太阳能电池培训手册【全】

太阳能电池培训手册【全】
太阳能电池培训手册【全】

第一章 太阳电池的工作原理和基本特性

1.1 半导体物理基础

1.1.1 半导体的性质

世界上的物体如果以导电的性能来区分,有的容易导电,有的不容易导电。容易导电的称为导体,如金、银、铜、铝、铅、锡等各种金属;不容易导电的物体称为绝缘体,常见的有玻璃、橡胶、塑料、石英等等;导电性能介于这两者之间的物体称为半导体,主要有锗、硅、砷化镓、硫化镉等等。众所周知,原子是由原子核及其周围的电子构成的,一些电子脱离原子核的束缚,能够自由运动时,称为自由电子。金属之所以容易导电,是因为在金属体内有大量能够自由运动的电子,在电场的作用下,这些电子有规则地沿着电场的相反方向流动,形成了电流。自由电子的数量越多,或者它们在电场的作用下有规则流动的平均速度越高,电流就越大。电子流动运载的是电量,我们把这种运载电量的粒子,称为载流子。在常温下,绝缘体内仅有极少量的自由电子,因此对外不呈现导电性。半导体内有少量的自由电子,在一些特定条件下才能导电。

半导体可以是元素,如硅(Si)和锗(Ge),也可以是化合物,如硫化镉(OCLS)和砷化镓(GaAs),还可以是合金,如Ga x AL1-x As,其中x为0-1之间的任意数。许多有机化合物,如蒽也是半导体。

半导体的电阻率较大(约10-5≤ρ≤107Ω?m),而金属的电阻率则很小(约10-8~10-6Ω?m),绝缘体的电阻率则很大(约ρ≥108Ω?m)。半导体的电阻率对温度的反应灵敏,例如锗的温度从200C升高到300C,电阻率就要降低一半左右。金属的电阻率随温度的变化则较小,例如铜的温度每升高1000C,ρ增加40%左右。电阻率受杂质的影响显著。金属中含有少量杂质时,看不出电阻率有多大的变化,但在半导体里掺入微量的杂质时,却可以引起电阻率很大的变化,例如在纯硅中掺入百万分之一的硼,硅的电阻率就从2.14×103Ω?m减小到0.004Ω?m 左右。金属的电阻率不受光照影响,但是半导体的电阻率在适当的光线照射下可以发生显著的变化。

1.1.2半导体物理基础

1.1.

2.1能带结构和导电性

半导体的许多电特性可以用一种简单的模型来解释。硅是四价元素,每个原子的最外壳层上有4个电子,在硅晶体中每个原子有4个相邻原子,并和每一个相邻原子共有两个价电子,形成稳定的8电子壳层。

自由空间的电子所能得到的能量值基本上是连续的,但在晶体中的情况就可能截然不同了,孤立原子中的电子占据非常固定的一组分立的能线,当孤立原子相互靠近,规则整齐排列的晶体中,由于各原子的核外电子相互作用,本来在孤立原子状态是分离的能级扩展,根据情况相互重叠,变成如图2.1所示的带状。电子许可占据的能带叫允许带,允许带与允许带间不许可电子存在的范围叫禁带。

图2.1 原子间距和电子能级的关系

在低温时,晶体内的电子占有最低的可能能态。但是晶体的平衡状态并不是电子全都处在最低允许能级的一种状态。基本物理定理——泡利(Pauli)不相容原理规定,每个允许能级最多只能被两个自旋方向相反的电子所占据。这意味着,在低温下,晶体的某一能级

以下的所有可能能态都将被两个电子占据,该能级称为费米能级(E F )

。随着温度的升高,一些电子得到超过费米能级的能量,考虑到泡利不相容原理的限制,任一给定能量E 的一个所允许的电子能态的占有几率可以根据统计规律计算,其结果是由下式给出的费米-狄拉克分布函数f(E),即

()()

KT

E E

F e

E f ?+=

11

现在就可用电子能带结构来描述金属、绝缘体和半导体之间的差别。

电导现象是随电子填充允许带的方式不同而不同。被电子完全占据的允许带(称为满带)上方,隔着很宽的禁带,存在完全空的允许带(称为导带),这时满带的电子即使加电场也不能移动,所以这种物质便成为绝缘体。允许带不完全占满的情况下,电子在很小的电场作用下就能移动到离允许带少许上方的另一个能级,成为自由电子,而使电导率变得很大,这种物质称为导体。所谓半导体,即是天然具有和绝缘体一样的能带结构,但禁带宽度较小的物质。在这种情况下,满带的电子获得室温的热能,就有可能越过禁带跳到导带成为自由电子,它们将有助于物质的导电性。参与这种电导现象的满带能级在大多数情况下位于满带的最高能级,因此可将能带结构简化为图2.2 。另外,因为这个满带的电子处于各原子的最外层,是参与原子间结合的价电子,所以又把这个满带称为价带。图中省略了导带的上部和价带的下部。半导体结晶在相邻原子间存在着共用价电子的共价键。如图2.2所示,一旦从外部获得能量,共价键被破坏后,电子将从价带跃造到导带,同时在价带中留出电子的一个空位。这个空位可由价带中邻键上的电子来占据,而这个电子移动所留下的新的空位又可以由其它电子来填补。这样,我们可以看成是空位在依次地移动,等效于带正电荷的粒子朝着与电子运动方向相反的方向移动,称它为空穴。在半导体中,空穴和导带中的自由电子一样成为导电的带电粒子(即载流子)。电子和空穴在外电场作用下,朝相反方向运动,但是由于电荷符号也相反,因此,作为电流流动方向则相同,对电导率起迭加作用。

图2.2 半导体能带结构和载流子的移动

1.1.

2.2本征半导体、掺杂半导体

图2.2 所示的能带结构中,当禁带宽度Eg比较小的情况下,随着温度上升,从价带跃迁到导带的电子数增多,同时在价带产生同样数目的空穴。这个过程叫电子—空穴对的产生,把在室温条件下能进行这样成对的产生并具有一定电导率的半导体叫本征半导体,它只能在极纯的材料情况下得到的。而通常情况下,由于半导体内含有杂质或存在品格缺陷,作为自由载流子的电子或空穴中任意一方增多,就成为掺杂半导体。存在多余电子的称为n 型半导体,存在多余空穴的称为P型半导体。

杂质原子可通过两种方式掺入晶体结构:它们可以挤在基质晶体原子间的位置上,这种情况称它们为间隙杂质;另一种方式是,它们可以替换基质晶体的原子,保持晶体结构中的有规律的原子排列,这种情况下,它们被称为替位杂质。

周期表中Ⅲ族和V族原子在硅中充当替位杂质,图2.3示出一个V族杂质(如磷)替换了一个硅原子的部分晶格。四个价电子与周围的硅原子组成共价键,但第五个却处于不同的情况,它不在共价键内,因此不在价带内,它被束缚于V族原子,所

图2.3 一个V族原子替代了一个硅原子的部分硅晶格

以不能穿过晶格自由运动,因此它也不在导带内。可以预期,与束缚在共价键内的自由电子相比,释放这个多余电子只须较小的能量,比硅的带隙能量1.1eV小得多。自由电子位于导带中,因此束缚于V族原子的多余电子位于低于导带底的能量为E'的地方,如图(格P28图2.13(a)所示那样。这就在“禁止的”晶隙中安置了一个允许的能级,Ⅲ 族杂质的分析与此类似。例如,把V族元素(Sb,As,P)作为杂质掺入单元素半导体硅单晶中时,这

图2.4

(a) V族替位杂质在禁带中引入的允许能级 (b)Ⅲ族杂质的对应能态

些杂质替代硅原子的位置进入晶格点。它的5个价电子除与相邻的硅原子形成共价键外,还多余1个价电子,与共价键相比,这个剩余价电子极松弛地结合于杂质原子。因此,只要杂质原子得到很小的能量,就可以释放出电子形成自由电子,而本身变成1价正离子,但因受晶格点阵的束缚,它不能运动。这种情况下,形成电子过剩的n型半导体。这类可以向半导体提供自由电子的杂质称为施主杂质。其能带结构如图2.5所示。在n型半导体中,除存在

从这些施主能级产生的电子外,还存在从价带激发到导带的电子。由于这个过程是电子-空穴成对产生的,因此,也存在相同数目的空穴。我们把数量多的电子称为多数载流子,将数

量少的空穴称为少数载流子。

图2.5 n 型半导体的能带结构 图2.6 p 型半导体的能带结构

把Ⅲ族元素(B、Al、Ga、In)作为杂质掺入时,由于形成完整的共价键上缺少一个电子。所以,就从相邻的硅原子中夺取一个价电子来形成完整的共价键。被夺走的电子留下一个空位,成为空穴。结果,杂质原子成为1价负离子的同时,提供了束缚不紧的空穴。这种结合用很小的能量就可以破坏,而形成自由空穴,使半导体成为空穴过剩的P 型半导体,可以接受电子的杂质原子称为受主杂质。其能带结构如图2.6所示。这种情况下,多数载流子为空穴,少数载流子为电子。

上述的例子都是由掺杂形成的n 型或P 型半导体,因此称为掺杂半导体。但为数很多的化合物半导体,根据构成元素某种过剩或不足,有时导电类型发生变化。另外,也有由于构成元素蒸气压差过大等原因,造成即使掺入杂质有时也得不到n、p 两种导电类型的情况。

1.1.

2.3载流子浓度

半导体处于热平衡状态时,多数载流子和少数载流子的浓度各自达到平衡值。因某种原因,少数载流子一旦超过平衡值,就将发生与多数载流子的复合,企图恢复到原来的平衡的状态。设电子浓度为n,空穴浓度为p,则空穴浓度随时间的变化率由电子-空穴对的产生和复合之差给出下式:

rpn g dt dp ?= (2.1)

电子——空穴对的产生几率g 是由价带中成为激发对象的电子数和导带中可允许占据的能级数决定。然而,空穴少于导带的允许能级时,不依赖于载流子数而成为定值。复合率正比于载流子浓度n 与p 的乘积,比例系数r 表示复合几率。平衡状态时dp/dt=0,由此可导出

r g pn = = 常数 (2.2)

它意味着多数载流子浓度和少数载流子浓度的乘积为确定值。这个关系式也适用于本征半导体,可得到

r g n n p i i i ==2 (2.3)

根据量子理论和量子统计理论可以得到

(

)()?

?

?

?????=?????????==kT E E N N kT E m m h

kT

n pn V C V C g p

n

i

exp exp 242

3

**

32

2π (2.4)

式中, k——玻耳兹曼常数;

h——普朗克常数;

m *

n ——电子有效质量; m p *

——空穴有效质量; T——绝对温度; E V ——价带顶能量; E C ——导带底能量;

N V ——价带顶的有效态密度 N C ——导带底的有效态密度

假如知道半导体的禁带亮度Eg,就可以很容易地计算出本征载流子浓度。

费米能级在描述半导体的能级图上是重要的参量。所谓费米能级,即为电子占据几率为1/2处的能级,可根据半导体电中性条件求出,即

自由空穴浓度+电离施主浓度=自由电子浓度+电离受主浓度 (2.5)

费米能级在本征半导体中几乎位于禁带中央,而在n 型半导体中靠近导带。在P 型半导体中靠近价带。同时费米能级将根据掺杂浓度的不同,发生如图2.6所示的变化。例如,n 型半导体中设施主浓度为N d ,可给出:

d

C

F C N N kT E E ln

≈? (2.6)

图2.6 费米能级与杂质浓度的关系

P 型半导体中设受主浓度为N a ,则可给出:

a

V

V F N N kT E E ln

≈? (2.7) 如果知道了杂质浓度就可以通过计算求得费米能级。

1.1.

2.4载流子的传输

一、漂移

在外加电场ζ的影响下,一个随机运动的自由电子在与电场相反的方向上有一个加速度a=ζ/m,在此方向上,它的速度随时间不断地增加。晶体内的电子处于一种不同的情况,它运动时的质量不同于自由电子的质量,它不会长久持续地加速,最终将与晶格原子、杂质原子或晶体结构内的缺陷相碰撞。这种碰撞将造成电子运动的杂乱无章,换句话说,它将降低电子从外加电场得到附加速度,两次碰撞之间的“平均”时间称为弛豫时间t r ,由电子无规则热运动的速度来决定。此速度通常要比电场给与的速度大得多,在两次碰撞之间由电场所引起的电子平均速度的增量称为漂移速度。导带内电子的漂移速度由下式得出:

ξ*2121e

r d m qt at v ==

(2.8)

(如果t r 是对所有的电子速度取平均,则去掉系数2)。电子载流子的迁移率定义为:

*e

r

d

d m qt v =

=

ξ

μ (2.9) 来自导带电子的相应的电流密度将是

ξμn q qnv J e d e == (2.10)

对于价带内的空穴,其类似公式为

ξμp q J h h = (2.11)

总电流就是这两部分的和。因此半导体的电导率σ为

p q n q J

h e μμξ

ρ

σ+==

=

1

(2.12)

其中ρ是电阻率。

对于结晶质量很好的比较纯的半导体来说,使载流子速度变得紊乱的碰撞是由晶体的原子引起的。然而,电离了的掺杂剂是有效的散射体,因为它们带有净电荷。因此,随着半导体掺杂的加重,两次碰撞间的平均时间以及迁移率都将降低。

当温度升高时,基体原子的振动更剧烈,它们变为更大的“靶”,从而降低了两次碰撞间的平均时间及迁移率。重掺杂时,这个影响就得不太显著,因为此时电离了的掺杂剂是有效的载流子的散射体。

电场强度的提高,最终将使载流子的漂移速度增加到可与无规则热速度相比。因此,电子的总速度归根结底将随着电场强度的增加而增加。电场的增加使碰撞之间的时间及迁移率减小了。

二、扩散

除了漂移运动以外,半导体中的载流子也可以由于扩散而流动。象气体分子那样的任何粒子过分集中时,若不受到限制,它们就会自己散开。此现象的基本原因是这些粒子的无规则的热速度。

粒子流与浓度梯度的负值成正比。因为电流与荷电粒子流成正比,所以对应于电子的一维浓度梯度的电流密度是

dx

dp

qD J e

e = (2.13) 其中D e 是扩散常数。同样对于空穴,有

dx

dp

qD J h

h ?= (2.14) 从根本上讲,漂移和扩散两个过程是有关系的,因而,迁移率和扩散常数不是独立的,它们通过爱因斯坦关系相互联系,即

e e q kT D μ=

和 h h q

kT D μ= (2.15) kT/q 是在与太阳电池有关的关系式中经常出现的参数,它具有电压的量纲,室温时为26mv。

1.1.

2.5半导体的吸收系数

半导体晶体的吸光程度由光的频率ν和材料的禁带宽度所决定。当频率低、光子能量h ν比半导体的禁带宽度 E g 小时,大部分光都能穿透;随着频率变高,吸收光的能力急剧增强。吸收某个波长λ 的光的能力用吸收系数α(h ν)来定义。半导体的光吸收由各种因素决定,这里仅考虑到在太阳电池上用到的电子能带间的跃迁。一般禁带宽度越宽,对某个波长的吸收系数就越小。除此以外,光的吸收还依赖于导带、价带的态密度。

光为价带电子提供能量,使它跃迁到导带,在跃迁过程中,能量和动量守恒,对没有声子参与的情况,即不伴随有动量变化的跃迁称为直接跃迁,其吸收过程的形式示于图2.7,而伴随声子的跃迁称为间接跃迁,其吸收跃迁过程示于图2.8。

图2.7 直接带隙半导体的能量-晶体动量图 图2.8 间接带隙半导体的能量-晶体动量图

硅属于间接跃迁类型,其吸收系数上升非常平缓,所以在太阳光照射下,光可到达距表面20μm 以上相当深的地方,在此还能产生电子一空穴对。与此相反,对直接跃迁型材料GaAs,在其禁带宽度附近吸收系数急剧增加,对能量大于禁带宽度的光子的吸收缓慢增加,此时,光吸收和电子一空穴对的产生,大部分是在距表面2μm 左右的极薄区域中发生。简言之,制造太阳电池时,用直接跃迁型材料,即使厚度很薄,也能充分的吸收太阳光,而用间接跃迁型材料,没有一定的厚度,就不能保证光的充分吸收。但是作为太阳电池必要的厚度,并不是仅仅由吸收系数来决定的,与少数载流子的寿命也有关系,当半导体掺杂时,吸收系数将向高能量一侧发生偏移。

由于一部分光在半导体表面被反射掉,因此,进入内部的光实际上等于扣除反射后所剩部分。为了充分利用太阳光,应在半导体表面制备绒面和减反射层,以减少光在其表面的反射损失。

1.1.

2.6载流子的复合

一 驰豫到平衡

适当波长的光照射在半导体上会产生电子—空穴对。因此,光照射时材料的载流子浓度将超过无光照时的值。如果切断光源,则载流子浓度就衰减到它们平衡时的值。这个衰减过程通称为复合过程。下面将介绍几种不同的复合机构。

二 辐射复合

辐射复合就是光吸收过程的逆过程。占据比热平衡时更高能态的电子有可能跃迁到空的低能态,其全部(或大部分)初末态间的能量差以光的方式发射。所有已考虑到的吸收机构都有相反的辐射复合过程。由于间接带隙半导体需要包括声子的两级过程,所以辐射复合在直接带隙半导体中比间接带隙半导体中进行得快。

总的辐射复合速率R R 与导带中占有态(电子)的浓度和价带中未占有态(空穴)的浓度的乘积成正比,即

Bnp R R = (2.16)

式中,B 对给定的半导体来说是一个常数。由于光吸收和这种复合过程之间的关系,由半导体的吸收系数能够计算出B。

热平衡时,即np=n i 2

时,复合率由数目相等但过程相反的产生率所平衡。在不存在由外部激励源产生载流子对的情况下,与上式相对应的净复合率U R 由总的复合率减去热平衡时的产生率得到,即

()2i R n np B U ?= (2.17)

对任何复合机构,都可定义有关载流子寿命(对电子)和(对空穴)它们分别为

U

p U

n h e Δ=

Δ=

ττ (2.18) 式中,U 为净复合率, Δn 和Δp 是相应载流子从它们热平衡时的值n 0和p 0的扰动。

对Δn=Δp 的辐射复合机构而言,由式(2.17)确定的特征寿命是

()

0020

0p n Bn p n i +=

τ (2.19)

硅的B 值约为2×10-15

cm 3

/s。

正如前面所说的直接带隙材料的复合寿命比间接带隙材料的小得多。利用GaAs 及其合金为材料的商用半导体激光器和光发射二极管就是以辐射复合过程作为基础的。但对硅来说,其它的复合机构远比这重要得多。

三、俄歇复合

在俄歇(Auger)效应中,电子与空穴复合时,将多余的能量传给第二个电子而不是发射光。图2.9示出了这个过程。然后,第二个电子通过发射声子弛豫回到它初始所在的能级。俄歇复合就是更熟悉的碰撞电离效应的逆过程。对具有充足的电子和空穴的材料来说,与俄歇过程有关的特征寿命τ分别是

21

Dn Cnp +=τ

21

Dp Cnp +=τ

(2.20)

在每种情况下,右边的第一项描述少数载流子能带的电子激发,第二项描述多数载流子能带的电子激发。由于第二项的影响,高掺杂材料中俄歇复合尤其显著。对于高质量硅,掺杂浓

度大于1017cm 3

时,俄歇复合处于支配地位。

图2.9 俄歇复合过程

(a) 多余的能量传给导带中的电子 (b) 多余的能量传给价带中的电子

四、通过陷阱的复合

前面已指出,半导体中的杂质和缺陷会在禁带中产生允许能级。这些缺陷能级引起一

种很有效的两级复合过程。如图2.10(a)所示,在此过程中,电子从导带能级弛豫到缺陷能级,然后再弛豫到价带,结果与一个空穴复合。

图2.10

(a) 通过半导体禁带中的陷阱能级的两级复合过程

(b) 在半导体表面位于禁带中的表面态

对此过程进行动力学分析可得,通过陷阱的净复合—产生率U T 可写为

()()

112

00p p n n n np U e h i T +++?=ττ (2.21)

式中,τh0和τe0 是寿命参数,它们的大小取决于陷阱的类型和陷阱缺陷的体密度,n 1和p 1是分析过程中产生的参数,此分析过程还引入一个复合速率与陷阱能E t 的关系式:

??

?

????=kT

E E N n c

t

C exp 1 (2.22) 211i n p n = (2.23)

式(2.22)在形式上与用费米能级表示电子浓度的公式很相似。如果τe0和τh0数量级相同,可知当n 1≈p 1时,U 有其峰值。当缺陷能级位于禁带间中央附近时,就出现这种情况。因此,在带隙中央引入能级的杂质是有效的复合中心。

五、表面复合

表面可以说是晶体结构中有相当严重缺陷的地方。如图2.10(b)所示,在表面处存在许多能量位于禁带中的允许能态。因此由上面所叙述的机构,在表面处,复合很容易发生。单能级表面态每单位面积的净复合率U A 具有与2.21类似的形式,即

()

()()

1120000p p S n n S n np S S U h e i h e A +++?=

(2.24)

式中S e0和S h0是表面复合速度。位于带隙中央附近的表面态能级也是最有效的复合中心。

1.1.

2.7半导体器件物理学基本方程

前面几节中已经概述了半导体的有关特性,这些内容现在将被归纳为一组能描述半导体器件工作的基本方程。这些方程的解使我们能够确定包括太阳电池在内的大部分半导体器件的理想特性。忽略其余两维空间的变化,方程组将写成一维的形式。

1、 泊松方程

它描述了电场散度与空间电荷密度ρ之间的关系,在一维情况下,其形式为:

ε

ρξ=

dx

d (2.25)

式中ε是介电常数。ρ为电荷密度。在半导体中,ρ值为

()?

+?+?=A

D N N n p q ρ (2.26) 式中,p 和n 是空穴和电子的浓度,N D +和N A -

分别是已电离的施主和受主的浓度。在正常情况

下,大部分施主和受主都被电离,因此

A

A

D

D N N N N ≈≈?+ (2.27)

式中N D 和N A 为施主和受主杂质的总浓度。

2、电流密度方程

电子和空穴通过漂移和扩散过程可对电流作出贡献。因此,电子和空穴的总电流密度J e 和J h 的表达式为

dx

dp

qD p q J dx

dn qD n q J h

h h e

e e ?=+=ξμξμ (2.28) 迁移率和扩散系数的关系由爱因斯坦关系式[D e =(kT/q)μe 和D h =(kT/q)μh ]确定。

3、连续方程

图2.11 推导电子连续方程用的单元体积

参看图2.11中长为δx、横截面积为A 的单元体积,可以说这个体积中电子的净增加几率等于它们进入的速率减去它们出去的速率,加上该体积中它们的产生率,减去它们的复合率,写成方程为:

进入速率-出去速率=

()()[]{}x dx dJ q A x x J x J q

A

e e e δδ=+??? (2.29)

产生率-复合率=()U G A x ?δ (2.30)

式中G 是由于外部作用(如光照)所一引起的净产生率,U 是净复合率。在稳态情况下,净

增加率必须为0,这样就有

G U dx

dJ q e

?=1 (2.31) 同样,对于空穴有

()G U dx

dJ q h

??=1 (2.32)

4、方程组

由上述方程,我们可得到应用于半导体器件的基本方程组:

()()G U dx

dJ q G U dx dJ q dx

dp

qD p q J dx dn

qD n q J N N n p q

dx d h

e

h

h h e

e e A D ??=?=?=+=?+?=11ξμξμε

ξ (2.33) 利用计算机,通过引入一些考虑周详的近似处理,可能极简单地就可求得这些方程的解。

1.1.3半导体pn 结

1.1.3.1能带图

在一块半导体晶体内,P 型和n 型紧接在一起时,将它们交界处称为pn 结。当p 型,n 型单独存在时,费米能级如图2.12(a)所示,分别位于介带和导带附近.

一旦形成pn 结,由于结两边的电子和空穴的浓度不同,电子就强烈地要从n 区向p 区扩散,空穴则要向相反方向扩散,其结果在n 型一边出现正电荷,在p 型一边出现负电荷,

这两种电荷层在半导体内部建立了一个内建电场,这个电场反过来又在结处产生一个内部电位降,阻挡了电子和空穴的进一步扩散,包含这两种电荷层的空间称为耗尽区或空间电荷区。通过这个空间电荷区的作用,使费米能级成同一水平,达到平衡状态。图2.12(b)表示pn 结的能带图及从p 区向n 区变化的空间电荷区。内建电场从n 区指向p 区,形成势垒。

在平衡状态下,由于扩散,从p 区越过势垒向n 区移动的空穴数目等同于空间电荷区附近n 区中由于热运动产生的少数载流子空穴在空间电荷区内建电场的作用下漂移到p 区的数目,因此没有电流流过。对于电子也可做同样的论述。

1.1.3.2电流电压特性

在pn 结上加偏置电压时,由于空间电荷区内没有载流子(又称为耗尽区)形成高阻区,因此,电压几乎全部跨落在空间电荷区上。当外加电压使得p 区为正时,势垒高度减小,空穴从p 区向n 区的移动以及电子从n 区向p 区的移动变得容易,在两个区内有少数载流子注入,因此电流容易流动(称为正向)。当外加电压使得n 区为正时,势垒高度增加,载流子的移动就变得困难,几乎没有电流流过(此时称为反向)。当存在外加电压时,空间电荷区的n 区边界和p 区边界的空穴浓度p n 及电子浓度n p 如下:

??

????=?????

?=kT qV n n kT qV p p p p n n exp exp 00 (2.34)

当加正向电压时V>0,加反向电压时V<0。

由于我们认为外加电压仅跨越在空间电荷区,所以可视为n 区内没有电场,由空穴构成的电流只是由于它的浓度梯度形成的扩散电流。电流密度J p 为

()

??

?

??????????=?=1exp 0

0kT

qV

L D qp p p

L D q

J p p n n n

p

p p (2.35) 同样,注入到p 区的少数载流子电子的电流密度J n 为

???

?????????

?=1exp 0

kT qV L D qn J n n p n (2.36)

因加编压V 而产生的总电流是空穴电流与电子电流之和,故总电流密度J 为:

??

?

????????

??=+=1exp 0kT qV

J J J J n p (2.37) n

n

p p

p n L D qn L D qp J 0

0+= (2.38) 总电流密度J 具有如图 2.13所示的整流特性。正向时,在电压较大的区域,电流密度与

exp(qV/kT)成正比;反向时则趋近于-J 0。称J 0为饱和电流密度。

图2.13 pn 结的电流-电压特性

1.2太阳电池工作原理

1.2.1半导体的内光电效应

当光照射到半导体上时,光子将能量提供给电子,电子将跃迁到更高的能态,在这些电子中,作为实际使用的光电器件里可利用的电子有:

(1) 价带电子;

(2) 自由电子或空穴(Free Carrier);

(3) 存在于杂质能级上的电子。

太阳电池可利用的电子主要是价带电子。由价带电子得到光的能量跃迁到导带的过程决定的光的吸收称为本征或固有吸收。

太阳电池能量转换的基础是结的光生伏特效应。当光照射到pn结上时,产生电子一空穴对,在半导体内部结附近生成的载流子没有被复合而到达空间电荷区,受内建电场的吸引,电子流入n区,空穴流入p区,结果使n区储存了过剩的电子,p区有过剩的空穴。它们在pn结附近形成与势垒方向相反的光生电场。光生电场除了部分抵消势垒电场的作用外,还使p区带正电,N区带负电,在N区和P区之间的薄层就产生电动势,这就是光生伏特效应。此时,如果将外电路短路,则外电路中就有与入射光能量成正比的光电流流过,这个电流称作短路电流,另一方面,若将PN结两端开路,则由于电子和空穴分别流入N区和P区,使N区的费米能级比P区的费米能级高,在这两个费米能级之间就产生了电位差V OC。可以测得这个值,并称为开路电压。由于此时结处于正向偏置,因此,上述短路光电流和二极管的正向电流相等,并由此可以决定V OC的值。

1.2.2太阳电池的能量转换过程

太阳电池是将太阳能直接转换成电能的器件。它的基本构造是由半导体的PN结组成。此外,异质结、肖特基势垒等也可以得到较好的光电转换效率。本节以最普通的硅PN结太阳电池为例,详细地观察光能转换成电能的情况。

首先研究使太阳电池工作时,在外部观测到的特性。图2.14表示了无光照时典型的电流电压特性(暗电流)。当太阳光照射到这个太阳电池上时,将有和暗电流方向相反的光电流I ph流过。

图2.14 无光照及光照时电流-电压特性

当给太阳电池连结负载R,并用太阳光照射时,则负载上的电流I m 和电压V m 将由图中

有光照时的电流一电压特性曲线与V=-IR 表示的直线的交点来确定。此时负载上有P out =RI 2

m 的功率消耗,它清楚地表明正在进行着光电能量的转换。通过调整负载的大小,可以在一个最佳的工作点上得到最大输出功率。输出功率(电能)与输入功率(光能)之比称为太阳电池的能量转换效率。

下面我们把目光转到太阳电池的内部,详细研究能量转换过程。太阳电池由硅pn 结构成,在表面及背面形成无整流特性的欧姆接触。并假设除负载电阻R 外,电路中无其它电阻成分。当具有hν(eV)(hν>E g ,E g 为硅的禁带宽度)能量的光子照射在太阳电池上时,产生电子—空穴对。由于光子的能量比硅的禁带宽度大,因此电子被激发到比导带底还高的

能级处。对于p 型硅来说,少数载流子浓度n p 极小(一般小于105

/cm),导带的能级几乎都是空的,因此电子又马上落在导带底。这时电子及空穴将总的hν - Eg(ev)的多余能量以声子(晶格振动)的形式传给晶格。落到导带底的电子有的向表面或结扩散,有的在半导体内部或表面复合而消失了。但有一部分到达结的载流子,受结处的内建电场加速而流入n 型硅中。在n 型硅中,由于电子是多数载流子,流入的电子按介电驰豫时间的顺序传播,同时为满足n 型硅内的载流子电中性条件,与流入的电子相同数目的电子从连接n 型硅的电极流出。这时,电子失去相当于空间电荷区的电位高度及导带底和费米能级之间电位差的能量。设负载电阻上每秒每立方厘米流入N 个电子,则加在负载电阻上的电压V=QNr=IR 表示。由于电路中无电源,电压V=IR 实际加在太阳电池的结上,即结处于正向偏置。一旦结处于正向偏置时,二极管电流I d =I 0[exp(qV/nkT)-1]朝着与光激发产生的载流子形成的光电流I ph 相反的方向流动,因而流入负载电阻的电流值为

()[]1exp 0??=?=nkT qV I I I I I ph d ph (2.39)

在负载电阻上,一个电子失去一个qV 的能量,即等于光子能量hν转换成电能qV。流过负载电阻的电子到达p 型硅表面电极处,在P 型硅中成为过剩载流子,于是和被扫出来的空穴复合,形成光电流

1.3太阳电池的基本特性

1.3.1短路电流

太阳电池的短路电流等于其光生电流。分析短路电流的最方便的方法是将太阳光谱划分成许多段,每一段只有很窄的波长范围,并找出每一段光谱所对应的电流,电池的总短路电流是全部光谱段贡献的总和:

()∫

∫?=≈=∞

3.03.00

)()()(1)()(λμλμλληλλλλλλm

m

sc sc sc d qF R d j d j I (2.40)

式中

λ0 ——本征吸收波长限 R(λ)——表面反射率

F(λ)——太阳光谱中波长为λ~λ+d λ间隔内的光子数。

F(λ)的值很大的程度上依赖于太阳天顶角。作为表示F(λ)分布的参数是AM(AirMass)。AM 表示入射到地球大气的太阳直射光所通过的路程长度,定义为

Z b b

AM sec 0

=

(2.41) 式中:

b 0——标准大气压 b——测定时的大气压 Z——太阳天顶距离

一般情况下,b ≈ b 0,例如,AM1相当于太阳在天顶位置时的情况,AM2相当于太阳高度角为30°时的情况,AM0则表示在宇宙空间中的分布

在实际的半导体表面的反射率与入射光的波长有关,一般为30~50%。为防止表面的反射,在半导体表面制备折射率介于半导体和空气折射率之间的透明薄膜层。这个薄膜层称为减反射膜(Antireflective coating)。

设半导体、减反射膜、空气的折射率分别为n 2、n 1、n 0,减反射膜厚度为d 1,则反射率R 为

θ

θ2cos 212cos 2212221212221r r r r r r r r R ++++= (2.42)

式中: r 1=(n 0 - n 1)/(n 0 + n 1) r 2=(n 1 - n 2)/(n 1 + n 2) θ=2πn 1d 1/λ λ-波长

显然,减反射膜的厚度d 1为1/4波长时,R 为最小。即

1

'

141n d λ= 时

()()2

202

12021min

?

????+?=n n n n n n R (λ=λ'

) (2.43) 一般在太阳光谱的峰值波长处,使得R 变为最小,以此来决定d 1的值。

以硅电池为例,因为在可见光至红外光范围内,硅的折射率为n 2 = 3.4~4.0,使式(2.43)为零,则n 1的值(201n n n , n 0=1)为1.8≤ n 1≤2.0。设λ'

=4800埃,则600埃≤d 1≤667

埃,满足这些条件的材料一般可采用一氧化硅,在中心波长处,反射率达到1%左右。由于制备了减反射膜,短路电流可以增加30~40%。此外,采用的减反射膜SiO 2(n 1≈1.5)、Al 2O 3(n 1≈1.9)、S b2O 3(n 1≈1.9)、T i O 2、T a2O 5(n 1≈2.25)。将具有不同折射率的氧化膜重叠二层,在满足一定的条件下,就可以在更宽的的波长范围内减少折射率。此外也可以将表面加工成棱锥体状的方法,来防止表面反射。

1.3.2开路电压

当太阳电池处于开路状态时,对应光电流的大小产生电动势,这就是开路电压。在式(2.39)中,设I=0(开路),I ph =I SC ,则

()[]1ln 0+=

I I q

nkT

V sc oc (2.44) 在可以忽略串联、并联电阻的影响时,I SC 为与入射光强度成正比的值,在很弱的阳光下,I SC <

00

R I I I q nkT V L L

oc ==

(2.45)

其中 0

0qI nkT

R =

, 在很强的阳光下,I SC >>I 0,

ln I I q nkT V sc

oc =

(2.46) 由此可见,在较弱阳光时,硅太阳电池的开路电压随光的强度作近似直线的变化。而当有较

强的阳光时,V OC 则与入射光的强度的对数成正比。图2.15表示具有代表性的硅和GaAs 太

阳电池的I SC 与V oc 之间的关系。Si 与GaAs 比较,因GaAs 的禁带宽度宽,故I 0值比Si 的小几个数量级,GaAs 的V OC 值比Si 的高0.45伏左右。假如结形成的很好,禁带宽度愈宽的半导体,V OC 也愈大。

图2.15 开路电压与短路电流的关系

1.3.3太阳电池的输出特性

1.3.3.1等效电路

为了描述电池的工作状态,往往将电池及负载系统用一等效电路来模拟。在恒定光照下,一个处于工作状态的太阳电池,其光电流不随工作状态而变化,在等效电路中可把它看

作是恒流源。光电流一部分流经负载R L ,在负载两端建立起端电压V,反过来它又正向偏置于p—n 结二极管,引起一股与光电流方向相反的暗电流I bk ,这样,一个理想的PN 同质结太阳电池的等效电路就被绘制成如图2.16(a)所示。但是,由于前面和背面的电极和接触,以及材料本身具有一定的电阻率,基区和顶层都不可避免的要引入附加电阻。流经负载的电流,经过它们时,必然引起损耗。在等效电路中,可将它们的总效果用一个串联电阻R S 来表示。由于电池边沿的漏电和制作金属化电极时,在电池的微裂纹、划痕等处形成的金属桥漏电等,使一部分本应通过负载的电流短路,这种作用的大小可用一并联电阻R Sh 来等效。其等效电路就绘制成上图2.16(b)的形式。其中暗电流等于总面积AT 与J bk 乘积,而光电流I L 为电池的有效受光面积A E 与J L 的乘积,这时的结电压不等于负载的端电压,由图可见

V IR V S j += (2.47)

图2.16 pn 同质结太阳电池等效电路

(a)不考虑串并联电阻 (b)考虑串并联电阻

1.3.3.2输出特性

根据上图就可以写出输出电流I 和输出电压V 之间的关系

?????

???+=

)(V I R

V

I R R R I bk Sh L Sh

S Sh (2.48) 其中暗电流I bk 应为结电压V j 的函数,而V j 又是通过式(2.47)与 输出电压V 相联系的。

当负载R L 从0变化到无穷大时,输出电压V 则从0变到V OC ,同时输出电流便从I SC 变到0,由此得到电池的输出特性曲线,如图2.17所示。曲线上任何一点都可以作为工作点, 工作点所对应的纵横坐标,即为工作电流和工作电压,其乘积

P=IV

为电池的输出功率

图2.17 太阳电池的输出特性

1.3.4转换效率

转换效率表示在外电路连接最佳负载电阻R 时,得到的最大能量转换效率,其定义为

in

mp

mp in P V I P P ==

max η 即电池的最大功率输出与入射功率之比,

这里我们定义一个填充因子FF 为

sc

oc m

sc

oc mp mp I V P I V V I FF =

=

(2.49) 填充因子正好是I-V 曲线下最大长方形面积与乘积V oc ×I sc 之比,所以转换效率可表示为

in

sc

oc P I FFV =

η (2.50)

1.3.5太阳电池的光谱响应

太阳电池的光谱响应是指光电流与入射光波长的关系,设单位时间波长为λ的光入身到单位面积的光子数为Φ0(λ),表面反射系数为ρ(λ),产生的光电流为J L ,则光谱响应SR(λ)定义为

[]

)(1)()

()(0λρλλλ?Φ=

q J SR L (2.51)

其中J L =J L |顶层+J L |势垒+J L |基区。

理想吸收材料的光谱响应应该是:当光子能量hνE g 时,SR=1。

1.3.6太阳电池的温度效应

载流子的扩散系数随温度的增高而增大,所以少数载流子的扩散长度也随温度的升高

稍有增大,因此,光生电流J L也随温度的升高有所增加。但是J0随温度的升高是指数增大,因而V OC随温度的升高急剧下降。当温度升高时,I—V曲线形状改变,填充因子下降,所以转换效率随温度的增加而降低。

1.3.7太阳电池的辐照效应

作为人造卫星和宇宙飞船的电源,太阳电池已获得了广泛的应用。但是在外层空间存在着高能粒子,如电子、质子、γ粒子等。高能粒子辐照时通过与晶格原子的碰撞,将能量传给晶格,当传递的能量大于某一阈值时,便使晶格原子发生位移,产生晶格缺陷,如填隙原子、空位、缺陷簇、空位一杂质复合体等。这些缺陷将起复合中心的作用,从而降低少子寿命。大量研究工作表明,寿命参数对辐照缺陷最为灵敏,也正因为辐照影响了寿命值,从而使太阳电池性能下降。

1.4影响太阳电池转换效率的因素

一、 禁带亮度

V OC随E g的增大而增大,但另一方面,J SC随E g的增大而减小。结果是可期望在某一个确定的E g随处出现太阳电池效率的峰值。

二、温度

随温度的增加,效率η下降。I SC对温度T很敏感,温度还对V OC起主要作用。

对于Si,温度每增加1°C,V OC下降室温值的0.4%,η也因而降低约同样的百分数。例如,一个硅电池在20°C时的效率为20%,当温度升到120°C时,效率仅为12%。又如GaAs 电池,温度每升高1°C,V OC降低1.7mv 或降低0.2%。

三、复合寿命

希望载流子的复合寿命越长越好,这主要是因为这样做I SC大。在间接带隙半导体材料如Si中,离结100μm处也产生相当多的载流子,所以希望它们的寿命能大于1μs。在直接带隙材料,如GaAs或G u2S中,只要10ns的复合寿命就已足够长了。长寿命也会减小暗电流并增大V OC。

达到长寿命的关键是在材料制备和电池的生产过程中,要避免形成复合中心。在加工过程中,适当而且经常进行工艺处理,可以使复合中心移走,因而延长寿命。

四、光强

将太阳光聚焦于太阳电池,可使一个小小的太阳电池产生出大量的电能。设想光强被浓缩了X倍,单位电池面积的输入功率和J SC都将增加X倍,同时V OC也随着增加(kT/q)lnX 倍。因而输出功率的增加将大大超过X倍,而且聚光的结果也使转换效率提高了。

光电池的应用设计论文

第一部分摘要引言 一、摘要 光电传感器作为“为机器安装眼睛与大脑工程”的重要环节,目前已深入到国民经济各个部门,成为跨行业应用的器件。本文根据传感器原理不同,从工作原理、结构及基本特性参数介绍了几种光电传感器,并以光电池为例介绍了和分析了两种实用电路,最后介绍了光电池电路的拓展功能以及光电传感器的应用前景。 关键词:光电传感器光电池光控换向 二、引言 目前,光电传感器已经深入到国民经济各个部门,成为跨行业应用的器件,它被广泛应 用到工业生产的许多方面,凡是需要观察和检测的场所都有应用的可能。它的非接触性、无损害、不受电磁干扰、能远距离传送信息以及远距离操纵控制等优点是得到广泛应用的保障。它在航天、航空、石油、化工、国防、安全、旅游、交通、城市建设和农业生产等领域都得到广泛的应用。 光电传感器使人类有效地扩展了自身的视觉能力,使视觉的长波限延伸到亚毫米波(THz波),短波限延伸到紫外线、X射线、Y射线,乃至高能粒子,响应速度达到纳秒级,能够到人们无法达到的场所,将那里发生的瞬间变化过程与长时间历史经历过程记录下来,供人们使用。

第二部分设计目的 课程设计目的 传感器技术课程设计的目的是使学生能够将《传感器技术》课程的内容与实际应用有机的联系起来,形成测量控制系统的概念,掌握智能检测(或仪表)系统设计的基本思想和方法。培养学生综合运用基础及专业知识的能力,提高解决实际工程技术问题的能力;加强查阅相关图书资料、产品手册和各种工具书的能力;提高书写技术报告和编制技术资料的能力。 第三部设计过程 一、光电池简介 1、概述 光电池是一种用途很广的光敏器件,其优点是体积小、重量轻、寿命长、性能稳定、光照灵敏度较高、光谱响应频带较宽且本身不耗能,是小型化、微功耗仪器中常见的换能器件。当光电池受到光照时不需要外加其他形式的能量即可产生电流输出,电流大小反映了光照强度大小。 2、光电池原理与结构 光电池是利用光生伏特效应吧光能直接转变成电能的光电器件。由于它能够把太阳能直接转变为电能,因此又称为太阳电池,其实质就是一个电压源。光电池的种类有硒光电池、氧化亚铜光电池、砷化镓光电池、硅光电池(本次设计所使用到的光电池传感器)、硫化铊光电池等。目前应用最广、最有发展前途的是硅光电池和硒光电池。硅光电池价格便宜,转化效率高,寿命长,适合于接受红外光,硒光电池的光电转换效率低。寿命短,适合接受可见光。 2.1 相关元件;感光元件,LED指示灯,电容,电阻,二极管等 3、硅光电池的基本结构 按硅光电池衬底材料不同科分为2DR型和2CR型。如图a所示为2DR型硅光电池,它是以P型硅材料为衬底(即在本征型硅材料中渗入三价元素或镓等)然后再衬底上扩散而形成N型层并将其作为受光面。 硅光电池的受光面的输出电极多做成如图b所示为硅光电池的外形,图所示的梳齿状或“E”字型电极,其目的是减小硅光电池的内阻。

光伏系统设计计算公式

光伏发电系统设计计算公式 1、转换效率: η= Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率) 其中:Pin=1KW/㎡=100mW/cm2。 2、充电电压: Vmax=V额×1.43倍 3.电池组件串并联 3.1电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah) 3.2电池组件串联数=系统工作电压(V)×系数1.43/组件峰值工作电压(V) 4.蓄电池容量 蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度 5平均放电率 平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度 6.负载工作时间 负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率 7.蓄电池: 7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数 7.2蓄电池串联数=系统工作电压/蓄电池标称电压 7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量 8.以峰值日照时数为依据的简易计算 8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数 损耗系数:取1.6~2.0,根据当地污染程度、线路长短、安装角度等; 8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数 系统安全系数:取1.6~2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等; 9.以年辐射总量为依据的计算方式 组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量 有人维护+一般使用时,K取230;无人维护+可靠使用时,K取251;无人维护+环境恶劣+要求非常可靠时,K取276; 10.以年辐射总量和斜面修正系数为依据的计算 10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量 系数5618:根据充放电效率系数、组件衰减系数等;安全系数:根据使用环境、有无备用电源、是否有人值守等,取1.1~1.3; 10.2蓄电池容量=10×负载总用电量/系统工作电压;10:无日照系数(对于连续阴雨不超过5天的均适用) 11.以峰值日照时数为依据的多路负载计算 11.1电流: 组件电流=负载日耗电量(Wh)/系统直流电压(V)×峰值日照时数(h)×系统效率系数 系统效率系数:含蓄电池充电效率0.9,逆变器转换效率0.85,组件功率衰减+线路损耗+尘埃等0.9.具体根据实际情况进行调整。 11.2功率:

光伏发电培训资料完整版

光伏光伏发电培训资料完整版 1、什么叫单晶片 单晶片即硅的单晶体,具有基本完整的点降结构的晶体是一种良好的半导体材料用于制造半 导体器材,太阳能电池等。 1.什么叫多晶片 答:几个不同的类型的半导体组成的半导体晶片。 2.是单晶片好还是多晶片好 答:单晶体硅片内部只由一个晶料粒组成,而多晶片由多种晶料粒构成。单晶硅片的转化效率比多晶硅片的要高,一般高出2%以上当然价格也要高一些,单晶价格比多晶高,效率也 高,综合性价比多晶在高气温下的效率衰减比单晶的要小得多。 5单晶电池板与多晶电池板的外观区别 答:单晶电池板:偏黑色,电池片之间有空隙,整块板子看起来有白点。 多晶电池板:偏蓝色、片与片之间容易出现跳色,电池片之间没有空隙,整块板子看起 来很一致,板与板之间但是容易出现色差。 6、单晶和多晶哪个发电量大 答:同功率的光伏板发电量一样的。 7、中国一线品牌的光伏板有哪些厂家 答:天合、英利、晶澳等 & 1KW 一年发多少度电(以江苏地区为例,全国各区域不同) 答:一个月115*12 一年=1380 ° 9、说出3KW到10KW平均多少瓦售多少钱

答:3.18KW:2.7988 万5.3KW: 4.5188 万10.6KW:8.5888 10、说出每KW受光面积是多少答:高1.64M*宽0.922*4块板=6.50752?6.5平方米 11、说出每KW平顶安装面积大约是多少 答:每千瓦平顶安装面积大约是11-12平米 12、说出每KW别墅平顶安装面积大约是多少 答:每千瓦别墅顶安装面积大约是8平方米(斜顶的) 13、分布式光伏发电有哪些部件组成 答:光伏板、汇流箱、逆变器、电源线、支架 14、什么叫并网发电?什么叫离网发电? 答:1、并网发电就是指,光伏发电经过逆变器变为交流电,通过升压或直接低压接入电网,由电网对电能进行调度使用。 2、离网发电就是指,光伏发电系统发出来的电存储到蓄电池,通过逆变器变为交流电 供用电设备直接使用或者不经过逆变器直接供直流用电设备,用电并不与电网相连,适用于 山区、无电区、海岛。 15、说出并网和离网的优点和缺点 答1、并网 优点:可以享受国家补贴,余电可以卖给国家。最大功率充分利用光能发电,省去了蓄电池,降低了成本。稳定,效率高,对公用电网起到调节作用。 缺点:受环境影响,并网公用电网断电的情况下就不能够使用了。 2、离网 优点:可以储电,具有电能独立性,持续性高。 缺点:电池5-10年更换一次。噪音大,没有补贴,要专门的建筑存放蓄电池花费大维护费高。 16、中国一线品牌的逆变器有哪些厂家

非晶硅太阳能电池研究毕业论文

非晶硅太阳能电池 赵准 (吉首大学物理与机电工程学院,湖南吉首 416000) 摘要:随着煤炭、石油等现有能源的频频告急和生态环境的恶化.使得人类不得不尽快寻找新的清洁能源和可再生资源。其中包括水能、风能和太阳能,而太阳能以其储量巨大、安全、清洁等优势使其必将成为21世纪的最主要能源之一。太阳是一个巨大的能源,其辐射出来的功率约为其中有被地球截取,这部分能量约有的能量闯过大气层到达地面,在正对太阳的每一平方米地球表面上能接受到1kw左右的能量。 目前分为光热发电和光伏发电两种形式。太阳能热发电是利用聚光集热器把太阳能聚集起来,将一定的工质加热到较高的温度(通常为几百摄氏度到上千摄氏度),然后通过常规的热机动发电机发电或通过其他发电技术将其转换成电能。光伏发电是利用界面的而将光能直接转变为电能的一种技术。目前光—电转换器有两种:一种是光—伽伐尼电池,另一种是光伏效应。由一个或多个太阳能电池片组成的太阳能电池板称为光伏组件,将光伏组件串联起来再配合上功率控制器等部件就形成了光伏发电装置。因为光伏发电规模大小随意、能独立发电、建设时间短、维护起来也简单.所以从70年代开始光伏发电技术得到迅速发展,日本、德国、美国都大力发展光伏产业,他们走在了世界的前列,我国在光伏研究和产业方面也奋起直追,现在以每年20%的速度迅速发展。 关键词:光伏发电;太阳能电池;硅基太阳能电池;非晶硅太阳能电池

1.引言 1976年卡尔松和路昂斯基报告了无定形硅(简称a一Si)薄膜太阳电他的诞生。当时、面积样品的光电转换效率为2.4%。时隔20多年,a一Si太阳电池现在已发展成为最实用廉价的太阳电池品种之一。非晶硅科技已转化为一个大规模的产业,世界上总组件生产能力每年在50MW以上,组件及相关产品销售额在10亿美元以上。应用范围小到手表、计算器电源大到10Mw级的独立电站。涉及诸多品种的电子消费品、照明和家用电源、农牧业抽水、广播通讯台站电源及中小型联网电站等。a一Si太阳电池成了光伏能源中的一支生力军,对整个洁净可再生能源发展起了巨大的推动作用。非晶硅太阳电他的诞生、发展过程是生动、复杂和曲折的,全面总结其中的经验教训对于进一步推动薄膜非晶硅太阳电池领域的科技进步和相关高新技术产业的发展有着重要意义。况且,由于从非晶硅材料及其太阳电池研究到有关新兴产业的发展是科学技术转化为生产力的典型事例,其中的规律性对其它新兴科技领域和相关产业的发展也会有有益的启示。本文将追述非晶硅太阳电他的诞生、发展过程,简要评述其中的关键之点,指出进一步发展的方向。 2.太阳能电池概述 .太阳能电池原理 太阳能电池是通过光电效应或者光化学效应把光能转化成电能的装置。太阳能电池以光电效应工作的结晶体太阳能电池和薄膜式太阳能电池为主流,而以光化学效应工作的湿式太阳能电池则还处于萌芽阶段。太阳能电池工作原理的基础是半导体PN结的光生伏特效应。所谓光生伏特效应就是当物体受到光照时,物体内的电荷分布状态发生变化而产生电动势和电流的一种效应。 为了理解太阳能电池的运做,我们需要考虑材料的属性并且同时考虑太阳光的属性。太阳能电池包括两种类型材料,通常意义上的P型硅和N型硅。在纯净的硅晶体中,自由电子和空穴的数目是相等的。如果在硅晶体掺杂了能俘获电子的硼、铝、镓、铟等杂质元素,那么就构成P型半导体。如果在硅晶体面中掺入能够释放电子的磷、砷、锑等杂质元素,那么就构成了N型半导体。若把这两种半导体结合在一起,由于电子和空穴的扩散,在交接面处便会形成PN结,并在结的两边形成内建电场。太阳光照在半导体 p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n 区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应,也是太阳能电池的工作原理。 太阳能电池种类 太阳能电池的种类有很多,按材料来分,有硅基太阳能电池(单晶,多晶,非晶),化合物半导体太阳能电池(砷化镓(GaAs),磷化铟(InP),碲化镉(CdTe), 铜铟镓硒(CIGS)),有机聚合物太阳能电池(酞青,聚乙炔),染料敏化太阳能电池,纳米晶太阳能电池;按结构来分,有体结晶型太阳能电池和薄膜太阳能电池。

!!!太阳能电池制程工艺-培训资料

员 工 培 训 资 料 2008年09月04日初订 目录 第一章太阳能概况 (2) 第二章太阳能电池的发明和未来前景 (3) 1.太阳能电池发明 (3)

2.太阳能电池前景 (4) 第三章太阳能光伏技术 (5) 1.光伏效应 (5) 2.光伏电池分类 (5) 3.晶体硅生产一般工艺流程 (5) 第四章硅太阳能电池的工作原理及其结构 (12) 第五章太阳能电池基本参数 (16) 1.标准测试条件 (16) 2.太阳电池等效电路 (16) 3.伏安(I-V)特性曲线 (17) 4.开路电压 (18) 5.短路电流 (18) 6.最大功率点 (18) 7.最佳工作电压 (18) 8.最佳工作电流 (18) 9.转换效率 (18) 10.填充因子(曲线因子) (19) 12.电压温度系数 (19) 第一章太阳能概况 太阳能是各种可再生能源中最重要的基本能源,生物质能、风能、海洋能、水能等都来自太阳能,广义地说,太阳能包含以上各种可再生能源。太阳能作为可再生能源的一种,则是指太阳能的直接转化和利用。通过转换装置把太阳辐射

能转换成热能利用的属于太阳能热利用技术,再利用热能进行发电的称为太阳能热发电,也属于这一技术领域;通过转换装置把太阳辐射能转换成电能利用的属于太阳能光发电技术,光电转换装置通常是利用半导体器件的光伏效应原理进行光电转换的,因此又称太阳能光伏技术。 二十世纪50年代,太阳能利用领域出现了两项重大技术突破:一是1954年美国贝尔实验室研制出6%的实用型单晶硅电池,二是1955年以色列Tabor提出选择性吸收表面概念和理论并研制成功选择性太阳吸收涂层。这两项技术突破为太阳能利用进入现代发展时期奠定了技术基础。 70年代以来,鉴于常规能源供给的有限性和环保压力的增加,世界上许多国家掀起了开发利用太阳能和可再生能源的热潮。1973年,美国制定了政府级的阳光发电计划,1980年又正式将光伏发电列入公共电力规划,累计投入达8亿多美元。1992年,美国政府颁布了新的光伏发电计划,制定了宏伟的发展目标。日本在70年代制定了“阳光计划”,1993年将“月光计划”(节能计划)、“环境计划”、“阳光计划”合并成“新阳光计划”。德国等欧共体国家及一些发展中国家也纷纷制定了相应的发展计划。90年代以来联合国召开了一系列有各国领导人参加的高峰会议,讨论和制定世界太阳能战略规划、国际太阳能公约,设立国际太阳能基金等,推动全球太阳能和可再生能源的开发利用。开发利用太阳能和可再生能源成为国际社会的一大主题和共同行动,成为各国制定可持续发展战略的重要内容。 二十多年来,太阳能利用技术在研究开发、商业化生产、市场开拓方面都获得了长足发展,成为世界快速、稳定发展的新兴产业之一。 第二章太阳能电池的发明和未来前景 1.太阳能电池发明 1839年法国物理学家A·E·贝克勒尔意外的发现,两片金属进入溶液构成的伏打电池,受到阳光照射时会产生额外的伏打电势,他把这种现象称为光生伏打效应。1883年,有人在半导体硒和金属接触处发现了固体光伏效应。后来就把能够产生光生伏打效应的器件称为光伏器件。由于半导体PN结器件在阳光下光电

太阳能电池板与蓄电池配置计算公式

太阳能电池板与蓄电池配置计算公式(图) 太阳能电池板与蓄电池配置计算公式 一:首先计算出电流: 如:12V蓄电池系统; 30W的灯2只,共60瓦。 电流=60W÷12V=5A 二:计算出蓄电池容量需求: 如:路灯每夜累计照明时间需要为满负载7小时(h); (如晚上8:00开启,夜11:30关闭1路,凌晨4:30开启2路,凌晨5:30关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天) 蓄电池=5A×7h×(5+1)天=5A×42h=210AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。 所以210AH也只是应用中真正标准的70%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为7小时(h); ★:电池板平均每天接受有效光照时间为4.5小时(h); 最少放宽对电池板需求20%的预留额。 WP÷17.4V=(5A×7h×120%)÷4.5h WP÷17.4V=9.33 WP=162(W)

光伏发电系统计算方法 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到几瓦的太阳能庭院灯,大到MW级的太阳能光伏电站。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。 太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或11 0V,还需要配置逆变器。各部分的作用为: (一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。 (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项; (三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 (四)逆变器:在很多场合,都需要提供220VAC、110VAC的交流电源。由于太阳能的直接输出一般都是12VDC、24VDC、48VDC。为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC逆变器,如将24VDC的电能转换成5VDC的电能(注意,不是简单的降压)。 光伏系统的设计包括两个方面:容量设计和硬件设计。 在进行光伏系统的设计之前,需要了解并获取一些进行计算和选择必需的基本数据:光伏系统现场的地理位置,包括地点、纬度、经度和海拔;该地区的气象资料,包括逐月的太阳能总辐射量、直接辐射量以及散射辐射量,年平均气温和最高、最低气温,最长连续阴雨天数,最大风速以及冰雹、降雪等特殊气象情况等。 蓄电池的设计包括蓄电池容量的设计计算和蓄电池组的串并联设计。首先,给出计算蓄电池容量的基本方法。 (1)基本公式

太阳能光伏电池论文中英文资料对照外文翻译文献综述

光伏系统中蓄电池的充电保护IC电路设计 1.引言 太阳能作为一种取之不尽、用之不竭的能源越来越受到重视。太阳能发电已经在很多国家和地区开始普及,太阳能照明也已经在我国很多城市开始投入使用。作为太阳能照明的一个关键部分,蓄电池的充电以及保护显得尤为重要。由于密封免维护铅酸蓄电池具有密封好、无泄漏、无污染、免维护、价格低廉、供电可靠,在电池的整个寿命期间电压稳定且不需要维护等优点,所以在各类需要不间断供电的电子设备和便携式仪器仪表中有着广泛的应用。采用适当的浮充电压,在正常使用(防止过放、过充、过流)时,免维护铅酸蓄电池的浮充寿命可达12~16年,如果浮充电压偏差5%则使用寿命缩短1/2。由此可见,充电方式对这类电池的使用寿命有着重大的影响。由于在光伏发电中,蓄电池无需经常维护,因此采用正确的充电方式并采用合理的保护方式,能有效延长蓄电池的使用寿命。传统的充电和保护IC是分立的,占用而积大并且外围电路复杂。目前,市场上还没有真正的将充电与保护功能集成于单一芯片。针对这个问题,设计一种集蓄电池充电和保护功能于一身的IC是十分必要的。 2.系统设计与考虑 系统主要包括两大部分:蓄电池充电模块和保护模块。这对于将蓄电池作为备用电源使用的场合具有重要意义,它既可以保证外部电源给蓄电池供电,又可以在蓄电池过充、过流以及外部电源断开蓄电池处于过放状态时提供保护,将充电和保护功能集于一身使得电路简化,并且减少宝贵的而积资源浪费。图1是此Ic在光伏发电系统中的具体应用,也是此设计的来源。 免维护铅酸蓄电池的寿命通常为循环寿命和浮充寿命,影响蓄电池寿命的因

素有充电速率、放电速率和浮充电压。某些厂家称如果有过充保护电路,充电率可以达到甚至超过2C(C为蓄电池的额定容量),但是电池厂商推荐的充电率是C/20~C/3。电池的电压与温度有关,温度每升高1℃,单格电池电压下降4 mV,也就是说电池的浮充电压有负的温度系数-4 mV/℃。普通充电器在25℃处为最佳工作状态;在环境温度为0℃时充电不足;在45℃时可能因严重过充电缩短电池的使用寿命。要使得蓄电池延长工作寿命,对蓄电池的工作状态要有一定的了解和分析,从而实现对蓄电池进行保护的目的。蓄电池有四种工作状态:通常状态、过电流状态、过充电状态、过放电状态。但是由于不同的过放电电流对蓄电池的容量和寿命所产生的影响不尽相同,所以对蓄电池的过放电电流检测也要分别对待。当电池处于过充电状态的时间较长,则会严重降低电池的容量,缩短电池的寿命。当电池处于过放电状态的时间超过规定时间,则电池由于电池电压过低可能无法再充电使用,从而使得电池寿命降低。 根据以上所述,充电方式对免维护铅酸蓄电池的寿命有很大影响,同时为了使电池始终处于良好的工作状态,蓄电池保护电路必须能够对电池的非正常工作状态进行检测,并作出动作以使电池能够从不正常的工作状态回到通常工作状态,从而实现对电池的保护。 3.单元模块设计 3.1充电模块 芯片的充电模块框图如图2所示。该电路包括限流比较器、电流取样比较器、基准电压源、欠压检测电路、电压取样电路和逻辑控制电路。 该模块内含有独立的限流放大器和电压控制电路,它可以控制芯片外驱动器,驱动器提供的输出电流为20~30 mA,可直接驱动外部串联的调整管,从

太阳能电池培训手册(下)(推荐文档)

第一部分地面太阳电池发电系统 太阳电池发电系统(又称光伏发电系统),按其使用场所不同,可分为空间应用和地面应用两大类。在地面可以作为独立的电源使用,也可以与风力发电机或柴油机等组成混合发电系统,还可以与电网联接,向电网输送电力。目前应用比较广泛的光伏发电系统主要是作为地面独立电源使用。 1.1太阳电池方阵 方阵的作用是将太阳辐射能直接转换成电能,供给负载使用。一般由若干太阳电池组件按一定方式连接,再配上适当的支架及接线盒组成。 1.2蓄电池组 蓄电池组是太阳电池方阵的贮能装置,其作用是将方阵在有日照时发出的多余电能贮存起来,在晚间或阴雨天供负载使用。 在光伏发电系统中,蓄电池处于浮充放电状态,夏天日照量大,除了供给负载用电外,还对蓄电池充电;在冬天日照量少,这部分贮存的电能逐步放出,在这种季节性循环的基础 上还要加上小得多的日循环,白天方阵给蓄电池充电,(同时方阵还要给负载用电),晚上则 负载用电全部由蓄电池供给。因此,要求蓄电池的自放电要小,而且充电效率要高,同时还 要考虑价格和使用是否方便等因素。常用的蓄电池有铅酸蓄电池和硅胶蓄电池,要求较高的 场合也有价格比较昂贵的镍镉蓄电池。 1.3控制器 在不同类型的光伏发电系统中控制器各不相同,其功能多少及复杂程度差别很大,需 第一节独立光伏系统系统概述 通常的独立光伏发电系统主要由太阳电池方阵、其方 框图如下: 蓄电池、控制器以及阻塞二极管组成, 阻塞二极管

根据发电系统的要求及重要程度来确定。控制器主要由电子元器件、仪表、继电器、开关等 组成。在简单的太阳电池,蓄电池系统中,控制器的作用是保护蓄电池,避免过充,过放。 若光伏电站并网供电,控制器则需要有自动监测、控制、调节、转换等多种功能。如果负载 用的是交流电,则在负载和蓄电池间还应配备逆变器,逆变器的作用就是将方阵和蓄电池提 供的低压直流电逆变成220伏交流电,供给负载使用。 1.4阻塞二极管 也称作为反充二极管或隔离二极管,其作用是利用二极管的单向导电性阻止无日照时蓄电池通过太阳电池方阵放电。对阻塞二极管的要求是工作电流必须大于方阵的最大输出电 流,反向耐压要高于蓄电池组的电压。在方阵工作时,阻塞二极管两端有一定的电压降,对硅二极管通常为0.6亠0.8 ;肖特基或锗管0.3V左右。 第二节太阳电池组件 太阳电池是将太阳光直接转换为电能的最基本元件。但单体太阳电池是不能直接做为电源使用的。因为单体电池薄而脆,容易碎裂,其电极的耐湿,耐腐蚀性能也还不能满足长 期裸露使用的要求,而且单体太阳电池的工作电压太低,远不能满足一般用电设备的电压要 求。因而需根据使用要求将若干单体电池进行适当的连接并经过封装后,组成一个可以单独 对外供电的最小单元即组件。 1.2. 1组件电气性能的设计 在设计中主要是确定组件工作电压和功率这两个参数。同时还要根据目前材料、工艺水平和长寿命的要求,让组件面积比较合适,并让单体电池之间的连接可靠,且组合损失较小。 通过对单体太阳电池进行适当的串、并联,以满足不同的需要。电池串联时,两端电 压为各单体电池中电压之和,电流等于各电池中最小的电流;并联时,总电流为各单体电池电流之和,电压取平均值。 组件设计举列:用①40mm勺单晶硅太阳电池(效率为8.5%)设计一工作电压为1.5伏, 峰值功率为1.2瓦的组件。 单晶硅电池的工作电压为:V=0.41v 则串联电池数:2=1.5/0.41=3.66 片,取N S=4片单体电池面积:s=7i/4d =^4/4=12.57cm 单体电池封装后功率:P m=100mv/cm xi2.5^8.5%95%=100mw=0.1w 式中95%是考虑封装时的失配损失 需太阳电池总的片数:N=1.2/0.1=12片 太阳电池并联数:N P=N/N s=12/4=3组

太阳能电池论文薄膜太阳能电池论文

太阳能电池论文薄膜太阳能电池论文 论太阳能电池片(晶体硅\非晶硅)在建筑幕墙上的发展趋势摘要:目前用于建筑幕墙上的太阳能电池主要有两种:晶体硅和非晶硅,它们都有各自的优缺点,如何区别选择应用到建筑幕墙上,既能够获得在最小面积具有最大发电量,又能满足建筑幕墙的装饰效果和建筑功能的需要。 关键词:建筑幕墙:太阳能光伏组件:发电量:装饰效果:建筑功能 1 前言 建筑耗能占全部能耗领域在三分之一以上,如何降低建筑物能耗指标成为节能减排和可再生能源的重要课题,而将节能减排和可再生能源两者结合一起应用到建筑物上当数建筑幕墙是最恰当的选择。建筑幕墙是建筑物外围护体之一,是建筑物室内与室外的屏障,它的保温性能好坏,是整个建筑物的关键,做好了它的保温隔热工作,是做好了节能的重要组成部分:建筑幕墙因完全暴露阳光下,接受太阳光的直射,因此如何利用建筑采集太阳能发电,是可再生能源在建筑物外墙利用的重要课题之一,随着中国的建筑幕墙由90年代年产量500.600万m2,迅速增长到现在5000-6000万m2,目前还在以10-20%速度增长,如果我国能够在这个数量基础上推广使用10%左右光电幕墙,全国每年大约将有500-600万m2光电幕墙产生,年产电能约50-70亿KWH,相当于5-10座中型火力发电站,可以减排Co2约30万t,按此推算,如果国家按十一五计划发展太阳能产业,它将在我国的绿色、环

保、节能方面产生巨大的社会效益。还有在建筑幕墙推广太阳能发电是充分利用立体空间,建筑外壳能为光伏发电提供足够的面积,不需 要占用昂贵的土地资源,不需要专项投资电厂(如火力发电站),可在 原地发电、原地使用,减少电力输送的线路损耗及线路架设成本等。怎样让光电幕墙在建筑物上真正做到清洁、完美、使人赏心悦目,容易被专业建筑师、用户和公众接受,真正实现大面积推广光伏发电与建筑一体化工程,也就是本篇文章所要讨论的重点。 2 光伏组件在建筑物应用的现状 2.1 太阳能电池的分类和性能。太阳能电池片经过加工后的产品就是光伏组件,太阳能电池按基本材料分为:晶体硅太阳能电池,非晶硅太阳能电池,微晶硅太阳能电池。硒光电池,化合物太阳能电池,有机半导体太阳能电池等,目前在建筑物使用的主要是晶体硅太阳能电池和非晶硅太阳能电池,晶体硅电池又分为单晶硅和多晶硅电池, 非晶硅电池又分为单结、双结和多结电池。性能方面晶体硅电池电能转换率可达12-17%,但品种和颜色单一,可加工性差,弱光下不能发电,低纬度地区不适宜选择:非晶硅电池转换率较差,只有7-10%,但可加工性好,对弱光和散射光适应度高,适宜在低纬度地区和阴湿天气较 多地区选用(如湖南、湖北、江西等地区)。晶体硅太阳能电池与非晶硅太阳能电池的性能比较如表1。 非晶硅电池主要特点如下:

太阳能电池板与蓄电池配置计算公式

太阳能电池板与蓄电池配置计算公式 一:首先计算出电流: 如:12V蓄电池系统; 30W的灯2只,共60瓦。 电流=60W-12V= 5A 二:计算出蓄电池容量需求: 如:路灯每夜累计照明时间需要为满负载7小时(h); (如晚上8:00 开启,夜11:30 关闭1 路,凌晨4:30 开启2 路,凌晨5:30 关闭) 需要满足连续阴雨天5 天的照明需求。(5 天另加阴雨天前一夜的照明,计6 天) 蓄电池=5A X7h X(5 + 1)天=5A X42h= 210AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。 所以210AH也只是应用中真正标准的70%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为7小时(h); ★:电池板平均每天接受有效光照时间为小时(h) ; 最少放宽对电池板需求20%的预留额。 W- = (5A X7h X120%— WP-= WP=162(W)

光伏发电系统计算方法 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到几瓦的太阳能庭院灯,大到MV级的太阳能光伏电站。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。 太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或11 0V,还需要配置逆变器。各部分的作用为: (一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。 (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保 护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项; (三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 (四)逆变器:在很多场合,都需要提供220VAC 110VAC的交流电源。由于太阳能的直接输出一般 都是12VDC 24VDC 48VDC为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电 能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC逆变器,如将24VDC的电能转换成5VDC的电能(注意,不是简单的降压)。光伏系统的设计包括两个方面:容量设计和硬件设计。

太阳能电池培训手册样本

第一章太阳电池工作原理和基本特性 1.1半导体物理基本 1.1.1半导体性质 世界上物体如果以导电性能来区别,有容易导电,有不容易导电。容易导电称为导体,如金、银、铜、铝、铅、锡等各种金属;不容易导电物体称为绝缘体,常用有玻璃、橡胶、塑料、石英等等;导电性能介于这两者之间物体称为半导体,重要有锗、硅、砷化镓、硫化镉等等。众所周知,原子是由原子核及其周边电子构成,某些电子脱离原子核束缚,可以自由运动时,称为自由电子。金属之因此容易导电,是由于在金属体内有大量可以自由运动电子,在电场作用下,这些电子有规则地沿着电场相反方向流动,形成了电流。自由电子数量越多,或者它们在电场作用下有规则流动平均速度越高,电流就越大。电子流动运载是电量,咱们把这种运载电量粒子,称为载流子。在常温下,绝缘体内仅有很少量自由电子,因而对外不呈现导电性。半导体内有少量自由电子,在某些特定条件下才干导电。 半导体可以是元素,如硅(Si)和锗(Ge),也可以是化合物,如硫化镉(OCLS)和砷化镓(GaAs),还可以是合金,如Ga x AL1-x As,其中x为0-1之间任意数。许多有机化合物,如蒽也是半导体。 半导体电阻率较大(约10-5≤ρ≤107Ω?m),而金属电阻率则很小(约10-8~10-6Ω?m),绝缘体电阻率则很大(约ρ≥108Ω?m)。半导体电阻率对温度反映敏捷,例如锗温度从200C升高到300C,电阻率就要减少一半左右。金属电阻率随温度变化则较小,例如铜温度每升高1000C,ρ增长40%左右。电阻率受杂质影响明显。金属中具有少量杂质时,看不出电阻率有多大变化,但在半导体里掺入微量杂质时,却可以引起电阻率很大变化,例如在纯硅中掺入百万分之一硼,硅电阻率就从2.14?103Ω?m减小到0.004Ω?m左右。金属电阻率不受光照影响,但是半导体电阻率在恰当光线照射下可以发生明显变化。

太阳能电池的论文

太阳能电池的论文 The Standardization Office was revised on the afternoon of December 13, 2020

太阳能电池 班级:2012级化学姓名:张芳华学号: 23 摘要: 本文详细阐述了主要几类太阳能电池的原理及发展现状,从材料、工艺与转换效率等方面讨论了它们的优势和不足之处,并对太阳能电池的发展趋势进行了预测。 关键词:太阳能电池;转换效率;材料 人类面临着有限常规能源和环境破坏严重的双重压力,已经成为越来越值得关注的社会与环境问题。合理的利用好太阳能将是人类解决能源问题的长期发展战略,是其中最受瞩目的研究热点之一。近年来,太阳能电池快速发展并取得了可喜的成就。太阳能电池,可视为迄今为止最美妙、最长寿和最可靠的发电技术。 1、太阳能电池的原理。 所谓太阳能电池是指由光电效应或光化学效应直接把光能转化为电能的装置。太阳光照在半导体P-N结上,形成新的空穴电子对,在P-N结电场的作用下,空穴由N区流向P区,电子由P区流向N区,接通电路后就形成了电流,这就是光电效应太阳能电池的工作原理。 2太阳能电池的优缺点 太阳能的优点。太阳能作为一种新能源,它与常规能源相比有三大特点:第一:它是人类可以利用的最丰富的能源。据估计,在过去漫的11亿年中,太阳消耗了它本身能量的2%。今后足以供给

地球人类,使用几十亿年,真是取之不尽,用之不竭。第二:地球上,无论何处都有太阳能就可以就地开发利用,不存在运输问题,尤其对交通欠发达的农村、海岛和边远地区更具有利用的价值。第三:太阳能是一种洁净的能源。在开发利用时,不会产生废渣、废水、废气、也没有噪音,更不会影响生态平衡。绝对不会造成污染和公害。 太阳能的缺点。第一:能量密度较低,日照较好时,地面上1平方米的面积所接受的能量只有千瓦左右。往往需要相当大的采光集热面才能满足使用要求,从而使装置占地面积大、用料多,成本增加。第二:天气影响较大,到达某一地面的太阳辐射强度,因受地区、气候、季节和昼夜变化等因素影响,时强时弱,时有时无给使用带来不少困难。 4.各类太阳能电池的发展状况 太阳能电池类型(按材料分)包括[1]:硅系太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极性电池、纳米经化学太阳能电池。下面将分别对这4 类电池从其结构特性、生产应用等方面加以叙述。 硅系太阳能电池[3]单晶硅太阳能电池是当前开发的最快的一种太阳能电池,以高纯的单晶硅棒为原料。其结构工艺已基本定型,产品已广泛应用与空间和地面。在实验室里最高的转换效率是% 是印度物理研究所开发的一种依据内部光陷作用的高效硅太阳电池。

太阳能电池板日发电量简易计算方法

太阳能电池板日发电量简易计算方法 太阳能电池板日发电量 简易计算方法 太阳能交流发电系统是由太阳电池板、充电控制器、逆变器和蓄电池共同组成;太阳能直流发电系统则不包括逆变器。为了使太阳能发电系统能为负载提供足够的电源,就要根据用电器的功率,合理选择各部件。太阳能发电系统的设计需要考虑如下因素: Q1、太阳能发电系统在哪里使用?该地日光辐射情况如何? Q2、系统的负载功率多大? Q3、系统的输出电压是多少,直流还是交流? Q4、系统每天需要工作多少小时? Q5、如遇到没有日光照射的阴雨天气,系统需连续供电多少天? 下面以(负载)100W输出功率,每天使用6个小时为例,介绍一下计算方法: 1. 首先应计算出每天消耗的瓦时数(包括逆变器的损耗): 若逆变器的转换效率为90%,则当输出功率为100W时,则实际需要输出功率应为100W/90%=111W;若按每天使用6小时,则耗电量为111W*6小时=666Wh,即0.666度电。 2. 计算太阳能电池板: 按每日有效日照时间为5小时计算,再考虑到充电效率和充电过程中的损耗,太阳能电池板的输出功率应为666Wh÷5h÷70% =190W。其中70%是充电过程中,太阳能电池板的实际使用功率。 3. 180瓦组件日发电量 180×0.7×5=567WH=0.63度 1MW日发电量=1000000×0.7×5=3500,000=3500度 例2:安10w灯,每天照明6小时,3个连雨天,如何计算太阳能电池板wp?以及12V 蓄电池ah? 每天的用电量: 10W X 6H= 60WH, 计算太阳能电池板: 假设你安装点的平均峰值日照时数为4小时. 则:60WH/4小时, = 15WP 太阳能电池板. 再计算充放电损耗, 以及每天需要给太阳能电池板的补充: 15WP/0.6= 25WP, 也就是一块25W的太阳能电池板就够了. 再计算蓄电池. 60WH/12V=5AH. 每天要用12V5AH的电量. 三天则为12V15AH.

光伏技术的应用论文

序言 太阳能光伏技术是利用半导体材料的光电效应将太阳能直接转化为电能的一种技术形式,是太阳能利用的一种重要形式。光伏发电技术近年来发展很快,成本持续下降。据EPIA、Greenpeace和德意志银行的预测,到2015年左右,光伏发电就可以做到每度电15美分,达到“平价上网”,即与常规发电成本相一致。届时,光伏发电的市场将会迅速增长 太阳光伏发电优势明显,具体表现为以下几点:体积小、重量轻,单位重量比功率为50-1000W/kg;寿命长:20-50年(工作25年,效率下降20%);零排放:无燃料消耗,无噪声,无污染;发电不用水(高倍聚光电池也如此),可在荒漠地区建设;运行可靠,无机械转动部件,使用安全,免维护,无人值守;太阳能资源永不枯竭(至少50亿年),各地区差异不大,可实现分布式电站;生产资料丰富,硅材料储量丰富,为地壳上除氧之外的丰度排列第二,达到26%之多;不单独占地:可以安装到建筑上;规模大小皆宜,可为10W-100GW,可以“搭积木”式建设和安装;安装容易,建设周期短,安装成本低;能量回收期短,只有0.8-3.0年,能量增值效应明显,达8-30倍;规律性强,可预测,调峰效果明显,调度比风力发电容易;降价潜力大。 因此,太阳光伏发电具有最广阔的发展前景,是各国最着力发展的可再生能源技术之一。欧洲联合研究中心(JRC)对光伏发电的未来发展作出如下预测:2020年世界太阳能发电的发电量占世界总能源需求的1%,2050年占到20%,2100年则将超过50%。 最近国外的研究报告指出,几年内我国将成为温室气体量排放最多的国家。世界银行估计,2020年我国由于空气污染造成的环境和健康损失将达到GDP总量的13%。为此,我国政府积极努力,承诺到2020年单位国内生产总值二氧化碳排放比2005年下降40%-45%。根据我国可再生能源中长期发展规划给出的数据,看出我国未来的能源和电力来源将是太阳能。 我国太阳电池的研究开发始于1958年,1971年就成功地将自主研发的太阳电池首次应用于我国发射的东方红二号卫星上,于1973年开始将太阳电池用于地面。自1981年开始,太阳电池及其应用开始列入国家的科技攻关计划,通过“六五”(1981-1985年)到“十一五”(2006-2010年)六个五年计划,在太阳电池器件和应用技术方面取得了可喜的成绩;2000年以后国家科技部又启动了国家“863”计划和“973”计划,分别对光伏发电的产业化技术和基础性研究给予支持。

太阳能应用论文

包头师范学院本科毕业论文 题目:太阳能及其应用 学生姓名: 学院: 专业: 班级: 指导教师: 二〇一二年三月

摘要 现代社会应是节约型的社会,而社会生活也应是节约能耗的生活。而太阳能作为一种取之不尽的新型环保能源已成为世界各国世界上能源探究工作中的一个重要课题。是我国在经济目前状况下采取的较为简单、经济、环保、可靠的建筑采暖及供热节能办法。 太阳能作为一种热辐射能源,是一种无污染的清洁能源,对于太阳能的开发利用已经成为世界各国索取和利用新能源,进行节能、环保的重要探究项目之一,取得了较大的进展并已进入实用阶段。近几年随着我国经济的快速发展和对环境保护的重视,非凡是在今年提出的建设节约型社会的方针后,太阳能作为一种取之不尽用之不竭的新型环保新能源,一种较为简单、经济、环保、可靠的改善建筑环境的方法,一种很适合我国经济目前状况的采暖及供热方式,在我国得到了大力的推广和广泛的使用。 关键词:太阳能;新能源;太阳能采暖;太阳能建筑;太阳能发电;

Abstract Modern society is a economical society, and the society should also be saving lives. Solar energy as an inexhaustible new energy has become the world world's energy research work is an important research topic in. China is in the economic current situation taken under relatively simple, economic, environmental protection, reliable building heating and energy saving measures. Solar energy as a heat radiation energy, is a kind of clean energy, for the development and utilization of solar energy has become the world's demand and utilization of new energy, energy saving, environmental protection is one of the important research projects, has made great progress and has entered a practical stage. In recent years, with the rapid development of our economy and of the importance of environmental protection, especially in the construction of a conservation-oriented society guidelines, solar energy as an inexhaustible be inexhaustible new environmental protection of new energy, a kind of simple, economy, environmental protection, reliable improvement of construction environment, a it is suitable for our