华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯及9可行性研究报告-广州中撰咨询

华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯及9可行性研究报告-广州中撰咨询
华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯及9可行性研究报告-广州中撰咨询

华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯及9

可行性研究报告

(典型案例〃仅供参考)

广州中撰企业投资咨询有限公司

地址:中国·广州

目录

第一章华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯及9概论 (1)

一、华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯及9名称及承办单位 (1)

二、华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯及9可行性研究报告委托编制单位 (1)

三、可行性研究的目的 (1)

四、可行性研究报告编制依据原则和范围 (2)

(一)项目可行性报告编制依据 (2)

(二)可行性研究报告编制原则 (2)

(三)可行性研究报告编制范围 (4)

五、研究的主要过程 (5)

六、华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯及9产品方案及建设规模 (6)

七、华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯及9总投资估算 (6)

八、工艺技术装备方案的选择 (6)

九、项目实施进度建议 (7)

十、研究结论 (7)

十一、华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯及9主要经济技术指标 (9)

项目主要经济技术指标一览表 (9)

第二章华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯及9产品说明 (16)

第三章华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯及

9市场分析预测 (16)

第四章项目选址科学性分析 (16)

一、厂址的选择原则 (16)

二、厂址选择方案 (17)

四、选址用地权属性质类别及占地面积 (17)

五、项目用地利用指标 (18)

项目占地及建筑工程投资一览表 (18)

六、项目选址综合评价 (19)

第五章项目建设内容与建设规模 (20)

一、建设内容 (20)

(一)土建工程 (20)

(二)设备购臵 (21)

二、建设规模 (21)

第六章原辅材料供应及基本生产条件 (22)

一、原辅材料供应条件 (22)

(一)主要原辅材料供应 (22)

(二)原辅材料来源 (22)

原辅材料及能源供应情况一览表 (22)

二、基本生产条件 (24)

第七章工程技术方案 (25)

一、工艺技术方案的选用原则 (25)

二、工艺技术方案 (26)

(一)工艺技术来源及特点 (26)

(二)技术保障措施 (26)

(三)产品生产工艺流程 (26)

华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯及9生产工艺流程示意简图 (27)

三、设备的选择 (27)

(一)设备配臵原则 (27)

(二)设备配臵方案 (28)

主要设备投资明细表 (29)

第八章环境保护 (30)

一、环境保护设计依据 (30)

二、污染物的来源 (31)

(一)华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯及9建设期污染源 (32)

(二)华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯及9运营期污染源 (32)

三、污染物的治理 (32)

(一)项目施工期环境影响简要分析及治理措施 (33)

1、施工期大气环境影响分析和防治对策 (33)

2、施工期水环境影响分析和防治对策 (37)

3、施工期固体废弃物环境影响分析和防治对策 (38)

4、施工期噪声环境影响分析和防治对策 (39)

5、施工建议及要求 (41)

施工期间主要污染物产生及预计排放情况一览表 (43)

(二)项目营运期环境影响分析及治理措施 (44)

1、废水的治理 (44)

办公及生活废水处理流程图 (44)

生活及办公废水治理效果比较一览表 (45)

生活及办公废水治理效果一览表 (45)

2、固体废弃物的治理措施及排放分析 (45)

3、噪声治理措施及排放分析 (47)

主要噪声源治理情况一览表 (48)

四、环境保护投资分析 (48)

(一)环境保护设施投资 (48)

(二)环境效益分析 (49)

五、厂区绿化工程 (49)

六、清洁生产 (50)

七、环境保护结论 (50)

施工期主要污染物产生、排放及预期效果一览表 (52)

第九章项目节能分析 (53)

一、项目建设的节能原则 (53)

二、设计依据及用能标准 (53)

(一)节能政策依据 (53)

(二)国家及省、市节能目标 (54)

(三)行业标准、规范、技术规定和技术指导 (55)

三、项目节能背景分析 (55)

四、项目能源消耗种类和数量分析 (57)

(一)主要耗能装臵及能耗种类和数量 (57)

1、主要耗能装臵 (57)

2、主要能耗种类及数量 (58)

项目综合用能测算一览表 (58)

(二)单位产品能耗指标测算 (59)

单位能耗估算一览表 (59)

五、项目用能品种选择的可靠性分析 (60)

六、工艺设备节能措施 (60)

七、电力节能措施 (61)

八、节水措施 (62)

九、项目运营期节能原则 (62)

十、运营期主要节能措施 (63)

十一、能源管理 (64)

(一)管理组织和制度 (64)

(二)能源计量管理 (65)

十二、节能建议及效果分析 (66)

(一)节能建议 (66)

(二)节能效果分析 (66)

第十章组织机构工作制度和劳动定员 (67)

一、组织机构 (67)

二、工作制度 (67)

三、劳动定员 (67)

四、人员培训 (68)

(一)人员技术水平与要求 (68)

(二)培训规划建议 (68)

第十一章华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯及9投资估算与资金筹措 (69)

一、投资估算依据和说明 (69)

(一)编制依据 (69)

(二)投资费用分析 (71)

(三)工程建设投资(固定资产)投资 (72)

1、设备投资估算 (72)

2、土建投资估算 (72)

3、其它费用 (72)

4、工程建设投资(固定资产)投资 (72)

固定资产投资估算表 (73)

5、铺底流动资金估算 (73)

铺底流动资金估算一览表 (74)

6、华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯及9总投

资估算 (74)

总投资构成分析一览表 (75)

二、资金筹措 (75)

投资计划与资金筹措表 (76)

三、华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯及9资金使用计划 (76)

资金使用计划与运用表 (77)

第十二章经济评价 (77)

一、经济评价的依据和范围 (77)

二、基础数据与参数选取 (78)

三、财务效益与费用估算 (79)

(一)销售收入估算 (79)

产品销售收入及税金估算一览表 (79)

(二)综合总成本估算 (80)

综合总成本费用估算表 (80)

(三)利润总额估算 (81)

(四)所得税及税后利润 (81)

(五)项目投资收益率测算 (81)

项目综合损益表 (82)

四、财务分析 (83)

财务现金流量表(全部投资) (85)

财务现金流量表(固定投资) (87)

五、不确定性分析 (87)

盈亏平衡分析表 (88)

六、敏感性分析 (89)

单因素敏感性分析表 (90)

第十三章华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯

及9综合评价 (90)

第一章项目概论

一、项目名称及承办单位

1、项目名称:华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯及9投资建设项目

2、项目建设性质:新建

3、项目编制单位:广州中撰企业投资咨询有限公司

4、企业类型:有限责任公司

5、注册资金:500万元人民币

二、项目可行性研究报告委托编制单位

1、编制单位:广州中撰企业投资咨询有限公司

三、可行性研究的目的

本可行性研究报告对该华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯及9所涉及的主要问题,例如:资源条件、原辅材料、燃料和动力的供应、交通运输条件、建厂规模、投资规模、生产工艺和设备选型、产品类别、项目节能技术和措施、环境影响评价和劳动卫生保障等,从技术、经济和环境保护等多个方面进行较为详细的调查研究。通过分析比较方案,并对项目建成后可能取得的技术经济效果进行预测,从而为投资决策提供可靠的依据,作为该华中年产20吨复硝酚钠和200吨萘乙酸钠、200吨胺鲜酯及9进行下一步环境评价及工程设计的基础文件。

本可行性研究报告具体论述该华中年产20吨复硝酚钠和200

萘乙酸钠、胺鲜酯(DA-6)与肥料的复配技术

萘乙酸钠、胺鲜脂(DA-6)与肥料的复配技术 α-萘乙酸钠与生长素类复配,形成生根粉,就是市场上高档次生根粉的主要配方。可以弥补很多调节剂只调节地上部生长的不足,使药剂组配使用更科学,综合促进植物生长。 萘乙酸钠与复硝酚钠复配使用高纯度α-萘乙酸钠可与复硝酚钠复配使用,在日本、台湾已有二十多年的历史,这两种成份相互增效,具有复硝酚钠、α-萘乙酸钠的双重功能,拓宽药谱,使用浓度降低,达到事半功倍 . 复配使用第一,高纯度α-萘乙酸钠可以与生长素复配使用;第二,可与复硝酚钠复配使用,制成保花和膨果剂,这是目前市场上较好的调节剂。 萘乙酸钠与矮壮素、氯化胆碱复配,可以抑制旺长,促进果实膨大和块根块茎的生长与膨大。 萘乙酸钠与肥料复配施用,显著增强根系细胞通透性与活力,使根系吸收更迅速,利用更彻底,植株健壮,平衡生长。如,与尿素、磷酸二氢钾、硼酸、硫酸锰等肥料复配,可提高肥料利用率,促进植物根系发达、防倒伏、增产、增收。萘乙酸钠与除草剂草甘膦复配,除草快,除草更彻底。 单独使用:高纯度a-萘乙酸钠:可以单独配成水剂、粉剂、乳油和其它剂型,具有高纯度a-萘乙酸钠的各种效果,用于促生长、生根、保花、保果等。 用法用量: 萘乙酸钠叶面喷施:0.10-0.25g/亩; 萘乙酸钠冲施、底肥:4-6g/亩; 复配使用:参考上述用量,酌减。 注意:苗期用量均减半。

1、DA-6单独使用 DA-6原粉单独施用,可直接做成液剂和粉剂,浓度可根据需要而配制,操作简便,不需要特殊的工艺和设备。.DA-6单独使用时,效果以10-15PPm(毫克/千克)最好。 2、DA-6作增效剂与肥料混用 DA-6与肥料复配施用,DA-6可以直接与多种元素复配使用,具有很好兼容性。不需要有机溶剂和助剂等添加剂,非常稳定,可长期贮存。且能提高植物的同化能力,加速植物对肥料的吸收利用、增加肥效达30%以上,减少肥料用量。 3、DA-6作增效剂与杀虫、杀菌剂混用 DA-6与杀虫剂复配使用,DA-6是中性物质,可与多种杀虫剂复配使用。可增加植物长势,增强植物抗虫性,且DA-6本身对软体虫具有驱避使用。用DA-6与杀虫剂复配以后,即杀虫又增产,达到一举两得的效果。与杀菌剂复配使用,DA-6是中性物质、可以与多种杀菌剂复配,都具有明显的增效作用、可以增效30%以上,减少用药量10-30%。且实验证明DA-6对真菌、细菌、病毒等所引起的多种植物病害,具有抑制和防治作用。 4、DA-6作除草剂解毒剂使用 DA-6与除草剂复配使用,在不降低除草剂效果的情况下能有效防止农作物中毒,使除草剂能够安全使用。对于已中毒的农作物,可用DA-6进行解毒,使农作物快速恢复生机,减少经济损失。此外,也可作为除草剂解毒剂,经试验证明DA-6对大多数除草剂具有解毒功效。

盐酸萘乙二胺分光光度法资料

盐酸萘乙二胺分光光 度法

精品文档 大气中氮氧化物的测定(盐酸萘乙二胺分光光度法) 原理: 大气中的氮氧化物主要是一氧化氮和二氧化氮。在测定氮氧化物浓度时,应先用三氧化铬将一氧化氮氧化成二氧化氮。 二氧化氮被吸收液吸收后,生成亚硝酸和硝酸,其中,亚硝酸与对氨基苯磺酸发生重氮化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,据其颜色深浅,用分光光度法定量。因为NO2(气)转变为NO2-(液)的转换系数为0.76,故在计算结果时应除以0.76。 仪器: 1.多孔玻板吸收管。 2.双球玻璃管(内装三氧化铬-砂子)。 3.空气采样器:流量范围 0—1L/ min。 4.分光光度计。 试剂: 所有试剂均用不含亚硝酸根的重蒸馏水配制。其检验方法是:所配制的吸收液对540nm光的吸光度不超过0.005。 1.吸收液:称取5.0g对氨基苯磺酸,置于1000mL容量瓶中,加入50mL冰乙酸和900mL水的混合溶液,盖塞振摇使其完全溶解,继之加入0.050g盐酸萘乙二胺,溶解后,用水稀释至标线,此为吸收原液,贮于棕色瓶中,在冰箱内可保存两个月。保存时应密封瓶口,防止空气与吸收液接触。采样时,按4份吸收原液与1份水的比例混合配成采样用吸收液。 2.三氧化铬-砂子氧化管:筛取20—40目海砂(或河砂),用(1+2)的盐酸溶液浸泡一夜,用水洗至中性,烘干。将三氧化铬与砂子按重量比(1+20)混合,加少量水调匀,放在红外灯下或烘箱内于105℃烘干,烘干过程中应搅拌几次。制备好的三氧化铬-砂子应是松散的,若粘在一起,说明三氧化铬比例太大,可适当增加一些砂子,重新制备。称取约8g三氧化铬-砂子装入双球玻璃管内,两端用少量脱脂棉塞好,用乳胶管或塑料管制的小帽将氧化管两端密封,备用。采样时将氧化管与吸收管用一小段乳胶管相接。 3.亚硝酸钠标准贮备液:称取0.1500g粒状亚硝酸钠(NaNO2,预先在干燥器内放置24h以上),溶解于水,移入1000mL容量瓶中,用水稀释至标线。此溶液每毫升含100.0μgNO2-,贮于棕色瓶内,冰箱中保存,可稳定三个月。 4.亚硝酸钠标准溶液:吸取贮备液 5.00mL于100mL容量瓶中,用水稀释至标线。此溶液每毫升含5.0μgNO2-。 测定步骤: 1.标准曲线的绘制:取7支10ml具塞比色管,按下表所列数据配制标准色列。 收集于网络,如有侵权请联系管理员删除

植物生长调节剂萘乙酸(钠)NAA在各种作物上的用法用量详解

植物生长调节剂:萘乙酸(1-Naphthyl acetic acid) 用法用量详解 1.中文通用名称:1-萘乙酸;α-萘乙酸;α-萘醋酸 2.英文通用名称:NAA;1-naphthyl acetic acid;PL-anofix;Calmone;Narusaka 3.化学名称:α-萘乙酸 4.商品名称:萘乙酸 5.理化性质 萘乙酸纯品为白色无味晶体,工业品为黄褐色。熔点130℃,相对分子质量为,沸点285℃。难溶于水,20℃时水中溶解度240mg/L,溶于热水,易溶于丙酮、乙醚、苯、乙醇、氯仿等有机溶剂。见光易变色,遇碱能成盐,盐类能溶于水,常温下贮存稳定。 6.毒性:低毒 7.类别:植物生长促进剂 8.主要剂型:95%原药、%、1%、5%水剂,20%可溶性粉剂,40%可溶性粉剂(钠) 9.功能特点 萘乙酸(钠)属生长素类植物生长调节剂,除具有一般生长素的基本功能外,还可以促进植物不定根和根的形成,用于促进种子发根、扦插生根和茄科类作物生须根。能促进果实和块根块茎的迅速膨大,因此在蔬菜、果树上可作为膨大素使用。能提高开花坐果率,防止落花落果,具有防落功能。不仅能提高产量、改善品质,促进枝叶茂盛、植株健壮,还能有效提高作物抗旱、抗寒、抗涝、抗病、抗盐碱、抗逆等能力。 10.使用技术 (1)促进不定根和根的形成 葡萄扦插前,用100~200mg/L药液浸蘸枝条,可促使枝条生根,发芽快,植株发育健壮。 树木移栽用100~200mg/L药液蘸根后移栽,可促进生根,提高成活率。 茶、桑、柞树、水杉等用10~15mg/L药液浸插扦枝基部24小时,可促进生根。 (2)促进果实和块根块茎迅速膨大 甘薯捆齐薯秧,用10~20mg/L药液浸基部1寸深,6h后插秧;或用80~100mg/L 药液沾秧1寸3s,立即插载;可提高成活率,膨大薯块,增加产量。 萝卜、白菜用15~30mg/L药液浸种12h,捞出用清水冲洗1~2遍,干后播种,可促

(KJ201704)食品中亚硝酸盐的快速检测盐酸萘乙二胺法

附件4 食品中亚硝酸盐的快速检测 盐酸萘乙二胺法(KJ201704) 1范围 本方法规定了食品中亚硝酸盐的快速检测方法。 本方法适用于肉及肉制品(餐饮食品)中亚硝酸盐的快速测定。 2原理 样品中的亚硝酸盐经提取后,在弱酸性条件下与对氨基苯磺酸重氮化后,再与盐酸萘乙二胺反应生成紫红色偶氮化合物,其颜色的深浅在一定范围内与亚硝酸盐含量成正相关,通过色阶卡进行目视比色,对样品中亚硝酸盐进行定性判定。 3试剂和材料 除另有规定外,本方法所用试剂均为分析纯,水为GB/T6682规定的二级水。 3.1试剂 3.1.1对氨基苯磺酸。 3.1.2盐酸萘乙二胺。 3.1.3盐酸。 3.1.4盐酸(20%):量取20mL盐酸,用水稀释至100mL。 3.1.5对氨基苯磺酸溶液(4g/L):称取0.4g对氨基苯磺酸,溶于100mL20%盐酸中,混匀,置棕色瓶中,临用新制。 3.1.6盐酸萘乙二胺溶液(2g/L):称取0.2g盐酸萘乙二胺,溶解于100mL水中,混匀,置棕色瓶中,临用新制。 3.2参考物质 亚硝酸钠参考物质中文名称、英文名称、CAS号、分子式、相对分子质量见表1,纯度≥99%。 表1亚硝酸钠中文名称、英文名称、CAS登记号、分子式、相对分子质量 3.3标准溶液配制 亚硝酸钠标准工作液(200μg/mL,以亚硝酸钠计):精密称取适量经110℃—120℃干燥恒重的亚硝酸钠参考物质(3.2),加水溶解,移入250mL容量瓶中,加水稀释至刻度,混匀。 3.4材料

亚硝酸盐快速检测试剂盒:适用基质为肉及肉制品,需在阴凉、干燥、避光条件下保存。 4仪器和设备 4.1移液器:200μL,1mL。 4.2涡旋混合器或超声仪。 4.3电子天平或手持式天平:感量为0.01g和0.0001g。 4.4离心机。 4.5微孔滤膜:0.45μm(水系)。 5分析步骤 5.1试样制备 取适量有代表性样品的可食部分,充分粉碎混匀。 5.2试样的提取 准确称取试样1g(精确至0.01g),置于离心管中,准确加水10mL,超声或涡旋振荡提取5min,静置10min。准确吸取1mL上清液(如样品浑浊,≥3000r/min离心5min取上清液,或经微孔滤膜过滤后取续滤液)于检测管中,向检测管中滴加对氨基苯磺酸溶液200μL,混匀静置1min,再加入盐酸萘乙二胺溶液100μL,混匀静置5min,即得待测液。 5.3测定步骤 将待测液与标准色阶卡目视比色,10min内判读结果。进行平行试验,两次测定结果应一致,即显色结果无肉眼可辨识差异。 5.4质控试验 每批样品应同时进行空白试验和质控样品试验(或加标质控试验)。用色阶卡和质控试验同时对检测结果进行控制。 5.4.1空白试验 称取空白样品,按照5.2和5.3步骤与样品同法操作。 5.4.2质控样品试验(或加标质控试验) 亚硝酸盐质控样品:采用典型样品基质或相似样品基质按照实际生产工艺生产的,含有一定量亚硝酸盐,并可稳定保存的样品。经参比方法确认的质控样品中亚硝酸盐含量(以亚硝酸钠计)应包括但不限于10mg/kg。 加标质控样品:准确称取空白试样1g(精确至0.01g),置于离心管中,加入适量亚硝酸钠标准工作液(200μg/mL)(3.3)使样品中亚硝酸钠含量为10mg/kg。 质控样品(或加标质控样品)按5.2和5.3步骤与样品同法操作。 6结果判定要求 观察检测管中样液颜色,与标准色阶卡比较判读样品中亚硝酸盐(以亚硝酸钠计)的含量。颜色浅于检出限(1mg/kg)则为阴性样品;颜色深于10mg/kg则为阳性样品。色阶卡见图1。 注:1.颜色接近或深于1mg/kg,但浅于或接近10mg/kg时,则考虑本底污染或带入所

植物生长调节剂萘乙酸钠N在各种作物上的用法用量详解

植物生长调节剂萘乙酸钠N在各种作物上的用法用 量详解 Modified by JEEP on December 26th, 2020.

植物生长调节剂:萘乙酸(1-N a p h t h y l a c e t i c a c i d) 用法用量详解 1.中文通用名称:1-萘乙酸;α-萘乙酸;α-萘醋酸 2.英文通用名称:NAA;1-naphthyl acetic acid;PL-anofix;Calmone;Narusaka 3.化学名称:α-萘乙酸 4.商品名称:萘乙酸 5.理化性质 萘乙酸纯品为白色无味晶体,工业品为黄褐色。熔点130℃,相对分子质量为,沸点285℃。难溶于水,20℃时水中溶解度240mg/L,溶于热水,易溶于丙酮、乙醚、苯、乙醇、氯仿等有机溶剂。见光易变色,遇碱能成盐,盐类能溶于水,常温下贮存稳定。 6.毒性:低毒 7.类别:植物生长促进剂 8.主要剂型:95%原药、%、1%、5%水剂,20%可溶性粉剂,40%可溶性粉剂(钠) 9.功能特点 萘乙酸(钠)属生长素类植物生长调节剂,除具有一般生长素的基本功能外,还可以促进植物不定根和根的形成,用于促进种子发根、扦插生根和茄科类作物生须根。能促进果实和块根块茎的迅速膨大,因此在蔬菜、果树上可作为膨大素使用。能提高开花坐果率,防止落花落果,具有防落功能。不仅能提高产量、改善品质,促进枝叶茂盛、植株健壮,还能有效提高作物抗旱、抗寒、抗涝、抗病、抗盐碱、抗逆等能力。 10.使用技术 (1)促进不定根和根的形成

葡萄扦插前,用100~200mg/L药液浸蘸枝条,可促使枝条生根,发芽快,植株发育健壮。 树木移栽用100~200mg/L药液蘸根后移栽,可促进生根,提高成活率。 茶、桑、柞树、水杉等用10~15mg/L药液浸插扦枝基部24小时,可促进生根。 (2)促进果实和块根块茎迅速膨大 甘薯捆齐薯秧,用10~20mg/L药液浸基部1寸深,6h后插秧;或用80~ 100mg/L药液沾秧1寸3s,立即插载;可提高成活率,膨大薯块,增加产量。 萝卜、白菜用15~30mg/L药液浸种12h,捞出用清水冲洗1~2遍,干后播种,可促进果实膨大,增加产量。 (3)提高坐果率,保花保果,防落 柑橘采前15d用40~60mg/L药液喷果蒂部分,可防止采前落果,增加产量。 苹果、梨、红枣幼果期用15~20mg/L药液全株喷施,采前45d开始,每隔15d 喷施一次,全株喷施2~3次,可促进生长,防止采前落果,增加产量。 西瓜雌花初开时,用20~30mg/L药液浸花或喷花,可提高坐瓜率。 棉花植株盛花期开始,用1~8mg/L药液叶面喷洒,间隔10~15d喷1次,共三次。可防止蕾铃脱落。 辣椒开花期以20mg/L全株喷洒,可防止落花,促进结椒。 (4)促进生长、健壮植株、增产、改善品质 小麦 10~20mg/L药液浸种6~12h,捞出用清水冲洗1~2遍,干后播种;拔节前15~25mg/L药液喷施;分蘖期20~30mg/L药液喷洒旗叶和穂部,可促进分蘖,提高成穂率。用药后可提高抗盐碱能力,增产增加千粒重,增加穂粒数,抗干热风,增产。

实验十四盐酸萘乙二胺比色法测定大气中氮氧化物(精)

实验十四盐酸萘乙二胺比色法测定大气中氮氧化物 一﹑实验目的 1.学习气体样品的采集和吸收,吸收管及大气采样器的使用。 2.掌握大气中氮氧化物的比色测定方法。 二﹑实验原理 大气中氮氧化物包括一氧化氮和二氧化氮等,在测定氮氧化物浓度时,先用三氧化铬氧化管将一氧化氮氧化为二氧化氮。 二氧化氮被吸收在溶液中形成亚硝酸,与氨基苯磺酸起重氮反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,根据颜色深浅,比色测定。 使用重量法校准的二氧化氮渗透管配置低浓度标准气体,测得NO 2--→NO 2 - 的转换系数为0.76,因此在计算结果中要除以换算系数0.76。 在大气中二氧化硫浓度为氮氧化物浓度的10倍时,对氮氧化物的测定无干扰;30倍时,使颜色有少许减退,但在城市环境大气中,较少遇到这种情况。臭氧浓度为氮氧化物的5倍时,对氮氧化物的测定略有干扰,在采样后3小时,使试液呈现微红色,影响较大。过氧乙酰硝酸酯(PAN)使试液显色而干扰,在一般环境大气中PAN浓度甚低,不会导致显著的误差。本法检出限为0.05微克 /5毫升(按吸光度0.01相应的NO 2-含量计),当采样体积为6升时,NO 2 最低检出 浓度为0.01毫克/立方米。 三﹑实验仪器 1.多孔玻板吸收管 2.大气采样器,流量范围0—1L/min。 3.双球玻璃管 4.分光光度计 四﹑试剂 所有试剂均用不含有亚硝酸盐的重蒸水配制。 检验方法:吸收液的吸光度不超过0.005。 1.吸收原液:称取5g对氨基苯磺酸于200mL烧杯中,将50mL冰醋酸与900mL 水的混合液分数次加入烧杯中,搅拌,溶解,并迅速移入1000mL容量瓶中,避光,待对氨基苯磺酸完全溶解后,加入0.050g盐酸萘乙二胺(又名N-甲奈基盐酸二氨基乙烯),溶解后,用水稀释至刻线。此为吸收原液,储于棕色瓶中,存于冰箱,可保存一个月。

植物生长调节剂用途一览表

植物生长调节剂用途一览表 植物生长调节剂是指植物中调节生长及其他功能的一类类物质。植物生长调节剂有多种多样的用途,可以说从种子发芽、生根、长叶到开花结实,再形成种子,以及采后的果蔬保鲜、种子贮藏都可以使用生长调节剂进行调控。主要分为三类:植物生长素类、细胞分裂素类和赤霉素类。延长贮藏器官休眠青鲜素,萘乙酸钠盐,萘乙酸甲酯。 打破休眠促进萌发赤霉素、激动素、硫脲,氯乙醇,过氧化氢。 促进茎叶生长赤霉素、6—苄基氨基嘌呤,油菜素内酯,三十烷醇。 促进生根吲哚丁酸,萘乙酸,2,4—D,比久,多效唑,矮壮素、烯效唑、乙烯利,6—苄基氨基嘌呤。 抑制茎叶芽的生长多效唑,优康唑,矮壮素,比久,皮克斯,三碘苯甲酸,青鲜素,粉绣宁。 促进花芽形成乙烯利,比久,6—苄基氨基嘌呤,萘乙酸,2,4—D,矮壮素。 抑制花芽形成赤霉素,调节膦。 疏花疏果萘乙酸,甲萘威、乙烯利、赤霉素、吲熟酯,6—苄基氨基嘌呤。 保花保果2,4—D,萘乙酸,防落素,赤霉素,矮壮素,比久,6—苄基氨基嘌呤。 延长花期多效唑,矮壮素,乙烯利,比久。 诱导产生雌花乙烯利,萘乙酸,吲哚乙酸,矮壮素。 诱导产生雄花赤霉素 切花保鲜氨氧乙基乙烯基甘氨酸,氨氧乙酸,硝酸银,硫代硫酸银。 形成无籽果实赤霉素,2,4—D,防落素,萘乙酸,6—苄基氨基嘌呤。 促进果实成熟乙烯利,比久。 延缓果实成熟2,4—D,赤霉素,比久,激动素,萘乙酸,6—苄基氨基嘌呤。 延缓衰老6—苄基氨基嘌呤,赤霉素,2,4—D,激动素。 提高氨基酸含量多效唑,防落素,吲熟酯。 提高蛋白质含量防落素,西玛津,莠去津,萘乙酸。

提高含糖量增甘膦,调节膦,皮克斯。 促进果实着色比久,吲熟酯,烯效唑。 增加脂肪含量萘乙酸,青鲜素,整形素。 提高抗逆性脱落酸,多效唑,比久,矮壮素。 化肥增效:复硝、萘乙酸、聚谷氨酸、聚天门冬氨酸、硫脲、氢醌

吲哚丁酸钠和萘乙酸钠的生根剂配方-农药剂型科技-搜狐博客

吲哚丁酸钠和萘乙酸钠的生根剂配方-农药剂型科技-搜狐博 客 吲哚丁酸钠和萘乙酸钠的生根剂配方 2010-01-26 01:08 资料: 中文名称:3-吲哚丁酸;4-(吲哚-3-基)丁酸(IUPAC);3-吲哚基丁酸;吲哚-3-丁酸;吲哚丁酸英文名称: 1h-indole-3-butanoic acid;3-indolebutyric acid; 3-indolyl-gamma-butyric acid;4-(3-indolyl)butyric acid;4-(indol-3-yl)butyric acid;beta-indolebutyric acid; 4-(indolyl)-butyric acid 分子式:C12H13NO2 CA登记号:133-32-4 理化性能:纯品为白色至淡黄色结晶固体,原药为白色至浅黄色结晶。熔点124~125℃(纯品);121~124℃(原药)℃蒸气压 <0.01mPa(25℃),溶解度水中(20℃)50mg/L,苯

>1000,丙酮、乙醇、乙醚为30-100,氯仿0.01-0.1(均为g/L),在中性、酸性介质中稳定。本品对酸稳定,在碱金属的氢氧化物和碳酸化合物的溶液中则成盐。毒性LD50(mg/kg):小白鼠急性经口1000mg/kg,鲤鱼 TLm(48h)180mg/L。按规定剂量使用,对蜜蜂无毒。土中迅速降解制取方法:由吲哚与γ-丁内酯,在氢氧化钾作用下于280~290℃反应生成产品。制剂有无漂移粉剂和可湿性粉剂。(详细过程):将吲哚、γ-丁内酯、氢氧化钾加入到四氢萘中,搅拌下加热溶解,回流脱水,升温至200℃,脱水至理论量的四分之三,开始脱溶,在1至1.5小时内脱水至理论量,温度上升至300℃,并保持0.5小时,稍冷后加入二甲苯和热水溶解,趁热分液。水层冷却后用盐酸中和,得粗品,再用苯重结晶,得成品。用途:促进植物主根生长,提高发芽率,成活率。用于促使插条生根。本品是植物主根生长促进剂,常用于木本和草本植物的浸根移栽,硬枝杆插,能加速根的生长,提高植物生根的百分率,也可用于植物种子的浸种和拌种,可提高发芽率和成活率。浸根移植时,草本植物浸在浓度10~ 20mg/L,木本植物50mg/L;杆插时的浸渍浓度为50~100mg/L;浸种、拌种浓度则为100mg/L(木本植物)、10~20mg/L(草本植物)。作用特点:是内源生长素,能促进细胞分裂与细胞生长,诱导形成不定根,增加座果,防

13盐酸萘乙二胺比色法测定大气中NOx

实验目的 1. 学习气体样品的采集和吸收,吸收管及大气采样器的使用。 2. 掌握大气中氮氧化物的比色测定方法。 二、实验原理 大气中氮氧化物包括一氧化氮和二氧化氮等, 在测定氮氧化物浓度时, 先用 三氧化铬氧化管将一氧化氮氧化为二氧化氮。 二氧化氮被吸收在溶液中形成亚硝酸,与氨基苯磺酸起重氮反应,再与盐酸 萘乙二胺偶合,生成玫瑰红色偶氮染料,根据颜色深浅,比色测定。 使用重量法校准的二氧化氮渗透管配置低浓度标准气体,测得 NO- T NO 的转换系数为 0.76,因此在计算结果中要除以换算系数 0.76。 三、实验仪器 .多孔玻板吸收管 .大气采样器 , 流量范围 0—1L/min 。 .双球玻璃管 .分光光度计 四、试剂 所有试剂均用不含有亚硝酸盐的重蒸水配制。 检验方法:吸收液的吸光度不超过 0.005 。 1 .吸收原液:称取5g 对氨基苯磺酸于200mL 烧杯中,将50mL 冰醋酸与900mL 水的混合液分数次加入烧杯中,搅拌,溶解,并迅速移入 1000mL 容量瓶中,避 光,待对氨基苯磺酸完全溶解后,加入 0.050g 盐酸萘乙二胺(又名N-甲奈基盐 酸二氨基乙烯),溶解后,用水稀释至刻线。此为吸收原液,储于棕色瓶中,存 于冰箱,可保存一个月。 2 .采样用吸收液:按四份吸收原液与一份水的比例混合。 3 .三氧化铬 - 石英砂氧化管:筛取 20—40 目部分石英砂,用( 1+2)盐酸溶 液浸泡 一夜,用水洗至中性,烘干,把三氧化铬及石英砂按重量比 1: 20混合, 加少量水调匀,放在红外灯或烘箱里于 105C 烘干,烘干过程中搅拌几次,做好 的三氧化铬 - 石英砂应是松散的,若是粘在一起,说明三氧化铬比重太大,可适 量增加一些石英砂重新制备。 将三氧化铬 -石英砂装入双球玻璃管,两端用少量脱脂棉塞好,用塑料管制 实验 盐酸萘乙二胺比色法测定大气中氮氧化物 1 2 3 4

植物生长调节剂萘乙酸钠N精编在各种作物上的用法用量详解

植物生长调节剂萘乙酸钠N精编在各种作物上 的用法用量详解 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

植物生长调节剂:萘乙酸(1-Naphthyl acetic acid) 用法用量详解 1.中文通用名称:1-萘乙酸;α-萘乙酸;α-萘醋酸 2.英文通用名称:NAA;1-naphthyl acetic acid;PL-anofix;Calmone;Narusaka 3.化学名称:α-萘乙酸 4.商品名称:萘乙酸 5.理化性质 萘乙酸纯品为白色无味晶体,工业品为黄褐色。熔点130℃,相对分子质量为 186.21,沸点285℃。难溶于水,20℃时水中溶解度240mg/L,溶于热水,易溶于丙酮、乙醚、苯、乙醇、氯仿等有机溶剂。见光易变色,遇碱能成盐,盐类能溶于水,常温下贮存稳定。 6.毒性:低毒 7.类别:植物生长促进剂 8.主要剂型:95%原药、0.03%、1%、5%水剂,20%可溶性粉剂,40%可溶性粉剂(钠) 9.功能特点 萘乙酸(钠)属生长素类植物生长调节剂,除具有一般生长素的基本功能外,还可以促进植物不定根和根的形成,用于促进种子发根、扦插生根和茄科类作物生须根。能促进果

实和块根块茎的迅速膨大,因此在蔬菜、果树上可作为膨大素使用。能提高开花坐果率,防止落花落果,具有防落功能。不仅能提高产量、改善品质,促进枝叶茂盛、植株健壮,还能有效提高作物抗旱、抗寒、抗涝、抗病、抗盐碱、抗逆等能力。 10.使用技术 (1)促进不定根和根的形成 葡萄扦插前,用100~200mg/L药液浸蘸枝条,可促使枝条生根,发芽快,植株发育健壮。 树木移栽用100~200mg/L药液蘸根后移栽,可促进生根,提高成活率。 茶、桑、柞树、水杉等用10~15mg/L药液浸插扦枝基部24小时,可促进生根。 (2)促进果实和块根块茎迅速膨大 甘薯捆齐薯秧,用10~20mg/L药液浸基部1寸深,6h后插秧;或用80~100mg/L 药液沾秧1寸3s,立即插载;可提高成活率,膨大薯块,增加产量。 萝卜、白菜用15~30mg/L药液浸种12h,捞出用清水冲洗1~2遍,干后播种,可促进果实膨大,增加产量。 (3)提高坐果率,保花保果,防落 柑橘采前15d用40~60mg/L药液喷果蒂部分,可防止采前落果,增加产量。

氮氧化物的分析监测方法——盐酸萘乙二胺分光光度法

空气和废气 氮氧化物作业指导书

1.目的和适用范围 1.1目的 制定该作业指导书的目的是规范空气和废气中氮氧化物的检测方法,为公司环境监测工作提供准确数据。 1.2适用范围 适用于公司内部对空气和废气的监测工作。 2.职责 公司监测人员应该按照国家相关标准,规范检测分析测定方法。 3.管理要求 监测分析人员必须经过相应化学监测分析方面的培训,掌握样品采集、分析、仪器的校准、使用、分析用化学品的配制和管理等有关基础知识。 4样品的采集 4.1废气样的采集 见作业指导书XXXX 5 氮氧化物的分析监测方法——盐酸萘乙二胺分光光度法 5.1目的及原理 空气中的二氧化氮,与串联的第一支吸收瓶中的吸收液反应生成粉红色偶氮染料。空气中的一氧化氮不与吸收液反应,通过酸性高锰酸钾溶液氧化管被氧化为二氧化氮后,与串联的第二支吸收瓶中的吸收液反应生成粉红色偶氮染料。于波长540nm 处分别测定第一支和第二支吸收瓶中样品的吸光度。 5.2方法的适用范围 方法检出限为0.12μg/10ml。当吸收液体积为10ml,采样体积为24L时,氮氧化物(以二氧化氮计)的最低检出浓度为0.005mg/m3。 5.3分析仪器 ①采样导管 硼硅玻璃、不锈钢、聚四氟乙烯或硅橡胶管,内径约为6mm,尽可能短一些,任何情况下不得长于2m,配有向下的空气入口。 ②吸收瓶 内装10ml、25ml 或50ml 吸收液的多孔玻板吸收瓶,液柱不低于80mm。图3-1-2示出了较为适用的两种多孔玻板吸收瓶。 ③氧化瓶 内装5~10ml 或50ml 酸性高锰酸钾溶液的洗气瓶,液柱不得高于80mm。使用后,用盐酸羟胺溶液浸泡洗涤。图3-1-2示出了较为适用的两种氧化瓶。

激素的分类

激素的分类及其生理作用 植物激素是指植物细胞接受特定环境信号诱导产生的、低浓度时可调节植物生理反应的活性物质。它们在细胞分裂与伸长、组织与器官分化、开花与结实、成熟与衰老、休眠与萌发以及离体组织培养等方面,分别或相互协调地调控植物的生长、发育与分化。这种调节的灵活性和多样性,可通过使用外源激素或人工合成植物生长调节剂的浓度与配比变化,进而改变内源激素水平与平衡来实现。 传统的植物激素有生长素、细胞分裂素、赤霉素、脱落酸、乙烯,新公认的包括油菜素甾醇,还有独脚金甾醇、水杨酸、茉莉酸等等。 植物生长调节剂的种类很多,但根据其来源、作用方式、应用效果等大体分为以下几类: 1.生长素类 生长素(auxin)是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,国际通用的是吲哚乙酸(IAA)。 生长素类是农业上应用最早的生长调节剂。最早应用的是吲哚丙酸(indole propionic acid,IPA)和吲哚丁酸(indole butyric acid,IBA),它们和吲哚乙酸(indole-3-acetic acid,IAA)一样都具有吲哚环,只是侧链的长度不同。以后又发现没有吲哚环而具有萘环的化合物,如α-萘乙酸(α-naphthalene acetic acid,NAA)以及具有苯环的化合物,如2,4-二氯苯氧乙酸(2,4-dichlorophenoxyacetic acid,2,4-D)也都有与吲哚乙酸相似的生理活性。另外,萘氧乙酸(naphthoxyacetic acid,NOA)、2,4,5一三氯苯氧乙酸(2,4,5-trichlorophenoxyacetic acid,2,4,5-T)、4-碘苯氧乙酸(4-iodophenoxyacetie acid,商品名增产灵)等及其衍生物(包括盐、酯、酰胺,如萘乙酸钠、2,4-D丁酯、萘乙酰胺等)都有生理效应。目前生产上应用最多的是IBA、NAA、2,4-D,它们不溶于水,易溶解于醇类、酮类、醚类等有机溶剂。 生长素类的主要生理作用为促进植物器官生长、防止器官脱落、促进坐果、诱导花芽分化。在园艺植物上主要用于插枝生根、防止落花落果、促进结实、控制性别分化、改变枝条角度、促进菠萝开花等。生长素具有双重性,不仅能促进植物生长,也能抑制植物生长。低浓度的生长素促进植物生长,过高浓度的生长素抑制植物生长。2,4-D曾被用做选择性除草剂。 2.赤霉素类 赤霉素种类很多,赤霉素普遍存在于植物界中,至今已发现的赤霉素(GA)达126种,按发现的先后次序分别命名为GA1,GA2,GA3,……都是以赤霉烷(gibberellane)为骨架的衍生物。赤霉素分布在生长比较旺盛的部位。(如嫩叶、根尖、茎端、果实、种子等)赤霉素类主要的生理作用是促进植物雄花的形成、单性结实、茎的延长、侧枝生长、种子发芽、果实生长等;抑制植物的成熟、侧芽休眠、衰老、块茎的形成等。 3.细胞分裂素类 细胞分裂素类是以促进细胞分裂为主的一类植物生长调节剂,都为腺嘌呤的衍生物。常见的人工合成的细胞分裂素有:激动素(KT)、6-苄基腺嘌呤(6-benzyl adenine,BA.6-BA)和四氢吡喃苄基腺嘌呤(tetrahydropyranyl benzyladenine,又称多氯苯甲酸,简称PBA)等。有的化学物质虽然不具有腺嘌呤结构,但也具有细胞分裂素的生理作用,如二苯基脲(diphenyluea)。在园艺生产上应用最广的是激动素和6-苄基腺嘌呤,使用时先用少量酒精溶解,再用清水稀释。激动素在酸液中易受破坏,配制时应加入少量的碱。 细胞分类素类主要的生理作用是促进细胞分裂、诱导芽分化、促进地上器官分化、侧芽发育、种子发芽、果实生长等;抑制不定根、侧根的形成;消除顶端优势、抑制器官衰老、增加坐果和改善果实品质等。

二氧化氮的分析监测方法——盐酸萘乙二胺分光光度法

空气和废气 二氧化氮作业指导书 1.目的和适用范围 1.1目的 制定该作业指导书的目的是规范空气和废气中二氧化氮的检测方法,为公司环境监测工作提供准确数据。 1.2适用范围 适用于公司内部对空气和废气的监测工作。 2.职责 公司监测人员应该按照国家相关标准,规范检测分析测定方法。 3.管理要求 监测分析人员必须经过相应化学监测分析方面的培训,掌握样品采集、分析、仪器的校准、使用、分析用化学品的配制和管理等有关基础知识。 4样品的采集 4.1废气样的采集 见作业指导书XXXX 5 二氧化氮的分析监测方法——盐酸萘乙二胺分光光度法 5.1目的及原理 空气中的二氧化氮与吸收液中的对氨基苯磺酸进行重氮化反应,再与N- ( 1-萘基)乙二胺盐酸盐作用,生成粉红色的偶氮染料,在波长540nm处,测定吸光度。 空气中臭氧浓度超过0.25mg/m3时,可使二氧化氮的吸收液略显红色,对二氧化氮的测定产生负干扰,采样时在吸收瓶入口处串接一段15~20cm长的硅橡胶管,即可将臭氧浓度降低到不干扰二氧化氮测定的水平。 5.2方法的适用范围 方法检出限为0.12μg/ml。当吸收液体积为l0ml,采样体积为24L时,空气中二氧化氮的最低检出浓度为0.005mg/m3。 5.3分析仪器 ①采样导管 硼硅玻璃、不锈钢、聚四氟乙烯或硅橡胶管,内径约为6mm,尽可能短一些,任何情况下不得长于2m,配有向下的空气入口。 ②吸收瓶 内装10ml、25ml 或50ml 吸收液的多孔玻板吸收瓶,液柱不低于80mm。图3-1-2示出了较为适用的两种多孔玻板吸收瓶。 ③氧化瓶 内装5~10ml 或50ml 酸性高锰酸钾溶液的洗气瓶,液柱不得高于80mm。使用后,用盐酸羟胺溶液浸泡洗涤。图3-1-2示出了较为适用的两种氧化瓶。

促进坐果、彭果配方(助剂部分)

关于促进坐果、膨果的几个配方 促进果实坐果、膨大、增加产量,历来是调节剂的主要应用之一。自我国开始在植物调节剂的研究以来,这类应用一直占有着相当大的比例。从番茄、茄子的防止落花,苹果的防止采前落果,促进葡萄果粒膨大而后到应用抑制剂促进结实率,我们先后应用了吲哚乙酸、2,4-D、萘乙酸、赤霉素、细胞分裂素、比久等抑制剂来促进坐果、膨果,而达到增产、改善品质的目的。但单独使用某一药剂时,往往提高坐果的同时,产生空洞果、裂果、果梗变硬等副作用,达不到提高品质的要求,就需要两种或两种以上的植物生长调节剂混用,但复配产品要经过科学的试验,其复配有效成份及含量均要经过严格的筛选,否则欲速则不达,甚至产生副作用,下面就一些此类常用的复配制剂介绍一下。(1)复硝酚钠+α-萘乙酸钠 其制剂一般为水剂或可溶粉剂,由高纯度α-萘乙酸钠与复硝酚钠复配而成,市场上常见的为2.85%水剂(1.8:1.05),这两种成份可以相互增效,拓宽药效,降低使用浓度,既具有复硝酚钠赋活剂的效果,又具有α-萘乙酸钠生根、膨果的效果,是一种广谱性植物生长调节剂,由于其制剂的速效性,保花保果性能优良,已成为一个较为广泛的植物生长调节剂品种。 (2)赤霉素(GA4+7)+ 6-BA 其制剂一般为乳油、可溶液剂或涂抹剂。市场产品有3.6%、3.8%乳油,3.6%液剂,2.7%膏剂。它可经由植物的茎、叶、花吸收,再传到到分生组织活跃的部位,促进坐果,促进苹果五棱突起,并有增重效果。此混剂已在元帅系的红星、新红星、短枝红星、红富士和青香蕉苹果上应用,一般是盛花期

对花喷一次,隔15-20天再对幼果喷一次。此外,还可在猕猴桃、葡萄、香蕉等果树上应用。 (3)氯化胆碱+萘乙酸(钠) 其制剂一般为可溶粉剂或水剂。市场产品有25%水剂,主要应用于马铃薯、甘薯、萝卜、洋葱、人参等块根块茎类作物。此配方为促控剂类型,通过抑制C3植物的光呼吸,提高光合作用效率、促进有机质的运输,并将光合产物尽可能输送到块根块茎中去,增加块根块茎的产量。 (4)赤霉素(GA3)+ CPPU 其制剂一般为乳油或可溶液剂。为0.1%氯吡脲可溶液剂的升级产品,加赤霉素的作用是防止穗轴硬化及幼果大小不齐等副作用。一般赤霉素的使用浓度在10ppm,氯吡脲根据处理作物的不同,使用浓度有所调整,使用范围在 5-20ppm。如在巨峰葡萄上应用此混剂,最好选用赤霉素 10ppm+CPPU5ppm的浓度,不仅能提高坐果率,还促进了幼果的膨大,单果重明显增加。 (5)赤霉素(GA3)+ (类)生长素 其制剂一般为可溶液剂或可溶粉剂。类生长素如α-萘乙酸、2,4-D、对氯苯氧乙酸、β-萘氧乙酸等在番茄、芒果、菠萝、香蕉等作物应用时,在提高坐果率的同时也同时产生一定数量的空洞果,若配合赤霉素使用,则大大减少了空洞果的比例,明显提高了品质。 (6)赤霉素+ 生长素+ 6-BA 其制剂多为膏剂。配置比例为0.3%赤霉素+0.005%吲哚乙酸 +0.05%6-BA,用此混剂的羊毛脂软膏处理新水梨的幼果果梗,其单果重

盐酸萘乙二胺分光光度法

大气中氮氧化物的测定(盐酸萘乙二胺分光光度法) 原理: 大气中的氮氧化物主要是一氧化氮和二氧化氮。在测定氮氧化物浓度时,应先用三氧化铬将一氧化氮氧化成二氧化氮。 二氧化氮被吸收液吸收后,生成亚硝酸和硝酸,其中,亚硝酸与对氨基苯磺酸发生重氮化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,据其颜色深浅,用分光光度法定量。因为NO2(气)转变为NO2-(液)的转换系数为0.76,故在计算结果时应除以0.76。 仪器: 1.多孔玻板吸收管。 2.双球玻璃管(内装三氧化铬-砂子)。 3.空气采样器:流量范围 0—1L/ min。 4.分光光度计。 试剂: 所有试剂均用不含亚硝酸根的重蒸馏水配制。其检验方法是:所配制的吸收液对540nm光的吸光度不超过0.005。 1.吸收液:称取5.0g对氨基苯磺酸,置于1000mL容量瓶中,加入50mL冰乙酸和900mL水的混合溶液,盖塞振摇使其完全溶解,继之加入0.050g盐酸萘乙二胺,溶解后,用水稀释至标线,此为吸收原液,贮于棕色瓶中,在冰箱内可保存两个月。保存时应密封瓶口,防止空气与吸收液接触。采样时,按4份吸收原液与1份水的比例混合配成采样用吸收液。 2.三氧化铬-砂子氧化管:筛取20—40目海砂(或河砂),用(1+2)的盐酸溶液浸泡一夜,用水洗至中性,烘干。将三氧化铬与砂子按重量比(1+20)混合,加少量水调匀,放在红外灯下或烘箱内于105℃烘干,烘干过程中应搅拌几次。制备好的三氧化铬-砂子应是松散的,若粘在一起,说明三氧化铬比例太大,可适当增加一些砂子,重新制备。称取约8g三氧化铬-砂子装入双球玻璃管内,两端用少量脱脂棉塞好,用乳胶管或塑料管制的小帽将氧化管两端密封,备用。采样时将氧化管与吸收管用一小段乳胶管相接。 3.亚硝酸钠标准贮备液:称取0.1500g粒状亚硝酸钠(NaNO2,预先在干燥器内放置24h以上),溶解于水,移入1000mL容量瓶中,用水稀释至标线。此溶液每毫升含100.0μgNO2-,贮于棕色瓶内,冰箱中保存,可稳定三个月。 4.亚硝酸钠标准溶液:吸取贮备液 5.00mL于100mL容量瓶中,用水稀释至标线。此溶液每毫升含5.0μgNO2-。 测定步骤: 1.标准曲线的绘制:取7支10ml具塞比色管,按下表所列数据配制标准色列。 亚硝酸钠标准色列

生根配方实例

生根配方实例 目前国内用于生根的调节剂有萘乙酸(钠)、吲哚乙酸、吲哚丁酸(钠或钾)、水杨酸、黄腐酸、矮壮素、助牡素、多效唑等,下面就此类调节剂在生根配方方面的应用情况介绍一下。 一、嘲哚乙酸 吲哚乙酸是最早应用于农业上的生根剂,主要是促进不定根的产生,但因其在植物体内易降解而未成为常用商品。目前市场商品有: 1. 50%吲乙萘乙酸可溶性粉 混剂中吲哚乙酸含量为30%,此混剂可诱导不定根的生成,又能刺激作物的根系发育。其使用方法:在花生、小麦上拌种使用浓度为20-30ppm;促沙棘扦插生根使用浓度为l00-200ppm。 2.吲哚乙酸+恶霜灵 此混剂主要在水稻秧苗上使用,以吲哚乙酸(lOppm)+恶霜灵(lOppm)的浓度在移栽前几天淋浇秧苗,可明显促进秧苗移栽后生根、缓苗。 3.吲哚乙酸+邻苯二酚 有研究表明,邻苯二酚可有效抑制植物体内吲哚乙酸氧化酶的生物活性,从而使吲哚乙酸充分发挥其诱导生根的作用。两者混用浓度为吲哚乙酸lOppm+邻苯二酚5. Sppmo 4.吲哚乙酸+糖精 有实验结果表明,以吲哚乙酸200ppm+糖精l9ppm在菜豆,蔷薇幼苗上使用,可明显促进幼苗的侧根生成。 二、萘乙酸钠 a~萘乙酸钠是常用生根剂,可用于浸种、沾根,浸插枝,具有增加直根数最的作用。罄独使用时浓度较大,但其生根效果烈好,但在高浓度下有抑制地上茎、枝生长的副作用,一般建议与复硝酚钠、维生素B等混用,使生根早。生根多、地上部与根部干重也增加。市场常见商品配方如下: 1.复硝酚钠/维生素B+a-荼乙酸钠 此混剂是最常用的生根配方之一,和复硝酚钠复配使用,既降低厂萘乙酸钠的使用浓度,又在保证生根效果的基础上,避免抑制地上苗生长的副作用。混剂-般按2:1比例应用,可用于拌种、浇灌、喷施、扦插处理等方面。 2.a-萘乙酸钠+萘己酰胺+硫脲 它们在混剂中浓度分别为20ppm、18ppm、93ppm,添加载体制成可溶性粉剂,可用于苹果、梨。桃、葡萄及--赏植物的扦插生根。 3.a-萘乙酸钠+吲哚丁酸 此混剂是世界上应用最广泛的生根剂,常以低浓度浸泡或高浓度浸蘸使用,可促进多种植物的扦插生根,早生根、多生根。目前国内登记剂型有500%吲丁·萘乙酸可溶粉剂(萘乙酸含量为10%);10%吲丁·萘乙酸可湿性粉(萘乙酸含量为2%);2%吲丁·萘乙酸可溶粉剂(萘乙酸含量为1%);1.05%吲丁·萘乙酸水剂(萘乙酸含量为O.2%)。国外常按1:2的比例制成粉剂或水剂,使用时根据处理时间不同进行稀释。一般来说,快速沾根(几秒钟)浓度宜选择500-lOOOppm;慢速浸泡(12~24h),需要50-100pprn;浸种或淋浇幼苗,浓度宜选择5-20ppm。 除此之外,此混剂也可以和福美双、维生素、糖液等杀菌剂或营养剂混用,增加生根、促长效果。 4.a-萘乙酸+恶霜灵 有研究表明:用萘乙酸+恶霜灵(10+300ppm)处理栀子枝,可以促进扦插生根,且生出

13 盐酸萘乙二胺比色法测定大气中 NOx

实验十三盐酸萘乙二胺比色法测定大气中氮氧化物 一﹑实验目的 1.学习气体样品的采集和吸收,吸收管及大气采样器的使用。 2.掌握大气中氮氧化物的比色测定方法。 二﹑实验原理 大气中氮氧化物包括一氧化氮和二氧化氮等,在测定氮氧化物浓度时,先用三氧化铬氧化管将一氧化氮氧化为二氧化氮。 二氧化氮被吸收在溶液中形成亚硝酸,与氨基苯磺酸起重氮反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,根据颜色深浅,比色测定。 使用重量法校准的二氧化氮渗透管配置低浓度标准气体,测得NO 2--→NO 2 - 的转换系数为0.76,因此在计算结果中要除以换算系数0.76。 三﹑实验仪器 1.多孔玻板吸收管 2.大气采样器,流量范围0—1L/min。 3.双球玻璃管 4.分光光度计 四﹑试剂 所有试剂均用不含有亚硝酸盐的重蒸水配制。 检验方法:吸收液的吸光度不超过0.005。 1.吸收原液:称取5g对氨基苯磺酸于200mL烧杯中,将50mL冰醋酸与900mL 水的混合液分数次加入烧杯中,搅拌,溶解,并迅速移入1000mL容量瓶中,避光,待对氨基苯磺酸完全溶解后,加入0.050g盐酸萘乙二胺(又名N-甲奈基盐酸二氨基乙烯),溶解后,用水稀释至刻线。此为吸收原液,储于棕色瓶中,存于冰箱,可保存一个月。 2.采样用吸收液:按四份吸收原液与一份水的比例混合。 3.三氧化铬-石英砂氧化管:筛取20—40目部分石英砂,用(1+2)盐酸溶液浸泡一夜,用水洗至中性,烘干,把三氧化铬及石英砂按重量比1:20混合,加少量水调匀,放在红外灯或烘箱里于105℃烘干,烘干过程中搅拌几次,做好的三氧化铬-石英砂应是松散的,若是粘在一起,说明三氧化铬比重太大,可适量增加一些石英砂重新制备。 将三氧化铬-石英砂装入双球玻璃管,两端用少量脱脂棉塞好,用塑料管制

盐酸萘乙二胺法测定大气中氮氧化物影响因素分析_徐伟.

第27卷第5期2009年5月 河南科学 HENAN SCIENCE Vol.27No.5May 2009 收稿日期:2009-01-06作者简介:徐 伟(1968-,男,河南新乡人,工程师,主要从事环境保护与环境监测工作. 文章编号:1004-3918(200905-0543-03 盐酸萘乙二胺法测定大气中氮氧化物影响因素分析 徐 伟 (舞钢市环境监测站,河南舞钢462500 摘 要:环境空气中氮氧化物的高低是评价环境空气质量好坏的一项重要指标.通过对比实验, 探讨盐酸萘乙二胺分光光度法测定大气中氮氧化物的影响因素.关键词:盐酸萘乙二胺;氮氧化物;影响因素中图分类号:O 657.3;X 831 文献标识码:A 大气中的氮氮化物主要是一氧化氮和二氧化氮的混合物.盐酸萘乙二胺分光光度法监测大气中的氮 氧化物,是利用大气中的氮氧化物,经三氧化铬氧化管氧化成NO 2后,

被溶液吸收生成亚硝酸和硝酸[1].其中的亚硝酸又与吸收液中的对氨基苯磺酸起重氮化反应,再与吸收液中的盐酸萘乙二胺偶合,生成玫瑰红色 产物.然后根据颜色深浅, 比色定量的原理,分析大气中氮氧化物浓度.因此,可由亚硝酸钠标准试剂配出标准系列,在一定温度下得出对应的浓度———吸光度系列值,由最小二乘法算出回归方程,将同一温度下样品的吸光度值带入,算出对应的NO 2-浓度值,再由采样状况和流量算出采样体积从而得出大气中氮氧化物浓度值,此方法由于采样、显色同时进行,操作简便,方法灵敏,因此为国内外普遍采用[3]. 1 影响因素分析 1.1 采样部分 在盐酸萘乙二胺分光光度法监测大气中氮氧化物的采样环节,影响因素主要有3个:①避光采样问题. 由于吸收液在空气中长时间曝露,易吸收空气中的氮氧化物,日光照射能使吸收液显色,因此在采样、运送及存放过程中,都应采取避光措施.②大气中二氧化硫浓度、过氧乙酰硝酸酯(PAN 浓度及臭氧浓度的干扰.大气中二氧化硫浓度为氮氧化物浓度的10倍时,对氮氧化物测定无干扰,30倍时,使颜色有少许减褪,但在城市环境大气中较少遇到这种情况;过氧乙酰酸酯(PAN 浓度过高会使试剂显色而干扰,但在一般环境空气中PAN 浓度很低,不会导致显著的误差;大气中臭氧质量浓度超过 0.250mg /m 3时,对氮氧化物的测定产生负干扰,在采样后3h ,使试液呈现微红色,影响较大.所以采样时,可以在吸收瓶入口端串接一段15~20cm 长的硅橡胶管,排除干扰.③氧化管的氧化效率问题,氧化管适于在相对湿度为30%~70%时使用,当空气相对湿度大于70%时,应增加更换氧化管的频次;小于30%时,则在使用前,用经过水面

相关文档
最新文档