3数列求和及其综合应用(学生用)

3数列求和及其综合应用(学生用)
3数列求和及其综合应用(学生用)

数列求和及其综合应用

1. 掌握数列的求和方法:(1) 直接利用等差、等比数列求和公式;(2) 通过适当变形(构

造)将未知数列转化为等差、等比数列,再用公式求和;(3) 根据数列特征,采用累加、累乘、错位相减、倒序相加等方法求和;(4) 通过分组、拆项、裂项等手段分别求和;

2. 数列是特殊的函数,这部分内容中蕴含的数学思想方法有函数与方程思想、分类讨论思想、化归转化思想、数形结合思想等,高考题中所涉及的知识综合性很强,既有较繁的运算又有一定的技巧,在解题时要注意从整体去把握.

1. 若数列{a n }的通项公式是a n =(-1)n -1·(3n -2),则a 1+a 2+…+a 10=________.

2. 已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +5n +3,则a 7b 7

=________. 3. 若数列{a n }满足a 2n +1a 2n

=p(p 为正常数,n ∈N *),则称{a n }为“等方比数列”,则“数列{a n }是等方比数列”是“数列{a n }是等比数列”的________(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)条件.

4. 已知等比数列{a n }的首项为2,公比为3,前n 项和为S n .若log 3????

??12a n (S 4m +1)=9,则1n +4m

的最小值是________.

题型一 等差、等比数列求和公式及利用

例1 已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.

(1) 求数列{a n }和{b n }的通项公式; (2) 求数列{b n }的前n 项和.

题型二 可转化为等差、等比数列求和

例2 已知数列{a n }的前n 项和S n =n 2+n 2

,n ∈N *. (1) 求数列{a n }的通项公式; (2) 设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.

题型三 根据数列特征,用适当的方法求和

例3 已知数列{a n }的前n 项和S n =-12

n 2+kn(k∈N *),且S n 的最大值为8. (1) 确定常数k ,求a n ; (2) 求数列????

??9-2a n 2n 的前n 项和T n .

已知数列{a n }和{b n }满足a 1=1,a 2=2,a n >0,b n =a n a n +1(n∈N *

),且{b n }是

以q 为公比的等比数列.

(1) 证明:a n +2=a n q 2; (2) 若c n =a 2n -1+2a 2n ,证明:数列{c n }是等比数列;

题型四 数列求和的综合应用

例4 将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表: a 1

a 2 a 3

a 4 a 5 a 6

a 7 a 8 a 9 a 10

记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1,S n 为数列{b n }的前n

项和,且满足2b n b n S n -S 2n

=1(n≥2). (1) 证明:数列????

??1S n 成等差数列,并求数列{b n }的通项公式; (2) 上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比

为同一个正数,当a 81=-491

时,求上表中第k(k≥3)行所有项的和.

1. (2014·全国卷Ⅱ)等差数列{a n }的公差为2,若a 2、a 4、a 8成等比数列,则{a n }的前n 项和S n =________.

2. (2014·福建卷)在等比数列{a n }中,a 2=3,a 5=81. 若b n =log 3a n ,则数列{b n }的前n 项和S n =________.

3. (2014·全国卷Ⅰ)已知{a n }是递增的等差数列,a 2、a 4是方程x 2-5x +6=0的根,则

数列????

??a n 2n 的前n 项和为________. 4. (2014·安徽卷)如图,在等腰直角三角形ABC 中,斜边BC =22,过点A 作BC 的垂线,垂足为A 1;过点A 1作AC 的垂线,垂足为A 2;过点A 2作A 1C 的垂线,垂足为A 3;…依此类推,设BA =a 1,AA 1=a 2,A 1A 2=a 3,…,A 5A 6=a 7,则a 7=________.

5. (2014·山东卷)在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.

(1) 求数列{a n }的通项公式;

(2) 设b n =2

)1(+n a n ,记T m =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .

6. (2013·江苏卷)设{a n }是首项为a ,公差为d 的等差数列(d≠0),S n 是其前n 项和.记b n =nS n n 2+c

,n ∈N *,其中c 为实数. (1) 若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *);

(2) 若{b n }是等差数列,证明:c =0.

课后作业:

1. 两个正数a 、b 的等差中项是52,一个等比中项是6,且a >b ,则双曲线x 2a 2-y 2b 2=1的

离心率e =________.

2. 已知等差数列{a n }满足a 3+a 6=-13,a 1·a 8=-43

,a 1>a 8. (1) 求数列{a n }的通项公式;

(2) 把数列{a n }的第1项、第4项、第7项、…、第3n -2项、…分别作为数列{b n }的第1项、第2项、第3项、…、第n 项、…,求数列{2b n }的前n 项之和;

3. 已知数列{a n }满足a n =2a n -1+2n -1(n≥2),且a 4=81.

(1) 求数列{a n }的前三项a 1,a 2,a 3;

(2) 求证:数列????

??a n -12n 为等差数列,并求a n .

4. 已知二次函数y =f(x)的图象经过坐标原点,其导函数为f ′(x)=6x -2,数列{a n }

的前n 项和为S n ,点(n ,S n )(n∈N *)均在函数y =f(x)的图象上.

(1) 求数列{a n }的通项公式;

(2) 设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m 20

对所有n∈N *都成立的最小正整数m.

数列求和、数列的综合应用

数列求和、数列的综合应用 挖命题 【考情探究】 考点:1.数列求和; 2.数列的综合应用。 内容解读:①掌握非等差、等比数列求和的几种常见方法. ②能在具体的问题情境中识别数列的等差关系或等比关系,抽象出数列的模型,并能用有关知识解决相应的问题 分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和. 2.能综合利用等差、等比数列的基本知识解决相关综合问题. 3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等. 破考点 【考点集训】 考点一数列求和 1.(2017湖南郴州第一次教学质量监测,6)在等差数列{a n}中,a4=5,a7=11.设b n=(-1)n·a n,则数列{b n}的前100项之和S100=( ) A.-200 B.-100 C.200 D.100 答案 D 2.(2018湖北东南省级示范高中联考,15)已知S n为{a n}的前n项和,若a n(4+cos nπ)=n(2-cos nπ),则S88等于. 答案2332 3.(2018江西吉安一中、九江一中等八所重点中学4月联考,13)若{a n},{b n}满足 a n b n=1,a n=n2+3n+2,则{b n}的前2018项和为. 答案 1 009 2 020 考点二数列的综合应用

1.(2018福建漳州期末调研测试,5)等差数列{a n}和等比数列{b n}的首项均为1,公差与公比 均为3,则a b 1+a b 2 +a b 3 =( ) A.64 B.32 C.38 D.33 答案 D 2.(2017陕西西安铁一中第五次模拟,9)已知数列{a n}满足a n=log(n+1)(n+2)(n∈N*),我们把使乘积a1·a2·a3·…·a n为整数的数n叫做“优数”,则在区间(1,2004)内的所有“优数”的和为( ) A.1024 B.2003 C.2026 D.2048 答案 C 3.已知a n=3n(n∈N*),记数列{a n}的前n项和为T n,若对任意的n∈N*,(T n+3 2 )k≥3n-6恒成立,则实数k的取值范围是. 答案k≥2 27 炼技法 【方法集训】 方法1 错位相减法求和 1.(2018福建闽侯第八中学期末,16)已知数列{na n}的前n项和为S n,且a n=2n,则使得S n-na n+1+50<0的最小正整数n的值为. 答案5 2.(2018河南安阳第二次模拟,17)设等差数列{a n}的前n项和为S n,点(n,S n)在函数f(x)=x2+Bx+C-1(B,C∈R)的图象上,且a1=C. (1)求数列{a n}的通项公式; (2)记b n=a n(a2n-1+1),求数列{b n}的前n项和T n. 解析(1)设数列{a n}的公差为d, 则S n=na1+n(n-1) 2d=d 2 n2+(a1-d 2 )n, 又S n=n2+Bn+C-1,两式对照得{d 2 =1, C-1=0, 解得{ d=2, C=1, 所以a1=1, 所以数列{a n}的通项公式为a n=2n-1(n∈N*). (2)由(1)知b n=(2n-1)(2·2n-1-1+1)=(2n-1)2n,

2022高三统考数学文北师大版一轮:第五章第四节 数列求和

第四节 数列求和 授课提示:对应学生用书第98页 [基础梳理] 1.等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1 +n (n -1)2 d . 2.等比数列的前n 项和公式 S n =??? na 1,q =1, a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1. 3.数列求和方法 (1)公式法求和: 使用已知求和公式求和的方法,即等差、等比数列或可化为等差、等比数列的求和方法. (2)错位相减法: 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的. (3)倒序相加法: 如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. (4)分组求和法: 一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. (5)并项求和法: 一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 1.先看数列通项特点,再想求和方法. 2.常见的拆项公式 (1)若{a n }为各项都不为0的等差数列,公差为d (d ≠0), 则1a n ·a n +1=1d (1a n -1a n +1 ); (2)1n (n +k )=1k (1n -1 n +k ); (3)1 n +n +1 =n +1-n ; (4)log a (1+1 n )=log a (n +1)-log a n (a >0且a ≠1). 3.一些常见数列的前n 项和公式

常见的数列求和及应用

常见的数列求和及应用 常见的数列求和及应用 一、自主探究 1、等差数列的前n项和公式:。 2、等比数列的前n项和公式: ①当时,; ②当时, = 。 3、常见求和公式有: ①1+2+3+4+…+②1+3+5+…+(2n-1)= ※③※④ 二、典例剖析 (一)、分组求和法:某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,进而利用公式分别求和,从而得出原数列的和。 例1 已知,求数列{}的前n项和。 变式练习:已知,求数列{}的前n项和。 (二)、裂项求和法:如果数列的通项公式可转化为形式,常采用裂项求和的方法。特别地,当数列形如,其中是等差数列,可采用此法 例2 求和:() 变式练习:已知数列的通项公式,求数列{}的前n

项和。 (三)、奇偶并项法:当数列通项中出现时,常常需要对n取值的奇偶性进行分类讨论。 例3 求和: (四)、倒序相加法:此法主要适用数列前后具有“对称性”,即“首末两项之和相等”的形式。 例4 求在区间内分母是3的所有不可约分数之和。 变式练习:已知且 .求 (五)错位相减法:一般地,如果数列时等差数列,是等比数列,求数列的前项和时,可采用此法,在等式的两边乘以或,再错一位相减。 例5 求和: 变式练习:求和: 三、提炼总结:数列的求和是数列的一个重要内容,它往往是数列知识的综合体现,求和题在试题中更是常见,它常用来考察我们的基础知识,分析问题和解决问题的能力。任何一个数列的前n项和都是从第1项一直加到第n项。数列的求和主要有以下几种方法。⑴公式法;⑵分组求和法;⑶裂项求和法;拆项成差求和经常用到下列拆项公式,请补充完整:① = ;

求数列通项公式与数列求和精选练习题(有答案)

数列的通项公式与求和 112342421 {},1(1,2,3,)3 (1),,{}.(2)n n n n n n a n S a a S n a a a a a a a +===+++L L 数列的前项为且,求的值及数列的通项公式求 1112 {},1(1,2,).:(1){ };(2)4n n n n n n n n a n S a a S n n S n S a +++== ==L 数列的前项和记为已知,证明数列是等比数列 *121 {}(1)()3 (1),; (2):{}. n n n n n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列 11211 {},,.2n n n n a a a a a n n +==++ 已知数列满足求 练习1 练习2 练习3 练习4

112{},,,.31n n n n n a a a a a n += =+ 已知数列满足求 1 11511{},,().632n n n n n a a a a a ++==+ 已知数列中,求 1 11{}:1,{}. 31n n n n n a a a a a a --==?+ 已知数列满足,求数列的通项公式 练习8 等比数列 {}n a 的前n 项和S n =2n -1,则 2 232221n a a a a ++++Λ 练习9 求和:5,55,555,5555,…,5(101)9n -,…; 练习5 练习6 练习7

练习10 求和: 111 1447(32)(31) n n +++ ??-?+ L 练习11 求和: 111 1 12123123n ++++= +++++++ L L 练习12 设{} n a 是等差数列, {} n b 是各项都为正数的等比数列,且11 1 a b == ,35 21 a b += , 5313 a b += (Ⅰ)求{} n a , {} n b 的通项公式;(Ⅱ)求数列 n n a b ?? ?? ??的前n项和n S.

考点25 数列求和及综合应用

考点25 数列求和及综合应用 一、选择题 1. (2013·新课标Ⅰ高考理科·T12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,…若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n 2,c n +1=b n +a n 2,则( ) A 、{S n }为递减数列 B 、{S n }为递增数列错误!未找到引用源。 C 、{S 2n -1}为递增数列,{S 2n }为递减数列 D 、{S 2n -1}为递减数列,{S 2n }为递增数列 【解析】选B.因为n n a a =+1,21n n n a c b += +,2 1n n n a b c +=+,所以1a a n =,++1n b = +1n c 2n n a c +2 n n a b ++ 1)(21 )(21a c b a c b n n n n n ++=++= ++1n b )2(2 1 2111a c b a c n n n -+= -+,注意到1112a c b =+,所以12a c b n n =+. 于是n n n C B A ?中,边长1a C B n n =为定值,另两边的长度之和为12a c b n n =+为定值. 因为-+1n b = +1n c 2n n a c +2n n a b +- )(21 n n c b --=, 所以)()2 1 (111c b c b n n n --=--,当+∞→n 时,有0→-n n c b ,即n n c b →,于是n n n C B A ?的边n n C B 的高n h 随n 增大而增大,于是其面积n n n n n h a h C B S 12 1||21==为递增数列. 二、填空题 2.(2013·新课标Ⅰ高考理科·T14)若数列}{n a 的前n 项和3 132+=n n a S ,则 }{n a 的通项公式是=n a _________

数列求和习题及答案.docx

§ 数列求和 ( : 45 分 分: 100 分) 一、 ( 每小 7 分,共 35 分 ) * 1 1.在等比数列 {a n } ( n ∈ N ) 中,若 a 1= 1, a 4= 8, 数列的前 10 和 ( ) A . 2- 18 B . 2- 19 2 2 C . 2- 1 10 D . 2- 1 11 2 2 2.若数列 {a n } 的通 公式 a n =2n + 2n - 1, 数列 {a n } 的前 n 和 ( ) n 2 n + 1 2 A . 2 + n -1 B . 2 + n - 1 C . 2n + 1+ n 2- 2 D . 2n + n - 2 3.已知等比数列 {a n } 的各 均 不等于 1 的正数, 数列 {b } 足 b = lg a , b = 18,b = 12, n n n 3 6 数列 {b n } 的前 n 和的最大 等于 ( ) A . 126 B . 130 C . 132 D . 134 4.数列 {a } 的通 公式 n - 1 ·(4 n - 3) , 它的前 100 之和 S 等于 ( ) n a = ( - 1) n 100 A . 200 B .- 200 C . 400 D .- 400 5.数列 1·n , 2(n -1),3(n -2) ,?, n ·1的和 ( ) n(n + 1)(n + 2) n(n + 1)(2n + 1) n(n + 2)(n + 3) n(n + 1)(n + 2) 二、填空 ( 每小 6 分,共 24 分 ) 6.等比数列 {a } 的前 n 和 n 2 2 2 S =2 - 1, a + a +?+ a = ________. n n 1 2 n 7.已知数列 {a } 的通 a 与前 n 和 S 之 足关系式 S = 2- 3a , a = __________. n n n n n n 8.已知等比数列 {a } 中, a 1= 3,a 4= 81,若数列 {b } 足 b =log 3a , 数列 的前 n n n n n 1 b b n + 1 n 和 S = ________. n 9. 关于 x 的不等式 x 2- x<2nx (n ∈ N * ) 的解集中整数的个数 a n ,数列 {a n } 的前 n 和 S n , S 100 的 ________. 三、解答 ( 共 41 分 ) 10. (13 分 ) 已知数列 n n 和, 于任意的 * {a } 的各 均 正数, S 其前 n n ∈N 足关系式 2S n = 3a n -3. (1) 求数列 {a } 的通 公式; n (2) 数列 {b } 的通 公式是 b = 1 ,前 n 和 T ,求 : 于任意的 n n n log 3a n ·log 3a n + 1 正数 n , 有 T n <1. } 足 a + a + a = 28,且 a + 2 是 a , a 的等差 11. (14 分) 已知 增的等比数列 {a n 2 3 4 3 2 4

专题04 数列求和及综合应用(原卷版)

专题04 数列求和及综合应用 【要点提炼】 1.常用公式:12+22+32+42+…+n 2=n (n +1)(2n +1) 6. 2.(1)数列通项a n 与前n 项和S n 的关系为a n =???S 1 (n =1), S n -S n -1 (n ≥2). (2)应用a n 与S n 的关系式f (a n ,S n )=0时,应特别注意n =1时的情况,防止产生错误. 3.数列求和 (1)分组转化法:一个数列既不是等差数列,也不是等比数列,若将这个数列适当拆开,重新组合,就会变成几个可以求和的部分,分别求和,然后再合并. (2)错位相减法:主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列. (3)裂项相消法:即将数列的通项分成两个式子的代数差的形式,然后通过累加 抵消中间若干项的方法,裂项相消法适用于形如? ???????? ?c a n a n +1(其中{a n }是各项均不为 零的等差数列,c 为常数)的数列. 温馨提醒 裂项求和时,易把系数写成它的倒数或忘记系数导致错误. 4.数列与函数、不等式的交汇 数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出S n 的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的综合问题一般以数列为载体,考查不等关系或恒成立问题. 考点一 数列求和及综合应用 考向一 a n 与S n 的关系问题 【典例1】 设数列{a n }的前n 项和为S n ,对任意的正整数n ,都有a n =5S n +1成立,b n =-1-log 2|a n |,数列{b n }的前n 项和为T n ,c n =b n +1 T n T n +1 . (1)求数列{a n }的通项公式; (2)求数列{c n }的前n 项和A n ,并求出A n 的最值.

(完整版)数列求和练习题(含答案)

2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1 n (n +1) ,则S 5等于( ) A .1 B.5 6 C.16 D.130 B [∵a n =1n (n +1)=1n -1 n +1 , ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5 6.] 3.(2016·广东中山华侨中学3月模拟)已知等比数列{a n }中,a 2·a 8=4a 5,等差数列{b n }中,b 4+b 6=a 5,则数列{b n }的前9项和S 9等于( ) A .9 B .18 C .36 D .72 B [∵a 2·a 8=4a 5,即a 25=4a 5,∴a 5=4, ∴a 5=b 4+b 6=2b 5=4,∴b 5=2, ∴S 9=9b 5=18,故选B.] 已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)若b n = 1 a n a n +1 ,求数列{b n }的前n 项和. [解] (1)由已知得???? ? 2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×9 2d =10a 1+45d =100, 解得??? a 1=1, d =2, 3分 所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1.5分 (2)b n = 1(2n -1)(2n +1)=12? ?? ??1 2n -1-12n +1,8分 所以T n =12? ? ???1-13+13-15+…+12n -1-12n +1 =12? ????1-12n +1=n 2n +1 .12分

2013届高三数学二轮复习 专题三 第2讲 数列求和及数列的综合应用教案

第2讲 数列求和及数列的综合应用 自主学习导引 真题感悟 1.(2012·大纲全国卷)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列??? ? ? ? 1a n a n +1的前100项和为 A. 100101 B.99101 C.99100 D.101 100 解析 利用裂项相消法求和. 设等差数列{a n }的首项为a 1,公差为d . ∵a 5=5,S 5=15, ∴? ???? a 1+4d =5,5a 1+5×5-1 2d =15,, ∴???? ? a 1=1d =1, ∴a n =a 1+(n -1)d =n . ∴ 1 a n a n +1= 1n n +1=1n -1 n +1 , ∴数列{1 a n a n +1}的前100项和为1-12+12-13+…1100-1101=1-1101=100101 . 答案 A 2.(2012·浙江)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N +,数列{b n }满足a n =4log 2b n +3,n ∈N +. (1)求a n ,b n ; (2)求数列{a n ·b n }的前n 项和T n . 解析 (1)由S n =2n 2+n ,得 当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=4n -1. 所以a n =4n -1,n ∈N +. 由4n -1=a n =4log 2b n +3,得b n =2n -1,n ∈N +. (2)由(1)知a n b n =(4n -1)·2n -1,n ∈N +,

数列通项及求和测试题(含答案)

数列通项及求和 一.选择题: 2.已知数列{a n} 满足a1=1, 且, 且n∈N) , 则数列{ a n} 的通项公式为(?? ) A. ?? B.C.a n=n+2 ??? D.a n=( n+2)·3 n 3.数列的前项和记为,,则数列的通项公式是(?) A.???? B.????? C.???? D. 4.数列满足,且,则=??(??? ) A.10????????? B.11 C.12 ?? D.13 6.设各项均不为0的数列满足,若,则(?? ) A.??? B.2??? C.??? D.4 二.填空题: 8.已知数列的前项和为,,且满足,则_________. 9.若数列的前n项和,则数列的通项公式???????? ? 10.如果数列满足,则=_______. 11.若数列的前项和为,则该数列的通项公式????????? . 12.若数列的前项和为,则该数列的通项公式???????? . 13.已知数列的前项和为,且,则=?????? . 15.在数列中,=____________. 16.已知数列的前n项和,则的通项公式???????? ? 17.若数列的前n项和,则???? 。 18.已知数列满足,,则的最小值为________. 19.已知数列的前n项和为,且,则=___. 20.已知数列中,,前n项和为,且,则=_______

三.解答题: 25.已知等差数列的前n项和 (1)求数列的通项公式; (2)设,求数列的前n项和。 30.等差数列中, ? (1)求的通项公式 ? (2)设,求的前n项和 40.公差不为零的等差数列中,且成等比数列。 (1)求数列的通项公式; (2)设,求数列的通项公式 44.已知等差数列满足:,,的前n项和为. (1)求及; (2)令bn=(),求数列的前n项和. 36.已知数列的前项和为,且;数列满足,.. (Ⅰ)求数列和的通项公式; (Ⅱ)记,.求数列的前项和. 28.已知数列的前项和为,且, (1)求数列的通项公式 (Ⅱ)数列的通项公式,求其前项和为。 29.已知等比数列的公比且成等差数列. 数列的前项和为,且 . (Ⅰ)分别求出数列和数列的通项公式; (Ⅱ)设,求其前项和为。 32.设数列的前项和为,,且对任意正整数,点在直线上. 求数列的通项公式;

考点25 数列求和及综合应用

温馨提示: 此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word 文档返回原板块。 考点25 数列求和及综合应用 一、选择题 1. (2013·新课标Ⅰ高考理科·T12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,…若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n 2,c n +1=b n +a n 2,则( ) A 、{S n }为递减数列 B 、{S n }为递增数列 C 、{S 2n -1}为递增数列,{S 2n }为递减数列 D 、{S 2n -1}为递减数列,{S 2n }为递增数列 【解析】选B.因为n n a a =+1,21n n n a c b += +,2 1n n n a b c +=+,所以1a a n =,++1n b = +1n c 2n n a c +2 n n a b ++ 1)(21 )(21a c b a c b n n n n n ++=++= ++1n b )2(2 1 2111a c b a c n n n -+= -+,注意到1112a c b =+,所以12a c b n n =+. 于是n n n C B A ?中,边长1a C B n n =为定值,另两边的长度之和为12a c b n n =+为定值. 因为-+1n b = +1n c 2n n a c +2n n a b +- )(21 n n c b --=, 所以)()2 1 (111c b c b n n n --=--,当+∞→n 时,有0→-n n c b ,即n n c b →,于是n n n C B A ?的边n n C B 的高n h 随n 增大而增大,于是其面积n n n n n h a h C B S 12 1||21==为递增数列. 二、填空题

41总复习:数列求和及其综合应用(基础)知识梳理

数列求和与综合应用 【考纲要求】 1.熟练掌握等差数列和等比数列的求和公式; 2. 掌握数列的通项a n 与前n 项和S n 之间的关系式 3.注意观察数列的特点和规律,在分析通项的基础上分解为基本数列求和或转化为基本数列求和,熟练掌握求数列的前n 项和的几种常用方法; 4.能解决简单的实际问题. 【知识网络】 【考点梳理】 纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率、银行信贷、浓度匹配、养老保险、圆钢堆垒等问题.这就要求同学们除熟练运用有关概念式外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度. 与计算有关的问题主要有:求数列的某项,确定数列的通项公式,求有穷数列或无穷数列之和,计算数列的极限,将数列与方程,与不等式,与某些几何问题等联系起来,从而解决有关问题. 有关定性问题的论证问题主要有:考察或论证数列的单调性,将数列分类定性,考察数列的图像特征,考察数列的极限存在与否等等. 有关实际应用问题:某些与非零自然数有关的实际应用题,可用数列的各项与之对应,然后利用数列有关知识解答此类应用题. 数列的函数属性:因数列是函数的特例,故解答有关问题时,常与函数知识联系起来考虑. 【典型例题】 类型一:数列与函数的综合应用 例1.(2015 菏泽一模)已知数列{}n a 的前n 项和为n S ,且()( )* 1n S n n n N =+∈. 综合应用 与函数、方程、不等式等 与几何、实际问题等 数列前n 项和 公式法 错位相减 倒序相加 裂项相消 分组求和

(完整版)三年级奥数等差数列求和习题及答案

计算(三)等差数列求和 知识精讲 一、定义:一个数列的前n 项的和为这个数列的和。 二、表达方式:常用n S 来表示 。 三:求和公式:和=(首项+末项)?项数2÷,1()2n n s a a n =+?÷。 对于这个公式的得到可以从两个方面入手: (思路1)1239899100++++++L 11002993985051=++++++++L 1444444442444444443 共50个101 ()()()() 101505050=?= (思路2)这道题目,还可以这样理解: 2349899100 1009998973212101101101101101101101 +++++++=+++++++=+++++++L L L 和=1+和倍和 即,和 (1001)100 2 10150 5050=+?÷=?=。 四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均 数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。 譬如:① 48123236436922091800+++++=+?÷=?=L (), 题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209?; ② 65636153116533233331089++++++=+?÷=?=L (), 题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333?。 例题精讲: 例1:求和: (1)1+2+3+4+5+6 = (2)1+4+7+11+13= (3)1+4+7+11+13+ (85) 分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。 例如(3)式项数=(85-1)÷3+1=29 和=(1+85)×29÷2=1247 答案:(1)21 (2)36 (3)1247 例2:求下列各等差数列的和。 (1)1+2+3+4+…+199 (2)2+4+6+…+78 (3)3+7+11+15+…+207 分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。 例如(1)式=(1+199)×199÷2=19900

2020版高三数学二轮复习(全国理)讲义:专题四 第二讲 数列求和及综合应用

第二讲数列求和及综合应用 高考考点 考点解读 求数列的通项公式1.已知数列的递推关系式以及某些项,求数列的通项公式;已知等差(比)的某些项或前几项的和,求其通项公式 2.考查等差(比)数列的概念以及通项公式、前n项和公式等 求数列的前n项和1.以等差(比)数列为命题背景,考查等差(比)的前n项和公式、分组求和 2.以递推数列、等差(比)数列为命题背景,考查错位相减、裂项相消、倒序相加等求和方法 与数列的和有关的综合应用1.等差(比)数列的求和、分组求和、错位相减求和及裂项相消求和 2.常与不等式、函数、解析几何相结合考查数列求和函数、不等式的性质等 本部分内容在备考时应注意以下几个方面: (1)加强对递推数列概念及解析式的理解,掌握递推数列给出数列的方法. (2)掌握等差(比)数列求和公式及方法. (3)掌握数列分组求和、裂项相消求和、错位相减求和的方法. (4)掌握与数列求和有关的综合问题的求解方法及解题策略. 预测2020年命题热点为: (1)已知等差(比)数列的某些项的值或其前几项的和,求该数列的通项公式. (2)已知某数列的递推式或某项的值,求该数列的和. (3)已知某个不等式成立,求某参数的值.证明某个不等式成立. Z 知识整合 hi shi zheng he 1.分组求和法:分组求和法是解决通项公式可以写成c n=a n+b n形式的数列求和问题的方法,其中{a n}与{b n}是等差(比)数列或一些可以直接求和的数列. 2.裂项相消法:将数列的通项分成两个代数式子的差,即a n=f(n+1)-f(n)的形式,然 后通过累加抵消中间若干项的求和方法.形如{c a n a n+1 }(其中{a n}是公差d≠0且各项均不为0

(完整版)数列求和习题及答案

§6.4 数列求和 (时间:45分钟 满分:100分) 一、选择题(每小题7分,共35分) 1.在等比数列{a n } (n ∈N * )中,若a 1=1,a 4=18 ,则该数列的前10项和为( ) A .2-128 B .2-1 29 C .2-1210 D .2-1 211 2.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为( ) A .2n +n 2 -1 B .2 n +1+n 2 -1 C .2 n +1+n 2 -2 D .2n +n -2 3.已知等比数列{a n }的各项均为不等于1的正数,数列{b n }满足b n =lg a n ,b 3=18,b 6=12,则数列{b n }的前n 项和的最大值等于( ) A .126 B .130 C .132 D .134 4.数列{a n }的通项公式为a n =(-1) n -1 ·(4n -3),则它的前100项之和S 100等于( ) A .200 B .-200 C .400 D .-400 5.数列1·n ,2(n -1),3(n -2),…,n ·1的和为( ) A.16n (n +1)(n +2) B.1 6n (n +1)(2n +1) C.13n (n +2)(n +3) D.1 3n (n +1)(n +2) 二、填空题(每小题6分,共24分) 6.等比数列{a n }的前n 项和S n =2n -1,则a 2 1+a 2 2+…+a 2 n =________. 7.已知数列{a n }的通项a n 与前n 项和S n 之间满足关系式S n =2-3a n ,则a n =__________. 8.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列?? ?? ?? 1b n b n +1的前n 项和S n =________. 9.设关于x 的不等式x 2 -x <2nx (n ∈N * )的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,则S 100的值为________. 三、解答题(共41分) 10.(13分)已知数列{a n }的各项均为正数,S n 为其前n 项和,对于任意的n ∈N * 满足关系式 2S n =3a n -3. (1)求数列{a n }的通项公式; (2)设数列{b n }的通项公式是b n =1 log 3a n ·log 3a n +1,前n 项和为T n ,求证:对于任意的 正数n ,总有T n <1.

高考数学专题-数列求和及综合应用

高考数学专题-数列求和及综合应用 高考定位 1.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求数列的和,难度中档偏下;2.在考查数列运算的同时,将数列与不等式、函数交汇渗透. 真 题 感 悟 1.(·全国Ⅲ卷)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式; (2)求数列???? ?? ????a n 2n +1的前n 项和. 解 (1)因为a 1+3a 2+…+(2n -1)a n =2n ,① 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),② ①-②得(2n -1)a n =2,所以a n =2 2n -1, 又n =1时,a 1=2适合上式, 从而{a n }的通项公式为a n =2 2n -1 . (2)记?????? ??? ?a n 2n +1的前n 项和为S n , 由(1)知a n 2n +1=2(2n -1)(2n +1)=12n -1-1 2n +1 , 则S n =? ? ???1-13+? ????13-15+…+? ????12n -1-12n +1 =1-12n +1=2n 2n +1 . 2.(·山东卷)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式; (2){b n }为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列???? ? ?b n a n 的前n 项和T n . 解 (1)设{a n }的公比为q , 由题意知???a 1(1+q )=6,a 21q =a 1q 2 ,

数列求和精选难题、易错题(含答案)

1、数列{an}的前n项和记为Sn,a1=t,点在直线y=2x+1上,。(1)若数列{an}是等比数列,求实数t的值; (2)设bn=nan,在(1)的条件下,求数列{bn}的前n项和Tn; (3)设各项均不为0的数列{cn}中,所有满足的整数的个数称为这个数列的”,令(),在(2)的条件下,求数列的“积异号数”。 解:(1)由题意,当时,有 两式相减,得即:() 当时,是等比数列,要使时是等比数列, 则只需,从而得出 (2)由(1)得,等比数列的首项为,公比, ① 可得② 得 (3)由(2)知, ,, ,数列递增

由,得当时,数列的“积异号数”为1。 2、已知数列{an}的前n项和为Sn,满足. (Ⅰ)求数列{an}的通项公式an; (Ⅱ)令,且数列{bn}的前n项和为Tn满足,求n的最小值;(Ⅲ)若正整数m,r,k成等差数列,且,试探究:am,ar,ak能否成等比数列证明你的结论. 解:(Ⅰ)∵, 由,∴, 又,∴数列是以为首项,为公比的等比数列, ∴,即; (Ⅱ), ∴ , ∴,即n的最小值为5; (Ⅲ)∵, 若,,成等比数列, 即 由已知条件得,∴, ∴, ∴上式可化为,

∵,∴, ∴, ∴为奇数,为偶数, 因此不可能成立, ∴,,不可能成等比数列. 3、设等差数列{an}的前n项和为Sn,公比是正数的等比数列{bn}的前n项和为Tn,已知a1=1,b1=3,a2+b2=8,T3-S3=15 (1)求{an},{bn}的通项公式。 (2)若数列{cn}满足求数列{cn}的前n项和Wn。 设等差数列{an}的公差为d,等比数列{bn}的公比为q ∵a1=1,b1=3由a2+b2=8,得1+d+3q=8 ① 由T3-S3=15得3(q2+q+1)-(3+3d)=15 ② 化简①②∴消去d得q2+4q-12=0 ∴q=2或q=-6 ∵q>0∴q=2则d=1∴an=n bn=3·2n-1 ⑵∵an=n∴① 当时,…② 由①-②得∴cn=3n+3 又由⑴得c1=7 ∴ ∴{an}的前n项和…

第2讲 数列的求和及综合应用

第2讲 数列的求和及综合应用 高考定位 1.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求数列的和,难度中档偏下;2.在考查数列运算的同时,将数列与不等式、函数交汇渗透. 真 题 感 悟 1.(2017·全国Ⅲ卷)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式; (2)求数列?????? ??? ?a n 2n +1的前 n 项和. 解 (1)因为a 1+3a 2+…+(2n -1)a n =2n ,① 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),② ①-②得(2n -1)a n =2,所以a n =2 2n -1, 又n =1时,a 1=2适合上式, 从而{a n }的通项公式为a n =2 2n -1 . (2)记?????? ??? ?a n 2n +1的前 n 项和为S n , 由(1)知 a n 2n +1=2(2n -1)(2n +1)=12n -1-1 2n +1 , 则S n =? ? ???1-13+? ????13-15+…+? ????12n -1-12n +1 =1- 12n +1=2n 2n +1 . 2.(2017·山东卷)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式; (2){b n }为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列???? ? ? b n a n 的前n 项和T n . 解 (1)设{a n }的公比为q ,

2018高考数学试题分类汇编 数列求和及综合应用 解析版

数列求和及综合应用 一、填空题 1.(2018·江苏高考·T14)已知集合A={x|x=2n-1,n∈N*},B={x|x=2n,n∈N*}.将A∪B的所有元素从小到大依次排列构成一个数列{a n}.记S n为数列{a n}的前n项和,则使得S n>12a n+1成立的n的最小值为. 【解析】B={2,4,8,16,32,64,128…},与A相比,元素间隔大,所以从S n中加了几个B中元素考虑, 1个:n=1+1=2S2=3,12a3=36 2个:n=2+2=4S4=10,12a5=60 3个:n=4+3=7S7=30,12a8=108 4个:n=8+4=12S12=94,12a13=204 5个:n=16+5=21S21=318,12a22=396 6个:n=32+6=38S38=1150,12a39=780 发现21≤n≤38时S n-12a n+1与0的大小关系发生变化,以下采用二分法查找: S30=687,12a31=612,所以所求n应在22~29之间, S25=462,12a26=492,所以所求n应在25~29之间, S27=546,12a28=540,所以所求n应在25~27之间, S26=503,12a27=516, 因为S27>12a28,而S26<12a27,所以使得S n>12a n+1成立的n的最小值为27. 答案:27 二、解答题 2.(本小题13分)(2018·北京高考文科·T15)设{a n}是等差数列,且a1=ln2,a2+a3=5ln2.

(1)求{a n}的通项公式. (2)求错误!未找到引用源。+错误!未找到引用源。+…+错误!未找到引用源。. 【命题意图】考查求数列的通项公式与前n项和,以及对数运算,意在考查灵活运用公式与基本运算能力,培养学生的逻辑思维能力,体现了逻辑推理、数学运算、数据分析的数学素养. 【解析】(1)由已知,设{a n}的公差为d,则 a2+a3=a1+d+a1+2d=2a1+3d=5ln2,又a1=ln2, 所以d=ln2, 所以{a n}的通项公式为a n=ln2+(n-1)ln2=n ln2(n∈N*). (2)由(1)及已知,错误!未找到引用源。=e n ln2=(e ln2)n=2n, 所以错误!未找到引用源。+错误!未找到引用源。+…+错误!未找到引用源。=21+22+…+2n=错误!未找到引用源。=2n+1-2(n∈N*). 3.(本小题满分13分)(2018·天津高考理科·T18)设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4= b3+b5,a5=b4+2b6. (Ⅰ)求{a n}和{b n}的通项公式. (Ⅱ)设数列{S n}的前n项和为T n(n∈N*), (ⅰ)求T n; (ⅱ)证明错误!未找到引用源。=错误!未找到引用源。-2(n∈N*). 【命题意图】本题主要考查等差数列的通项公式,等比数列的通项公式及前n项和公式等基础知识.考查等差数列求和的基本方法和运算求解能力. 【解析】(I)设等比数列{a n}的公比为q.由a1=1,a3=a2+2,可得q2-q-2=0.

高中数学经典的解题技巧和方法(数列求和及综合应用)(可编辑修改word版)

高中数学经典的解题技巧和方法(数列求和及综合应用)【编者按】数列求和及综合应用是高中数学考试的必考内容,而且是这几年考试的热点跟增长点,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。因此,马博士教育网数学频道编辑部特意针对这两个部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。好了,下面就请同学们跟我们一起来探讨下数列求和及综合应用的经典解题技巧。 首先,解答数列求和及综合应用这两个方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题: 1.了解数列求和的基本方法。 2.能在具体问题情景中识别数列的等差、等比关系,并能用有关知识解决相应问题。 3.了解等差数列与一次函数、等比数列与指数函数的关系。 好了,搞清楚了数列求和及综合应用的上述内容之后,下面我们就看下针对这两个内容的具体的解题技巧。 一、可转化为等差、等比数列的求和问题 考情聚焦:1.可转化为等差或等比数列的求和问题,已经成为高考考查的重点内容之一。 2.该类问题出题背景选择面广,易与函数方程、递推数列等知识综合,在知识交汇点处命题。 3.多以解答题的形式出现,属于中、高档题目。 解题技巧:某些递推数列可转化为等差、等比数列解决,其转化途径有: 1.凑配、消项变换——如将递推公式(q、d 为常数,q≠0,≠1)。通过凑配变成 ;或消常数转化为 2.倒数变换—如将递推公式(c、d 为非零常数)取倒数得 3.对数变换——如将递推公式取对数得 4.换元变换——如将递推公式(q、d 为非零常数,q≠1,d≠1)变换成 ,令,则转化为的形式。

相关文档
最新文档