基于ICA的外辐射源雷达同频干扰抑制技术

基于ICA的外辐射源雷达同频干扰抑制技术
基于ICA的外辐射源雷达同频干扰抑制技术

基于ICA的外辐射源雷达同频干扰抑制技术

作者:游鸿, 于文震

作者单位:游鸿(南京电子技术研究所预选研究部,江苏南京 210039 第二炮兵工程学院训练部,陕西西安 710025), 于文震(南京电子技术研究所预选研究部,江苏南京 210039)

本文链接:https://www.360docs.net/doc/3f18907804.html,/Conference_7546978.aspx

外辐射源雷达概述

1 研究背景与意义 雷达面临的四大挑战: (1)隐身目标的威胁 隐身飞机、隐身导弹和隐身舰艇和无人机的出现使得雷达散射截面积成百上千倍的减小,增加了雷达发现目标的难度。 (2)低空与超低空目标的威胁 战术导弹和战略巡航导弹等低空、超低空目标的入侵也给雷达探测带来了重大挑战。(3)反辐射摧毁的威胁 反辐射导弹利用敌方雷达的电磁辐射进行制导并将其摧毁,是电子对抗中对雷达硬杀伤最有效的武器。为应对日益恶化的外部电磁环境,雷达往往需要发射更大的功率以达到同样的探测性能,从而增加了被发现甚至被摧毁的风险。 (4)强电子干扰 传统雷达一般采用收发共置的布站方式,其发射电磁波一旦被敌方发现和定位,就极容易被干扰,进而丧失整个武器战争系统的重要信息来源。 外辐射源(无源)雷达因能克服上述问题而引起人们的广泛关注。外辐射源雷达分为两大类:第一类是基于目标的红外辐射或自身发射的电磁波来对其探测,目标发射的电磁波主要来源于雷达、应答机、通信电台、导航仪、有源干扰机等通讯电子设备;第二类是利用广播信号、电视信号、手机信号、卫星导航信号等非合作照射源来探测目标。当目标静默(不发射电磁波)时,利用第一类外辐射源雷达通过电磁波来探测目标就无法实现。对于第二类外辐射源雷达,即使目标静默,也能探测到目标,因此对此类外辐射源雷达的研究成为热点。 外辐射源雷达的优势: (1)反隐身特性 隐身目标一般只大幅度减少鼻锥±30°范围之内后向散射的RCS,前向与侧向的散射还是很强。外辐射源雷达是一种双基地雷达,它可以通过接收目标前向与侧向的散射回波信号来探测隐身目标。其次,外辐射源信号多数工作在甚高频、超高频等波段,波长较长,隐身飞机表面的吸波材料对该波段电磁波的作用极差;再者,外辐射源雷达在形式上属双(多)基地雷达,可探测到隐身飞机前向和侧向的散射信号,具有空域上反隐身的特点。因此,外辐射源雷达具有探测隐身目标的能力。 (2)探测低空与超低空目标 外辐射源雷达利用各种民用或商用信号作为照射源,频率一般较低,波长较长,因此照射源能够通过衍射穿过低空障碍物探测到目标。并且广播信号、卫星导航信号等外辐射源信号多采用高塔架设,向下发射波束,能够很好地覆盖低空范围,从而具有一定的超低空探测能力。 (3)抗反辐射导弹 外辐射源雷达不发射电磁波,因此不容易被敌方的侦察系统发现。此外,第三方辐射源具有数量大、地域分布广的特点,受反辐射导弹的攻击概率低,具有很强的生存能力和抗打 (4)抗干扰 外辐射源雷达没有配备专用的发射机,而是借助于其它通信广播基站作为发射站,无法被电子侦察设备所发现,也使其免受其它电子干扰源的影响。并且没有其它主动发射雷达容易受广播、通信信号干扰问题的困扰。

电磁干扰及其抑制方法的研究

弱电工程中电磁干扰及其抑制方法的研究 (葛洲坝通信工程有限公司方宏坤 151120) 【摘要】在弱电工程应用领域,强电与弱电交叉耦合,电磁干扰(EMI)错综复杂,严重影响弱电系统的稳定性和安全性。本文详细介绍了 EMI 产生的原因、分析EMI/RFI的特性,及其传输途径和危害,利用电磁理论和工程实践,分析并提出了一些在弱电工程领域行之有效的 EMI 抑制方法。 【关键词】弱电电磁干扰(EMI)射频干扰(RFI)干扰抑制 随着计算机技术,特别是网络技术的飞速发展,IT技术在弱电工程领域的广泛应用,IT设备日益精密、复杂,使得电子干扰问题日趋严峻。它可使系统的稳定性、可靠性降低,功能失效,甚至导致系统完瘫痪和设备损坏。特别是EMI/RFI(电磁干扰/射频干扰)问题,已成为近几年弱电工程领域的焦点。 1、电磁干扰分类和特性 生活中电磁干扰无处不在,其干好错综复杂。通常我们把电磁干扰主要划分为电磁干扰(EMI)、射频干扰(RFI)和电磁脉冲(EMP)三种,根据其来源可分为外界和内部两种,严格的说所有电子运行的元件均可看作干扰源。本文中所提EMI是对周围电磁环境有较强影响的干扰;RFI则从属于EMI;EMP 是一种瞬态现象,它可由系统内部原因(电压冲击、电源中断、电感负载转换等)或外部原因(闪电等)引起,能耦合到任何导线上,如电源线和通信电缆等,而与这些导线相连的电子系统可能受到瞬时严重干扰或使系统内的电子电路永久性损坏。图 1 给出了常见 EMI/RFI 的干扰源及其频率范围。

1.1 EMI特性分析 在电子系统设计中,应从三个方面来考虑电磁干扰问题:首先是电子系统产生和发射干扰的程度;其次是电子系统在强度为 1~10 V/m、距离为 3 米的电磁场中的抗扰特性;第三是电子系统内部的干扰问题。利用干扰三要素分析与EMI相关的问题需要把握EMI的五个关键因素,这五个关键因素是频率、幅度、时间、阻抗和距离。 在EMI分析中的另一个重要参数是电缆的尺寸、导线及护套,这是因为,当EMI成为关键因素时,电缆相当于天线或干扰的传输器,必须考虑其物理长度与屏蔽问题。 1.2 RFI特性分析 无线电发射源无处不在,如无线电台、移动通信、发电机、电动机、电锤等等。所有这些电子活动都会影响电子系统的性能。无论RFI的强度和位置如何,电子系统对RFI必须有一个最低的抗扰度。在通信、无线电工程中,抗扰度定义为设备承受每单位RFI功率强度的敏感度。从“干扰源—耦合途径—接收器”的观点出发,电场强度E 是发射功率、天线增益和距离的函数,即 E=5.5· P·G d 式中P为发送功率(mW/cm2),G为天线增益,d为电路或系统距干扰源的距离(m)。 由于模拟电路一般在高增益下运行,对RF场比数字电路更为敏感,因此,必须解决μV级和mV级信号的问题;对于数字电路,由于它具有较大的信号摆动和噪声容限,所以对RF场的抑制力更强。 1.3 干扰途径 任何干扰问题可分解为干扰源、干扰接收器和干扰的耦合途径三个方面,即所谓的干扰三要素。如表 2 所示。 表2 干扰源耦合途径干扰类型接收器 共地阻抗传导干扰 辐射场到互连电缆(共模)辐射干扰 微控制器辐射场到互连电缆(差模)辐射干扰 有源器件电缆间串扰(电容效应)感应干扰微控制器 静电放电电缆间串扰(电感效应)感应干扰通信接收器 通信发射机电缆间串扰(漏电导)传导干扰有源器件 电源电缆间串扰(场耦合)辐射干扰其他电子系统扰动电源线到机箱传导干扰 雷电辐射场到机箱辐射干扰

RFS的多目标跟踪算法及其在外辐射源雷达中的应用

RFS的多目标跟踪算法及其在外辐射源雷达中的应用准确跟踪多个运动目标的轨迹是一项在多个领域中都不可或缺的关键技术。目标的非协作性导致目标数目及运动信息难以获取,传感器本身的系统噪声及监控区域内观测野值带来了观测信息的不确定性,这两大难点使得多目标跟踪成为一项十分艰难的任务。解决多目标跟踪问题的传统方法是通过采用硬关联或软关联判断观测量的来源,完成对多目标问题的拆分,进而实现对单个目标的独立跟踪。该类方法没有对多目标建立统一的理论体系,在面对目标数目未知时变的复杂场景时往往束手无策。 基于RFS的多目标跟踪算法避免了目标-量测关联,利用集合建模实现了对多目标的整体滤波处理,开辟了一种应对复杂跟踪场景的新途径。外辐射源雷达的重要职能之一就是同时实现对多个运动目标的有效跟踪,该系统的联合定位体制及输入到跟踪系统中的数据的高度不确定性,必然会大大增加多目标跟踪的难度。本文对基于RFS的多目标跟踪方法及其在外辐射源雷达背景下的应用进行了研究,主要取得了以下成果:1.在SP-PHD滤波中,根据目标状态转移密度函数分布预测粒子,导致滤波性能严重依赖目标运动模型,在运动模型不准的情况下,大量粒子偏离真实目标状态,粒子退化严重。为提高SP-PHD滤波中的粒子有效利用率,提出一种改进的P-PHD算法,该算法基于球面-径向容积数值积分准则,利用CKF产生建议密度函数,并对其进行采样得到当前时刻的粒子状态,从而使粒子 分布更接近于真实多目标后验PDF,有效地缓解了SP-PHD滤波算法中的粒子退化现象,大大减少了SP-PHD滤波中所需粒子数。 同时,CP-PHD滤波算法性能不受目标状态维数的影响,在目标状态维数较高时,其性能优于UP-PHD滤波。2.提出了基于SCKF的P-CBMe MBer滤波算法。该算法采用SCKF产生建议密度函数,从而使预测粒子分布更接近于高似然区域,达到改善粒子分布和提高跟踪精度的目的。SCKF是对CKF的一种改进算法,具有计算量小、算法性能不受目标状态维数影响等与CKF相同的优点,其滤波性能与CKF 相似,但SCKF不需要对矩阵做开方处理,从而避免了由此导致的滤波精度下降、算法发散或终止等现象的出现,仿真表明所提算法跟踪精度优于UP-CBMe MBer 滤波,与CP-CBMe MBer算法性能相当,这说明SCP-CBMe MBer滤波在提高算法稳定性的同时保证了算法的跟踪精度。

雷达杂波抑制关键技术研究

雷达杂波抑制关键技术研究 摘要:针对防空系统雷达强杂波背景下雷达弱小目标检测问题,在分析传统杂 波抑制存在的问题的基础上,梳理了杂波图CFAR检测、检测跟踪联合处理、智 能杂波抑制等关键技术,并简要分析其原理及技术途径,并对雷达杂波抑制技术 发展趋势进行分析。 关键词:强杂波;CFAR;目标检测 1 引言 基于雷达信息的探测感知是现代信息化战争中武器装备的核心关键能力,随着低空突防、隐身突防、电磁干扰手段的普遍使用,造成雷达探测感知能力的急剧下降,进而导致防空武 器系统的作战效能严重下降。雷达通过向目标辐射电磁波,然后接收从目标反射回来的电磁 波信号,再通过先进的信号处理技术,将有用目标信号从杂波和干扰中提取处理,进而完成 目标检测、位置估计、分类识别等功能。巡航导弹等低空目标可通过超低空自主飞行,利用 地球曲率限制或复杂的地理环境实施攻击,雷达对其进行探测时,面临严重的地海杂波问题,为保证武器系统对低空目标的有效作战能力,必须解决强杂波背景下低小慢目标探测问题。 2 强杂波背景下目标检测面临的问题 当前,雷达探测面临复杂的地理环境,导引头下视探测以及地基雷达低空或下视探测时 不可避免会受到地理环境的制约以及地海杂波干扰。这些背景杂波强度大,按照实际的测量 可得,幅度最强的地杂波可比系统内部的噪声大70 dB 以上。另外由于地貌变换(如山区)、地表反射特性变化、离散强杂波点等使得杂波出现严重的非均匀/非平稳现象等,给杂波抑制等来严重挑战。 雷达杂波抑制技术经多年发展,目前常用的处理方法主要包括MTI、MTD、PD、STAP及 相应的改进设计等,同时也提出了多种目标检测方法,包括CA-CFAR、GO-CFAR、SO-CFAR、OS-CFAR等。然而,由于当前雷达系统处理中环境的认知有限,杂波抑制滤波器的选择和设 计缺乏针对性,目标检测处理仍主要采取针对均匀平稳杂波的方法,多数情况下不满足实际 情况,使得杂波剩余较强,目标检测困难。 3 杂波抑制主要关键技术 3.1 杂波图CFAR检测技术 利用恒虚警检测[1]方法,对杂波背景功率的估计大致有两类,一类是空域检测技术,也 称为距离恒虚警检测技术,它将邻近参考单元处理器的输出均值作为检测门限的背景值,主 要应用在杂波分布比较均匀的雷达杂波背景中。另一类是时域检测技术,即杂波图CFAR 检 测技术[2],它是依据前面若干次天线扫描的值得到的杂波背景功率来对检测单元进行检测, 在均匀或者非均匀的雷达杂波背景中都可以稳定工作。通常,杂波强度在方位/距离上有剧烈的变化,在同一距离单元随时间变化相对平缓,空域检测中的恒虚警检测方法仅能通过减小 参考单元的个数,来减小虚警率的损失,这样却会导致虚警率无法保持恒定。因此,为了改 善目标的检测性能,必须找到更好的检测方法。杂波图CFAR 检测方法恰好可以解决这个问题,其存储在每个检测单元的估计值,是依据当前及以前的多次扫描值,然后利用一定的递 归算法进行更新的。海杂波的统计特性与地杂波和气象杂波不同,与雷达重复周期相比,海 浪的起伏比较平缓,因此海杂波在邻近的脉冲间有较强的相关性,进行脉间积累检测时,性 能并不理想。在空域中,海杂波的统计特性变化非常剧烈,而在时域中,变化相对平缓。因此,可以利用杂波图CFAR 检测方法来改善目标的检测性能。

浅谈雷达干扰与反干扰技术

浅谈雷达干扰与抗干扰技术 近年来,由于电子对抗技术的不断进步,干扰与抗干扰之间的斗争亦日趋激烈。面对日益复杂的电子干扰环境,雷达必须提高其抗干扰能力,才能在现代战争中生存,然后才能发挥其正常效能,为战局带来积极影响。 一、雷达干扰技术 1、对雷达实施干扰的目的和方法 雷达干扰的目的是使敌方雷达无法获得探测、跟踪、定位及识别目标的信息,或使有用的信息淹没在许多假目标中,以致无法提取真正的信息。 根据雷达工作原理,雷达是通过辐射电磁波在空间传播至目标,由目标散射回波被雷达接收实现探测目标。因此对雷达实施干扰可以从传播空间和目标这两处着手。具体来说就是辐射干扰信号,反射雷达信号,吸收雷达信号三个方面。 为了实现对雷达实现有效的干扰,一般需要满足下面几个条件。空间上,干扰方向必须对准雷达,使得雷达能够接收到干扰信号。频域上,干扰频率必须覆盖雷达工作频率或者和雷达工作频点相同。能量上,干扰的能量必须足够大,使得雷达接收机接收的能量大于其最小可接收功率(灵敏度)。极化方式上,干扰电磁波的极化方式应当和雷达接收天线的极化方式尽量接近,使得极化损失最小。信号形式上,干扰的信号形式应当能够对雷达接收机实施有效干扰,增加其信号处理的难度。 2、雷达干扰分类 雷达面临的复杂电子干扰可分为有意干扰和无意干扰两大类,这两者又分别包括有源和无源干扰,具体如下图所示。

有意干扰无意干扰有源干扰无源干扰有源干扰 无源干扰遮盖性干扰欺骗性干扰自然界的人为的欺骗性干扰遮盖性干扰自然界的人为的噪声调频干扰复合调频干扰噪声调相干扰随机脉冲干扰距离欺骗干扰角度欺骗干扰速度欺骗干扰等箔条走廊干扰箔条区域干扰反雷达伪装雷达诱饵宇宙干扰雷电干扰等工业干扰友邻干扰等鸟群干扰等 人工建筑干扰 地物、气象干扰 {友邻物体干扰{{{{{{{{{{{{{{ 雷达干扰 二、雷达抗干扰技术 雷达抗干扰的主要目标是在与敌方电子干扰对抗中保证己方雷达任务的顺利完成。雷达抗干扰措施可分为两大类:(1)技术抗干扰措施;(2)战术抗干扰措施。技术抗干扰措施又可分为两类:一类是使干扰不进入或少进入雷达接收机中;另一类是当干扰进入接收机后,利用目标回波和干扰的各自特性,从干扰背景中提取目标信息。这些技术措施都用于雷达的主要分系统如天线、发射机、接收机、信号处理机中。 1、与天线有关的抗干扰技术 雷达通过天线发射和接收目标信号,但同时可能接收到干扰信号,可以通过在天线上采取某些措施尽量减少干扰信号进入接收机。如提高天线增益,可提高雷达接收信号的信干比;控制天线波束的覆盖与扫描区域可以减少雷达照射干扰机;采用窄波束天线不仅可以获得高的天线增益,还能增大雷达的自卫距离、提高能量密度,还可以减少地面反射的影响,减小多径的误差,提高跟踪精度;采用低旁瓣天线可以将干扰限制在主瓣区间,还可以测定干扰机的角度信息,并能利用多站交叉定位技术,测得干扰机的距

雷达抗干扰决策技术

龙源期刊网 https://www.360docs.net/doc/3f18907804.html, 雷达抗干扰决策技术 作者:王佳 来源:《科技资讯》2011年第24期 摘要:目前,在雷达抗干扰决策研究方面,国内外公开的研究并不多,借助这有限的雷达抗干 扰决策资料,本文对雷达干扰决策算法中的一种算法——基于0-1规划的雷达干扰决策算法进行分析。 关键词:雷达抗干扰决策算法 中图分类号:TN95 文献标识码:A 文章编号:1672-3791(2011)08(c)-0006-01 1 雷达干扰决策技术的决策原则 雷达干扰决策技术的决策原则有两种,一种是一对一原则,这种原则是指在整个过程中,对每一步雷达只分配一部干扰机。在干扰资源较紧张的情况下,干扰任务分配根据一对一原则来进行,可以尽可能多的干扰敌方雷达,这种原则也具有不足之处,其它对每一部雷达的干扰不能保证其有效性。另一种是多对一原则,这种原则是指在整个过程中,每一部雷达可分配多部干扰机。干扰任务分配采用这种原则,其主要目的就是为了抓住主要矛盾,从而重点干扰敌方威胁程度大的雷达,这种原则也具有不足之处,即当我方干扰机数量不够时,或者敌方雷达数量很多时,漏干扰很容易造成。 2 雷达干扰决策算法 雷达干扰决策算法主要有基于0-1规划的雷达干扰决策算法、基于多级优化动态的雷达抗干扰决策算法、基于布尔操作法的雷达抗干扰决策算法。无论是从运算复杂度还是从算法有效性来看,第一种算法更适用于雷达抗干扰的决策算法。因此,本文主要对基于0-1规划的雷达干扰决策算法进行分析。 2.1 0-1规划模型分析 这种规划的决策变量仅取值0或1。雷达干扰决策问题可以看作是一个最优指派问题,任务分配变量定义为:

电磁干扰及常用的抑制技术

电磁干扰及常用的抑制技术 刘宇媛 哈尔滨工程大学 摘要:各种干扰是机电一体化系统和装置出现瞬时故障的主要原因。电磁兼容性设计是目前电子设备及机电 一体化系统设计时考虑的一个重要原则,它的核心是抑制电磁干扰。电磁干扰的抑制要从干扰源、传播途径、接收器三个方面着手,切断干扰耦合的途径,干扰的影响也将被消除。常用的方法有滤波、降低或消除公共阻抗、屏蔽、隔离等。 关键词:电磁干扰干扰抑制屏蔽接地 1.电磁干扰 电磁干扰(electro magnetic interference,EMI)是指系统在工作过程中出现的一些与有用信号无关的、并且对系统性能或信号传输有害的电气变化现象。构成电磁干扰必须具备三个基本条件:①存在干扰源;②有相应的传输介质;③有敏感的接收元件。只要除去其中一个条件,电磁干扰就可消除,这就是电磁抑制技术的基本出发点。 1.1 电磁干扰的分类 常见的各种电磁干扰根据干扰的现象和信号特征不同有以下分类方法。 1、按其来源分类(1) 自然干扰。自然干扰是指由于大自然现象所造成的各种电磁噪声。 (2) 人为干扰。由于电子设备和其他人工装置产生的电磁干扰。 2、按干扰功能分类 (1) 有意干扰。有意干扰是指人为了达到某种目的而有意识制造的电磁干扰信号。这是当前电子战的重要手段。 (2) 无意干扰。无意干扰是指人在无意之中所造成的干扰,如工业用电、高频及微波设备等引起的干扰等。 3、按干扰出现的规律分类 (1) 固定干扰。多为邻近电气设备固定运行时发出的干扰。 (2) 半固定干扰。偶尔使用的设备(如行车、电钻等)引起的干扰。 (3) 随机干扰。无法预计的偶发性干扰。 4、按耦合方式分类 (1) 传导耦合干扰。传导耦合是指电磁噪声的能量在电路中以电压或电流的形式,通过金属导线或其他元件(如电容器、电感器、变压器等)耦合到被干扰设备(电路)。 (2) 辐射耦合干扰。电磁辐射耦合是指电磁噪声的能量以电磁场能量的形式,通过空间辐射传播,耦合到被干扰设备(或电路)。 1.2 电磁噪声耦合途径 干扰源对电子设备的干扰是通过一定耦合形式进行的,无论是内部干扰或外部干扰,都是通过“路”(传输线路或电路)或“场”(静电场或交变电磁场)耦合到被干扰设备中的。 1、电磁噪声传导耦合 (1)直接传导耦合。电导性直接传导耦合最简单、最常见,但它也是最易被人们忽视的一种耦合方式。在考虑电磁兼容性问题时,必须考虑导线不但有电阻足,而且有电感L,漏电阻R,以及杂散电容C。在实际使用中尤其是频率比较高时,这些分布参数对信号的传输有着十分重要的影响。如何考虑分布参数的影响与传输线的长度密切相关。根据传输线的长度与传输信号频率的关系可把传输线分为长线和短线,对短信号线不必进行阻抗匹配,而对长信号线应在终端进行阻抗匹配。 (2)公共阻抗耦合。当干扰源的输出回路与被干扰电路存在一个公共阻抗时,两者之间就会产生公共阻抗耦合。干扰源的电磁噪声将会通过公共阻抗耦合到被干扰电路而产生干扰。所谓“公共阻抗”通常不是人们故意接人的阻抗,而是由公共地线和公共电源线的引线电感所

雷达抗有源干扰技术的应用现状

雷达抗有源干扰技术的应用现状 发表时间:2019-06-17T11:54:52.620Z 来源:《中国西部科技》2019年第7期作者:杨文超高金宝袁义[导读] 检测目标以及跟踪与识别目标,是现代社会应用雷达的主要目的。雷达有源干扰对上述工作的顺利开展带来极大阻碍。因此,针对复杂电磁环境下雷达抗有源干扰技术展开的探究十分必要。雷达抗有源干扰技术复杂性较强,涉及到多个环节,最明显的是雷达信号以及信息处理。在探究雷达抗有源干扰技术后可明确该项技术在体制层面、波形设计以及信号与数据处理等层面的关键点。并在客观分析其不 足的基础上制定恰当策略,对其进行逐步完善。中国人民解放军91411部队军用雷达在全新的发展背景下面临巨大挑战,加之受到雷达电子对抗技术的影响,军用雷达使用面临的问题不断增加。雷达工作电磁环境因超大规模集成电路的影响而呈现出日渐恶劣的状态。固态电路技术的不断发展以及有源干扰等都与雷达工作电磁环境之间存在直接联系。高功率、高逼真度是有源干扰的明显特征,在智能化方面也占据一定优势。这些都是影响雷达生存与使用的直接因素。应用雷达抗有源干扰技术是改善上述问题的基础与前提。 一、系统与体制层面抗干扰应用现状 1.系统层面抗有源干扰措施(1)对于大功率饱和干扰,可通过调整接收机信号动态范围防止出现饱和状态。相关的方法主要包括时间灵敏度控制、自动增益控制、快时间常数以及宽限窄接收机等技术,但该类方法将影响雷达灵敏度和线性特性。(2)通过调查可以发现,噪声调制类干扰普遍存在于跟踪雷达当中。一般需要借助装备干扰检测器的方式来检测上述干扰。在加装干扰检测器时,需要进行波门设置工作,在选定感兴趣目标后,将其恰当设置在目标两侧。雷达系统因干扰检测器的影响,而向干扰跟踪模式不断转化。波门后拖干扰是制约跟踪雷达的重要因素,现阶段已经有前沿的跟踪技术打破上述限制。保护波门技术并不是随意使用,而是在距离信息并不重要的情况下开展,这类信息虽然精确,但不在重要参数的涵盖范围内。部门会在假目标信号转移后重新开始跟踪工作,系统在此过程中发挥自身作用与价值,重置各类参数,维持对原有感兴趣目标的跟踪。真正改善雷达检测概率较差的问题,是针对系统设计层面开展抗干扰工作的基础。当干扰处于某种特定情境时可取得理想效果,例如平稳以及线性等。但该措施仍然存在一定的缺陷。干扰被大功率压制后无法使用该种措施,或者涉及到较为密集的假目标时,该类措施仍无法发挥自身作用。 2.天线极化抗干扰措施干扰机天线会利用多种方式进行极化,也正是因为这种方式,有源干扰极化状态会发生不同程度的改变,极化方式是影响有源干扰极化状态的先决条件。干扰天线极化方式与雷达天线极化方式直接存在较大差异,一般情况下不会保持在相同状态。这是将更为科学的理论提供给抗有源干扰,是极化信息发挥自身价值的直观体现。国防科技大学在天线极化抗干扰方面的研究始终处于领先水平。一般是从极化滤波器设计角度着手,开展抗有源压制干扰工作的研究。极化抗干扰会利用多种方式开始作业,最为普遍的一种方法为有源干扰,现阶段目标回波极化方式差异的应用范围也有所拓宽,作为极化抗干扰开展各项作业的有效手段。无论是在稳健性还是在可靠性方面,上述两种技术都占据一定优势,并在不断应用与实践的同时,完善自身技术体系。其应用范围不断拓宽,对空监视以及导弹制导等都可结合实际恰当应用上述两种技术,成像雷达在作业过程中也可对其进行有效使用。但上述技术在发展过程中仍然会受到一定的阻碍,最为明显的就是实施条件较窄,只能在某种特定情况下使用。因其他因素会影响到抗干扰性能,例如在全极化发射天线时,抗干扰性能的发挥就会受到破坏性影响。 二、波形设计与接收机层面抗干扰应用状态 1.发射波形管理抗干扰作为一种改进思路,分集理论可以打破雷达方在抗干扰被动的局面。脉冲分集技术不仅可以增加干扰方截获与存储雷达信号的难度,而且可以通过对发射与接收信号集的分析与处理获得干扰信息,因而被应用于雷达有源欺骗干扰抑制。设计转向慢时域、频域及其联合域分集波形设计,其结构简单且计算量相对较低。分集信号将提高雷达复杂度,影响雷达基本功能,这个缺点将严重阻碍其工程实现。 2.天线空时自适应处理抗干扰空时自适应处理技术的出现时间相当早,并且经过较长时间的使用。机载雷达的杂波抑制是最开始应用该技术的范围。科学预估有源干扰特征参数,可以说是阵列技术取得成就的直观体现。部分新体制雷达在处理特征测数时,还要接收各项数据,将多个雷达接收阵元科学设置在其中。真正改善干扰信号抑制的问题,其对消出现的可能性大幅降低。STAP类抗干扰方法通过在特定方向设置零陷,从空域滤除干扰。其缺点较为明显:由于不具有距离维的自由度,当干扰和目标同向时,将严重影响真实目标检测概率。 三、明确信号与数据处理层面抗干扰应用现状 1.信号处理层面这类方法主要利用目标回波和干扰的多域表征差异进行抗干扰。针对LFM信号,利用分数阶傅里叶变换和经验模态分解抑制压制类干扰;通过匹配滤波和小波变换对干扰进行抑制;建立映射原则,研究目标回波和干扰的典范相关分析特征向量差异性,分离出回波从而抑制干扰。通过极化滤波的方法抑制干扰,该方法能较高程度地保留目标回波信息。对于利用多域滤波与子空间分离的方法,分辨率成为影响性能的最重要因素之一。 2.信号及数据处理层面抗有源欺骗干扰现代有源欺骗干扰通常由DRFM辅助产生,通过DRFM干扰机的工作流程分析可知,干扰机对截获的雷达发射信号进行距离、多普勒调制,产生欺骗干扰。由于干扰机的频率变换环节、射频功率放大器等器件的非线性,引入的非线性失真对调制产生的信号进行二次调制,所产生的假目标带有干扰机的指纹特征,这种特征为信号层面有源欺骗干扰感知提供了依据。结语:通过深入分析雷达抗有源干扰理论可明确其关键技术与各项要点,也可通过分析国内外发展现状的方式,完善雷达在应用方面存在的多种不足。雷达抗有源干扰技术可以说是将最为坚固的物质保障提供给电子对抗领域。雷达抗有源干扰技术的发展前景与空间相当广阔,无论是在理论方面,还是在工程方面,都具备极大的发展平台。雷达工程师需要在这一过程中转变自身的研究思路与观念。从设计阶段着手,实现雷达体制设计抗干扰算法与抗干扰技术以及需求指导之间的科学转换。参考文献:

基于载波域自适应迭代滤波器的无源雷达多径杂波抑制方法

基于载波域自适应迭代滤波器的无源雷达多径杂波抑制方法 赵志欣 周新华 洪 升* 翁 涛 王玉皞 (南昌大学信息工程学院 南昌 330031) 摘 要:在无源雷达系统中,监测通道信号中存在零频和非零频多径杂波,影响目标的检测。时域自适应迭代滤波器(如LMS, NLMS, RLS 等)常被用于无源雷达杂波抑制,但这些方法只适用于零频多径杂波。该文针对零频和非零频多径杂波的问题,结合数字广播电视信号的正交频分复用波形特征,提出一种基于载波域自适应迭代滤波器的杂波抑制算法。该算法利用同一载频下含有相同多普勒频移的多径杂波的相关性原理,进行杂波抑制。仿真和实测数据处理结果证明了算法的有效性。 关键词:无源雷达;数字广播电视信号;多径杂波抑制;递归最小二次方算法中图分类号:TN958文献标识码:A 文章编号:1009-5896(2018)12-2841-07 DOI : 10.11999/JEIT180097 Multipath Clutter Rejection Approach Based on Carrier Domain Adaptive Iterative Filter in Passive Bistatic Radar ZHAO Zhixin ZHOU Xinhua HONG Sheng WENG Tao WANG Yuhao (School of Information Engineering , Nanchang University , Nanchang 330031, China ) Abstract : In passive bistatic radar systems, there exists the zero and non-zero Doppler shift multipath clutter in the surveillance channel. The multipath clutter affects the target detection. Temporal adaptive iterative filter such as Least Mean Square (LMS), Normalized Least Mean Square (NLMS) and Recursive Least Square (RLS)are often used to reject multipath clutter in passive bistatic radar, but these methods are only applicable to reject zero Doppler shift multipath clutter. To solve the problem of zero and non-zero Doppler shift multipath clutter, combined with the orthogonal frequency division multiplexing waveform features of digital broadcasting television signals, a clutter rejection algorithm is proposed based on carrier domain adaptive iterative filter. The algorithm utilizes the correlation of multipath clutter with the same Doppler shift at the same carrier frequency in subcarrier domain to reject the zero and non-zero Doppler shift multipath clutter. Simulation and experiment data processing results show the superiority of the proposed algorithm. Key words : Passive bistatic radar; Digital broadcasting television signals; Multipath clutter rejection; Recursive Least Square (RLS) algorithm 1 引言 近年来,利用空间中存在的非合作式照射源进行目标探测的外辐射源雷达(又称无源雷达)因抗电子干扰、抗超低空突防、反隐身等优势而受到关注。数字广播电视信号(数字音频广播(DAB)、数字视频广播(DVB-T)、数字地面多媒体广播(DTMB)和数字调幅广播(DRM))等数字广播在全球分布广泛, 正逐渐取代传统模拟广播,可作为无源雷达优秀的照射源,国内外很多学者都在研究以数字广播作为照射源的无源雷达[1–6]。以高频段为例,DRM 广播作为世界范围内唯一的非专利数字广播,以它作为非合作照射源的雷达系统兼具无源雷达和高频雷达的多种优点。另一个方面,其类图钉性的模糊函数特性,使DRM 广播可作为理想的照射源[7–9]。 无源雷达多采用两通道:参考通道和监测通道。监测通道信号除了接收目标回波信号外,还不可避免地存在直达波和零频多径回波(统称为零频多径杂波),且存在由于海洋等引起的非零频多径杂波,这些零频和非零频杂波会掩盖目标信息。常用的杂波抑制算法有最小均方算法(LMS)、归一化最小均方算法(NLMS)、递归最小二次方算法(RLS) 收稿日期:2018-01-24;改回日期:2018-06-01;网络出版:2018-08-14*通信作者: 洪 升 shenghong@https://www.360docs.net/doc/3f18907804.html, 基金项目:国家自然科学基金(61461030, 61661032, 61761030),江西省科技厅自然科学项目(20161BAB203079, 20161BAB212038)Foundation Items: The National Natural Science Foundation of China (61461030, 61661032, 61761030), The Natural Science Fund of Jiangxi Province (20161BAB203079, 20161BAB212038) 第40卷第12期电 子 与 信 息 学 报 Vol. 40No. 12 2018年12月Journal of Electronics & Information Technology Dec. 2018 万方数据

机载雷达杂波抑制与目标检测算法研究

机载雷达杂波抑制与目标检测算法研究 机载雷达对地、海探测时面临着复杂的杂波环境,空时自适应处理(STAP)技术通过联合空时二维自由度可以有效地抑制杂波,提高动目标检测性能。考虑到实际中机载雷达接收的回波数据通常是非均匀的,本文围绕非均匀环境下的STAP技术和自适应检测方法展开研究,并进一步讨论了STAP在MIMO雷达和稀疏阵列中的相关应用,主要工作和贡献为:(1)分析了机载雷达的海杂波建模方案机载平台由于运动导致杂波能量在空域和时域中扩散,加之海杂波的物理机理复杂,非高斯、非平稳性显著,对机载雷达下的海杂波建模是信号处理算法研究的基础。本文采用积分法对机载运动平台杂波回波进行建模,分析了杂波单元上的散射机理。从统计角度入手研究了海杂波的幅度分布特性,讨论了几种适用于不同雷达分辨率和海况的幅度分布模型,对比研究了不同参数下各自的幅度统计图。结合实测海杂波数据,介绍了几种海杂波分布参数的估计方法,比较了不同分布模型的拟合性能。(2)研究了机载雷达非均匀杂波中的STAP算法当机载雷达面临的杂波环境非均匀时,STAP所需的独立同分布样本数有限,杂波协方差矩阵(CCM)难以准确估计。对此,给出了三种小样本下的杂波协方差矩阵估计方法,在样本数较少的情况下具有较准确的估计精度。在介绍STAP基本原理的基础上,讨论了几种常用的降维STAP方法选择辅助通道的方式,但往往这种固定的通道选择法不是最优方案。为了自适应地选择降维通道,本文通过对变换域的输出信杂噪比(SCNR)进行数学分解,提出一种根据角度-多普勒相关系数大小选择辅助通道的降

维STAP方法,并将其拓展到保留全空域自由度的情况,通过理论仿真和实测数据处理验证了所提算法的有效性。(3)研究了海杂波中知识辅助的自适应检测算法STAP的最终目的是检测目标,空时自适应检测实现了杂波抑制与目标检测的结合,针对采用复合高斯模型的海杂波背景,研究了纹理分量服从双参数逆高斯分布时点目标和距离拓展目标的广义似然比检测器(GLRT),提出根据纹理分量和散斑分量的先验模型,基于知识的协方差矩阵估计方法,比较了采用不同自适应检测器的检测性能。当机载平台运动时,利用杂波协方差矩阵的低秩特性估计出杂波基的幅度参数和噪声功率,提出了仅采用待检测单元回波数据的动目标GLRT检测器,在样本数较少时相比于传统需要训练样本的GLRT检测器具有更好的检测性能。(4)研究了机载MIMO雷达的STAP处理问题针对MIMO雷达在机载平台中的应用,研究了发射频分线性调频(FDLFM)信号时距离像旁瓣的抑制技术,提出一种对阵列的综合接收信号进行谱修正并在频域加窗的旁瓣抑制方法。当 FD-MIMO雷达各发射信号间的频率间隔增大时,信号处理需要考虑宽带效应的影响,本文给出了频率分集信号的模型以及机载平台下的杂波秩估计公式,研究了杂波抑制中由频率间隔增大引起的多普勒频率偏移补偿方法,有效地改善了高速目标的检测性能。根据MIMO雷达的三维级联结构特性,提出一种自由联合各级信号数据,并在每一级处理时灵活搭配不同滤波器的信号处理框架,比较了几类典型方法的计算量和杂波抑制性能。(5)研究了非均匀阵列和脉冲的稀疏STAP算法除了MIMO雷达之外,特殊结构的稀疏阵列同样能够实现空域自由度

相关文档
最新文档