地环学院ASD地物光谱仪和激光粒度粒形分析仪论证报告-实验室管理处

地环学院ASD地物光谱仪和激光粒度粒形分析仪论证报告-实验室管理处
地环学院ASD地物光谱仪和激光粒度粒形分析仪论证报告-实验室管理处

大型精密仪器设备购置申请论证报告

仪器设备名称ASD地物光谱仪

项目名称植物水分生理相关植被指数模型模拟项目负责人梁勤欧

填表日期2016-09-10

实验室管理处制

填表说明

1.此表须在学院申购该设备前填写完成,并与申购计划一起上报有关部门。

2.单价10万元及以上仪器设备的申购均需填写此表。单价10-40万元的仪器设备由各学院自行组织校内专家论证、评议;单价40万元以上的仪器设备由各学院组织校内外专家(其中必须有校外专家)论证、评议,项目经费、设备管理等部门参与。

3.此表填写必须使用碳素墨水钢笔或计算机激光打印。

4.此表一式2份(如设备为进口设备,需提交3份)。

大型精密仪器设备购置申请论证报告

仪器设备名称激光粒度粒形分析仪

项目名称省重点高校培育项目

项目负责人朱丽东

填表日期2016.10.12

实验室管理处制

填表说明

1.此表须在学院申购该设备前填写完成,并与申购计划一起上报有关部门。

2.单价10万元及以上仪器设备的申购均需填写此表。单价10-40万元的仪器设备由各学院自行组织校内专家论证、评议;单价40万元以上的仪器设备由各学院组织校内外专家(必须有校外专家,人数不限)论证、评议,项目经费、设备管理等部门参与。如仪器为进口设备,至少要有5位校外专家参与论证并签名。

3.此表填写必须使用碳素墨水钢笔或计算机激光打印。

4.此表一式2份(如设备为进口设备,需提交3份)。

地物光谱反射率的野外测定

实验一 地物光谱反射率的野外测定 一、实验目的 1、学习地物光谱的测定方法 2、认识地物光谱反射率的规律 3、掌握绘制地物反射光谱曲线的方法 二、原理及方法 地物光谱反射率的野外测定原理主要是利用电磁辐射和各地物光谱特征进行测定(参照课本)。 实验采用垂直测量方法,计算公式为: ()()()() λρλλλρs Vs V ?= 式中, ()λρ为被测物体的反射率,()λρs 为标准板的反射率,()λV ,()λVs 分别为测量 物体和标准板的仪器测量值。 三、实验仪器 1、可见光-近红外光谱辐射计,波长范围0.4—2.5μm(有0.4—1.1μm 或1.3—2.5μm 二种仪器),仪器性能稳定,携带方便,数据提取容易。表1.1列出了目前常用的光谱仪。 2、标准参考板(白板或灰板)。 表1.1常见的光谱辐射仪

四、实验步骤 1、测量目标和条件的选择 环境:无严重大气污染,光照稳定,无卷云或浓积云,风力小于3级,避开阴影和强反射体的影响(测量者不穿白色服装)。 时间:地方时9:30—14:30。 取样:选择物体自然状态的表面作为观测面,取样面积大于地物自然表面起伏和不均匀的尺度,被测目标面要充满视场。 标准板:标准板表面与被测地物的宏观表面相平行,与观测仪器等距,并充满仪器视场,保证板面清洁。 2、记录测量目标基本信息 主要内容如下: 土壤:土类、土属、土种;地貌类型、成土母质、侵蚀状况;干湿度、粗糙度等。 植被:植物名称、所属类别、覆盖率、生长状况、叶色、高度等。 水体:水体名称、水体状况、水色、水温、透明度、泥沙含量、叶绿素含量、污染状况等。 人工目标:目标名称、内容描述、估算面积、几何特征、表面颜色、坡度、坡面等。 岩矿:岩矿名称、所属类别、植被覆盖及名称、土壤覆盖及名称、岩矿露头面积、所属构造、地质年代、风化状况等。 3、记录环境参数 主要内容如表1.2,内容由教学教师定,制成表格填写。见附表。 4、安装仪器开始测试 ①对准标准板,读取数据为Vs。 ②移开标准板对准地物,读取数据Vg。 ③重复步骤①②,测量5—9次,记录数据,计算平均值。 ④更换目标,做好信息记录,重复①—③步骤。 ⑤整理数据,根据上述公式计算反射率 ()λ ρg ,标准 ()λ ρs 为已知值。 仪器安装注意事项: 测量高度:仪器保持水平架设,离被测地物表面距离不小于1m。 几何关系:仪器轴线与天顶的倾斜角<±2°,标准面水平放置。

激光粒度仪讲解

激光粒度仪测定粒度分布组成 一、试验目的 本实验目的是测定粒子尺寸及粒度大小分布,通过试验了解激光粒度仪的工作原理及组成,学习激光粒度仪的使用及操作;掌握分布曲线所显示的粒度大小及分布情况。颗粒及颗粒行为是无机非金属材科研究的基础。因此,颗粒的表征和颗粒的测试具有同样的重要性。粉体的粒度是颗粒在空间范围所占大小的线性 尺度。粒度越小,粒度的微细程度越大。颗粒群是指含有许多颗粒的粉体或分散体系中的分散相。若颗粒进度都相等或近似相等,称为单进度或单分散的体系或颗粒群。实际颗粒所含颗粒的粒度大都有一个分散范围,常称为多进度的、多谱的或多分散的体系或颗粒群。粒度分布是表征多分散体系中颗粒大小不均一程度的。粒度分布范围越窄,其分布的分散程度就越小,集中度也就越高。 粒度分布测量中分为频率分布和累积分布。累积分布横坐标表示各粒级的粒度;纵坐标表示在某Df以下的颗粒所占总颗粒的个数或质量百分数。通过粒度 分布曲线分析所显示的粒度大小和粒度大小分布,了解材料的研磨情况,推断出材料粒度不同其性能不同。同时可以反映出材料性能不同与材料颗粒粒径的大小 有关系。 二、试验仪器 RISE—2008型激光粒度分析仪,1000ml烧杯二只,试样若干种类 三、试验原理 根据光学衍射和散射的原理,从激光器发出的激光束经显微物镜聚集,针孔滤波和准直后,变成直径约10mm的平行光束,该光束照射到待测的颗粒上,就 发生了散射,散射光经傅立叶透镜后,照射到光电探测器上的任一点都对应于某一确定的散射角,光电探测器阵列由一系列同心环带组成,每个环带是一个独立的探测器,能将投射到上面的散射光线形地转换成电压,然后送给数据采集卡, 该卡将电信号放大,再进行AID转化后送入计算机。Rise-2008型激光粒度仪依据全量程米氏散射理论,充分考虑到被测颗粒和分散介质的折射率等光学性质, 根据激光照射在颗粒上产生的散射光能量反演出颗粒群的粒度大小和粒度分布 规律。

光谱学与光谱分析解析

光谱学与光谱分析990342 微波消解一氢化物发生原子吸收光谱法测定 食物中的汞 鲁丹李海湾 摘要本文采用微波消解、氢化物发生原子吸收光谱法测定食物中的汞,研究了微波消解样品的最佳条件,并和国家标准消解方法进行了比较,结果令人满意。本方法简便、快速,重现性好,准确度高,灵敏度为0.43μg/L,检测限为0.35μg/L,相对标准偏差为2.8%,回收率为93.5%~103.0%。 主题词微波消解,氢化物发生原子吸收3 食物,汞 前言 汞是环境中重要的有毒元素[1],在自然界中,汞由于其性质活泼易于蒸发而造成对环境、生物及食品等的污染,因此,微量汞的测定直接关系到人们的健康。要准确测定样品中的汞,关键之一是样品的消解。采用干法消化法或湿法消化法消解样品,因其为间接、敞开式加热,不仅费时费电,还容易损失易挥发的汞元素,带进干扰。采用微波消解,由于微被辐射引起的内加热和吸收极化作用所达到的较高温度和压力,使消解速度大大加快,消解效率大大提高,并减少了氧化剂的用量[2]:又由于是在密闭的溶样罐中消解,避免了汞的挥发损失。 本文介绍了微波消解、氢化物发生原子吸收光谱法测定食物中汞含量的方法,研究了微波消解样品的最佳条件,并和国家标准消解方法进行了比较。本方法试剂用量少、溶样速度快、样品分解完全、待测元素无挥发损失、无污染、空白值低、灵敏、准确、精密度好、检测限低,特别适合于柔的测定。 1 实验部分 1.1基本原理 京蒸气对波长253.7nm的共振线有强烈的吸收作用。样品经酸消解使汞转化为离子状态,在酸性介质中与硼氢化钾发生强还原反应,生成气态汞原子、由载气(高纯氧气〉将汞原子导入石英管,在常温下,对录空心阴极灯发射的特征谱线产生吸收,在一定浓度范围内其吸收值与汞含量成正比,与标准系列比较定量。 1.2仪器 AA4701型原子吸收光谱仪(日本岛津),带HVG-1氢化物发生器,COMPAQ486微机工作站,user Jet 5L打印机,汞空心阴极灯; MK-1型压力自控微波溶样系统。1.3试剂 实验用水为去离子水,试剂为优级纯。 1.硝酸-重铭酸钾溶液(5+0. 05+94.5);称取0.05g重铬酸钾, 溶于水中,加入5ml硝酸,用水稀释至l00mL。 2.汞标准储备液: 准确称取0.1354g经干燥过的二氧化汞,溶于硝酸-重铬酸钾溶液中,并移入l00mL容量瓶中,以硝酸-重铬酸钾溶液稀释至刻度,摇匀。此溶液每毫升含汞1.0mg。 3.汞标准中间液:将2中液用硝酸-重铬酸钾溶液稀释,使含汞为10.0μg/mL。

激光粒度仪使用说明及注意事项

激光粒度仪使用说明及注意事项 注意:第一次使用仪器得有人全程陪同指导,能搞到多少技巧看你本事啦,同时群里有详细的原理资料。 一、样品制备 1、取半勺粉体(注意不要太少),倒入研钵(研钵底部略湿)中,再用钵杵研磨 粉体只看不见颗粒; 2、量取10ml的蒸馏水,洗涤研钵后倒入烧杯中; 3、配置六偏磷酸钠溶液:2.83g的六偏磷酸钠+45ml的水=六偏磷酸钠溶液,取 此溶液15滴滴入烧杯中; 4、将烧杯至于超声波清洗器振动腔内超声,时间:5~6min,频率:50Hz,功率 60W。 二、软件操作 1、打开软件点击“纳米测试”点击“放大倍数”,选60倍; 2、清洗仪器:自己倒蒸馏水进入反应釜(以稍微淹盖搅拌片为准)点击“半自动清洗”逐步点击“超声”、“循环泵”、“搅拌”(工作时间为30秒)点击“排水”(此时排水阀打开,等待反应釜水排完)再点击“排水”(此时排水阀关闭)以上操作连续两次,目的是为了能够把仪器清洗干净,具体视情况而定; 3、测试:自己倒蒸馏水进入反应釜(以稍微淹盖搅拌片为准)加样品水,取上清液1ml左右点击“半自动清洗”逐步点击“超声”、“循环泵”、“搅拌”(工作时间为30秒)点击“退出”点击“状态调整”,待显示正常再点击一次,连续两次(不能少,不正常则继续点击),点击“状态检测”点击“单分数测试”“人工测试” “标准测试”选“否”再分别输入“15”、“80”、“40”、“40”、“命名”、“3次”、“确定”。 4、品质因素合理范围为80左右,75~85之间,根据具体情况而定。 5、保存数据图片:“特殊功能”“图文”选择要保存的原始数据打开否命名; 6、保存数据txt格式:“特殊功能”txt 选择要保存的原始数据打开否命名; 三、注意事项 1、激光粒度仪开机须预热二十分钟才可测试; 2、软件测试时禁止其他操作,假如误操作使得软件关闭,重新打开软件; 3、软件连接不上仪器,重启计算机即可; 4、样品制备后须马上测试,不宜放置太久测试,否则结果可能不正确,团聚; 5、品质因数为零,可能是粉体的浓度太低造成的,或者是重新“超声”、“循环 泵”、“搅拌”在测量,否则是测试玻璃污染得清理; 暂时想到这些,有什么错误的地方大伙就帮着改下,好建议就加进来吧。

马尔文激光粒度仪(MS2000)操作规程-干湿法

马尔文MS2000操作规程 一.开机顺序:先开仪器主机和湿法或干法进样器,再开电脑,仪器需要预热15到30分钟。 关机顺序:先关电脑软件,再关湿法或干法进样器和仪器主机。 二.湿法测量程序: a)手指轻轻按键控制面板第一个显示中间的on/off键盘,让水循环起来。 b)在桌面上双击Mastersizer2000操作软件,进入操作软件,输入操作者姓 名,然后鼠标左键点击确定。 c)在文件那里点击打开,打开已有的文件或新建一个文件,确保记录存放 在你所需要的文件名下。 d)单击“测量”菜单中的“手动”按钮,进入测量窗口。 e)然后点击“对光”,对光好后,如果背景状态正常,就不需要换水了(如 果是第一次打开软件的话,对光按键是隐藏在测量背景下面的,只要点 击“开始”键,仪器就会对光接着测量背景的)。 f)然后进入“选项”菜单,选择合适的光学参数,在“物质”那里选择好 催化剂,或者新鲜催化剂,再进入“文档”菜单,输入样品名称,然后 “确定”退出。 g)然后单击“开始”按钮,系统开始测量背景,当背景测量完成以后并提 示“加入样品”后,开始加入样品到遮光度10%,到控制的遮光度范围 内,然后单击“开始”或按“测量样品”仪器会进行测量样品。每测量 一次,结果会按记录编号和时间存在已经指定的文件里。 h)测量结束后,抬起烧杯上方盖子到两个黑线中间,附近会自动把样品池 的水排除,然后换新鲜的水并清洗两到三次(以背景正常为准)。三.干法测量步骤:干法测量可用SOP(标准操作规程)来进行测量。 1.把样品放入干法进样器的样品盘中 2.点击测量窗口中的“启用SOP” 3.选择已经设置好的SOP 4.根据仪器运行SOP提示输入样品的编号

欧美克LS-POP激光粒度分析仪作业指导书

1. 目的: 为了规范对激光粒度分析仪的操作使用,从而确保产品粒度检验结果的正确性、真实性、可靠性,特制定本文件。 2. 内容: 2.1 工作原理 利用颗粒对光的散射现象,根据散射光能的分布推算被测颗粒的粒度分布。 2.2 技术指标 测试范围:0.2~500μm 进样方式:湿法,循环进样器和静态样品池 重复性误差:<3% 测试时间:1-2分钟 独立探测单元数:32 光源种类:氦-氖激光 功率:2.0 mW 波长:0.6328 μm 2.3工作环境 2.3.1 仪器应安装在洁净、少尘、无烟、带空调的环境中。仪器的组件中含有激光管、光学镜头、针孔和测量窗口等。这些光学部件如果受到灰尘、油脂、石油产品或其他有害物质的侵蚀,将会造成光洁度下降、腐蚀、堵塞、功率下降等损害。 2.3.2 室温要稳定,没有明显的气流,没有直射阳光,否则会引起激光功率不稳,光束准直欠佳和外界杂散光的干扰,从而造成测量的重复性下降。 2.3.3 ,仪器的工作环境要求温度在5-35℃之间,空气湿度不可高于85% ,否则光学镜头表面可能会结露,致使光线不能聚焦,时间长了还会使镜头发霉。 2.3.4 地面不能有明显的震动,否则会导致光路系统偏移,引起测量结果异常。 2.3.5 电源电压220V,50/60HZ,有三头插座且接地线良好。 2.3.6严禁将零线和地线合接。 2.3.7本仪器的接地线不可与其他地线专用。 2.4 输出项目 粒度分布表、粒度分布曲线、平均粒径、中位径、比表面积等。

2.5 相关名词解释 2.5.1 粒径:又称颗粒尺寸,用以表征颗粒的大小。除了球形颗粒这一特例外,粒径并不是真实的物理尺寸,而是会随测量原理变化的等效尺寸。在激光散射法技术中,粒径是指与待测颗粒有相同的化学性质并有最相近的光散射特性的球形颗粒(组合)的直径(分布)。 2.5.2 粒度分布:是指一个粉体样品中各种粒径的颗粒所占的比例。因为任何一个粉体样品都是由大小不同的颗粒组成的,所以用粒度分布才能确切地描述其粗细情况。 2.5.3 悬浮介质:测量粒度时需要把样品分散在液体或气体中。这里的液体或气体就称为悬浮介质。合适的悬浮介质应该是既能让样品在其中分散,又不让样品在其中分解或发生化学反应的。 2.5.4 光能分布:即散射光的能量分布,就是照射到粒度仪各光电探测器上的散射光的能量。背景光能代表被光路上的尘埃粒子或各光学镜面的疵点散射的光能分布;而样品颗粒的散射光能是被待测样品的颗粒散射的光能,其分布与样品颗粒的粒度相对应,但不等于粒度分布。 2.5.5 遮光比:指测量用的照明光束被测量的样品颗粒阻挡的部分与照明光的比值。颗粒在测量介质中的浓度越高,则遮光比越大。 2.5.6 平均粒径:是指样品中所有颗粒的粒径的平均值,可以根据粒度分布计算而得。 2.5.7粒度分布宽度:用以表征样品粒径的均匀程度。粒度分布宽,表示样品颗粒的粗细不均匀;反之,则表示均匀。 2.6 准备阶段 2.6.1系统开机 打开电源开关 测量单元(预热半小时后进行下面步骤) 循环进样器 打印机 显示器 计算机主机 2.6.2 测量单元预热 2.6.2.1如关机超过半小时再重新开机,必须预热半小时。 2.6.2.2打开测量单元电源,半小时后,激光率才能稳定。如果环境温度较低,等待时间还要延长。 2.6.2.3判断激光功率是否达到稳定的依据是,背景光能分布的零环高度是否稳定。正常

实验1——地物光谱的测试

实验1 可见光与近红外波谱测试 1.1实习概述 按照国家光谱数据库数据测试参考标准选择典型进行地物反射、发射光谱测试。根据所测的光谱曲线特征选择最佳遥感波段和最佳遥感时间。 1.2实习目的 ①掌握地物反射、发射光谱特性的基本概念,特点; ②掌握典型地物光谱的测试方法和实验数据分析处理的基本流程和方法; ③分析影响地物波谱特性测定的因素;了解地物表面不同几何状况、含水状况、 风化状况、粗糙程度对反射、发射光谱的影响;了解多种地物光谱随时间变化的特征与规律;了解入射和观测角度变化对地物光谱的影响。 ④培养学生理论联系实际及知识的综合运用能力,为后续专业课程学习创造条 件。 1.3实习任务 测量试验区的植被、水、土壤、道路的光谱特性。要求测定不同植被、水、土壤、道路的波谱特性曲线,即每类地物至少选择5个小类(或样本)。 ①清水、营养化水、污染水反射光谱、发射光谱测试与特征分析; ②不同覆盖度、不同长势植被覆盖反射光谱、发射光谱测试与特征分析; ③城乡非自然目标反射光谱、发射光谱测试与特征分析; ④土壤反射光谱、发射光谱测试与特征分析; ⑤岩石反射光谱、发射光谱测试与特征分析。 要求:上述5个实验根据具体情况必作2个,选作1个。

1.4设备(软件)及资料准备 1.4.1 实习设备及软件 测定地物反射光谱特性的仪器是可见光、近红外光谱仪。仪器由收集器、分光器、探测器和显示或记录器组成。测定地物发射光谱特性的仪器是热红外波谱仪、热红外辐射计。 1.4.2 实习前准备工作 1.4. 2.1 光谱测试仪器的标定 测量仪器在采集数据前必须通过指定的定标实验室的定标检测,检验仪器的工作性能。仪器的定标在室定标和实验场地现场定标,并在提交数据时附上相应测量仪器的定标报告。若对同一种典型地物(农作物、岩矿、水体等)的相同观测项目采用不同型号的测量仪器,则必须在观测实验前到指定的实验室或实验场进行统一校准和比对:即在相同的条件下,同时测量同一目标,进行归一化处理,分析各仪器的误差,以精度高的仪器为准,进行误差订正,并在提交数据时应附上相应测量仪器的比对报告。其中波谱仪与辐射计的性能要求为: ⑴可见光、近红外波段波谱仪 ①波谱仪读数时间漂移最大值,在0.38-1.1μm 围平均不得超过3%; ②波谱仪的读数的线性度误差不得超过1%; ③波谱仪在0.38-1.1μm 围波长绝对误差平均不得超过0.8nm。 ⑵短波红外波段波谱仪 ①在1.1-2.5μm 围波谱仪读数时间漂移最大值,平均不得超过5%; ②波谱仪读数的线性度误差不得超过3%;

马尔文激光粒度仪简介

laParticle size analysis-Laser diffraction methods (ISO-13320-1) Introduction Laser diffraction methods are nowadays widely used for particle sizing in many different applications. The success of the technique is based on the tact that it can be applied to various kinds of particulate systems, is fast and can be automated and that a variety of commercial instruments is available. Nevertheless, the proper use of the instrument and the interpretation of the results require the necessary caution. Therefore, there is a need for establishing an international standard for particle size analysis by laser diffraction methods. Its purpose is to provide a methodology for adequate quality control in particle size analysis. Historically, the laser diffraction technique started by taking only scattering at small angles into consideration and, thus, has been known by the following names: -fraunhofer diffraction; -(near-) forward light scattering; -low-angle laser light scattering (LALLS). However, the technique has been broadened to include light scattering in a wider angular range and application of the Mie theory in addition to approximating theories such as Fraunhofer and anomalous diffraction. The laser diffraction technique is based on the phenomenon that particles scatter light in all directions with an intensity pattern that is dependent on particle size. All present instruments assume a spherical shape for the particle. Figure 1 illustrates the characteristics of single particle scattering patterns: alternation of high and low intensities, with patterns that extend for smaller particles to wider angles than for larger particles[2-7,10,15 in the bibliography]. Within certain limits the scattering pattern of an ensemble of particles is identical to the sum of the individual scattering patterns of all particles present. By using an optical model to compute scattering for unit volumes of particles in selected size classes and a mathematical deconvolution procedure, a volumetric particle size distribution is calculated, the scattering pattern of which fits best with the measured pattern (see also annex A).

激光粒度仪实验报告

实验一LS230/VSM+激光粒度仪测定果汁饮料粒度 1实验目的 了解激光粒度仪的基本操作; 了解激光粒度仪测定的基本原理。 2实验原理 激光粒度分析仪的原理是基于激光的散射或衍射,颗粒的大小可直接通过散射角的大小表现出来,小颗粒对激光的散射角大,大颗粒对激光的散射角小,通过对颗粒角向散射光强的测量(不同颗粒散射的叠加),再运用矩阵反演分解角向散射光强即可获得样品的粒度分布。 激光粒度仪原理图如图1所示,来自固体激光器的一束窄光束经扩充系统扩充后,平行地照射在样品池中的被测颗粒群上,由颗粒群产生的衍射光或散射光经会聚透镜会聚后,利用光电探测器进行信号的光电转换,并通过信号放大、A/D 变换、数据采集送到计算机中,通过预先编制的优化程序,即可快速求出颗粒群的尺寸分布。 3实验试剂与仪器 实验样品:果汁饮料。 实验仪器:LS230/VSM+激光粒度仪。 4实验步骤 按照粒度仪、计算机、打印机的顺序将电源打开,并使样品台里充满蒸馏水,开泵,仪器预热10分钟。

进入LS230的操作程序,建立连接,再进行相应的参数设置: 启动Run-run cycle(运行信息) (1)选择measure offset(测量补偿),Alignment(光路校正),measure background(测量空白),loading(加样浓度),Start 1 run(开始测量(2)输入样品的基本信息,并将分析时间设为60秒,点击start(开始)。 如需要测量小于μm以下的颗粒,选择Include PIDS,并将分析时间改 为90秒后,点击start(开始) (3)泵速的设定根据样品的大小来定,一般设在50,颗粒越大,泵速越高,反之亦然。 在测量补偿,光路校正,测量空白的工作通过后,根据软件的提示,加入样品控制好浓度,Obscuration应稳定在8-12%:假如选择了PIDS,则要把PIDS稳定在40-50%,待软件出现ok提示后,点击Done(完成)。 分析结束后,排液,并加水清洗样品台,准备下一次分析。 作平行试验,保存好结果,根据要求打印报告。 退出程序,关电源,样品台里加满水,防止残余颗粒附着在镜片上。 5实验结果与讨论 实验结果 由实验结果显示: 平均粒径:μm

激光粒度仪HELOS-RODOSM

目录 引言______________________________________________________3 激光粒度仪的原理___________________________________________3 仪器介绍__________________________________________________4 1、HELOS激光系统特点:_______________________________4 2、RODOS/M干法分散系统的技术特点:___________________6 3、数据处理系统_______________________________________9 4、仪器的精度_________________________________________9 5、实际样品干法检测结果举例:__________________________10 结论:___________________________________________________15

引言 在当今国际上,通常采用基于激光衍射原理(Laser Diffraction )的激光粒度仪来对各种 物料和样品进行粒度检测,这种仪器的特点是能够在较短的时间内给出比较详细的粒度分布数据,很多行业如医药、水泥、涂料、油墨、化工、金属、陶瓷、材料、稀土等都需要用到激光粒度仪。 激光粒度仪的原理 利用光的衍射现象,即大颗粒产生的衍射角小,小颗粒产生的衍射角大,通过计算探测器上收集到的不同衍射图形的光强分布,来给出颗粒的粒度大小和粒度分布。(见下图) 相同大小颗粒的衍射光强集中在探测器的相同部位,不同大小的颗粒的衍射光强集中在探测器的不同部位,根据在多元探测器上得到的衍射光强的分布,通过颗粒大小和光强分布之间的相关公式来计算得到颗粒的粒度分布: 在实际测量中,不同形貌的颗粒所产生的衍射图形是不一样的。检测器上所得到的不同光强分布的衍射图形,已包含了真实颗粒的大小和其形状的信息: 通过探测器上收集得到的光强信号,以相应的数学公式处理得到颗粒的粒度大小和粒度分布。 颗粒大小和光强分布之间的关系:

激光粒度仪 日常维护

第七章日常维护 §7.1 一般注意事项 在日常存放和使用仪器时,以下几点都是必须做到的: 1、仪器的全套设备不论是否处于工作状态,都应放置在清洁干燥的环境中。 2、粒度仪的全套设备不用时应盖上致密的防尘布。 3、当测完一种样品,必须取下进样料斗,让仪器自动执行清洗料仓程序,确保 下一种样品的测量的可靠性。并且用毛刷清除进样料斗上的残余样品。 4、粒度仪测量单元连续开机时间不宜超过5小时。 5、空气压缩机应参照说明书定期更换机油。 6、吸尘器收到的测试废料要定期清理。或当仪器指示负压不足时,必须清理。 7、计算机关机必须按规定的步骤进行,切不可贸然关断电源,否则可能照成难 以弥补的损失。 §7.2 付里叶透镜与准直镜的清洗 当富里叶透镜和准直镜的表面沾上灰尘或其他脏物时,也会造成背景光能上升,使测量结果的可靠性下降。用户应定期检查。一般情况下每半年检查一次。如果环境比较脏,应检查得更频密一些。用户如果发现背景光能比刚交货时有明显上升,那么除了样品测量窗口脏这一原因之外,就是由上述镜子变脏引起的。这时应展开如下清洗步骤: 1、在系统关机后,拔掉测试单元上所有的信号线和电源线; 2、用§3.4.2所用方法将测试单元外罩打开; 3、手动旋下准直激光器的激光射出端部分;(准直镜在激光射出端口) 4、首先取下X旋钮,用螺丝刀将小面板上的三个沉头螺丝旋下,并将小面板取 下。用螺丝刀将固定付里叶透镜架的两个沉头螺丝,拨开压板。 5、将Y轴对中旋钮顺时针转动到底。 6、从测试单元的正面抽出已取去X轴对中旋钮的付里叶透镜架; 7、用脱脂棉蘸无水乙醇与无水乙醚的混合溶液(体积比1∶1)轻轻擦拭付里叶 透镜,直至异物被除去(注意:透镜清洗时极易划伤,清洗是应掌握尺度,不可粗暴对待); 8、将擦干净的准直镜和付里叶透镜装回测试单元。 至此,付里叶透镜和准直镜的清洗完成。

激光粒度分析结果在形貌分析中的应用讲解

实验技术与方法 激光粒度分析结果在形貌分析中的应用 胡汉祥1,2,丘克强1 (1.中南大学化学化工学院,长沙410083; 2.湖南建材高等专科学校化学化工系,衡阳421008) 摘要:激光粒度分析仪通常只用于颗粒大小与分布的测定。通过比较粉体颗粒的激光粒度分 析与扫描电镜分析的结果,发现,激光粒度分析仪所测定的粒度分布函数同时包含了一些形貌分析信息。利用这些信息可为试样进一步作SEM测定创造了条件。关键词:粒度分布;形貌;分析方法 中图分类号:TB302.1文献标识码:A文章编 号:100124012(2006)THEIMAGINGINFORMAEGRAPH OFPARTICLTION 2,,QIUKe2qiang1 (1.SchoolofEngineering,CentralSouthUniversity,Changsha410083,China; 2.DepartmentofEngineering,HunanBuildingMaterialsCollege,Hengyang421008,China) Abstract:TheLaserParticlesSizersareoftenemployedtodeterminetheaverageparticlediamet erandthe particlesizedistribution.TherelationsbetweentheparticlesdistributiongraphandSEMimage softhepowdersweredescribedinthispaper.Authorproposedthatthedoublemodesofthepartic lesdistributionmayimplythetwo2dimensionalconstructionoftheparticle.ItisusefulforSEM ditermination. Keywords:Particlesizedistribution;Pattern;Analysismethod 1引言 常用于粒度测定的方法有X射线衍射法、BET测定法、激光粒度分布仪测定法及透射电镜与扫描电镜测定法。能直观提供形貌分析信息只有透射电镜与扫描电镜

如何判断和选择激光粒度分析仪

如何判断和选择激光粒度分析仪 阅读次数:535 文章日期:2003-5-12 22:03:13 以往的粒度分析方法通常采用筛分或沉降法。常用的沉降法存在着检测速度慢(尤其对小粒子)、重复性差、对非球型粒子误差大、不适用于混合物料(即粒子比重必须一致才能较准确)、动态范围窄等缺点。随着激光衍射法的发明,粒度测量完全克服了沉降法所带来的弊端,大大减轻了劳动强度及加快了样品检测速度(从半小时缩短到了1分钟)。 激光衍射法测量粒度大小基于以下事实:即小粒子对激光的散射角大,大粒子对激光的散射角小。通过散射角的大小测量即可换算出粒子大小。其依据的光学理论为米氏理论和弗朗霍夫理论。其中弗朗霍夫理论为大颗粒米氏理论的近似,即忽略了米氏理论的虚数子集,并且假定颗粒不透明;并忽略光散射系数和吸收系数,即设定所有分散剂和分散质的光学参数均为1,因此数学处理上要简单得多,对有色物质和小粒子误差也大得多。同样,近似的米氏理论对乳化液也不适用。 另外,根据瑞利散射定律,散射光的光强与颗粒直径的六次方成正比,与散射光的光源波长的四次方成反比。这意味着颗粒直径减少10倍,散射光强减弱100万倍!而光源波长越短,散射光强度越高。 再者,由于小粒子散射角大,而主检测器面积有限,一般只能接受到最多45度角的散射光(即大于0.5微米的粒子)。那么,如何检测小粒子,如何克服小粒子光散射能量低,超出主检测器范围的问题,就成为评价激光粒度分析技术的关键。 所以,判断激光粒度分析仪的优劣,主要看其以下几个方面: 1 粒度测量范围粒度范围宽,适合的应用广。不仅要看其仪器所报出的范围,而是看超出主检测器面积的小粒子散射(〈0.5μm〉如何检测。 最好的途径是全范围直接检测,这样才能保证本底扣除的一致性。不同方法的混合测试,再用计算机拟合成一张图谱,肯定带来误差。

地物光谱仪在野外光谱测量中的使用解析

地物光谱仪在野外光谱测量中的使用(一) 论文关键词地物光谱仪;野外测量;工作规范 论文摘要在遥感技术中,为了更精确地判读多光谱图像,掌握地面上各种地物的光谱辐射特性是十分重要的。介绍FieldSpec?悖HandHeld手持便携式 光谱分析仪的测量原理方法、工作规范及注意事项,概要地说明了影响光谱测量的因素。 在遥感领域中,为了研究各种不同地物或环境在野外自然条件下的可见和近红外波段反射光谱,需要适用于野外测量的光谱仪器。对野外地物光谱进行测量,我们使用的是美国 ASD公司FieldSpec?悖HandHeld手持便携式光谱分析仪。其主要技术指标为:波长范围为 300~1100nm光谱采样间隔为1.6nm, 灵敏度线性:土1% FieldSpec?悖HandHeld手持便携式光谱分析仪可用于户外目标可见一近红外波段的光谱辐射测量。该光谱仪在户外主要利用太阳辐射作为照明光源,利用响应度定标数据,可测量并获得地物目标的光谱辐亮度;利用漫反射参考板对比测量,可获得目标的反射率光谱信息;通过对经过标定的漫反射参考板的测量,可获得地面的总照度以及直射、漫射照度光谱信息;利用特定的辅助测量机械装置,可获得地面目标的BRDF(方向反射因子)光谱信 息参数。 为了使地物光谱数据可靠和高的质量,使数据便于对比和应用,有必要提出地物光谱测试规范和测量要求。 1仪器的标准和标定 1.1光谱分辨率 实用分辨宽度对0.04~1.10卩m小于5nm 1.1~2.5卩m小于15nm。对于FieldSpec?悖HandHeld手持便携式光谱分析仪,起始波长为325nm终止波长 为1075nm波长步长为1nm则光谱分辨率取3nm 1.2线性标定 线性动态范围有3个量级,最大信号对应为0.8~1.0,太阳常数照明的白板(V 90%)峰值响应输出。线性误差小于 3%(回归误差)。 1.3光谱响应度的标定 反射率小于、等于15%(大于1%)的目标,信噪比应大于10。反射率大于15%的目标,信噪比应大于20。 2野外测定方法与工作规范 2.1目标选取 选取测量目标要具有代表性,应能真实反映被测目标的平均自然性。对于植被冠层及用物的测量应考虑目标和背景的综合效应。 2.2能见度的要求

英国马尔文激光粒度仪

英国马尔文激光粒度仪 仪器简介: Mastersizer 2000 粒度仪是马尔文仪器公司的最新激光衍射系统,技术先进,操作既简单又直观。采用模块化设计,配备一系列测量干湿样品的自动样品分散装置。采用内置的 SOP 系统进行控制,提供简便的开发和传输方法Mastersizer 系列激光粒度仪经过不断的发展,能够满足工业和学术界用户粒度测量的需要。Mastersizer 创造性地使用激光衍射技术,已成为世界上实验室粒度分析的首选产品。它可以精确、无损伤地测量从亚微米到几毫米的范围广泛的颗粒粒度,湿法和干法分散均可使用。 主要特点: 1,准确性和重复性 精度:根据马尔文质量审核标准, Dv50具有± 1% 的精度。仪器到仪器的重复性:根据马尔文质量审核标准, Dv50的重复性优于 1% RSD。 2,重复性保证 由软件驱动的 SOP 消除了用户间的差异,并且可以全面共享。所有测量参数自动嵌入结果文件,并可以通过电子邮件使收件人审阅。测量可以通过遵循同样的 SOP而重复出来。 3,广泛的测量范围 测量物质从0.02μm 到2000μm。 4,广泛的样品类型 适用于乳化液、悬浮液和干粉的测量。 5,简单易用 全自动,使用简单。消除了不同用户间的的可变性。减少对新用户的培训要求,并充分发挥熟练人员的潜力。 6,灵活性 多种样品分散装置。通过自动配置,快速地切换样品分散装置。"即插即用"盒式系统允许同时连接两个样品分散装置。 7,规范符合性 完整的 QSpec 验证文档,并符合 21 CFR 第 11 部分的规定要求。 8,界面友好的软件 由软件驱动的标准操作规程 (SOP) 消除了用户间的差异。

激光粒度分布仪操作规程

1、目的:建立BT-2003激光粒度分布仪的操作规程,使检验人员正确BT-2003激光粒度分布仪。 2、适用范围:适用于粒径的测定。 3、责任人:化验员。 4、正文: 4.1基本操作: 4.1.1开机顺序:激光粒度分布仪→自动循环分散系统→启动粒度分析软件。4.1.2关机顺序:关闭粒度分析软件→自动循环分散系统→激光粒度分布仪。4.1.3常规操作时的操作步骤。 4.1.3.1测试准备:(1)填写“文件-数据库处置”信息。(2)点击“下一步”进入“测试参数”:选择合适的物质(如碳酸钙)、介质(水)等。在选择合适的分析模式。(3)下一步进入点“常规测试”进入测试窗口。(4)单击“进水”图标把循环池加满水,然后交替的循环泵和超声波消除气泡(至少3次),再开启超声、循环。 4.1.3.2开始测试:(1)背景:启动“测量-常规测试”测量系统背景。背景高度应在0.5-5之间(1-4最佳),横坐标长度小于20格,20格以后没有信号。点击“确认”后背景将被保存下来。(2)浓度:观察遮光率,这个值一般应在10%-15%之间。(3)分散:超声分散3分钟左右。(4)测试:点击“连续”按钮开始测试并显示结果。(5)保存和打印:点击保存或打印按钮,将结果保存到数据库里,测试结束。 4.1.3.3清洗:点击“自动清洗”图标清洗循环分散系统,然后准备进行下次测试。 4.1.4自动测试时的操作步骤: 4.1.4.1SOP设置:打开“文件-数据库处置”填好内容后点击下一 步进入测试参数后点击“自动流程”设置里面的各项参数后点“确认”保存下来,点击“自动测试”进入自动测试窗口后即可以进行自动测试。 4.1.4.2自动测试:点击“自动测试”按钮,待提示请加入样品时加入适量的样品(遮光率为10%-15%),就等待结果即可。 4.2准确性标定方法: 4.2.1标定周期:通常半年标定一次,仪器经过维修后要标定

典型地物反射波谱测量与特征分析

典型地物反射波谱测量与特征分析 一、实验目的与要求 1.实验意义: (1)对光谱测量仪器的认识:ASD野外光谱分析仪FieldSpecPro是一种测量可见光到近红外波段地物波谱的有效工具,它能够快速扫描地物,光线探头在毫秒内得到地物的单一光谱。FieldSpec分光仪主要由附属手提电脑,观测仪器,手枪式把手,光线光学探头以及连接数据线组成。通过连接电脑,可实时持续显示测量光谱,使得测量者可以即时获取需要的测量数据。 (2)对课堂内容的认识:地物反射光谱是指某种物体的反射率或反射辐射能随波长变化的规律,以波长为横坐标,反射率为纵坐标所得到的曲线即为反射波谱特性曲线。影响地物波谱变化的因素:太阳位置(太阳高度角和方位角)。不同的地理位置,海拔高度不同。时间、季节的变化。地物本身差异、土壤含水量、植被病虫害。 2.实验目的: (1)地物波谱数据获取需要使用地面光谱仪,通过该实验学会地面光谱仪的原理与使用方法。 (2)通过对地物光谱曲线分析,比较相异与相似地物反射光谱特征。认识并掌握典型地物反射光谱特征。

二、实验内容与方法 1.实验内容 (1)典型地物反射波谱测量 选择典型地物类型,使用地物光谱仪,开展地物光谱测量,获得典型地物可见光近红外 波段(0.4-2.5微米)的反射光谱曲线。 地物类型:植被(草地、灌丛),水体(不同水深,有无植被),土壤(裸土、有少量植 被覆盖土壤),不透水地面(水泥地面、沥青路面、大理石地面)。 (2)地物波谱特征分析 a)标准波谱库浏览 b)波谱库创建 c)高光谱地物识别 ●从标准波谱库选择端元进行地物识别 ●自定义端元进行地物识别 2.实验方法 (1)ASD光谱仪简介 FieldSpec Pro型光谱仪是美国分析光谱设备(ASD)公司主要的野外用高光谱测量设备。整台仪器重量7.2公斤,可以获取350~2500nm 波长范围内地物的光谱曲线,探测器包括一个用于350-1000nm的512像元NMOS硅光电二极管阵列, 以及两个用于1000-2500nm的单独的热电制冷的铟-镓-砷光电探测器。便携式光谱仪是“我国典型地物标准波谱数据库”获取光谱数据的主要设备。 基本技术参数: 线性度:+/-1%

粒度分析仪简介及使用

实验7、粒度分析仪简介及使用 纯牛奶粒度分布的测定(激光粒度法) 一、实验目的: 1.掌握粒度分析仪的测定原理及操作方法。 2.测定纳米粒子的粒度尺径及分布和Zeta电位性质。 二、实验原理: 2.1 激光粒度仪介绍 激光粒度分析仪仪是利用粒子的布朗运动,根据光的散射原理测量粉颗粒大小的,是一种比较通用的粒度仪。其特点是测量的动态范围宽、测量速度快、操作方便,尤其适合测量粒度分布范围宽的粉体和液体雾滴。对粒度均匀的粉体,比如磨料微粉,要慎重选用。 激光粒度仪集成了激光技术、现代光电技术、电子技术、精密机械和计算机技术,具有测量速度快、动态范围大、操作简便、重复性好等优点,现已成为全世界最流行的粒度测试仪器。 激光粒度仪作为一种新型的粒度测试仪器,已经在其它粉体加工与应用领域得到广泛的应用。它的特点是测试速度快、重复性好、准确性好、操作简便。对提高产品质量、降低能源消耗有着重要的意义。 2.2激光粒度仪的原理 激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。如图1所示。 图1,激光束在无阻碍状态下的传播示意图 米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小;颗粒越小,产生的散射光的θ角就越大。即小角度(θ)的散射光是有大颗粒引起的;大角度(θ1)的散射光是由小颗粒引起的,如图2所示。进一步研究表明,散射光的强度代表该粒径颗粒的数量。这样,测量不同角度上的散射光的强度,就可以得到样品的粒度分布了。

12-激光粒度仪标准操作规程

图1、BT-9300Z激光粒度分析系统 样品信息:单击“测量—文档”项即进入如图2所示的文档窗口,填入实际信息。文档是用来记录样品名称、介质名称、测试人员、检测单位、样品来源、测试日期和测试时间等测试相关的原始信息,这些信息将随测试结果一同保存到数据库中, 制定时间颁发部门 审核时间版

图2、“文档”窗口 图3、测试参数 光学参数:使用Mie散射理论进行数据处理。 折射率:激光粒度分析中的基本理论——米氏散射理论需要折射率参数。

操作 图4、常规测试窗口 状态(背景状态良好)。如果背景数值和状态正常,在“背景操作区”中单击“确认”就完成背景测试;如果背景值和状态不正常,单击“背景校准”系统将进入背景校准窗口,进行调整背景;“默认”是用上一次的背景值,此功能常用于测试过程中关闭测试窗口又重新进入不能重新测试背景时;“启动”是在按确认后需要重新测试背景时使用。图5是背景数据不正常时的几种情形及原因: 将样品混合均匀,用小勺在样品袋中的不同部位不同深度各取少量多次加

遮光率调整:①遮光率太高时:应在充分循环均匀的条件下排放掉一部分悬浮液,然后加水稀释,直到遮光率合适为止。克服遮光率过高的有效方法就是“少量多次”加样。②遮光率太低时:再向循环池中加适量的样品,直到遮光率合适并从最后一次加样算起图5、几种不正常的背景状况及原因 光路偏移-需要校准 样品池或透镜脏 介质不纯净或透镜脏 图6、常规测试界面说明 遮光率指示 散射光强坐标 探测器坐标

图7、测试窗口图8、“实时”窗口单次:在图7中单击“单次”按钮,将得到一次的测试结果。 就按它! 图9、单次测试 ?连续:在图7中单击“连续”按钮,将得到多次测试结果。 就按它! 图10、连续测试 ?图形设置:在图7中单击“图形设置”按钮,将可以设置测试区中光能信号图形显 示方式:柱型图、曲线、对比信号的比例和颜色,如图11。“对比信号”是指当前信号对比上一次测试的测量信号,启用后测试区同时显示两组信号。

相关文档
最新文档