响。最后通过MATLAB建模仿真分析本设计的合理性,及是否满足要求。 关键词:距离保护;整定计算;

继电保护及课程设计_第二次作业

继电保护及课程设计_第二次作业 36. 电力系统发生故障时,继电保护装置应将故障部分切除 ,电力系统出现不正常工作时,继电保护装置一般应发出信号。 37. 继电保护的可靠性是指保护在应动作时不拒动 ,不应动作时不误动。 38. 本线路限时电流速断保护的保护范围一般不超出相邻下一线路电流速 断保护的保护范围,故只需带0.5s 延时即可保证选择性。 39. 检验电流保护灵敏系数时,最小短路电流I d.min是指在被保护范围末端,在最小运行方式下的两相短路电流。40. 为保证选择性,过电流保护的动作时限应按阶梯原则整定,越靠近电源处的保护,时限越长。 41. 电流继电器的返回系数过低,将使过电流保护的动作电流增 大,保护的灵敏系数降低。 42. 电流保护的接线系数定义为流过继电器的电流与电流互感器二次电 流之比,故两相不完全星形接线的接线系数 为 1 。 43. 中性点不接地电网发生单相接地后,将出现零序电压U0,其值为故障前相电压 值,且电网各处零序电压相等。44. 绝缘监视装置给出信号后,用依次断开线路方法查找故障线路,因此该装置适用于出线较少的情况。 45. 阻抗继电器根据比较原理的不同分为幅值比较式和相位比较式两类。 46. 当保护范围不变时,分支系数越大(小),使保护范围越小(大),导致灵敏性越低(高)。 47. 阻抗继电器的执行元件越灵敏,其精确工作电流越小。 48. 三种圆特性的阻抗继电器中,方向阻抗继电器受过渡电阻的影响最大,全阻抗继电器受过

渡电阻的影响最小。 49. 阻抗继电器受系统振荡影响的程度取决于两个因素,即保护的安装地点和阻抗继电器的特性。 50. 闭锁式高频方向保护在故障时启动发信,而正向元件动 作时停止发信,其动作跳闸的基本条件是正向元件动作且收不到闭锁信号。 51. 方向高频保护是比较线路两侧端功率方向,当满足功率方向同时指向线路条件时,方向高频保护动作。 52. 线路纵联保护载波通道的构成部件包括输电线 路、高频阻波器、耦合电容器、结合滤波器、高频电缆、保护间隙、接地刀闸和收发信机。 53. 相差高频保护是比较线路两端电流的相位,当满足电流相位同相条件时,相差高频保护动作。54. 高频保护启动发信方式有保护启 动、远方启动和手动启动。 55. 具有同步检定和无电压检定的重合闸,在线路一侧,当线路无电压时,允许该端线路的重合闸重合;而在另一侧,需检测母线电压和线路电压满足同期 条件时允许重合闸重合。 56. 在变压器的励磁涌流中,除有大量的直流分量外,还有大量的高次谐波分量,其中以二次谐波为主。 57. 对于变压器纵差动保护,在正常运行和外部故障时,流入差动继电器的电流为零(理论值)。 58.名词解释:选择性 答:选择性——是指首先由故障设备的保护切除故障,系统中非故障部分仍继续运行,以尽量缩小停电范围。当保护或断路器拒动时,才由相邻设备的保护或断路器失灵保护切除故障。 59.名词解释:速动性 答:速动性——是指保护装置应尽可能快的切除短路故障。 60.名词解释:灵敏性 答:灵敏性——是指在设备的被保护范围内发生金属性短路时,保护装置应具有的反应能力。 61.名词解释:系统最大(小)运行方式

继电保护课程设计

1. 前言 《电力系统继电保护》作为电气工程及其自动化专业的一门主要课程,主要包括课堂讲学、课程设计等几个主要部分。在完成了理论的学习的基础上,为了进一步加深对理论知识的理解,本专业特安排了本次课程设计。电能是现代社会中最重要、也是最方便的能源。而发电厂正是把其他形式的能量转换成电能,电能经过变压器和不同电压等级的输电线路输送并被分配给用户,再通过各种用电设备转换成适合用户需要的其他形式的能量。在输送电能的过程中,电力系统希望线路有比较好的可靠性,因此在电力系统受到外界干扰时,保护线路的各种继电装置应该有比较可靠的、及时的保护动作,从而切断故障点极大限度的降低电力系统供电范围。电力系统继电保护就是为达到这个目的而设置的。本次110kv电网继电保护设计的任务主要包括了五大部分,运行方式的分析,电路保护的配置和整定,零序电流保护的配置和整定,距离保护的配置和整定,原理接线图及展开图。通过此次线路保护的设计可以巩固我们本学期所学的《电力系统继电保护》这一课程的理论知识,能提高我们提出问题、思考问题、解决问题的能力。

2. 运行方式分析 电力系统运行方式的变化,直接影响保护的性能,因此,在对继电保护进行整定计算之前,首先应该分析运行方式。需要着重说明的是,继电保护的最大运行方式是指电网在某种连接情况下通过保护的电流值最大,继电保护的最小运行方式是指网在某种连接情况下通过保护的电流值最小。 图1 110kV电网系统接线图 系统接线图如图1所示,发电机以发电机—变压器组方式接入系统,最大开机方 式为4台机全开,最小开机方式为两侧各开1台机,变压器T5和T6可能2台 也可能1台运行。参数如下: 电动势:E = 115/3kv; 发电机:= = = = 5 + (15 5)/14=, = = = = 8 + (9 8)/14=; 变压器:~ = 5 + (10 5)/14=, ~ = 15 + (30 15)/14=., = = 15 + (20 15)/14=, = = 20 + (40 20)/14=; 线路:L A-B = 60km,L B-C = 40km,线路阻抗z1 = z2 = /km,z0 = /km, =60km× /km=24,=40km×/km=16; =60km×/km=72,=40km×/km=48; = = 300A; K ss = ,K re = ; 电流保护:K I rel = ,K II rel = , 距离保护:K I rel = ,K II rel = 负荷功率因数角为30,线路阻抗角均为75,变压器均装有快速差动保护。

电力系统继电保护课程设计

前言 《电力系统继电保护》作为电气工程及其自动化专业的一门主要课程,主要包括课堂讲学、课程设计等几个主要部分。在完成了理论的学习的基础上,为了进一步加深对理论知识的理解,本专业特安排了本次课程设计。电能是现代社会中最重要、也是最方便的能源。而发电厂正是把其他形式的能量转换成电能,电能经过变压器和不同电压等级的输电线路输送并被分配给用户,再通过各种用电设备转换成适合用户需要的其他形式的能量。在输送电能的过程中,电力系统希望线路有比较好的可靠性,因此在电力系统受到外界干扰时,保护线路的各种继电装置应该有比较可靠的、及时的保护动作,从而切断故障点极大限度的降低电力系统供电范围。电力系统继电保护就是为达到这个目的而设置的。本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。其中短路电流的计算和电气设备的选择是本设计的重点。通过此次线路保护的设计可以巩固我们本学期所学的《电力系统继电保护》这一课程的理论知识,能提高我们提出问题、思考问题、解决问题的能力。

1 所做设计要求 电网接线图 × × × ×cosφ=0.85X〃=0.129 X〃=0.132 cosφ=0.85cosφ=0.8cosφ=0.8cosφ=0.8 图示110kV 单电源环形网络:(将AB 线路长度改为45km,CD 长度改为20km ) (1)所有变压器和母线装有纵联差动保护,变压器均为Yn ,d11接线; (2)发电厂的最大发电容量为(2×25+50)MW,最小发电容量为2×25MW; (3)网络的正常运行方式为发电厂发电容量最大且闭环运行; (4)允许的最大故障切除时间为; (5)线路AC 、BC 、AB 、CD 的最大负荷电流分别为250、150、230和140A,负荷自起动系数5.1 ss K ;

继电保护课程设计

继电保护课程设计

————————————————————————————————作者:————————————————————————————————日期:

电力系统继电保护原理 课程设计 班级:2008级生信1班 学号:20085097 姓名:曹学博 专业:电气工程及其自动化 指导老师:王牣 评分:A(优),B(良),C(中),D(合格),E(不合格) 项目学生自评指导老师评定 设计内容完整性 计算公式准确性 计算数据正确性 绘图质量 文档规范性 综合评定 教师签名(盖章): 日期:年月日

目录 第一节设计任务书 (1) 1、继电保护课程设计的目的 (1) 2、原始数据 (2) 2.1 基础数据 (2) 2.2 系统接线图 (3) 3、课程设计要求 (4) 3.1 需要完成的设计内容 (4) 3.2 设计文件内容 (5) 第二节馈线保护配置与整定计算 (6) 1、馈线保护配置 (6) 2、馈线保护整定计算 (6) 2.1 电流速断定值计算 (6) 2.2 阻抗I段定值计算 (6) 2.3 阻抗II段定值计算 (7) 2.4 过电流定值计算 (7) 第三节变压器保护配置与整定计算 (8) 1、变压器保护配置 (8) 2、变压器电量保护整定计算 (8) 2.1 差动速断保护 (8) 2.2 二次谐波制动的比率差动保护 (8) 2.3 三相低电压过电流保护 (9) 2.4 单相低电压过电流保护 (9) 2.5 零序过电流保护 (10) 2.6 过负荷保护 (10) 3、变压器非电量计算 (10) 3.1 瓦斯保护整定计算 (10) 3.2 主变过热整定计算 (10) 第四节并联电容补偿装置配置与整定计算 (11) 1、并联补偿装置保护配置 (11) 2、并联补偿装置整定计算 (11) 2.1 电流速断保护 (11) 2.2 差流保护 (11) 2.3 过电流保护 (12) 2.4 高次谐波过流保护 (12) 2.5 差压保护 (13) 2.6 低电压保护 (14) 2.7 过电压保护 (14) 第五节 B相馈线保护原理接线图和展开图 (15) 1、电流保护 (15) 2、阻抗保护 (16)

电力系统继电保护原理课程设计

电力系统继电保护原理课程设计 姓名:邓义茂 班级:电气1班 学号: 201028009 2013年12月

《电力系统继电保护原理课程设计》 任务书 一、课程设计的目的 课程设计是本课程的重要实践环节,安排在理论教学结束后进行。搞好课程设计,对巩固所学知识,提高实际工作能力具有重要作用。经过设计、使学生掌握电力系统继电保护的方案设计、整定计算、设备选型、资料整理查询和电气绘图等使用方法,安排在理论教学结束后进行。搞好课程设计,对巩固所学知识,提高实际工作能力具有重要作用。通过本课程设计,使学生掌握新型继电保护设计的内容,步骤和方法,提高学生编写技术文件的技能,锻炼学生独立思考,运用所学知识分析和解决生产实际问题的能力。 二、原始资料 某企业供电系统如图所示: 图1.1 某企业供电系统图 三、设计要求 1)AB段设三段式保护(速断、限时速断、过流),BC段设两段式保护(速断、 过流),CD段设过流保护; 2)计算出各保护的整定值,校验其保护范围和灵敏度系数是否符合要求,并完 成主要电气设备的型号选择。 3)画出A段和B段的保护接线原理图和展开图。 四、原始参数 1)速断可靠系数取1.2 2)限时速断可靠系数取1.1 3)过流可靠系数取1.2 4)接线系数取1 5)返回系数取0.85 6)自起动系数取1

7)线路均阻抗Km = z/ 4.0Ω 课程设计时间分为二周,合计共10个工作日,时间分配可参考如下; 参考文献: 〈1〉《电力系统继电保护和自动装置设计规范》GB50062—922; 〈2〉《电力工程设计手册》二册; 〈3〉《电力系统继电保护原理及新技术》第二版,李佑光主编,科学出版社; 〈4〉《电力系统分析》,于永源,杨绮雯,北京:中国电力出版社,2007 〈5〉《供变电工程》第二版,翁双安,北京:机械工业出版社,2012 五、设计效果评价与考核 设计成绩按学生在课程设计中的表现,对知识的掌握程度,分析问题和解决问题的能力及创新能力,完成任务的质量,课程设计成果及设计等综合评定,共分五级评定。设计成绩综合后按优秀(90- 100分),良好(80-90分),中等(70一79),及格(60~69分),不及格(60分以下)五级计分制评定。 六、备注 最终成绩按照平时表现和设计说明书为主要参考依据,最后总评以优、良、中、及格、不及格记。若发现有抄袭,取消参加考核的资格,成绩以零分记录。

继电保护及课程设计-第一次作业

继电保护及课程设计 四、主观题(共26道小题) 32.继电保护的选择性是指继电保护动作时,只能把故障元件从系统中切除无故障部分继续运行。 33.电力系统切除故障的时间包括时间和的时间。 参考答案:电力系统切除故障的时间包括继电保护动作时间和断路器跳闸的时间。 34.继电保护装置一般是由、和组成。 参考答案: 继电保护装置一般是由测量比较元件、逻辑判断元件和执行输出元件组成。 35. 电流速断保护的动作电流按大于本线路末端整定,其灵敏性通常 用表示。 参考答案: 电流速断保护的动作电流按大于本线路末端最大短路电流整定,其灵敏性通常用保护范围的大小表示。 36.中性点直接接地电网发生接地短路时,零序电流的大小和分布主要取决于变压器接地中性点 的和。 参考答案:中性点直接接地电网发生接地短路时,零序电流的大小和分布主要取决于变压器接地中性点 的数目和分布。 37.中性点不接地电网发生单相接地后,可继续运行,故保护一般作用 于。 参考答案:中性点不接地电网发生单相接地后,可继续运行一段时间,故保护一般作用于发信号。 38.距离保护是反应的距离,并根据距离的远近确定 的一种保护。 参考答案:距离保护是反应故障点到保护安装处的距离,并根据距离的远近确定动作时间的一种保护。 39. I、II、III段阻抗元件中,段元件可不考虑受振荡的影响,其原因 是。 参考答案:I、II、III段阻抗元件中, III 段元件可不考虑受振荡的影响,其原因是靠时间整定躲过振荡周期。 40.纵联保护的通道主要有以下几种类 型、、和。参考答案: 纵联保护的通道主要有以下几种类型电力线载波、微波、光纤和导引线。 41.高频保护通道传送的信号按其作用不同,可分为信号、信号、

继电保护课程设计完整版

课程设计任务书 110KV 单电源环形网络相间短路电流保护的设计 110KV 单电源环形网络接地短路电流保护的设计 一、已知条件 1.网络接线图 图1.1 b=20 c=30 d=40 e=40 2.网络中各线路均采用带方向或不带方向的电流电压保护,所有变压器均 采用纵差动作为主保护,变压器采用11/-?Y 接线。 3.发电厂最大发电容量为360MW ?,最小发电容量为260MW ?。 4.网络正常运行方式为发电厂容量最大且闭环运行。 360cos 0.850.129d MW x φ?=''= 26010.5% K MVA U ?= % 5.1060=K U MVA 231.510.5% K MVA U ?= 10.5% MVA = 31.510.5% K MVA U = 8DL 7DL 6DL 5DL A D B 1.5S 1.5S e KM d KM Pmax=20MV A Cos Φ=0.8 Pmax=30MV A Cos Φ=0.8 Pmax=28MV A Cos Φ=0.8

5.允许最大故障切除时间为0.9S . 6.110千伏断路器均采用1102-DW 型断路器,它的跳闸时间为0.05S ,Ⅱ 段保护动作时间0.4 S 。 7.线路AB 、BC 、AD 和CD 的最大负荷电流请自行计算,负荷自启动系数为 1.5。 8.各变电所引出线上后备保护的动作时间如图所示,S t 5.0=?。 9.线路的正序电抗均为KM /4.0Ω。 10. 主保护灵敏系数的规定:线路长度200公里以上不小于1.3,线路长 度50~200公里不小于1.4,50公里以下不小于1.5。 11. 后备保护灵敏系数的规定:近后备保护不小于1.3;远后备保护不小 于1.2。 二、设计任务 1.确定保护1、3、5、7的保护方式(三段式)、各段保护整定值及灵敏度。 2.绘制保护1的接线图(包括原理图和展开图)。 3.撰写说明书,包括短路计算过程(公式及计算举例)、结果和保护方式的 选择及整定计算结果(说明计算方法)。 三、设计要点 1.短路电流及残压计算,考虑以下几点 1.1 运行方式的考虑 1.2 最大负荷电流的计算 1.3 短路类型的考虑 1.4 曲线绘制 2.保护方式的选择和整定计算 1.1 保护的确定应从线路末端开始设计。 1.2 优先选择最简单的保护(三段式电流保护),以提高保护的可靠性。当 不能同时满足选择性、灵敏性和速动性时,可采用较为复杂的方式,比如采用电流电压连锁保护或方向保护等。 1.3 将最终整定结果和灵敏度校验结果列成表格。 四 说明:

继电保护电流保护课程设计

1.设计原始资料 1.1 题目 如下图所示网络,系统参数为: ; ,,85.0,5.1150,200,300, 15.1,2.1,km 20km 30,km 50, km 40,km 5.59,10,15,k 3/ 115max max max 313 1=============Ω=Ω==------re ss E D D C C B III rel II rei I rel E D D C C B G G K K A I A I A I K K K L L L L L X X V E ? 线路阻抗km /4.0Ω。 G1 G3 A B C D E 1 234 5 8 9 L1 L3 试对线路进行三段电流保护的设计。(说明:可让不同的学生做123456789处一至二处保护设计) 1.2 要完成的任务 我要完成的是对保护5和保护3进行三段电流保护的整定设计。 2.分析课题内容 2.1规程 根据规程要求110kV 线路保护包括完整的三段相间距离保护、三段接地距离保护、三段零序方向过流保护和低频率保护,并配有三相一次重合闸功能、过负荷告警功能,跳合闸操作回路。 在本题中涉及的是三段过流保护。其中, I 段、II 段可方向闭锁,保证了保护的选择性。 各段电流及时间定值可独立整定,方向元件采用正序电压极化,方向元件和电流元件接成按相启动方式。 2.2本设计保护配置

1 2.2.1 主保护 主保护:反映整个保护元件上的故障并能最短的延时有选择的切出故障的保护。在本设计中,I 段电流速断保护、I I 段限时电流速断保护为主保护。 2.2.2 后备保护 后备保护:主保护拒动时,用来切除故障的保护,称为后备保护。作为下级主保护拒动和断路器拒动时的远后备保护,同时作为本线路主保护拒动时近后备保护,也作为过负荷是的保护,一般采用过电流保护。 而在本设计中,III 段定时限过电流保护为后备保护。 3.短路电流的计算 3.1等效电路的建立 G1 G2 1 G X 3 G X 1 L Z 3 L Z BC Z CD Z DE Z 等效电路图 3.2短路点的选取 当供电网络中任意点发生三相或两相短路时,流过短路点与电源线路中的短路电流可近似计算式为 ;K S K Z Z E K I +=?? 其中,?E —系统等效电源的相电动势; K Z —短路点至保护安装处之间的阻抗; S Z —保护安装处到系统等效电源之间的阻抗; ?K —短路类型系数,三相短路取1,两相短路取 2 3;

继电保护课程设计(完整版).doc

继电保护原理课程设计报告 专业:电气工程及其自动化 班级:电气1004 姓名:王英帅 学号:201009341 指导教师:赵峰 兰州交通大学自动化与电气工程学院 2013年7月18日

1 设计原始资料 1.1 具体题目 如下图所示网络,系统参数为: 3115/E =? kV ,G115X =Ω、G310X =Ω,160L =km ,340L =km ,B-C 50L =km , C-D 30L =km ,D-E 20L =km ,线路阻抗0.4Ω/km , I rel 1.2K =、III rel rel 1.15K K II ==,A 300I max C.-B =、C-D.max 200A I =、D-E.max 150A I =,SS 1.5K =,re 0.85K = 1.2 要完成的任务 我要完成的是对保护5和保护3进行三段电流保护的整定设计,本次课程设计通过对线路的主保护和后备保护的整定计算来满足对各段电流及时间的要求。 2 设计的课题内容 2.1 设计规程 根据规程要求110kV 线路保护包括完整的三段相间距离保护、三段接地距离保护、三段零序方向过流保护和低频率保护,并配有三相一次重合闸功能、过负荷告警功能,跳合闸操作回路。在本次课程设计中涉及的是三段过流保护。其中,I 段、II 段可方向闭锁,从而保证了保护的选择性。 2.2 本设计保护配置 2.2.1 主保护配置 主保护:反映整个保护元件上的故障并能最短的延时有选择的切出故障的保护。在本设计中,I 段电流速断保护、II 段限时电流速断保护作为主保护。 2.2.2 后备保护配置 后备保护:主保护拒动时,用来切除故障的保护,称为后备保护。作为下级主保护

河南理工继电保护课程设计报告书

理工大学电气工程及其自动化专业 《继电保护课程设计》报告(2016 ——2017 学年第二学期) 姓名: 专业班级:电气本1603 学号: 理工大学电力系

课程设计任务:根据以上资料,对本变电站进行保护配置与整定计算。1课程设计的目的 (1)加深课堂理论的学习和理解; (2)得到一定的工程实践锻炼; (3)获得将基础理论知识与具体工程实例相结合,从而解决实际问题的能力。 2保护配置分析 2.1变压器保护配置分析 电力变压器是电力系统量使用的重要电气设备,它的故障将对供电可靠性和系统的正常运行带来严重的影响,它的安全运行是电力系统稳定运行的必要条件。由于量的电力变压器是十分昂贵的元件,因此,必须根据变压器的容量和重要程度来考虑装设性能良好、工作可靠的继电保护装置。 变压器的部故障可以分为油箱和油箱外故障两种。油箱故障包括绕组的相间短路、接地短路、匝间短路以及铁芯的烧毁等。对于变压器来讲,这些故障都是十分危险的,因为油箱部发生故障所产生的电弧,将引起绝缘物质的剧烈气化,从而可能引起爆炸,因此这些故障应该尽快加以切除。油箱外的故障,主要是套管和引出线上发生的相间短路和接地短路。上述接地短路均是对中性点直接接地的电力网的一侧而言。 变压器的不正常工作状态主要有:由于变压器外部相间短路引起

的过电流,外部接地短路引起的过电流和中性点过电压;由于负荷产国额定容量引起的过负荷,以及由于漏油等原因而引起的油面降低。 此外,对于大容量变压器,由于其额定工作时的磁通密度相当接近于铁芯的饱和磁通密度,因此在过电压或者低频率等异常运行方式下,还会发生变压器的过励磁故障。 对于上述故障和异常工作状态及容量等级和重要程度,根据《规程》的规定,变压器应装设相应保护装置。 2.1.1变压器保护配置原则 (1)电压在 10kV 以上、容量在 10MVA 及以上的变压器,采用纵差保护。对于电压为 10kV 的重要变压器,当电流速断保护灵敏度不符合要求时也可采用纵差保护。 (2)纵联差动保护应满足下列要求:a.应能躲过励磁涌流和外部短路产生的不平衡电流;b.在变压器过励磁时不应误动作;c.在电流回路断线时应发出断线信号,电流回路断线允许差动保护动作跳闸;d.在正常情况下,纵联差动保护的保护围应包括变压器套管和引出线,如不能包括引出线时,应采取快速切除故障的辅助措施。在设备检修等特殊情况下,允许差动保护短时利用变压器套管电流互感器,此时套管和引线故障由后备保护动作切除。 (3)对外部相间短路引起的变压器过电流,变压器应装设相间短路后备保护。保护带延时跳开相应的断路器。相间短路后备保护宜选用过电流保护、复合电压(负序电压和线间电压)启动的过电流保护或复合电流保护(负序电流和单相式电压启动的过电流保护)。

继电保护课程设计报告

‘ 南京工程学院 课程设计说明书(论文) 题目某110kV电网继电保护配置 与整定计算的部分设计 课程名称电力系统继电保护A 院(系、部、中心)电力工程学院 专业电气工程及其自动化 班级 学生姓名 学号 设计地点工程实践中心9-322 指导教师

设计起止时间:2011年12月5日至2011年12月16日

目录 1 课程设计任务及实施计划错误!未定义书签。 已知条件错误!未定义书签。 参数选择与具体任务错误!未定义书签。 保护配置及整定计算任务分析错误!未定义书签。 实施计划错误!未定义书签。 2 零序短路电流计算 (4) 各元件电抗标幺值计算错误!未定义书签。 各序阻抗化简错误!未定义书签。 各序等值电抗计算错误!未定义书签。 零序电流计算错误!未定义书签。 互感器的选择错误!未定义书签。 3继电保护整定计算 (9) 距离保护错误!未定义书签。 零序电流保护错误!未定义书签。 RCS941线路保护装置的整定错误!未定义书签。 4 结论错误!未定义书签。 参考文献错误!未定义书签。

1 课程设计任务及实施计划 已知条件 本次所接受的课程设计的任务为选题一,接线简图如图所示。图中BC 线路为开环运行,本人整定AB 线路的A 侧保护。已知参数如下: 发电厂 B G G 图 110kV 系统接线简图 线路AB 、BC 、CA 、BS 的负荷的自起动系数5.1=ss K ; 发电厂各发电机组的次暂态电抗均为'' d X =(按自身额定容量的标么值);功率因数为 均为。最大发电容量为3台同时投运,最小发电容量为投入最小容量的一台发电机。 变电所引出线上后备保护动作时间如图,后备保护时限级差△t =; 线路的正序电抗每公里均为Ω/KM ;零序阻抗为Ω/KM ;发电机,变压器参数按照图示额定值计算;变压器零序阻抗是正序阻抗的80%。 电压互感器的变比1.0/110=TV n kV ,线路电流互感器变比可根据线路额定电流选择。 系统最大及最小的正序、零序等值阻抗都已折算到100MVA 标准容量下,变压器的短路电压百分比按本变压器额定容量给出,两台主变的变电所,正常运行时只投入一台,高峰负荷时才投入两台。具体参数见任务安排表。 参数选择与具体任务 对应《继保081课程设计任务具体参数安排》,本次设计所涉及的具体参数如表所示。

继电保护课程设计论文

继电保护课程设计(论 文) 题目 110KV电网线路保护设计 学院名称电气工程学院 指导教师 职称教授 班级电力1201班 学号 学生姓名 2016年 1 月 21 日 摘要 (3) 1. 继电保护设计任务和要求 (4)

1.1 继电保护装置及其任务 (4) 1.2 对继电保护的基本要求 (4) 2.设计资料分析与参数计算 (5) 2.1基准值选择 (5) 2.2电网各元件等值电抗计算 (5) 3.短路电流计算 (7) 3.1流经保护2的短路计算 (7) 3.2流经保护3的短路计算 (12) 3.3流经保护5的短路计算 (16) 4.电流保护整定计算 (21) 4.1保护1的电流保护整定 (21) 5.电网线路继电保护整定计算 (22) 5.1距离保护的整定计算 (22) 5.1.1保护6的距离保护整定计算 (23) 5.1.2保护2的距离保护整定计算 (26) 5.1.3保护3的距离保护整定计算 (28) 5.1.4保护5的距离保护整定计算 (30) 6.继电保护零序电流保护的整定计算和校验 (33) 6.1整定结果 (33) 7.输电线路的自动重合闸装置 (34) 7.1自动重合闸概述 (34) 7.2单侧电源线路的三相一次自动重合闸装置 (35)

7.3双侧电源线路的自动重合闸 (35) 7.4自动重合闸与继电保护的配合 (35) 8.综合评价 (36) 8.1对电流保护的综合评价 (36) 8.2对零序电流保护的评价 (36) 8.3对距离保护的综合评价 (36) 9.结束语 (37) 参考文献 (38) 摘要: 电力系统的飞速发展对继电保护不断提出新的要求,也使得继电保护得以飞速的发展。继电保护装置必须具备继电保护的“四性”要求,即安全性,可靠性,迅速性,灵敏性。继电保护能够在系统运行过程中发生故障和出现不正常现象时,迅速有选择性

继电保护课程设计对变压器进行主保护和后备保护

电力系统继电保护课程设计 专业:电气工程及其自动化 班级: 姓名: 学号: 2009 指导教师: 兰州交通大学自动化与电气工程学院 2012 年 7月 7日

1 设计原始资料 1.1 具体题目 一台双绕组降压变压器的容量为20MVA,电压比为35±2×2.5%/6.6kV,Yd11接线;采用BCH-2型继电器。求差动保护的动作电流。已知:6.6kV外部短路的最大三相短路电流为8920(1+50%)=13380A;35kV侧电流互感器变比为600/5,66kV侧电流互感器变比为1500/5;可靠系数取错误!未找到引用源。。试对变压器进行相关保护的设计。 1.2 要完成的内容 对变压器进行主保护和后备保护的设计、配置、整定计算和校验。 2 分析要设计的课题内容 2.1 本设计的保护配置 2.1.1 主保护配置 为了满足电力系统稳定性方面的要求,当变压器发生故障时,要求保护装置快速切除故障。通常变压器的瓦斯保护和纵差动保护构成双重化快速保护。 (1) 瓦斯保护 变电所的主变压器和动力变压器,都是用变压器油作为绝缘和散热的。当变压器内部故障时,由于短路电流和电弧的作用,故障点附近的绝缘物和变压器油分解而产生气体,同时由于气体的上升和压力的增大会引起油流的变化。利用这个特点构成的保护,叫做瓦斯保护。瓦斯保护主要由瓦斯继电器、信号继电器、保护出口继电器等构成,瓦斯继电器装在变压器油箱和油枕的连接管上。瓦斯继电器的上触点为轻瓦斯保护,由上开口杯控制,整定值为当瓦斯继电器内上部积聚250~300cm3气体时动作,动作后发信号。 (2) 纵差动保护 电流纵差动保护不但能区分区内外故障,而且不需要与其他元件的保护配合,可以无延时的切除区内各种故障,具有明显的优点。本设计中变压器主保护主要选电流纵差动保护,差动保护是变压器内部、套管及引出线上发生相间短路的主保护,同时也可以保护单相层间短路和接地短路,不需与其他保护配合,可无延时的切断内部短路,动作于变压器高低压两侧断路器跳闸。为了保证动作的选择性,差动保护动作电流应躲开外部短路电流时的最大不平衡电流。

电力系统继电保护课程设计---变压器的保护设计

电力系统继电保护课程设计 题目:变压器的保护设计 班级: 姓名: 学号: 指导教师: 设计时间: 评语: 成绩

1设计原始资料: 1.1具体题目 一台双绕组降压变压器的容量为15MV A,电压比为35±2×2.5%/6.6kV,Y,d11接线;采用BCH-2型继电器。求差动保护的动作电流。已知:6.6kV外部短路的最大三相短路电流为9420A;35kV侧电流互感器变比为600/5,35kV侧电流互感器变比为1500/5;可靠系数错误!未找到引用源。。 试对变压器进行相关保护的设计。 1.2要完成的内容 对变压器进行主保护和后备保护的设计、配置、整定计算和校验。 2分析要设计的课题内容(保护方式的确定) 2.1设计规程 根据设计技术规范的规定,针对变压器的各种故障、不正常工作状态和变压器容量,应装设相应的保护装置。 (1)对800kV A以上的油浸式变压器:应装设瓦斯保护作为变压器内部故障的保护。发生轻瓦斯、油面异常降低时发信号,发生重瓦斯时使各侧断路器瞬时跳闸。 (2)对于变压器的引出线、套管和内部故障: ①并联运行、容量为6300kVA及以上,单台运行、容量为10000kVA及以上的变压器,应装设纵差动保护。 ②并联运行、容量为6300kV A以下,单台运行、容量为10000以下的变压器,应装设电流速断保护。2000kV A及以上的变压器,如果电流速断保护的灵敏度不能满足要求,应装设纵差动保护。 (3)对于由外部相间短路引起的变压器过电流,应装设过电流保护。如果灵敏度不能满足要求,可以装设低电压启动的过电流保护。 (4)对于一向接地故障,应装设零序电流保护。 (5)对于400kV A及以上的变压器,应根据其过负荷的能力,装设过负荷保护。 (6)对于过热,应装设温度信号保护。

继电保护课程设计(完整版)

. .. 继电保护原理课程设计报告 专业:电气工程及其自动化 班级:电气1004 姓名:王英帅 学号:201009341 指导教师:峰 兰州交通大学自动化与电气工程学院 2013年7月18日

1 设计原始资料 1.1 具体题目 如下图所示网络,系统参数为: 3115/E =? kV ,G115X =Ω、G310X =Ω,160L =km ,340L =km ,B-C 50L =km , C-D 30L =km ,D-E 20L =km ,线路阻抗0.4Ω/km , I rel 1.2K =、III rel rel 1.15K K II ==,A 300I max C.-B =、C-D.max 200A I =、D-E.max 150A I =,SS 1.5K =,re 0.85K = 1.2 要完成的任务 我要完成的是对保护5和保护3进行三段电流保护的整定设计,本次课程设计通过对线路的主保护和后备保护的整定计算来满足对各段电流及时间的要求。 2 设计的课题内容 2.1 设计规程 根据规程要求110kV 线路保护包括完整的三段相间距离保护、三段接地距离保护、三段零序方向过流保护和低频率保护,并配有三相一次重合闸功能、过负荷告警功能,跳合闸操作回路。在本次课程设计中涉及的是三段过流保护。其中,I 段、II 段可方向闭锁,从而保证了保护的选择性。 2.2 本设计保护配置 2.2.1 主保护配置 主保护:反映整个保护元件上的故障并能最短的延时有选择的切出故障的保护。在本设计中,I 段电流速断保护、II 段限时电流速断保护作为主保护。 2.2.2 后备保护配置 后备保护:主保护拒动时,用来切除故障的保护,称为后备保护。作为下级主保护

相关文档
最新文档