胆机常用电子管主要参数特征曲线及脚位

胆机常用电子管主要参数特征曲线及脚位
胆机常用电子管主要参数特征曲线及脚位

一)、一般电子管的编号(包括接收放大管、小功率整流管、小型振荡管)第一部分:表示灯丝电压伏特数的整数部分:

0表示冷阴极

1表示灯丝电压为0.7~1.2V

2表示灯丝电压为2.2~2.5V

3表示灯丝电压为2.8V

4表示灯丝电压为4.2V或4.4V

5表示灯丝电压为5V

6表示灯丝电压为6.3V

12表示灯丝电压为12.6V

灯丝电压在20V以上时,用实际电压数值表示,例如35则表示35V。

第二部分:表示电子管类型的字母:

D表示“二极管”

H表示“双二极管”

G表示“双二极三极管”

B表示“双二极五极管”

C表示“三极管”

N表示“双三极管”

F表示“三极五极管”

S表示“四极管”

J表示“锐截止五极管和锐截止束射四极管”

K表示“遥截止五极管”

T表示“双四极管和输出束射四极管”

V表示“二次放射管”

P表示“输出五极管和输出束射四极管”

A表示“变频管”

U表示“三极六极管、三极七极管、三极八极管”

L表示“横向偏转射线管”

E表示“调谐指示管”

Z表示“小功率整流二极管”

第三部分:表示同类型管序号的数字,无特殊意义。

第四部分:表示电子管的外形结构形式的字母

P表示普通玻璃管

K表示陶瓷管

J表示“橡实”管

G表示外径大于11毫米的超小型管

B表示外径为8~11毫米的超小型管

A表示外径大于4,小于8毫米的超小型管

R表示外径为4毫米和4毫米以下的超小型管

S表示销式管

D表示盘封管(灯塔管)

无代号的,外径为19毫米和22.5毫米的小型管,俗称拇指管,例如6N1、6N2、6N3、6N4、6N6、6N10、6N11

(二)高压、大功率整流二极管和充气整流管以及闸流管的编号

第一部分:表示电子管类型的字母:

E表示真空高压整流二极管

EM表示真空脉冲整流二极管

EQ表示充气整流二极管

EG表示充汞整流二极管

Z表示冷阴极闸流管

ZQ表示充气闸流管

ZG表示汞气闸流管

ZQM表示脉冲充气闸流管

H表示汞整流管(液体汞阴极)

Y表示引燃管

第二部分:表示同类型管序号的数字。

第三部分:没有代号(用破折号“—”表示)。对收信、放大管结构形状的小功率整流管、小功率闸流管和冷阴极闸流管,它的第三部分为表示结构形式的字母(类同一般电子管中的第四部分)。

第四部分:以分数形式表示,其分子表示该管的电流平均值的安培数(脉冲电子管以脉冲电流的数值表示);分母表示反向电压峰值的千伏数。

举例:

ZQM1—325/16表示该管为“脉冲充气闸流管”,脉冲电流为325 A,反向峰值电压为16 KV。

E1—0.1/30表示该管为真空高压整流二极管,电流平均值为0.1 A,反向峰值电压为30 KV。

(三)稳定管的编号

第一部分:表示类型的字母。

WY表示稳压管

WL表示稳流管

WF表示稳幅管

第三部分:表示外形的字母,与一般电子管的代号相同。

第四部分:没有代号。

举例:WY—3P表示该管为玻璃外壳的稳压管。

(四)发射管、调制管的编号

第一部分:表示类型的字母。

FD表示该型号为25MHz以下的长波、短波发射管

FU表示该型号为25~600MHz的超短波发射管

FC表示该型号为600MHz以上的厘米波发射管

FM表示该型号为脉冲发射管

T表示该型号为调制管

TM表示该型号为脉冲调制管

第二部分:没有代号。

第三部分:表示同类型管顺序号的数字

第四部分:表示冷却方式的字母。

S表示水冷式

F表示风冷式

Z表示蒸发式

举例:FU—10S表示该管为25~600MHz的超短波发射管,冷却方式为水冷式。

(五)其他电子器件的编号第一部分:表示类型的字母。CK表示为磁控管

K表示为速调管

KZ表示振荡速调管

KF表示放大速调管

KB表示倍频速调管

B表示行波管

BB表示返波管

FZ表示噪声发生管

R表示放电管

RM表示谐振放电管

RQ表示高气压放电管

OQ表示十进位计数管

GD表示光电管

GDB表示光电倍增管

GZ表示光电增像管

DC表示静电测量管

LX表示录像管

第二部分:对噪声发生管为表示同类型管顺序号的数字,对其他管无代号。

第三部分:用数字表示同类型管的顺序号,对噪声发生管没有代号。

第四部分:除变形字母的器件外,其余无代号。

以上编号只能大概了解电子管的基本情况,要知道管子的特性、参量、运用数据,请查阅电子管手册

以上是摘录自“四机部部标(SJ31—73)”关于电子管型号的命名方法的部分章节

此地是胆机领地.本人年轻时也玩胆,一些好友是搞电影还音专业的.聚在一起搞各种电路,比较效果.从小候拉小提琴又是个交响乐迷,追求音乐厅的音响效果, 搞过很多前置电路,但往往是兴冲冲上马,最后不满意送人.折了银子,血本无归.所以DIY不能盲目相信,尤其是网上,三交九流样样人都有,不能盲目跟风.我装到今天,只有两个前级没有被PK掉.而且是用两种绝然不同的,即一个选择了高阻抗输入的阻容耦合电路,一个是选择低阻抗输入的二阶通正反馈有源滤波器.前者专门用来听交响乐的.由于用了与电子管一样的电压放大元件结型场效应管,电路程式可以说同电子管电路一模一样.由于输入阻抗高穿透能力强,RC电路很容易选择了高阻值电阻与小容量电容搭配,使提升了高音和低音,又不影响中音的层次.而高音的细节清脆,低音的力度和弹性是电子管不能及的.场效应管的失真以偶次谐波为主,音色温暖悦耳.由于没有灯丝,低音提足也不闻一点交流声.动态范围很大,把音乐传真得叫人过瘾.本人年事已高,与其独自欣赏,还是奉献给更多的DIY者.叫大家少走弯路,花很少的钱拥有自家的音乐厅.(说明:接CD机时输入电阻改为2M)

2012-8-31 20:26

结型场效应管.在自偏置电路电路中,漏极接上+10 V电压,源极接接R入地,柵极也接地时, 当R=0,Vg=0 时,源漏(D,S) 之间有电流通过,这就是这只场效应管的饱和漏电流I dss (0.5-40毫安).将R阻值慢慢调大, Vg 相应慢慢变负, Ids电流急剧减小, 当R增大到一定阻值后, Ids ( 即Ir )维持在一定的电流上,电流的减小越来越缓慢变化很小,这一区域称为场磁效应管的预夹断区. 将R阻值继续调大, 调到Ids =0位时, Vr的电压值叫场效应管的夹断电压. 场效应管的工作区设在预夹断区.先测试管子参数.选择Idss在1.5以上到20毫安左右的.现在市面上的管子是饱和漏电流小的多,大的少.调试就是调每一个管子的源极电阻使管子进入预夹断区就可以.如不想装高低音电位器可以高音封死在提升位置,低音封死在80%位置上,十分好听.有的盗版CD片已经提升过了,还做得DB很高,容易失真,低音不宜提到底.而正版就不同.

只要结型场效应管都可选择. 国内的3DJ6 3DJ7(F,G档) 进口管更多其中SANYO 的2SK304用下来比东芝的K3O稳定,不漂移但要选拖号后面点的E和F档的市面上都是C档的,不要买错.

随便用啥电容都可以都出好声.不挑食.我用PHILIPS: 0.47UF电容0.68UF, 退藕滤波用普通的电容就可.小电容用瓷片(量一下容量), 低音3300P用涤纶膜,输出用RIFA MKP. (都说WIMA不好,用作级间耦合也相当好)所以电容选择可不拘一格.

原设计为收音机的前级,当时还没有CD 机呢. 用CD机做音源了,就加大了输入电阻,好在不影响整机频谱曲线.上无十四厂技术员拿去试测后说,简直太好了,不可想象.当时正在安装上海国际礼拜堂的音响设备,加了进去,效果很好.

东芝K30 ,三洋K304 .2SK 系列的结型场效应管都可以啊,市面上管子大把的有

据说OPA627之类都要靠边站,还PK胆前级...呵呵!

下图中(a)和(b)分别为三极管和五极管所组成的单级放

大电路

(一)阳极负载电阻Ra的作用:

在放大电路中,是由于电子管栅压控制阳流的能力比阳压控制阳流的能力强,再加上电子管本身具有放大的能力;那么,要实现信号放大就必须在阳极回路内接入负载电阻Ra,所以放大器具有放大能力就是通过阳极负载Ra来实现的。

至于在具体电路中,信号到底放大多少倍,就要看电子管的放大能力和负载电阻的大小而定。

(二)帘栅极降压电阻Rg2和帘栅极降旁路电容Cg2的作用:

1、恰当选择Rg2的阻值,以得到所需要的帘栅压。

2、当Cg2的容量足够大时,它对交流所呈现的容抗很小,我们可以忽略不计,目的使帘栅极对交流能有效地短路到阴极,以保证其的有效屏蔽作用。

经验总结:

通常Cg2常用0.1uF~0.47uF之间选取能满足一般频响的要求。另外Cg2不宜使用电解电容,一是没有必要,二是当Rg2较大时,电解电容的漏电流将使第二栅极电压不稳定从而产生噪音和失真。

(三)电阻Rk和电容Ck的作用:

1、为了保证放大电路在负栅区的一定工作点工作,栅阴间必须要接入一个负压电源,那么在阴极串接电阻Rk后,因为有阴极电流中有直流成分流过Rk,所以在Rk的两端上就产生了“上正下负”的电压,这个电压的正端接栅极,正端接阴极,这就是栅负偏压。(一句话概括:阴极串接Rk以产生栅负偏压,为保证放大电路在负栅区的一定工作点工作。)

2、放大器在工作时,阴极电流中还有交流成分,为了不使交流成分(信号)在Rk上有显著的压降,在Rk两端并联了一个旁路电容Ck,这样便在RkCk两端得到一个比较稳定的直流电压作为放大电路的栅偏压,由于是从阴流自身中得到,所以又称为“阴极自偏压”。(通俗地说:旁路电容Ck的作用就是“通交流,隔直流”)

3、如果未并接旁路电容Ck时会形成“电流负反馈”作用使增益降低,当然有的人不介意这个。

(四)关于阴极电阻Rk和的计算:

1、阴极电阻Rk的大小是根据放大电路所要求的偏压大小来确定的。

电子管及胆机基础知识_三_多极管的特殊连接方式_田庆松

基础知识 音 响 技 术AVtechnology 因为要对一些管子变通使用,以获得好的应用效果,对于现在的发烧友来讲,也是为了追求音色而常采用的方法。常看到将五极管或束射功率管接成三极管使用的例子,这其中相当大部分是为了音色的缘故,因三极管状态的音色细腻而更富音乐性。同时的确有些电路需要将多极管变通使用以满足电路的要求。 对于束射功率管而言,接成三极管的方法通常是帘栅极通过一只小阻值的电阻(如100 Ω)接往屏极,这只小功率电阻的作用是抑制可能产生的自激。由于四极管的负阻效应,现在很少看到四极管在电路中应用的实例了。不过也有例外,如6S6,网上有人将它接成三极管用作耳机输出时有意想不到的音质表现,此接法是将第二栅极接往屏极作为公共屏极使用。甚至还有七极管接成三极管的实用例子,如1A2,在厂家对其作特性测试时就已经给出了接成三极管后的阳极特性曲线,其在接成三极管后有非常好的表现,表现出这类管子少见的大动态输入(虽然功率小,但它可承受高达12?V 的输入信号电压),其接成三极管后的阳极特性如图1所示。1A2接成三极管的方法是将除控 制栅和抑制栅(1A2的抑制栅已在管内连接到它的阴极)之外的所有栅极都接往它的屏极。 那么这些多极管在接成三极管时甚至二极管时有什么样的要求呢?会得到一只什么特性的三极管? 1 五极管接成三极管的接法 将五极管接成二极管使用时,它的所有栅极都同电子管的阳极相连(我想,现在大概没有发烧友将五极管接成二极管使用的,不过,据网上传说有个别特别高烧的朋友将300B 接成二极管进行整流,但这终属个别现象)。而将五极管接成三极管时,呈现的接法种类较多,大概分为如图2所示的3类。 图2(a)是用的最多的一类接法,a 1是一些五极管的抑制栅在管内已经接到电子管的阴极(如五极管6J1),在接成三极管时,将五极管的帘栅极接往电子管的屏极;a 2是一些电子管的抑制栅在管内没有接到阴极(如6J8P、6J4P、6J4等),在接成三极管时,将电子管的帘栅和抑制栅均接到电子管的阳极。在电子管手册中提供的将五极管接成三极管的曲线绝大部分都是按照图2中的a 1、 a 2类接法进行测试得到的结果。这类接法的效果是一个中放大系数的三极管。 多极管的特殊连接方式 电子管及胆机基础知识(三) 图1 三极管以后的阳极特性 图2 五极管接成三极管的接法 □田庆松

电子管基础知识大全

电子管,电子管基础知识大全(图) 电子管的基本参数: 1.灯丝电压:V; 2.灯丝电流:mA; 3.阳极电压:V; 4.阳极电流:mA; 5.栅极电压:V; 6.栅极电流:mA; 7.阴极接入电阻:Ω; 8.输出功率:W; 9.跨导:mA/v;10.内阻: kΩ。 几个常用值的计算: 放大因数μ=阳极电压Uak/栅极电压Ugk 表示在维持阳极电流不变的情况下,阳极电压与栅极电压的比值。 跨导S=阳极电流Ia/栅极电压Ugk 表示在维持阳极电压不变的情况下,栅极电压若有一个单位(如mV)的电压变化时将引起阳极电流有多少个单位的变化。 内阻Ri=栅极电压Uak/阳极电流Ia 表示在维持栅极电压不变的情况下,阳极电流若有一个单位(如mA)的电压变化时将引起阳极电压有多少个单位的变化。 上面的几个值也可以表述为放大因数μ=跨导S乘以内阻Ri 先说这些,各位要是觉得可以瞧下去,下回再说几种常见的管型和结构工作原理等等等等。 这回就先说电子管的构造和工作原理吧。照顾一下咱的老习惯,以后所涉及的管型和单元电路均以国产管为例,在最后我会结合自己的使用体会简要说说部分常见的国产管和进口管的各自特点以及代换。 在讨论之前咱们先得把讨论的范围作一界定,即仅限于真空式电子管。 不管是二极,三极还是更多电极的真空式电子管,它们都具有一个共同结构就是由抽成几近真空的玻璃(或金属,陶瓷)外壳及封装在壳里的灯丝,阴极和阳极组成。直热式电子管的灯丝就是阴极,三极以上的多极管还有各种栅极。 先说二极管: 考虑一块被加热的金属板,当它的温度达到摄氏800度以上时,会形成电子的加速运动,以至能够摆脱金属板本身对它们的吸引而逃逸到金属表面以外的空间。若在这一空间加上一个十几至几万伏的正向电压(踏雪留痕在上面说到的显象管,阳极上就加有7000--27000伏的高压),这些电子就会被吸引飞向正向电压极,流经电源而形成回路电流。把金属板(阴极),加热源(灯丝),正向电压极板(阳极)封装在一个适当的壳里,即上面说的玻璃(或金属,陶瓷)封装壳,再抽成几近真空,就是电子二极管。 需要说明的是由于制造工艺,杂质附着以及材料本身等原因,管内会残留微量余气,成品管都在管内涂敷了一层吸气剂。吸气剂一般使用掺氮的蒸散型锆铝或锆钒材料。目前除特殊用途外(如超高频和高压整流等),为便于使用和增加一至性,均为两只二极管,或二极三极,或三极三极以及二极五极等合装在一个管壳内,这就是复合管。

胆机前级放大器的设计以及电子管选择

电子管前级的打造简单,花费又不高,而且用其与电子管功放或晶体管功放搭配能柔化数码声的“硬度”而得到较为通透的效果。本人在打造胆前级时,几经摩改最后定型于本刊97-3期上,在摩改中用料一次次提高。较老的西门子金脚E88CC都借来参加较试,历经6N8P(6SN7GT)、6N10(12AU7)、6N1、6N2(12AX7)、6N3(5670)等,都各具特色。但从解析力上而讲,用6Nll搭配6N10最好,声音也最为柔滑,G2和G3都用6N10,并把其跟随范围作调整,算是此电路应用的最佳状态,通透度、力度感,在较试过的管子中表现最好,可以说是一素质较高的前级。胆管前级的电路是很多的,但照方配药不一定会得到满意的结果,我们要注意一些问题: 1.管子参数、形状的影响及特性曲线的应用 管子的参数的影响已为我们共识,如跨导S大的声音要劲力一些,有的还有前冲情况,6J5就有此感觉。6N2线性不太好,但却被认为是胆味浓烈的管子,对晶体管功放的柔化非常突出,听起来发酥,具体讲就是小提琴的松香味更浓,这些大家都可以感受得到。 屏流大一些,低频的厚度会增加,不管是功放还是前级,一些佳作的屏压用到了极限值或稍超过极限值,既增加了输出也增加了屏流值。虽说是电压放大,但也不能一味地追求较高的增益而使管子处于欠流状态(低于推荐屏流值)。管子形状对音色的影响,最初是听老烧友们谈到的EL34与KT88时所言,经一试,它们确实有些不同,后采又对6J1~6J5、FU-5~FU811、6P3P、6P1进行比较。当然,这些只是大体上的比较,具体的细处还得慢慢地去晶。听音乐,除了去感觉音乐的内涵外,用不同的管子去领略作品的音色味,这也是晶体管机所不及的(指换管子而言)。电路中工作点还可以设计成机外可调方式,更可增加聆听比较的灵便性。 再从管子的屏极特性曲线来看,应取曲线平直和曲线的间隔均匀度高的管子,如6Nll、6N10等三级管和6J1等这些常见的管子,并且把工作点选在曲线的最佳区域,这主要是为了获得较低的失真,但实际应用中6N1、6N2、6F2等曲线并不好的管子却在很多名机上见到,McIntosh的MC-275上,新旧款电路中都有12AX7(6N2),这些从低失真率采说是不太行的,这可能是为了迎合一些特殊的音色要求吧! 除此而外,应用中还应注意屏栅特性曲线以及跨导曲线。如果这一点不注意是不行的。首先来看输入动态范围的大小和降低输入失真的问题。查阅电子管手册,可以看到6N2在选择屏压为250V时其输人电压不应超过1.5V,大于此值(绝对值),就使信号落在曲线的弯曲区域,信号一进入就会引起输入失真而且也因6N2的内阻较高,放大因子μ值大(输入范围也小),这就是我们通常把6N2用于级数较少的扩大器中的原因。6N11在150V的屏压时,输入范围可以达到—4V左右(工作点选择—3V处)。而6N10在屏压为250V时,却可以达到—10V左右(工作点在—5V处)。这也决定了6N11 应用时应放在级数比较靠前的位置,而6N10却可以放在输入级,也可以放在靠后的地方,甚至放在推动级,有一款无输出变压器功放(见《电子报》合订本93年P214),功率管用的就是6N10。下表是一些管子的输入范围: μ:放大因子Ua:推荐屏压Ua/u:最大输入范围Ugo:不失真输入范围 而且这些工作区域也正好落在手册给出的跨导值区域,使得工作中,跨导才不会有较大的变化。它还关系到输入灵敏度问题,曲线陡的管子只要输入较小的信号电压就能获得较大的屏流,反应非常迅速,也使得这些管子在动感上比低跨导的管子要更胜一筹。这更说明了要得到比较大的“劲力”,栅极的控制能力是不容忽视的。另外,择管时还应注意到管子之间的输入电容Csr和极间电容Cak,因寄生电容有下列关系: Cs=[Cak]G1+[Csr]G2+CW Cw为装配电容。根据密勒效应,则有 Cs=[Cak]G1+[Cgk+(1+k)Cag]G2+CW

一起来学习电子管基础知识(最适合初学者)

一起来学习电子管基础知识(最适合初学者) 起来学习电子管基础知识(最适合初学者) 常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。这里的初学者指有一定的电路理论基础,最好有一定的实做基础 且对电子管工作原理有一定了解的 (1)整机及各单元级估算 1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要120W 左右输出功率。当然实际可以根据个人需求调整。2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;

10-20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。 3,根据音源和输出功率确定整机电压增益。 一般现代音源最大输出电压为2Vrms,而平均电压却只有0.5Vrms左右。由输出功率确定输出电压有效值:Uout=√ ̄(P·R),其中P为输出功率,R为额定负载阻抗。例如某8W输出功率的功放,额定负载8欧姆,则其Uout=8V,输入电压Uin记0.5V,则整机所需增益A=Uout/Uin=16倍4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不在讨论之列) 目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P (807),EL34,FU50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%-25%,这里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。 工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%-30%。

玩胆机不可不知的基本常识

玩胆机不可不知的基本常识 胆机有高成本效益,一部五千元的合并胆机或前级,音效往往胜过贵它一倍,甚至更高价钱的 晶体管机。更重要的是胆机的音乐味浓,泛音重,这或多或少由于二次谐波失真的加入,因此,给聆听者的感受觉是声底顺滑,堂音丰富,像是进入了现场和演奏者在一起。我喜爱用胆机听音乐,以下为各位介绍一些玩胆一机的方法及要点,物别适合一些初玩胆机的朋友。 单端推挽转换 单端A类电路产生的顺滑细微及通透的声音,物别在播放人声方面,确实令人着迷。当然最好是自行试制,如愿以300B,EL34,KL66单端机等,但是制作单端机需用较高的成本,输出牛普通的要一千五百一对;而是本出品的差不多要六,七千无一对,如没有充足的指引及制作经验,实在不宜自行制作,免枉化金钱。近日,在外国音响杂志看到了介绍一些转变撤换机为单端机的线路具参考价值。见图书1,一只强放管作恒流工作,避免输出变压器受直流磁化而饱和。当中SA及SB为双刀双掷开关,RX作为降压用途,避免开机声箱出现卟声。开关置于AL及B L点为单端接法。输出功率固然降低,屏流一般调节较高,但是不可超过屏耗允许安合适什。另一种接法见图2是将两胆并接,开关置于AL,A2等为单端接法,置于B1,B2等为一般推挽接法。 三,五极管互换 常说三极管声音清澈通透及分析力高,很多人会喜欢更改超线性接法为三极管接法,加入一个别100 电阻连接帘栅及屏极,如图示2所示加入一个双刀,双掷及时性100 电阻,但是,需留意调高负偏压,避免超出最高屏耗值。一般测量屏流方法可于阴极对地加入一个10(2至5W)电阻,度量电阻上电压降,例如测量到1V,根据金欧姆定律(I=E/R),屏流为100MA。。 另外,由五极管转接为三极管输出,由于输出牛原为五极管输入出而选用,接三极管后由于与最佳屏阴未完全匹配,影响了声音质素。三极管负载最佳工作点为工作于屏阻的两倍,五极管则要求选择工作在屏极负载之五至十分之一之间。以6l6gc为例,三极管屏阻为1.7k而五极管屏阻为27k,故此,三极输出适合选用3.4k之输入出牛,而五极管输出则适宜选5k以上的输出牛,而6l6gc一般五极管的扩音机多使用6k以上的输牛出,故较不宜接三极

音响用电子管的参数及其选用

音响用电子管的参数及其选用 电子管的参数与晶体管有很大的区别,同一型号的晶体管其各种参数允许有较大范围的差异,例如β值及截止频率等,均不可能有准确的数值。电子管则不同,某一型号的电子管其基本参数误差值可以做到极小,小到实用中可以忽略的程度。 为厂不同的使用目的,各国都将电子管分成不同的档次。如国产电子管,即分成T(特级)、J(军级)、Z(专用级)、M(民用级)级。但这些级别的含义并不是按电子管的质量好坏排列,主要指基本参数的误差范围及某些特殊要求。专用级的电子管可按用户的要求,使S达到±0.1Ma/V,μ可以达到5%的精确度。例如M级6N8P,其栅极—阴极间绝缘电阻≥10MΩ,而T级6N8P则要求≥100MΩ,同时还要求两个板极的电流差值≤2mA(M级无此要求),另外还要有较好的抗震性。 因此,根据电路要求选择电子管,主要应以其基本参数为准,至于名胆或靓胆,还要看用在什么电路中。虽然,12AX7称得上音响中的名胆,但其μ≈100,最大栅极信号振幅<2VP-P,如果用在驱动级绝无好声之说。电子管和晶体管一样,也有一系列极限参数,使用中绝对不允许任何一项指标超过极限值。最近,某刊的一制作稿中为了提高单级增益,采用大阻值板极负载电阻,将6N1的板极供电电压竟提高到600~700V……。本文以下对电子管的极限参数、基本数据的含意、应用中选择的数据作一简要说明。 电子管极限参数的意义 电子管手册中,对电子管各电极最大电压或电流均给出极限值,使用中如果超出极限参数,一是使电子管过早衰老,二是使电路不能正常工作。对各级电压、电流极限值的意义无需解释,因为和晶体管的极限值相同,仅是电子管瞬间超过极限参数,其损坏的过程不像晶体管那么快。而有的电极电压、电流超过极限值,只是使其衰老速度加快。所以,多数人对电子管极限参数的规定不十分注意,常见的误解有: 1.极限板压不是RC耦合放大器中的实测板极电压 因为RC耦合放大器的板极负载电阻RC常取200kΩ—470kΩ的高阻值,放大器:工作时板极电流的平均值在RC上产生较大压降,所以测试板极电压远低于板极供电电压。但是应注意,万用表测出的电压值是板极平均电流,电子管栅极输入的永远是负极性的信号。设此信号为正弦波,那么,当输入信号的正峰值时,栅极负偏压被抵消一部分,电子管板流最大,板极电压也降到最低。当输入信号为负峰值时,与栅负压相加,使电子管板流最小,即使是

电子管基础知识

常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为 核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础,最好有一定的实做基础且对电子管工作原理有一 定了解的 (1)整机及各单元级估算1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要120W 左右 输出功率。当然实际可以根据个人需求调整。 2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;10- 20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。3,根据音源和输出功率确定整机电压增益。 一般现代音源最大输出电压为2Vrms,而平均电压却只有左右。由输出功率确定输出电压有效值:Uout="—(P?R),其中P为输出功率,R为额定负载阻抗。例如某8W俞出功率的功放,额定负载8欧姆,则其Uout= 8V,输入电压Uin记, 则整机所需增益A= Uout/Uin = 16倍 4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不 在讨论之列) 目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,FU50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%- 25%,这 里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。 工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%- 30%。 而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右关于电子管特性曲线的知识可以参照 以下链接:/boardID=10&ID=15516&replyID=154656&skin=0 三极管及多极管的推挽功放由于牵涉到工作点,电路程式,负载阻抗,推动情况等多种因素左右,所以一般由手册给出,供选择。 链接如下: /boardID=10&ID=8354&skin=0 在决定输出级用管和电路程式之后,根据输出级功率管满 功率输出时所需推动电压Up(峰峰值)和输入音源信号电压U'in (这里的U'in需要折算成峰峰值)确定电压放大级增益。Au= Up/U'in。例如2A3单管单端所需推动电压峰峰

EL34电子管特性参数

EL34电子管特性参数表 下表是EL34的主要应用特性。由表可知,EL34作单端A类放大时,屏极负载阻抗2kΩ下最大输出功率为l 1 w(失真率10%)。当它作推挽放大时,屏一屏负载阻抗3.8kΩ下的最大输出功率可达36W(失真率5%)。 电子管EL34管脚图

EL34胆管参数 热丝加热 UH……………………………6.3 V IH……………………………1.5 A 极限额定值 阳极电压……………………… 800 V 第二栅极电压………………… 500 V 第一栅极电压………………… -100 V 阳极耗散功率………………… 25 W 第二栅极耗散功率…………… 8 W 阴极电流………………………150 mA 第一栅极电阻 自偏压时………………………0.7 MΩ 固定偏压时……………………0.5 MΩ 热丝阴极间电压………………±100 V 玻壳温度………………………250 ℃ 极间电容 输入电容…………………… 15.2 PF 输出电容…………………… 8.4 PF 跨路电容…………………… 1.1 PF 第一栅极热丝间电容……… 1.0 PF 热丝阴极间电容…………… 10 PF 静态参数 Ua…………………………… 250 V Ug2……………………………250 V Ug3…………………………… 0 V -Ug1…………………………12.2 V Ia…………………………… 100 mA

Gm…………………………… 11 mA/V ri…………………………… 15 kΩ μg1-g2 (11) 推荐工作状态(参考值) 单管A1类放大(固定偏压) Ua(b) …………………… 265 265 V Ua……………………………250 250 V Ug2……………………… Rg2=2k Rg2=0 Ug3……………………………0 0 V -Ug1……………………… 14.5 13.5 V Ia(0) ………………………70 100 mA Ig2(0) …………………… 10 14.9 mA Gm…………………………… 9 11 mA/V ri……………………………18 15 kΩRL…………………………… 3 2 kΩPout………………………… 8 11 W Dtot…………………………10 10 % 推挽B1类放大(固定偏压)Ua……………………………375 400 V ▲Rg2………………………… 600 800 ΩUg3………………………… 0 0 V -Ug1………………………… 33 36 V Ia(0) …………………2×30 2×30 mA Ia(maxsig) ………2×107.5 2×110.5 mA Ig2(0) ………………2×4.7 2×4.5 mA Ig2(maxsig) ………2×23.5 2×23 mA Rl(a-a) ………………3.5 3.5 kΩ ü(g1-g1)(r.M.S) ……… 46.7 50 V Pout……………………48 54 W Dtot……………………2.8 1.6 %

部分电子管参数

常用电子管资料 12c 3p 三极管分米波振荡 12g 2p 复合管检波, 低频电压放大和自动音量控制 12h3p 二极管超高频检波及变频 12j1s 锐截止五极管小功率放大及高频振荡 12k3p 遥截止五极管高频电压放大 13p1p 输出五极管束射四极管低频功率放大 1b2 复合管检波和低频电压放大 1k2 遥截止五极管高频电压放大 1z1 二极管电视行回扫回程脉冲电压整流 1z11 二极管电视行扫描回程脉冲电压整流 1z1b 二极管电视行扫描回程脉冲电压整流 1z7b 二极管高频脉冲整流 2d1p 二极管分米波波段作检波用 2j14b 锐截止五极管高频电压放大 2j27 锐截止五极管高频电压放大 2j27s 锐截止五极管小功率放大及高频振荡 2p19b 输出五极管束射四极管功率放大 2p2 输出五极管束射四极管低频功率放大 2p29 输出五极管束射四极管小功率发射 2p29o 输出五极管束射四极管小功率发射 2p29s 输出五极管束射四极管功率放大及高频振荡 2p3 输出五极管束射四极管功率放大 2z2p 二极管高压整流 2z2p-t 二极管高压整流 4j1s 锐截止五极管小功率放大及高频振荡 4p1s 输出五极管束射四极管振荡及功率放大

5z1p 二极管小功率全波整流 5z2p 二极管小功率全波整流 5z3p 二极管小功率全波整流 5z3pa 二极管专用设备整流 5z4p 二极管小功率全波整流 5z4pa 二极管小功率全波整流 5z8p 二极管全波整流 5z9p 二极管全波整流 6b8p 复合管高频和低频电压放大, 检波和自动音量控制6c 1 三极管高频电压放大 6c 11 三极管超高频振荡 6c 12 三极管栅地电路中作低噪声超高频放大 6c 16 三极管宽频带电压放大 6c 19 三极管稳压电路中作电压调整管 6c 1j 三极管超高频振荡 6c 3 三极管宽频带高频电压放大 6c 3-q 三极管宽频带高频电压放大 6c 31b-q 三极管电压放大 6c 32b-q 三极管电压放大 6c 4 三极管宽频带高频电压放大 6c 4-q 三极管宽频带高频电压放大 6c 5d 三极管分米和厘米波波段的小功率振荡 6c 5p 三极管检波和低频电压放大 6c 6b 三极管低频电压放大及高频振荡 6c 6b-m 三极管低频电压放大及高频振荡 6c 6b-q 三极管低频电压放大及高频振荡 6c 7b 三极管低频电压放大 6c 7b-q 三极管低频电压放大 6c 8p 三极管高频脉冲振荡 6d3d 二极管分米波和厘米波的上限作检波用

常用国产电子管参数

常用国产电子管参数

常用国产电子管参数 参数 类别 典型特性参数极限运用参数 用途备注 参数名称 灯丝阳极 第一 (控 制) 栅压 帘栅 内 阻 互(跨) 导 放 大 系 数 灯丝 最高 阳极 电压 最大 阳极 功耗 帘栅电 压 电 流 电 压 电 流 第 二 栅 压 第 二 栅 流 电压 (大) 电压 (小) 最高 电压 最大 功耗 符号U f I f U a I a U g1U g2Ig 2R i Sμ U f max U f min U a max P a M U g2m ax P g2 max 单位V A V mA V V mA kΩmA — v —V V V W V W 型 号 二

5AR 4 5 1.9 2 × 55 14 8 极 管 ZB 2= 75 n R l =2 k Ω 5Z1P52± 0.2 2× 500 125—————— 5.5 4.51400 6 2—— 5Z2P52± 0.2 2× 400 125—————— 5.5 4.51400 5 0—— 负载 2.7k Ω 5Z3P52± 0.3 2× 500 230—————— 5.5 4.51500115—— 负载 2kΩ 5Z4P52± 0.2 2× 500 122—————— 5.5 4.51300 6 0—— 负载 4.7k Ω

5Z8P52± 0.7 2× 500 400—————— 5.5 4.51700200—— 负载 1kΩ 5Z9P52± 0.3 2× 500 190—————— 5.5 4.51700100—— 负载 2.2k Ω 6Z4 6.30.62× 350 72——————7 5.71000 2 5—— 负载 5.2k Ω 6Z5P6.30.62× 400 70—————— 6.9 5.71100 3 0—— 负载 5.7k Ω 6H Z 6.30.3 2× 150 17——————7 5.74503—— 负载 10k Ω 300 B-98 5 30 45 -60 56 三极 管 300 BC 5 1.2 30 60 -60 5.3

胆机说明及注意事项

夏日温度较高,请不要让胆机连续工作超过3小时,并做到人走灯灭,这样可以延长胆管和机器的寿命,并且节能环保。电子管是有寿命的,平均1000小时,长时间连续开机会缩短寿命。 电子管的安装顺序,正对着机器面板和电子管,从左到右,分别是: 5Z4PA,WY3P,6P3(EL34),6P3(EL34),6N9P(此管正常工作只有两个小亮点,且温度不高,特性如此,无需烦扰) --------------------------------------------------------------------- 1.机器最左边的开关是电源开关,右面的开关是音箱/耳机选择切换开关。当您使用耳机时,如果这时候同时接着音箱,为了使音箱不响而不至于干扰耳机的使用,请将开关打到Headphone档。 2.为保证胆机正常工作,请您保证开机前音箱或耳机连接可靠。如果您不用音箱,只想作为耳机放大器用也是可以的,但是要注意,如果不接音箱,那么第二个开关不能打到Speaker这个档上(必须一直打到Headphone档,耳机必须要插好),否则相当于输出变压器空载,有烧输出变压器的可能。如果您偶尔一次两次忘记了或者操作失误,也是没有关系的,这个就好比开车不系安全带一样,不是一定会出事,但是一次两次,十次八次不一定烧,但是经常这么搞,难免会出事。 3.电子管在使用中会很烫,因此机器在使用过程中要注意散热,不要在机器上面覆盖毛巾等,注意不要让小朋友用手去碰电子管以避免烫伤。机器应该放置在四周和上方有较大空间的地方,以方便机器散热。

4.更换电子管,要用手捏住管腰的部分(下图中金属管腰或者黑色/红色的管腰部分),边向上拔,边左右摇动这样比较容易拔出来。禁止手握住玻璃部分向上拔,这样会造成电子管玻壳和管腰的松动。另外换管子要等机器关机冷却后再拔,避免烫伤。 5.EL34型机器可以使用6P3P/5881/6L6GC型电子管和KT66型电子管。6P3型机器只能使用6P3P/5881/6L6GC型电子管,不能使用EL34/KT66型电子管。两款机器都不能使用KT88型电子管。 6.喇叭接线,如下图所示 如果音箱是8欧的,就接0和8,如果音箱是4欧的就接0和4。6欧的接0和4或者0和8都可以

电子管的调整

电子管的调整 电子管功放(胆机)的线路比晶体管机简单,容易制作成功,并且有较好的音乐重播效果,特别是在感情表达方面更是专长,所以胆机复起以后很受发烧友的青睐。胆机最重要的特点就是胆味,阁下所焊的胆机是否也具有温暖、醇厚、顺滑、甜美的胆味呢?如果没有,声底和晶体管机差不多,或比晶体管机还硬、还干涩,或自制的胆前级、缓冲器接入放音系统中,放音系统音色的改变并不像媒体所说的那样“立杆见影”时,就应该测量一下各管的工作点,是否工作在最佳状态上,否则就要进行认真、仔细地调整。只有各电子管工作在最佳工作状态,才能发挥线路和每只胆管的魅力,达到满意的放音效果。 工作点未调好的胆机,除了音色表现不佳以外,还有音量轻和失真的现象出现。一台放大器音质的好坏,影响的因素虽然很多,但最终还是决定于制作的水平。发烧友在制作器材时,一般是根据手中积攒的胆管和元件,再选择优秀的线路或按照名机的线路按图索骥,进行焊接,元件的规格、数值虽然与线路图上的要求相差不大,但由于元件的排位,走线的长短、焊接的质量,或其它方面的差异,如B+电压的高低等原因,都会影响到放音的表现,所以焊出的胆机,不一定是胆味浓浓的。没有胆味不要紧,只要通过适当、合理地调整、校验,使放大器各级胆管工作在最佳状态,便能达到放音的要求。 胆机调整工作的内容,除了将噪声降低至可以接受的程度和更换输入、输出耦合电容的牌号或容量,以改变音色以外,最重要的是调整屏压、屏流和栅负压,使胆管工作在合适的工作点上,使放音系统放出好声,而这一点正是一些文章中谈得较少或用很简单的二句描述带过去了,要不就是“不需任何调整”就可以工作。如果胆管没有进入工作状态,再换名牌电容,胆味也不会出来。 调整胆机时,要根据电子管手册上提供的数据,作为电路的依据,无电子管手册时,要尊重线路图中所给的参数数值或附加的胆管资料进行。三极管的工作点由屏压和栅负压决定,屏压确定后可调整栅负压来调工作点,束射管或五极管的屏压升高到一定程度后,帘栅压的变压会对工作点有较大的影响,因此可调整帘栅压和栅负压来选定工作点。 降低胆机噪音和更换耦合电容调整音色的方法,一些文章已有介绍,本文不再重复,这里就调整胆管工作点的方法谈一谈体会。 一、栅负压电路 调整胆管的工作点时,经常会涉及到栅负压,因此首先将栅负压电路说一下。电子管是电压控制元件,三大主要电极(灯丝、栅极和屏极)是要供给适当电压的,供给灯丝的称甲电,供给栅极的称丙电,供给屏极的称乙电。栅极电压一般是接的负压,习惯上称“栅负压”或“栅偏压”。为了使胆管工作稳定,栅负压必须用直流电来供给。按胆管的工作类别不同,栅负压的供给有二种方法:一种是利用电子管屏流(或屏流+帘栅流)流经阴极电阻所产生的电压降,使栅极获得负压,则称自给式栅负压,一般用在屏流较稳定的甲类放大电路上。另一种是在电源部分设一套负压整流电路,供给栅负压,称作固定栅负压,主要用于屏极电流变化大的甲乙2类或乙类功率放大级。使用自给式栅负压,胆管比较安全,采用固定式栅负压时,当负压整流电路发生故障,胆管失去栅负压后,屏流会上升过高而烧坏胆管,因此没有自给式栅负压工作可靠。 自给式栅负压产生的过程:电路中电流的流经过程,当电子管工作时,屏极和帘栅极吸收电子,电流

【电子管电路基础知识大全】

电子管电路基础知识大全 (第1页) (一)二极管的结构及其工作原理 电子管是利用电子在真空中受电场力的吸引或排斥作用,进行工作的电子器件。 最简单的电子管是二极管,它是在高度真空的密封容器内装有两个金属电极,一个是阴极,呈细长管状丝外面,另一个是阳极,呈圆筒状,套在阴极外面。当灯丝通电点燃,间接将阴极加热到1000~C以上时,量电子获得能量从金属中逸出,逸出的热电子在阴极金属表面附近堆积,成为空间电荷。 我们知道,电子是带负电荷的,此时如果在另一金属板(阳极)加上一个直流正电压并与阴极构成闭合回电子在正电压(电场)的吸引下将从阴极经过空间到达阳极,形成电流,如图1。 反之,如果在阳极加上直流负电压(电场),它将排斥从阴极发射出来的热电子,回路就没有电流。只有电位高于阴极电位时。闭合回路才有电流流过,因此二极管具有单向导电性。利用二极管的单向导电性,就能 电变为直流电。 (二)三极管的结构及其工作原理 1.结构 在二极管的两个电极之间插入一个栅栏状的电极就构成三极管(如图2所示)。这个栅栏状的电极叫做控极,简称栅极,用符号G(grid)表示。结构一般是用镍锰合金丝在支撑物上绕成螺旋形,每圈之间有一定的便从阴极发射出来的电子能通过这些空隙流到屏极。 从三极管各个电极的相对位置来看。栅极与阴极之间的距离较屏极与阴极之间的距离近得多,这使栅极对射的电子的作用力也比屏极大得多,因而三极管具有放大作用。 2.三极管的基本电路 要使任何电路工作,都必须是一个闭合的回路。三极管在电路中,有3个基本回路:一是屏极回路,二是

路,三是灯丝回路,如图3所示。 在电子管电路中,各极电压都是以阴极为公共端的。屏极与阴极之间的电路是屏极回路。 它们之间的电压叫做屏压,以u。表示,一般屏压总是正的,即屏极电位比阴极电位高,因此屏极回路经流ia流动。屏极回路的正电源叫做屏极电源。用Ea表示。 3.三极管的放大作用 将三极管按图3连接好工作电源。这时在电子管阴极附近将产生两个电场,一个是屏极吸引电子的正电场个是栅极排斥电子的负电场。因此电子管屏流i。的大小不仅与屏压有关,并且也与栅负压大小有关。 如果设定屏压固定不变,则栅压越负。对电子的排斥力越大,则屏流越小。反之,如果把栅极负电压减小对值减小),则栅极对电子的排斥力将减小,屏流ia将随之增加。这个现象说明,在栅极上加入大小不同的负就能控制由阴极流向屏极的电子数量,即栅极有控制屏极电流ia大小的作用。而且由于栅极与阴极的距离比屏极的距离近,根据电场力和电场强度原理。 栅极控制电子的能力比屏极大得多,即栅压ug有微小的变化,就能引起屏流ia发生较大的变化,这就是具有放大作用的原因。 图4是一个简单的三极管放大电路。栅极回路叫输入回路,屏极回路叫输出回路。当在栅极回路接入一个交流电源ex时,就会使栅压ug发生变化,如果在屏极回路中接人一个电阻Ra,ia流过Ra时在Ra两端的压比ug的变化大得多,因此就具有电压放大作用,电阻Ra我们叫它负载电阻。

胆机常用的几种胆管

胆机常用的几种胆管 李平川 胆机以其卓越的重放音质,深受发烧友的青睐。市售成品胆机动辄数千元,乃至上万元,进口的洋机器名牌的要十几万甚至几十万,如此高价是多数爱好者无法企及的。其实,只要有一定的电子知识和一定的动手能力,多数烧友自制一台物美价廉的胆机并非难事。胆机较石机看似庞大复杂,但当了解了电子管电路的工作方式后就会发现,胆机电路较之晶体管分立元件电路相对简洁,所用元件也少得多。除输出变压器自制有一定难度外,其他元器件只要选配得当,电路调试有方,一台靓声的胆机放就会诞生在自己的手 中。 这里对市场上常见的一些电子管作一简要介绍。目前市场有些电子管是专门为音频电路而设计的,如KT88、2A3等,还有一些型号的电子管并不是在音响器材中使用的,如ECC88(6N11J),原来是低噪声低频管;FU—7(807)原来是作为发射管使用的,但是经过发烧友的不断实验,使其在音频电路中大放异彩。那么该怎样使用电子管呢?首先要知道,电子管和晶体管一样也有三极管,电子三极管的特点是失真

小、噪声低,特性稳定,外围电路简单,但增益稍低(μ值在5—100之间)。常用于电子管的前置放大器及功放的电压与倒相级。通常在一只玻壳内封装两个特性相等的三极管,成为双三极管。国产的双三极管命名为6N××(6表示灯丝电压为6.3伏),欧洲型号为ECC××(E表示灯丝电压为6.3伏,若第一个字母为P,则表示灯丝为串联恒流供电,灯丝电流为0.3A),前苏联型号为6H××(6表示灯丝电压为6.3 伏)。 6N4J是高放大率、低噪声双三极管。国外型号为12AX7、ECC83。这只管子的特性参数与大量应用的6N2几乎相同,但6N4J采用了降低噪声的设计工艺,其噪声电平低于一60dB。每只三极管及两管之间均加有屏蔽层,灯丝带中心抽头可平衡供电,因此大大降低了噪声。因此,6N4J常被用于小信号放大与倒相级,6N4J 单管电压放大电路及工作状态见图一和表一,做倒相 电路见图二。 6N10J(进口管ECC82, 12AU7)是中等放大率的低噪声双三极管,由于其阳极容许电流较大(约为105mA),所以较适合作功率推动及倒相级。其单管电

电子管及胆机基础知识_二_求取电子管三个基本参数的方法_田庆松

音响技术AVtechnology 基础知识 有朋友会问,那些电子管的参数是怎样得出来的呢?其实这些参数工厂在设计生产时是根据电子管的内部结构来达到的,如电子管的渗透系数,决定于电子管电极的结构,栅极越稀疏,电子管的渗透系数就越大(很简单,栅极越稀疏,从阴极发射的电子越容易到达屏极,自然渗透系数就越大),放大系数μ值便越小(μ=1/D),反之,栅极越密,电子管的放大系数便越高。当栅极的疏密度和板极半径一定时,圆筒形三极管中的渗透系数最小,也就是说,当栅极半径r g=0.4r a时,板极和阴极间隔离度最好。当板极半径较大或较小时,渗透系数就增加。平板型三极管的渗透系数和栅极—阴极间的距离成正比[1]。 跨导值也同样由电子管内部构造决定的,当栅极和阴极间的距离增加或缩短时,电子管的跨导值即减小或增大。 电子管的阳极内阻同样也受制于电子管的结构参数的影响,当电子管的阴极发射电子量越多,电子管的屏极表面积越大,阴极和阳极距离越近时,电子管的内阻就越低;当电子管的栅极稀疏或密时,电子管的内阻就变小或变大。所有这些,电子管生产厂都能通过电子管的内部结构加以调整。之后,再对生产出来的产品进行实测。 然而,对于一名业余的发烧友而言,没有能力和条件对电子管的内部结构参数加以计算,即使是知道了这些内部结构参数,这些复杂的计算公式也是不好掌握的,而且也没有必要。不过,我们可以通过厂家提供的实测曲线用一个简单的方法求解出电子管的μ、S、R i这三个基本参数值。也许有朋友会说,这不是多此一举吗?厂家大部分都提供了电子管的特性参数的,直接使用就是了,为什么还要自已学会计算呢? 其实,这并不是多此一举,通过电子管的阳极特性曲线来计算电子管的三个基本参数值的方法是掌握电子管电路基础的一个基本知识,对于我们来说有相当重要的实际意义。可惜的是,有相当多的朋友并不知道怎样利用这种方法求解电子管的三个基本参数,下面,结合现成的电子管特性曲线讲解如何求解电子管μ、S和电子管阳极内阻R i的方法。 在求解这些基本的参数之前,初次接触胆机制作的朋友必须要知道一个重要的概念,那就是所求解的这三个基本参数或电子管手册上提供的这三个参数都并不是一个常数,它们都代表的是电子管工作在它的阳极特性曲线的直线部分时的数值,当电子管工作在电子管特性曲线的非直线段时(也就是阳极特性曲线比较弯曲的部分),电子管的三个参数同典型值相差是相当大的,必须重新求取才行。对于三极管的跨导值来说,它在阳极特性曲线弯曲部分的跨导值始终小于其特性曲线直线段的跨导;对于电子管的内阻来说,在电子管特性曲线的弯曲部分,电子管的阳极内阻Ri比平直部分的值要大很多。 下面结合实际例子讲讲利用电子管的阳极特性曲线求取电子管的三个基本参数的方法。 1 三极管基本参数的求取 以6N8P为例给出求取过程。 (1)阳极内阻 在6N8P的栅负压等于-8V的那条阳极特性曲线的 求取电子管三个基本参数的方法电子管及胆机基础知识(二)□田庆松

电子管基础知识

电子管的基础知识 [B] 在80mm的谆谆指导下,准备着手"造"一个电子管的耳放,对于没有接触过电路,所以用"造" 比较贴切 看了80mm的管子选购篇,受益匪浅。 现贴出我找到的电子管资料,与大家分享,以此感谢帮助过我的朋友,勉励同我一样刚入 门的朋友。[/B] 电子管的基本参数: 1.灯丝电压:V; 2.灯丝电流:mA; 3.阳极电压:V; 4.阳极电流:mA; 5.栅极电压:V; 6.栅极电流:mA; 7. 阴极接入电阻:Ω; 8.输出功率:W; 9.跨导:mA/v; 10.内阻: kΩ。 几个常用值的计算: 放大因数μ=阳极电压Uak/栅极电压Ugk 表示在维持阳极电流不变的情况下,阳极电压与栅极电压的比值。 跨导 S=阳极电流Ia/栅极电压Ugk 表示在维持阳极电压不变的情况下,栅极电压若有一个单位(如mV)的电压变化时将引起阳极电流有多少个单位的 变化。 内阻 Ri=栅极电压Uak/阳极电流Ia 表示在维持栅极电压不变的情况下,阳极电流若有一个单位(如mA)的电压变化时将引起阳极电压有多少个单位的 变化。 上面的几个值也可以表述为放大因数μ=跨导S乘以内阻Ri 先说这些,各位要是觉得可以瞧下去,下回再说几种常见的管型和结构工作原理等等等等。

最后我会结合自己的使用体会简要说说部分常见的国产管和进口管的各自特点以及代换。 在讨论之前咱们先得把讨论的范围作一界定,即仅限于真空式电子管。 不管是二极,三极还是更多电极的真空式电子管,它们都具有一个共同结构就是由抽成几近真空的玻璃(或金属,陶瓷)外壳及封装在壳里的灯丝,阴极和阳极组成。直热式电子管的灯丝就是阴极,三极以上的多极管还有各种栅 极。 先说二极管: 考虑一块被加热的金属板,当它的温度达到摄氏800度以上时,会形成电子的加速运动,以至能够摆脱金属板本身对它们的吸引而逃逸到金属表面以外的空间。若在这一空间加上一个十几至几万伏的正向电压(踏雪留痕在上面说到的显象管,阳极上就加有7000--27000伏的高压),这些电子就会被吸引飞向正向电压极,流经电源而形成回路 电流。 把金属板(阴极),加热源(灯丝),正向电压极板(阳极)封装在一个适当的壳里,即上面说的玻璃(或金属, 陶瓷)封装壳,再抽成几近真空,就是电子二极管。 需要说明的是由于制造工艺,杂质附着以及材料本身等原因,管内会残留微量余气,成品管都在管内涂敷了一层吸气剂。吸气剂一般使用掺氮的蒸散型锆铝或锆钒材料。目前除特殊用途外(如超高频和高压整流等),为便于使用和增加一至性,均为两只二极管,或二极三极,或三极三极以及二极五极等合装在一个管壳内,这就是复合管。 接下来说三极管: 二极管的结构决定了它的单向导电的性质,当在阴极与阳极之间再加上一个带适当电压的极点,这个电压就会改变阴极的表面电位,从而影响了阴极热电子飞向阳极的数量,这就是调制极,一般是用金属丝做成螺旋状的栅网,所以又把它称为栅极。这就是四季青朋友所说的阀门功能了。由此可以知道,当作为被放大的信号电压加在栅极----阴极之间时,由于它的变化必然会使阳极电流发生相应的变化,又由于阳极电压远高于阴极,因此栅阴极间微小的电压变化同样能使阳极产生相应的几十至上百倍的电压变化,这就是三极管放大电压信号的原理。 电子管的基础知识 这是颗用于高频放大的通用双三极管6N1。1是吸气剂;2是灯丝阴极和栅极的组合体;3就是阳极。

相关文档
最新文档