“压缩空气蓄能(CAES)+风电”国内外研究情况调研报告

“压缩空气蓄能(CAES)+风电”国内外研究情况调研报告
“压缩空气蓄能(CAES)+风电”国内外研究情况调研报告

“压缩空气蓄能(CAES)+风电”国内外研究情况调研报告

1. 国内外研究情况

1.1 国内调研情况:

(1)调研数据库说明:

国内研究情况调研涉及数据库是:中国学术期刊全文数据库(CNKI) 。该数据库文献总量达七千多万篇。文献类型包括:学术期刊、博士学位论文、优秀硕士学位论文;期刊方面包含有目前国内的8000多种期刊的相关论文。可以涵盖本专业的主要出版物。

(2)调研结果:

检索词是:“压缩空气蓄能”

检索方案是:所有题目中包含“压缩空气蓄能”的学术期刊。

检索结果:共发现35篇相关论文报道。其中8篇属于新闻简讯,例如介绍了美国、德国新建了压缩空气蓄能电站等情况,不具有调研价值;3篇发表于1990年之前,均是对CAES 这种蓄能方式作最基本的简介;还有3篇属于外国文献的翻译,不属于国内研究范围之内;剩余的21篇论文研究内容大致如下图所示:

图1 国内关于CAES学术论文的研究内容分析

(3)调研结论:

①国内关于CAES的研究起步比较晚,目前尚处于起步阶段,大部分论文都属于综述性文献。

②关于风电与CAES相结合的论文几乎没有,只有几篇文献中谈到了国外使用压缩空气蓄能解决风力发电缺陷。

③国内目前对CAES研究较为深入的是华北电力大学的研究课题组,其中关于CAES 系统的分析、计算、集成优化以及经济性分析的6篇论文里,有5篇来自我校刘文毅老师和杨勇平老师,并在CNKI的被引用量和下载量方面处于绝对优势。

(4)21篇国内CAES相关论文:

1、尹建国,傅秦生,郭晓坤,郭新生;带压缩空气储能的冷热电联产系统的分析;热能动力工程,2006-3

2、郭新生, 傅秦生, 赵知辛, 郭中纬;电热冷联产的新压缩空气蓄能系统;热能动力工程,

2005-3

3、徐新桥,杨春和,李银平;国外压气蓄能发电技术及其在湖北应用的可行性研究;岩石力学与工程学报,2006-10

4、卢洪发;空压储能发电在电力工业中的应用;电站系统工程,1995

5、刘文毅,杨勇平;微型压缩空气蓄能系统静态效益分析与计算;华北电力大学学报,2007-3

6、张世铮,钱进,王永堂;压气蓄能电站的评价指标和性能分析;工程热物理学报,1992-11

7、施慧聪,张炯;压缩空气蓄能及其他蓄能技术在美国的应用;华东电力,2009-2

8、刘文毅,杨勇平;用于分布能量系统的微型压缩空气蓄能系统性能计算与优化;工程热物理学报,2006-11

9、刘文毅,杨勇平,张昔国,辛以波;压缩空气蓄能(CAES)电站及其现状和发展趋势;山东电力技术,2007-2

10、刘文毅,杨勇平;压缩空气蓄能电站综合效益评价研究;工程热物理学报,2007-5

11、李仲奎,马芳平,刘辉;压气蓄能电站的地下工程问题及应用前景;岩石力学与工程学报,2003-7

12、周波;大型压气蓄能发电系统的开发;电工3.15专辑

13、刘文毅;压缩空气蓄能(CAES)电站热力性能仿真分析;博士论文,2008-12

14、杨花;压气蓄能过程中地下盐岩储气库稳定性研究;中国科学院研究生院(武汉岩土力学研究所),2009

15、杨罡;联合循环电站采用压缩空气蓄能可使发电功率加倍;哈尔滨理工大学,2006

16、陶芒;压缩空气蓄能电站的比较优势和市场前景;Wealth,2006-11

17、申郎;利用废弃矿井的压缩空气蓄能发电站;今日科技,2006-11

18、孔旭;压缩空气蓄能发电技术如何提高电站经济效益;Wealth

19、王亚林陈光明王勤;压缩空气蓄能系统应用于低温制冷性能分析;工程热物理学报,2008-12

20、刘文毅,杨勇平,宋之平;压缩空气蓄能系统集成及性能计算;工程热物理学报,2005-6

21、宋卫东;国外压缩空气蓄能发电概况;中国电力,1997-9

1.2 国外调研情况:

1)调研数据库说明:

本次调研主要针对三个权威数据库:

(1)Elsevier ScienceDirect数据库

(2)I EEE/IET Electronic Library (IEL)数据库

(3)美国机械工程师学会期刊数据库(ASME)

2)检索方式:

(1)Elsevier ScienceDirect数据库:

22 articles found for: TITLE-ABSTR-KEY(compressed air energy storage) and TITLE-ABSTR-KEY(wind),其中四篇相关性较低而剔除,剩余18篇

(2)IEEE/IET Electronic Library (IEL)数据库:

21 articles found for: ABSTRACT(compressed air energy storage) and ABSTRACT(wind),除去相关性较低的以及和上一个数据库重复的文章,剩余7篇(3)美国机械工程师学会期刊数据库(ASME)

10 articles found for: TITLE-ABSTR-KEY(compressed air energy storage) and TITLE-ABSTR-KEY(wind),除去相关性较低的以及和上两个数据库重复的文章,剩余5篇,此数据库无法下载全文,只能从摘要中推测文章的类型的主要研究内容。

3)调研结果:

对检索到的文献进行阅读与整理,共有30篇文献与本课题相关。对这30篇文献的系统集成方式以及研究内容进行分析,大致情形如下图所示:

图2 CAES系统集成方法分析图例

注:其他是指没有介绍具体技术,只是提到了CAES与风能的结合的综述类论文。

图3论文研究内容分析图例

4)国外“CAES+风能”论文简介:

1、Paul Denholm, RamteenSioshansi;The value of compressed air energy storage with wind in transmission- constrained electric power systems;Energy Policy ,2009

主要研究了CAES与风能相结合在电力系统强制传输中的价值。传统的燃气轮机,经过一个空气透平和一个燃气透平。主要部分是经济性分析,探讨CAES+风电对于电力传输效益和花费的影响。

2、Emily Fertig , Jay Apt;Economics of compressed air energy storage to integrate wind power: A case study in ERCOT;Energy Policy ,2011

作者对德克萨斯州一个风力发电基地和CAES电站进行实地考察分析,对CAES/wind 系统与NGCC在多项经济指标上进行对比。主要是经济性分析

3、Georges Salgi, Henrik Lund;System behaviour of compressed-air energy-storage in Denmark with a high penetration of renewable energy sources;Applied Energy ,2008 主要研究CAES与各可再生能源(主要是风电)相结合在丹麦的运行情况,没有涉及具体的CAES方法,属于经济性研究。

4、Jeffery B. Greenblatt, Samir Succar, David C. Denkenberger, Robert H. Williams, Robert H. Socolow;Baseload wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation,;Energy Policy, 2007 本文从经济性指标(主要是煤耗量)上,较为详细地对比了①风电+燃气②风电+CAES ③IGCC+CCS④传统电厂。其中CAES采用的是回热方式。属于经济性分析

5、Alfred Cavallo;Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES);Energy ,2007 主要叙述的是间歇性风力发电可以通过风电与CAES系统转化成一个混合式风能可控电

源。全文没有涉及联合循环,也未提及CAES的具体运行方式,也没有进行具体的经济性分析,属于综述类论文。

6、H. Ibrahim, R. Younès, A. Ilinca, M. Dimitrova, J. Perron;Study and design of a hybrid wind–diesel-compressed air energy storage system for remote areas;Applied Energy,2010 对于偏远地区风电+CAES+柴油机相结合的运用进行了非常详细的研究。先是对于CAES 与WDCAS(风电-柴油机混合系统)的联合运用进行建模,接着又详细对CAES+柴油机的模型进行模拟集成。CAES采用回热方式,主要部分是CAES+柴油机的研究。

7、Henrik Lund , Georges Salgi;The role of compressed air energy storage (CAES) in future sustainable energy systems;Energy Conversion and Management ,2009

主要展望了CAES在未来的可持续性能源系统中的地位,作者从丹麦的目前能源情况分析,说明了CAES在未来能源系统中可以发挥的作用,多次提及了风电与CAES相结合的广阔前景。没有具体的运行方式,没有提及CC,综述性文章。

8、Henrik Lund, Georges Salgi, Brian Elmegaard, Anders N. Andersen;Optimal operation strategies of compressed air energy storage (CAES) on electricity spot markets with fluctuating prices;Applied Thermal Engineering ,2009

作者描述了如何在价格波动较大的电力交易市场中CAES系统应有的操作策略。文中谈及风电部分较少,主要是介绍CAES电站的运营模式和投资方面内容,涉及了CAES+GT,没有联合循环部分,属于综述性论文。

9、Paul Denholm,;Improving the technical, environmental and social performance of wind energy systems using biomass-based energy storage;Renewable Energy,2006 一个结合了风电+CAES+生物质气化的系统建模,可以解决风力发电具有间歇性的问题,

还能为核电站和化石燃料电站提供电能。属于系统模拟集成类论文。生物质气化系统如下图所示:

10、D. Zafirakis, J.K. Kaldellis;Autonomous dual-mode CAES systems for maximum wind energy contribution in remote island networks;Energy Policy,2009

描述的是作者自主开发的一个双重CAES系统模型,使一个小岛上的风能发电尽量最大化,并对整个模型进行模拟集成优化,有GT,有回热方式。

11、Mir-Akbar Hessami , David R. Bowly;Economic feasibility and optimisation of an energy storage system for Portland Wind Farm (Victoria, Australia);Applied Energy,2011 主要研究的是如何利用大规模的蓄能系统去弥补目前风力发电的不足之处。通过系统的集成模拟,把目前许多蓄能方式与一家波特兰的190MW风力发电厂相结合,结果表明CAES

是最适合的蓄能系统。

12、Septimus van der Linden;Bulk energy storage potential in the USA, current developments and future prospects;Energy,2006

文章提及了多种有发展前景的蓄能方式,概述了其各自的特点、原理和发展。重点突出了CAES在未来的能源系统中利用开发的前景最好。文章同时提及了IGCC等联合循环,但没有深入分析。属于综述类文献。

13、Martin Pehnt, Michael Oeser, Derk J. Swider;Consequential environmental system analysis of expectedoffshore wind electricity production in Germany;Energy ,2008 主要对德国近海部分地区的风电产业周围的环境系统进行分析,其中提到了CAES与风力发电相结合解决间歇性问题,CAES采用的是联合循环方式。属于经济性分析类论文。

14、Drew Robb;The CAES for wind;Focus: Storage,2011

是一篇较短的学术报告,突出CAES与其他蓄能方式相比下的优势,无具体的集成方式,也没有深入分析,属于综述类文章。

15、LiWang,Dong-Jing Lee, Wei-Jen Lee, Zhe Chen;Analysis of a novel autonomous marine hybrid power generation / energy storage system with a high-voltage direct current link,;Journal of Power Sources,,2008

一个包括了CAES在内的大规模的系统模拟集成,包括了风力发电机、柴油机发电机、燃料电池、潮汐能发电机、压缩空气蓄能系统以及飞轮能量存储系统等。

16、D. Zafirakis, J.K. Kaldellis;Economic evaluation of the dual mode CAES solution for increased wind energy contribution in autonomous island networks;Energy Policy,2009 与第10篇论文类似,也是出自相同作者。以一个小岛上的风力发电站为例进行集成优化,继续探讨CAES系统对风力发电的作用。

17、Y.M. Kim, D. Favrat;Energy and exergy analysis of a micro-compressed air energy storage and air cycle heating and cooling system;Energy ,2010

对于一个小型CAES系统以及空气的制冷制热循环的能量分析和火用分析。

18、H. Ibrahim, A. Ilincaa, J. Perron;Energy storage systems—Characteristics and comparisons;Renewable and Sustainable Energy Reviews ,2008

介绍了各种储能蓄能方式,对于CAES介绍部分较少,给出了一个压缩空气蓄能电站的示意图和部分参数,属于综述性文章。

19、Paul Denholm, Gerald L. Kulcinski;Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems;Energy Conversion and Management,2004 谈及了CAES的基本原理和蓄能方式,有回热,关于CAES与可再生能源的联系部分较少,属于经济性分析类论文。

20、Dr. Edwin Lerch;STORAGE OF FLUCTUATING WIND ENERGY

文章主要讨论了如何储存风电这一波动性较大的能量的问题,从德国当地的实际数据进行分析,并提出了在大型地下洞穴中建造基于CAES原理的能量储存系统的可行性。全文没有对CAES进行深入分析,但是通过下表凸显了CAES的优势。属于集成优化。

21、Alvin O. Converse;Seasonal Energy Storage in a Renewable Energy System;Proceedings of the IEEE,2011

文章讨论了季节性的能量存储在可再生能源系统中的利用,没有突出强调CAES在其中的作用,更多的是关注可再生能源(风能和太阳能)的花费等经济性问题。

22、P. Siemes1 H.-J. Haubrich2 H. Vennegeerts2 S. Ohrem;Concepts for the improved integration of wind power into the German interconnected system;IET Renewable Power Generation,2007

针对一个德国现有的与CAES结合的风力发电站进行的集成模拟,采用的是风力汽轮机。

23、Hussein Ibrahimab, Adrian Ilincaa, Rafic Younesc, Jean Perronb, Tammam Basbousa;Study of a Hybrid Wind-Diesel System with Compressed Air Energy Storage;IEEE Canada Electrical Power Conference,2007

与第6篇比较类似,也是研究压缩空气蓄能与风能+柴油机混合系统的联系和影响。有回热,也对多个系统进行了集成模拟。

24、P. LOMBARDI, P. V ASQUEZ, Z.A. STYCZYNSKI;Optimised Autonomous Power System;power and energy society

主要研究一个CAES电站+火电站(CHP)+基于可再生能源的发电机组的经济性和对环境的影响。既有GT也有沼气透平(biogas turbine),集成模拟型论文。

25、Derk J. Swider;Compressed Air Energy Storage in an Electricity System With Significant Wind Power Generation;IEEE TRANSACTIONS ON ENERGY CONVERSION,2007

普通的air turbine膨胀,在压缩空气膨胀之前,要进行热量的回收(heat recovery),空气在进入洞之前,要在一个燃气透平中再热膨胀然后再冷却。有回热。属于经济性分析。

(以下论文从ASME库中搜索到,无法下载全文,只是从摘要部分中推断论文大体的内容)26、Michael Nakhamkin;New Compressed Air Energy Storage Concept Improves the Profitability of Existing Simple Cycle, Combined Cycle, Wind Energy, and Landfill Gas Power Plants;ASME Turbo Expo ,2004

主要讨论CAES理论对于简单循环、联合循环、风能以及沼气电站的推动作用。有CC,有回热,属于经济性研究的文章。

27、I. Arsie,V. Marano ,G. Rizzo;Energy and Economic Evaluation of a Hybrid Power Plant With Wind Turbines and Compressed Air Energy Storage;ASME 2006 Power Conference 一个压缩空气蓄能电站和风电站的混合型电站模型,用来解决普通风电站供电功率较低以及由于天气因素导致的供电间歇性问题。没有提及CAES电站的具体方式,应该属于综述性论文。

28、V. Marano;A Model of a Hybrid Power Plant With Wind Turbines and Compressed Air Energy Storage;ASME 2005 Power Conference

与第27篇论文比较类似,也是研究风力发电机和压缩空气蓄能的混合型电站,文章中的

CAES电站采用回热方式,文章将几种蓄能方式进行了对比和集成模拟。

29、Septimus van der Linden;Integrating Wind Turbine Generators (WTG's) With GT-CAES (Compressed Air Energy Storage) Stabilizes Power Delivery With the Inherent Benefits of Bulk Energy Storage;ASME 2007 International Mechanical Engineering Congress and Exposition

关于风力发电机(WTG)和带GT的压缩空气蓄能(GT-CAES)的系统集成优化。

30、William C. Leighty;Running the World on Renewables: Hydrogen Transmission Pipelines With Firming Geologic Storage;ASME 2008 Power Conference

从摘要上来看是对几种可再生能源的经济性分析。有一部分提到了CAES,没有具体的分析和集成方式。

5)调研结论

①国外研究压缩空气蓄能起步较早,目前有关CAES的论文非常多,并且与国内论文形成鲜明对比的是,国外大多数都是对于压缩空气蓄能进行深入研究分析,七成以上的文献都属于系统集成优化或是经济性分析类,而国内论文则以总数概括类为主。

②对于CAES+wind这一技术的研讨,国内部分几乎为空白,而国外近几年来相关性的文章则越来越多,说明了CAES与可再生能源相结合的课题日益得到关注、形成热点,具有良好的发展前景和开发空间。

③燃料方面,关注的CAES与煤气化联系的相关文献几乎为零,没有找到就CAES+煤气化为主要研究课题的论文,主要还是天然气,燃气轮机和联合循环占八成以上。

2、专利申请情况

2.1 国内专利情况:

(1)调研数据库说明

调研涉及数据库是:中华人民共和国国家知识产权局网站专利检索库。

(2)调研结果

检索词是:“压缩空气蓄能”

检索方案是:所有名称中包含“压缩空气蓄能”的专利。

检索结果:共有8条相关专利。其中发明专利7条,实用新型专利1条。主要成果是关于蓄能方式以及制冷或冷热电联产两个方面,比例如下图所示:

(3)专利简介

①太阳能二氧化碳动力压缩空气蓄能装置

发明人:陈尊山专利号:200620021696.7

一种太阳能二氧化碳动力压缩空气蓄能装置,涉及太阳能蓄存利用、气动机械技术领域,为以压缩空气技术解决太阳能的储存而设计。太阳能集热器1、循环泵2、机油室4闭环连接,其中充满机油,构成太阳能采集装置;储液罐9中充满液态二氧化碳,机油室4环汽化室5安装,高压喷嘴6安装在汽化室5上,喷口开向汽化室5中,汽化室5的气体喷口与叶轮机构13相连,空气压缩机22同轴安装在叶轮机构13的动力输出轴上,其排气端通过单向阀26与储气罐23相连,构成压缩空气蓄存装置;储气罐23经气动输出调速阀24及其管路与气动输出叶轮机构25相连,构成压缩空气动力输出装置。本实用新型适用于太阳能的转换蓄存,用于无阳光时驱动负载。

②利用废弃矿井的压缩空气蓄能发电站

发明人:申郎专利号:200410022747.3

本发明是一种利用废弃矿井的压缩空气蓄能发电站。其最大特点是将废弃矿井的井口进行耐压封闭后形成的洞室作为压缩空气贮存洞室,在电网用电低谷时段时,从电网上取多出社会用电量的富余电能驱动空气压缩机向洞室内充气进行蓄能,而在社会用电高峰时段时,则将压缩空气从洞室释放用于驱动气轮机带动发电机发电向用户供电,实现了对电网的峰、谷调节。发明的优点是将废弃矿井这种有害废物重新转化为了用于二次发电的有用资源,并由此节约大部分的蓄能电站建设成本。创造出非常可观的经济与社会效益。

如下图所示,其中矿井洞室1、空气压缩机组2、发电机组3,气轮机组4、充气控制阀5、发电控制阀6、变电站7、厂房8、控制台9,单向离合器10. 11、总阀门12、变电开关13, 输电线路14、压缩空气输送总管15

③压缩空气蓄能制冷装置

发明人:陈光明,王生龙,王勤,张绍志专利号:200410068004. X

本发明公开了一种压缩空气蓄能制冷装置。其压气机出口依次与冷却器、干燥过滤器、第一截止阀、高压容器,第二截止阀、调温阀、热交换器以及膨胀机相连,自动排水器进口与冷却器另一高压气体出口相连,热交换器、膨胀机以及风机置于第一回风管中,第一回风管出口以及膨胀机出口与第一出风管进口相连,膨胀机通过机械传动机构与压缩式制冷装置的制冷压缩机相连,压缩式制冷装置的蒸发器的空气进出口分别与第二回风管出口以及第二出风管进口相连,第一第二出风管出口与总出风管进口相连,控制调节设备的信号输入端与总出风管的测温元件相连,其信号输出端分别与调温阀以及风机相连。本发明结构简单,效率高,运行可靠,能将电力资源移峰填谷。

如上图所示,其中:压气机(1)、冷却器(2)、自动排水器(3)、干燥过滤器((4)、第一截止阀(5)、高压容器(6)、第二截止风7)、调温阀(8)、热交换器(9)、膨胀机(10)、压缩式制冷装置(11)、第一回风管(12)、风机(13)、第一出风管(14)、第二回风管(15)、第二出风管(16)、总出风管(17)、控制调节设备(18)

④电热冷联产的压缩空气蓄能装置及方法

发明人:郭新生,付秦生,郭中纬,赵知辛专利号:03134393.7

电热冷联产的压缩空气蓄能装置及方法,它是在压缩机与回热器间串联有储气室和空气-水热交换器,由储气室内的加热管将压缩空气携带的热能传递给热媒介质,通过空气-水热交换器的水通道向外界供热;在压缩机与冷量交换器间还联接有空气透平,从储气室流出的空气经空气-水热交换器的空气通道和回热器的热空气通道,被冷却后进入空气透平膨胀做功,带动发电机发电,将储存的空气压缩能转变为电能,同时,膨胀后的空气获得的低温通过冷量交换器的冷空气通道将冷量传递给用户,流出冷量交换器冷空气通道的空气再流经回热器的冷空气通道以冷却空气透平的进气,然后排向大气。

如上图所示,其中:压缩机1、发电机2、电动机2'、燃气透平3、燃烧室4、换热器5、储气室6、空气透平7、冷量交换器8、回热器9、空气一水热交换器10、加热管11、控制阀12,13,14

⑤一种利用在地穴中人造水压进行压缩空气蓄能的方法

发明人:王武生专利号:200810033800.8

本发明提供了一种利用在地穴中人造水压进行压缩空气蓄能的方法,将具有防水性能材料制成的防水袋放置于洞穴的内壁上,防水袋内充满水,在防水袋的出口处安装封头,封头固定在洞穴的出口处,在封头上安装水压加压管,将由具有防水隔气性能材料制成的气袋放置于水中,在气袋上安装输气管,当能量富余时(如深夜火力发电厂的电能富余、风能等),将富余能量转化为压缩机的动能将空气压缩通过输气管进入气袋里,达到蓄能的目的;当需要能源时,洞穴里面的水压将气袋里的压缩空气挤压出来释放能量。利用本发明所提供的方法进行压缩空气蓄能,能保持压缩空气的压力稳定,提高了能量的利用效率,投资少见效快。

如上图所示,其中:气袋1、输气管2、安全阀门3、洞穴4、防水袋5、水压加压管6、封头7、水8、钢丝网笼罩9、固定件10

⑥一种利用矿井产生的水压力进行压缩空气蓄能的方法

发明人:王武生专利号:200810033801 .2

本发明提供了一种利用矿井产生的水压力进行压缩空气蓄能的方法,首先对矿井进行防水处理使矿井里面充满水,矿井里面充满水后对矿井底部产生水压,将由具有防水隔气性能材料制成的气袋放置于矿井的底部的水里,所述气袋上配置输气管,空气压缩机产生的压缩空气通过输入气管进入气袋里达到蓄能的目的;当需要能源时, 由于矿井底部存在着水压,水压将气袋里的压缩空气挤压出来,气袋里的压缩空气通过输气管输出释放能量。利用本发明所提供的方法进行压缩空气蓄能,能保持压缩空气的压力稳定提供高品质的能量,提高了能量的利用效率,投资少见效快。

如下图所示,其中:气袋1、输气管2、矿井3、内壁4、防水袋5、井水6、钢丝网笼罩7、固定件8、安全阀门9

⑦一种利用矿井进行压缩空气蓄能的方法

发明人:王武生专利号:200810033803.1

本发明公开了一种利用矿井进行压缩空气蓄能的方法,将由具有隔气性能材料制成的气袋放置于矿井里,所述气袋的形状与矿井内壁的形状相同,所述气袋以相同形状对应固定在矿井内壁里;所述气袋上配置输气管,空气压缩机产生的压缩空气通过输气管进入气袋里,气袋的体积膨胀将压力传递给对应的矿井内壁,气袋主要是隔离压缩空气与矿井内壁,气袋本身并不需要承受相应的压力,从而达到蓄能的目的;当需要能源时,开启输气管的阀门,气袋里的压缩空气通过输气管输出来释放能量。利用本发明所提供的方法进行压缩空气蓄能,能保持压缩空气不会泄漏,提高了能量的利用效率,投资少见效快。

如上图所示,其中:气袋1、输气管2、矿井3、安全阀门4、固定装置5、内壁6

⑧一种利用深水压力进行压缩空气蓄能的方法

发明人:王武生专利号:200810033804.6

本发明公开了一种利用深水压力进行压缩空气蓄能的方法,将由具有防水隔气性能材料制成的气袋安装放置于深水里,气袋上配置输气管和安全阀门,当风力、电力或其它能量带动空气压缩机运转,空气压缩机产生的压缩空气通过输气管进入气袋里, 压缩空气贮存在气袋里,达到将其它能量如电能等以压缩空气的形式蓄能的目的;当需要能源时,打开输气管的阀门,由于深水里存在着水压,水压将气袋里的压缩空气挤压出来,气袋里的压缩空气通过输气管输出来释放能量。利用本发明所提供的方法进行压缩空气蓄能,能保持压缩空气的压力稳

定,提高了能量的利用效率,投资少见效快。

如上图所示,其中:气袋1、输气管2、安全阀门3、水(如海、井等)4、固定件5、底部6

“压缩空气蓄能(CAES) 风电”国内外研究情况调研报告

“压缩空气蓄能(CAES)+风电”国内外研究情况调研报告1. 国内外研究情况 1.1 国内调研情况: (1)调研数据库说明: 国内研究情况调研涉及数据库是:中国学术期刊全文数据库(CNKI) 。该数据库文献总量达七千多万篇。文献类型包括:学术期刊、博士学位论文、优秀硕士学位论文;期刊方面包含有目前国内的8000多种期刊的相关论文。可以涵盖本专业的主要出版物。 (2)调研结果: 检索词是:“压缩空气蓄能” 检索方案是:所有题目中包含“压缩空气蓄能”的学术期刊。 检索结果:共发现35篇相关论文报道。其中8篇属于新闻简讯,例如介绍了美国、德国新建了压缩空气蓄能电站等情况,不具有调研价值;3篇发表于1990年之前,均是对CAES 这种蓄能方式作最基本的简介;还有3篇属于外国文献的翻译,不属于国内研究范围之内;剩余的21篇论文研究内容大致如下图所示: 图1 国内关于CAES学术论文的研究内容分析 (3)调研结论: ①国内关于CAES的研究起步比较晚,目前尚处于起步阶段,大部分论文都属于综述性文献。 ②关于风电与CAES相结合的论文几乎没有,只有几篇文献中谈到了国外使用压缩空气蓄能解决风力发电缺陷。 ③国内目前对CAES研究较为深入的是华北电力大学的研究课题组,其中关于CAES 系统的分析、计算、集成优化以及经济性分析的6篇论文里,有5篇来自我校刘文毅老师和杨勇平老师,并在CNKI的被引用量和下载量方面处于绝对优势。 (4)21篇国内CAES相关论文: 1、尹建国,傅秦生,郭晓坤,郭新生;带压缩空气储能的冷热电联产系统的分析;热能动力工程,2006-3 2、郭新生, 傅秦生, 赵知辛, 郭中纬;电热冷联产的新压缩空气蓄能系统;热能动力工程,2005-3

风电行业分析报告

风电行业分析报告 1、引言 开发新能源和可再生清洁能源是二十一世纪世界经济发展中最具决定性影响的五项技术领域之一,风能发电是最洁净、污染最少的可再生能源,充分开发利用风能是世界各国政府可持续发展的能源战略决策。而目前石油价格的持续攀升和世界各国对环境保护的日益重视,进一步促进了风能的快速发展。 2、风能发电产业发展现状 2.1 国际风能发电产业现状 2006年,全球风电装机达到了74223mw,较上年增长32%,这也是继2005年增长41%之后风电行业又一个高速增长的年份。根据相关资料的测算,2006年新增风电装机的市场规模达到了230亿美元,而这一规模还在不断扩大,成为一个不可忽视的行业。 目前情况国际风能发电发展状况是欧洲仍居榜首、亚洲增长迅速。德国、西班牙和美国的累计装机分别列全球前三,其中德国占全球累计装机的27.8%,西班牙和美国各占15.6%;从增量看,美国为全球第一,2006年新装机2454mw,占全球新增装机的16.1%,德国、印度和西班牙分别列第二至第四,中国以1347mw居第五。 根据主要风力发展国的规划,未来风电仍有很大的发展空间。以欧洲为例,计划到2020年实现可再生能源占总发电量的20%,其中风电达到12%;目前主要国家的风电覆盖率均处于较低的水平,全球平均风电占总发电量的比例仅为1.19%,要实现12%的目标,还需要增长近十倍。主要大国中风电发展较好的德国在2006年底风力发电占总发电量的4.34%,西

班牙为7.78%,属于欧洲较高水平;而美国的风电覆盖率仅有0.73%;总体来看,风电市场的增长相当迅速,主要增长市场将在美国、中国、印度以及欧洲部分国家。 2.1.1欧洲风电概况 欧洲长期维持全球第一大风电市场的地位,根据欧洲风能协会的数据,2006年全年新增装机7708.4mw,较上年增长19%,总装机达到48062mw,其中欧盟国家达到40512mw,风电2006年发电量达到100twh,相当于欧洲当年总发电量的3.3%;欧洲最主要的风电参与国家是德国和西班牙,这两个国家装机占欧洲全部的叁分之二;按照2006年底装机规模,德国占欧洲装机的42.48%,接近一半;西班牙占23.93%,接近四分之一。 各国为鼓励发展风电出台了各种措施,但总的来说,基本可以归为三大类:补贴电价、配额要求和税收优惠。欧盟25国中有18个国家采取补贴电价这类政策,包括了发展最快的三个国家德国GR、丹麦DK和西班牙ES,法国FR、葡萄牙PT也采用此种政策,从实际情况看补贴电价效果最明显;采用配额限制措施的有五个国家,占国家总数的五分之一,包括了英国和意大利,这两个国家2006年累计装机分别列欧洲第四和第五;税收优惠采用的国家也有五个,与配额制的相同,但这五个国家风电发展规模都很小,这一政策效果不佳;爱尔兰是个特例,并无鼓励风电发展的具体政策出台。 总体来看,补贴电价政策效果最好,强制完成配额的做法效果就要差一些,而欧洲的情况看,仅仅采取税收优惠是难以启动风电市场的;原因也很简单,补贴电价下,企业从事风电有盈利,具备内在的发展动力;配额值属于强制完成,企业必须完成配额义务,保证一定比例的装机规模,但由于现阶段风电电价较火电仍高,若无补贴统一上网则企业要承担部分亏损,因此仅仅完成配额而没有进一步发展的动力。

生产运营分析报告风电

2017年07月生产运营分析报告 一、本月主要生产指标完成情况 1、发电量: 当期风电计划为万kW·h,当期风电实际完成万kW·h,完成当期计划的%,环比减少%,同比增加%,完成年计划的% 。当期光伏计划为27万kW·h,当期光伏实际完成万kW·h,完成当期计划的%,环比减少%,完成年计划的%。 2、上网电量: 当期风电计划万kW·h,当期风电实际完成为万kW·h,完成当期计划的%,环比减少% ,同比增长%,完成年计划%。当期光伏计划万kW·h,当期光伏实际完成万kW·h,完成当期计划的%,环比减少%,完成年计划的%。 本月实际完成发电量与当期计划发电量差值原因: 风电方面: 1)拉马风电场本期可研风速为s,同期风速为s,上期平均风速为s,本期实际测得风速为s。鲁南风电场本期可研风速为6m/s,同期风速为s,上期平均风速为s,而本期实际测得风速为s。鲁北风电场本期可研风速为s, ,

上期平均风速为s,而本期实际测得风速为s。大面山一期可研平均风速s,上期平均风速 m/s 实际平均风速s上。大面山二期可研平均风速 m/s,上期平均风速s,实际平均风速s 。实际风速小于可研风速较多,。根据平均风速分析,本期拉马、鲁北、大面山一期、大面山二期风电场风速比同期风速和可研风速以及上期风速都低,加之二期投运时间较计划时间有所滞后,所以导致风电公司本期都没有完成发电任务。 2)拉马、鲁南66箱变过电压保护器改造,存在一定损失电量。 3)拉马、鲁南发电机批量更换,产生较多机组故障损失电量。 4)拉马风机存在叶片螺栓批次断裂和发电机定子损坏的情况。这也是造成本期未完成发电任务的原因之一。 光伏方面: 1)进入夏季光照强度增加,所以本期光伏超额完成任务。 二、本月生产运营情况 1.生产运营情况 1)电力供需及电力交易情况 目前四川电力系统开始模拟按照水、火电站的考核方式对风电、光伏进行“两个细则的考核”,但是目前没有限制风电、光伏的负荷,根据来风、光照情况进行发电,且本月没有交易电量。

2018年风电与天然气行业分析报告

2018年风电与天然气行业分析报告

目录索引 一、风电:风电发展稳中向好,度电成本改善空间大 (5) (一)行情回顾:风电运营前三季度表现较好 (5) (二)存量资产消纳改善效果显著,利用小时数同比大幅提升 (6) 1. 弃风限电持续改善,利用小时数同比大幅提升 (6) 2. 可再生能源电力配额政制2019年正式实行 (8) (三)18年新增装机回暖,未来两年增速平稳 (9) 1. 全国一至十月风电新增并网容量增加 (9) 2. 风电项目竞争配置政策确立补贴退坡和电价下调预期,抑制新增装机 (10) 3. 装机重回三北仍有风险,弃风消纳尚未根本解决 (11) (四)港股风电公司财务综述及重点标的推荐 (12) 1. 财务综述:风电运营商盈利增长较快、补贴欠款回收加速 (12) 2. 重点标的推荐:新天绿色能源(0956.HK)、大唐新能源(1798.HK)、龙源电力 (0916.HK) 、华能新能源(0958.HK) (13) (五)风险提示 (15) 二、天然气:行业中长期景气度较高,今年冬季供需偏紧 (15) (一)行情回顾 (15) (二)打赢蓝天保卫战决心坚定,天然气消费较快增长 (16) (三)国内天然气产量增长平缓,进口LNG快速攀升 (18) (四)产供储销体系建设提速,预计今年冬季供需偏紧 (20) (五)推荐标的:中国燃气(0384.HK)、新奥能源(2688.HK)、天伦燃气 (1600.HK) (23) (六)风险提示 (24) 三、环保:危废处置景气度高,政策利好农村污染治理 (25) (一)行情回顾 (25) (三)水务:关注黑臭水体治理,明年市场融资环境有望放松 (28) 1. 农村污水处理率低,水价仍有上涨空间 (28) 2. 黑臭水体治理市场需求旺盛,发展潜力较大 (30) 3. PPP规范化发展,预计明年融资环境有望放松 (32) (四)推荐标的:海螺创业(0586.HK)、光大绿色环保(1257.HKK)、北控水务(0371.HK) (34) (五)风险提示 (36)

压缩空气储能

压缩空气储能:高效率储能技术 2014-1-13 压缩空气储能电站(CAES)是一种用来调峰的燃气轮机发电厂,主要利用电网负荷低谷时的剩余电力压缩空气,并将其储藏在典型压力7.5 MPa 的高压密封设施内,在用电高峰释放出来驱动燃气轮机发电。在燃气轮机发电过程中,燃料的2/3 用于空气压缩,其燃料消耗可以减少1/3,所消耗的燃气要比常规燃气轮机少40%,同时可以降低投资费用、减少排放。 值得注意的是,压缩空气储能电站建设投资和发电成本均低于抽水储能电站,但其能量密度低,并受岩层等地形条件的限制。不过,压缩空气储能电站的优势也非常明显,其储气库漏气开裂可能性极小,安全系数高,寿命长,可以冷启动、黑启动,响应速度快,主要用于峰谷电能回收调节、平衡负荷、频率调制、分布式储能和发电系统备用。 尽管这种“压缩气体能源储备”的概念已经提出了30多年,但目前全世界仅有德国、美国两家压缩空气发电厂。 这两家发电厂分别创建于19世纪中后期和19世纪末。目前,两家压缩空气发电厂都运营正常。同时,美国艾奥瓦州正在建设全球第三家压缩空气发电厂,负责“艾奥瓦储备能源公园”(ISEP)项目设计工作的美国圣地亚国家实验室已经得到了来自美国能源部的资金支持,预计将于2012年投入运营。 据了解,艾奥瓦储备能源公园是一个压缩空气发电厂,该发电厂将充分利用艾奥瓦州丰富的风力资源作为发电厂的运行能源,存储容量可用于50小时发电。一旦该项目开始运营,其每年发电量将占艾奥瓦州用电量的20%左右,每年可以为艾奥瓦州节省大约500万美元的能源成本。 不过,建设压缩空气发电厂并非易事。建设的首要任务之一,就是必须找到一个支持空气压缩存储的地质空间,但这需要占用大面积土地,因此,选址也成为制约其发展的决定性因素之一。 尽管在压缩空气储能技术准备相关设施的时候产生很多费用,但是相关科学家还是认为这种形式的储存模式比制造电池便宜得多。另外,它的高容量和高效率已成为其区别于其他储能方式的决定性优势。

液态空气储能发电的原理优缺点发展环境

3、液态空气储能发电的原理、优缺点、发展环境 (1)原理: 液态空气储能系统的原理是利用价格低廉的谷电,CryoEnergy System吸收环境中的空气,然后将其冷却直至其成为液体,然后存储与低温达-196摄氏度的储藏罐中。用电高峰时再从罐中释放液态空气并升压升温,推动汽轮机发电。从而实现谷电峰用。 具体操作步骤: 1)液化过程。电网夜间富余的电能驱动液化空气装置,使环境中的空气先洁净再压缩,然后通入到换热器中与气液分离器返回的冷空气和蓄冷装置中的冷空气进行换热冷却。被冷却的冷空气依次通过膨胀机和节流阀,降温降压,一部分被冷凝为液体,一部分仍为气体,最后在气液分离器中被分离。从气液分离器上端口出来的冷空气返回到换热器中冷却被压缩机压缩后的空气。 2)能量存储过程。经气液分离器分离后的液态空气从气液分离器下端口流到液化空气储罐中储存,液化过程中消耗的大部分电能被转化成了液态空气的冷能。 3)电力恢复过程。低温储罐中液态空气被引出,经低温泵加压后送入气化换热器中吸热气化。被气化的空气再通入热交换器中,被进一步加热升温、升压。从热交换器中出来的高压气体通到透平中做功,透平与发电机相连,带动发电机旋转发电。 从透平里出来的高温空气依次经过热交换器和气化换热器被冷却,然后流到蓄冷装置中与换热器里被压缩机压缩后的空气换热。因为液态空气的沸点比较低,所以在电力恢复过程中供应给热交换器里低温空气的热量可以是来自于液化过程中的废热或外部环境的热量。 把这个设备建在工厂或电站附近,利用里面的废热加热液态空气,效率可以达到70%。

(2)优缺点:液化空气储能技术的存储容量可达到10~200 MW,相当于大型压缩空气储能容量的一半。可液化空气储能技术的比能为214 Wh/kg,相当于大型压缩空气储能技术的四倍。液化空气储能技术储能的持续时间可达12 h以上,使用寿命为25年,相对较高。液化空气储能的效率为55%~90%,其效率值与整个系统能量能否充分利用息息相关。为了提高液化空气储能系统的效率,就需要选择合适的液化空气储能装置,尽量减少装置运转过程中不必要的能量损失。对于液化过程中产生的废热可以用于电力恢复过程中加热液态空气,使能量得到充分利用,提高了整个循环的效率。对于液化过程用于加热液态空气的热量也可以是环境中的热量和工业中产生的废热。同理,还可以将液态空气气化产生的冷量应用于储能过程中对气态的空气进行预冷,同样也可以提高液化空气储能系统的效率。 (3)我国的发展现状:由中国科学院理化技术研究所、清华大学及中国电力科学研究院共同研制的“500kW非补燃压缩空气储能发电示范系统”在安徽芜湖成功实现励磁发电,完成100kW发电的阶段目标。此次系统发电成功,标志着理化所在大规模储能技术领域的一项重要突破,对推进我国储能产业的发展具有重要意义。 压缩空气储能系统具有储能容量大、电能转换效率高、安全可靠、环境友好等特性,被视为继抽水蓄能电站之后又一种极具潜力的大规模储能系统,其在智能电网建设、大规模可再生能源接入、电网负荷调节以及保障电力系统安全性等方面,具有极大的应用前景。但是目前常规压缩空气储能系统采用燃料补燃的形式,存在系统储能效率偏低、补燃产生排放污染等问题,阻碍了技术的推广应用。 为获得高效、环保的压缩空气储能新流程,中科院理化所、清华大学和中国电力科学研究院在国家电网“压缩空气储能发电关键技术及工程实用方案研究”科技项目的支持下,组建了以理化所热力过程与节能技术研究中心主任王俊杰研究员为首的研究团队,对压缩空气储能系统所涉及的众多研究领域基础问题、关键设备和关键技术进行了系统和深入的研究,创新性地提出了基于双作用和自卸荷的非稳态压缩、热量梯级存储回馈、多级再热膨胀等流程方案。该项目的顺利实施,为发展更大规模绿色化储能系统奠定了坚实的技术基础。

中国风力发电调研报告

—1— 我国风电发展情况调研报告 风电发展情况调研组 风能作为一种清洁的可再生能源,党中央、国务院对其开发利用非常重视,有关部门出台了一系列的方针政策,对增加我国能源供应、调整能源结构和保护生态环境起到了积极作用,促进了可再生能源的发展。 华北、西北、东北三个地区是我国陆上风能资源最丰富地区,江苏是海上风能资源最丰富地区之一,这四个地区风电发展具有一定代表性。为深入研究大规模风电接入系统对电网稳定运行的影响,制定完善相应的标准和管理规范,电监会组织并邀请中国科学院、中国电力科学研究院风电专家组成调研组,先后对东北三省、内蒙古、甘肃、新疆、江苏等七省(区)的风电场建设、运行情况进行了调研。调研组与地方政府有关部门、电网公司、风电企业进行了座谈,并实地考察了相关电力调度中心和部分风电场。 在此次调研的基础上,形成此报告,供参考。一、风电建设与运行情况 我国风能资源丰富,根据全国风能资源普查最新成果统计,初步探明陆域离地10米高度风能资源总储量为43.5亿千瓦, 其 https://www.360docs.net/doc/3718924094.html,

—2— 中技术可开发量约为3亿千瓦,如果推算到风电机组轮毂高度,风能的技术可开发量约为6亿千瓦1,主要分布在我国西北地区大部、华北北部、东北北部、青藏高原腹地以及沿海地区(见图1) 。 图1全国风能资源区划图(高度为50米) (一)风电装机容量 2006年《可再生能源法》颁布后,我国风电取得跨越式发展。截至2008年底,全国风电装机容量为894万千瓦2,占全国 1引自国家能源局《2008 中国风电发展报告》 2引自中国电力企业联合会《全国电力工业统计快报》(2008年)。该数据和有关部门统计的2008年底风电吊装容量1217万千瓦存在差别,主要因为部分风电场机组未通过240小时试运行或接入工程滞后尚未进入商业化运行。

2018年海上风电行业深度研究报告

2018年海上风电行业深度研究报告

目录 1.风电未来空间广阔,机组大功率化是趋势 (4) 1.1全球风电投资和装机稳定增长,未来前景广阔 (5) 1.2风电装机成本不断下降,机组大功率化成趋势 (6) 1.3中国风电装机居世界首位,国内风电占比稳步提升 (8) 2.陆上风电存量消纳仍是主要目标 (9) 2.1全国电力需求稳定增长 (9) 2.2弃风率有所降低,存量消纳仍是主要工作 (9) 2.2.1国家电网多举措促进消纳,弃风率有所改善 (9) 2.2.2预计能源局四季度将核准多条特高压工程以促进消纳 (11) 2.3新增装机规模空间有限,风电建设向中东南部迁移 (12) 2.4配额制促进消纳,竞价政策加速风电平价上网 (14) 2.5陆上风电消纳为主,分散式风电尚在布局 (14) 3.海上风电有望迎来快速发展期 (15) 4.投资建议 (20) 4.1金风科技(002202) (20) 4.2天顺风能(002531) (21) 4.3东方电缆(603606) (21)

图目录 图1:风电行业产业链 (4) 图2:全球清洁能源装机和发电量占比(包含水电) (5) 图3:全球清洁能源和风电投资额(十亿美元)及风电投资占比 (5) 图4:全球风电装机容量(GW)预测及同比增速(右轴) (5) 图5:2010-2017年全球风电装机成本和LCOE变化趋势 (6) 图6:1991-2017年中国新增和累计装机的风电机组平均功率 (6) 图7:2008-2017年全国不同单机容量风电机组新增装机占比 (7) 图8:2011年以来新增风电机组平均风轮直径(m)及增速 (7) 图9:2017年新增风电机组轮毂高度分布 (7) 图10:2017年不同国家新增风电装机份额 (8) 图11:2017年不同国家累计风电装机份额 (8) 图12:风力发电设备容量及占全部发电设备容量的比重 (8) 图13:风力发电量及占全部发电量的比重 (8) 图14:全社会用电量变化趋势 (9) 图15:近年来中国弃风电量(亿千瓦时)及弃风率情况 (10) 图16:国家电网近年来风电并网容量(GW) (10) 图17:国家电网近年来特高压线路长度(万公里) (10) 图18:2010-2017年全国风电新增和累计装机容量(GW) (12) 图19:2017年与2020年底累计风电装机占比变化趋势 (13) 图20:海上风电厂主要组成部分 (16) 图21:截至2017年底我国海上风电制造企业累计装机容量(MW) (17) 图22:截至2017年底我国海上风电开发企业累计装机容量(MW) (18) 图23:截至2017年底我国海上风电不同单机容量机组累计装机容量(万千瓦) (18) 图24:截至2017年底我国沿海各省区海上风电累计装机容量(万千瓦) (19) 表目录 表1:双馈齿轮箱技术和直驱永磁技术比较 (4) 表2:国家电网2017年消纳新能源举措(不完全统计) (11) 表3:2018年以来风电行业相关政策 (11) 表4:拟核准的三条和清洁能源输送相关的特高压工程 (12) 表5:主要政策中关于风电建设规模的表述 (13) 表6:分散式风电发展低于预期的主要原因(不完全统计) (15) 表7:我国海上风资源分类 (16) 表8:2017年我国海上风电制造企业新增装机容量 (17) 表9:2018年以来核准和开工的海上风电项目(不完全统计) (19) 表10:海陆丰革命老区振兴发展近期重大项目之海上风电项目 (20)

2018年风电行业市场调研分析报告

2018年风电行业市场调研分析报告

目录 第一节以史为鉴,探寻风电增长与衰退之因 (4) 一、2003~2010年:政策推动,快速成长 (4) 二、2011~2012年:消纳问题突出,弃风致连续下滑 (5) 三、2013~2015年:弃风改善+抢装促增长 (5) 四、2016~2017年:弃风率高位,监管趋严致调整 (6) 五、小结:弃风成影响风电装机的核心因素 (6) 第二节拐点显现,弃风率步入下行通道 (8) 一、三管齐下,对症下药,剑指弃风 (8) 1、火电灵活改造配套辅助服务市场机制,三北地区调峰能力提升 (8) 2、特高压输电通道加快建设,2017年批量投运 (10) 3、风电供暖等措施促进本地消纳 (11) 二、加强监管,严控高弃风地区供给 (11) 三、弃风改善迹象明显,2017年现弃风率拐点 (13) 第三节拐点将至,新增装机将景气向上 (16) 一、红色预警六省新增装机有望探底回升 (16) 二、红六省以外地区增长势头强劲 (18) 1、中东部和南方地区低风速风电开发成新蓝海 (18) 2、新增装机、核准势头强劲,储备项目充足 (22) 三、海上风电方兴未艾 (24) 第四节风电行业步入可持续健康发展轨道 (26) 一、绿证开始实施,缓解补贴依赖 (26) 二、电价下调无碍高投资收益,电力需求增速回暖 (28) 第五节投资分析 (31)

图表目录 图表1:2003-2016年国内风电新增装机情况 (4) 图表2:历年弃风率与行业新增装机增速对比 (6) 图表3:2016年各省风电发电量占全省用电需求的比重,中东部比重小 (13) 图表4:2017年上半年现弃风率拐点 (13) 图表5:红六省2017上半年弃风率同比明显改善 (18) 图表6:国内四类风电资源区分布 (18) 图表7:我国中东部、南方地区与德国单位面积风电装机对比(千瓦/平方公里) (20) 图表8:中东部及南方地区19省2016年风电发电利用小时数 (21) 图表9:2015年风电项目平均单位千瓦造价(元/千瓦) (22) 图表10:红六省以外其他省份陆上新增装机持续增长 (22) 图表11:红六省以外地区新增核准情况 (23) 图表12:截至2016年底非限电区域已核准在建规模 (23) 图表13:部分地区披露的2017年风电核准计划达32GW(单位:万千瓦) (24) 图表14:2014年以来国内海上风电新增装机持续高增长 (25) 图表15:中国绿证每日成交平均价格 (26) 图表16:我国2016年各类电源发电量占比 (27) 图表17:风电标杆电价下调机制 (28) 图表18:2016年以来国内用电需求增速拐点向上 (29) 图表19:2017年上半年新增火电装机同比减少1290万千瓦 (29) 表格目录 表格1:特许权项目推动2003~2010年国内风电行业高增长 (5) 表格2:能源局公布的第一批和第二批火电机组灵活改造项目清单 (9) 表格3:东北地区试行辅助服务市场机制 (9) 表格4:与红色预警六省相关的特高压投运进度 (10) 表格5:风电重点地区最低保障收购年利用小时数核定表 (12) 表格6:红色预警省份新增并网装机大幅减少(万千瓦) (12) 表格7:2017年上半年弃风形势明显好转 (14) 表格8:国家电网出台的20项促进新能源消纳的其体措施 (14) 表格9:2016年全国各省预警等级及新增风电装机情况 (16) 表格10:中东部和南部地区19省风电资源利用率不足7% (19) 表格11:部分国内低风速风电机组情况 (21) 表格12:2017年燃煤标杆电价普遍上调(元/度电) (27)

压缩空气储能电站的市场前景概要

压缩空气储能电站的市场前景 更新:2011-01-23 15:12:29 作者:escn来源:中国储能网点击:442次 压缩空气蓄能电站是一种新的解决方案 世界电力供应系统正趋向跨地区或全国联网,甚至跨国联网,实行全天候供电。然而供电与用电总是不匹配,尤其在深夜,过剩电力“大放空”几乎无法避免。为改变这个局面,人们殚思竭虑地寻找蓄能“蓄电”方法。比如蓄电池组、机械飞轮、超级电容器堆、超导磁储电,等等。终因效率不高,寿命短,存取不便,蓄能容量偏小,投资成本大等,难以运作。 目前已经广泛采用的是抽水蓄能电站和压缩空气蓄能电站。我国已建成投产的有:浙江安吉天荒坪电站、广州(从化)抽水蓄能电站。天荒坪电站,2000年建,至今已成功运行6年,装机容量为180万KW,年发电量31.60亿KW·h,总投资63亿人民币,在调荷和回收电能方面发挥了重要功能。 压缩空气蓄能电站是一种新型蓄能蓄电技术。早在1978年,德国建成世界第一座示范性压缩空气蓄能电站获得成功,紧跟其后的是美国、日本和以色列,都已建成使用,我国有识之士早已呼吁多年,但尚未引起决策者响应。而国外的实践告诉我们,这确实是一个新的解决方案。压缩空气蓄能发电技术具有显著的比较优势和市场前景,请看压缩空气蓄能电站与抽水蓄能电站对比分析: 1.建电站地理条件要求

抽水电站:建站地理条件要求苛刻,上水库建在面积较大的山顶上,高度、面积、地质结构要求严格。下水库占地面积也大。并且水源、道路交通都有特定要求。 压气电站:无特定地理要求,山洞、山脚、荒滩、废矿井,甚至海滩、海底都可以,储气库深埋地下,几乎不占用土地。 抽水电站:装机容量180万KW,投资额65~90亿元,建设周期6~8年。3611-5000元/kw 压气电站:装机容量180万KW,投资额55~60亿元,建设周期3~5年。3056-3333元/kw 3.建站占地面积与工程量 抽水电站:建站占地4000~5000亩,工程量包括上下两个水库、引水管、导流管、盘山公路、引水渠等等。 压气电站:占地少,厂房及设施只需占地10亩。储气库深埋地下,地面可以种农作物。 4.运行效率与成本 抽水电站:能量转换效率70~73%,水资源成本需支付费用,并需连续补充失耗的水量。 压气电站:能量转换效率达到77~90%,空气不要付费,使用中没有“相变”能量损失。 5.安全性 抽水电站:地震、滑坡、暴风雨、泥石流、岩石风化、坝体开裂、热胀冷缩破裂等等都存在风险。

目前我国风能产业分析报告

目前我国风能产业分析报告 ?观CWEE2010展会暨研讨会心得 题记:2010年4月27 0-28日在上海新国际博览中心召开了CWEE2010上海 国际风能产业展会暨研讨会,我有幸全程参与了此次会议,对U前我国的风电及风能产业有了进一步的理解和认识,现将参会的心得总结如下,以雍读者。 本届上海风能产业研讨会作为“第四届中国(上海)国际风能展览会”的重要组成部分,继续秉承“主题突出、注重实效、效果明显”之特色,搭建探讨风电行业热门话题的平台,吸引了来自全球范围内的政府、协会、电力集团、风电运营商、整机商、零部件商等行业专家为行业带来最新资讯与观点。山于大会日程安排的时间关系及针对我们公司U前需求进行取舍,我此次着重参加并听取了开幕式、风电场建设、管理运营管理专题,中国(上海)国际中小型风电产业发展论坛,以及近海风电与潮间带风电的专题。 开幕式 开幕式集合了国家能源局、科技部、工信部、可再生能源学会、国电龙源及上海跨国采购中心诸位领导进行致辞。各位嘉宾领导发言的主旨思想可总结为, 国家在十二五期间将大力紧抓能源格局的转换,达到非化石能源使用率为总体能源使用量15%的总体U标,而风能产业的发展便是实现此U标的?中之重。为此, 国家能源局正逐步完善新能源产业振兴计划(正式),以期尽快颁布。在新能源产业振兴的各子行业中,风电将是未来的发展重点,能源局还积极主持国内首批海上风电项U的招标准备工作。近年来,我国风电装备制造业发展迅猛,工信部登记在册的整机制造商有87家,叶片制造商超过50家,但是在大功率机型 的整机设计,异型风机叶片设计、风机镇流器、整流器、大型整体轴承等关键零部件的设计制造方面,其核心技术仍需依鼎国外技术。针对这个情况,科技部高新司组织成立了全国各地区的风电技术创新联盟,旨在提高我国风机制造业的核心技术能力及科技创新实力。同时,在输配电网科技创新工作中,山科技部、国家电网牵头在河北省张北地区建设了国家风光储输智能电网示范基地,投入了大量的资金及科研力量,这也将大大促进我国新能源产业尤其是风电、太阳能发电、核电领域的发展速度。 二.风电场建设、管理运营管理专题 本专题是此次参会的重点,演讲的嘉宾包括:国内及亚洲最大的风电开发、运营商一国电龙源电力集团公司的杨校生总工;国家风力发电工程技术研究中心张连兵主任;中国风电集团有限公司张世惠副总工;北京天源科创风电技术有限公司(金风全资子公司)及英国风能公司中国区的相关业务代表。嘉宾们就各自在实际工作中遇到了针对风电场建设和运营管理中遇到的问题及经验与大家进行了分享及探讨。其中风电场建设中的风险控制这一议题,对我们现行工作提供了不少建设性的经验及参考。嘉宾指出,风电场建设过程应分为规划阶段、勘察设 计额阶段、初设阶段、采购阶段、施工阶段和收尾阶段分阶进行风险控制。 具体内容我总结成如下表格:

2018年风电行业深度研究报告

2018年风电行业深度研究报告

核心观点 ?风电需求影响因素及分析框架:风电行业的需求主要受到投资内部收益率 的驱动,而装机容量、上网电价、利用小时数、度电成本及财务压力是影响内部收益率水平的核心边际条件。行业需求需要经过核准、招标和吊装,才能转化为中游制造企业的订单,因此结合总量的视野和边际的变化能够分析出风电行业终端需求的变化趋势,从而根据供需格局分析盈利能力进一步判断投资机会。 ?边际因素变化对需求波动影响:行业从发展初期到成熟期,各影响因素在 周期中呈现出阶段性切换的特征。通过复盘风电装机周期的波动,我们认为:1)风电上网标杆电价下调前一年,通常会面临抢装;2)风电装机增速远高于电网投资及电力需求增速,弃风限电成为制约行业主要发展因素;3)设备制造技术不断升级,2010~2012年风电安全问题将不会再现,同时度电成本不断降低,2020年有望实现平价上网;4)补贴收入回款延迟,对融资能力和偿债能力不足的企业带来较大的现金流压力。 ?需求波动对盈利和股价影响:1)需求周期与盈利的波动呈密切正相关。 2009-2011、2016年行业盈利大幅下滑对应两次装机增速大幅回落,2012~2015年盈利上涨对应期间装机大幅增长;2)从估值角度来看,风电行业估值水平短期受边际变化影响,业绩预期的逐步兑现是行情能够长期的关键,弃风限电成为压制估值重要因素。 ?风电复苏判断依据:1)总量视野下,2017年底核准未建设项目达 114.59GW,2018-2020年新增建设规模分别为28.84GW、26.60GW、 24.31GW,2019年开工即可锁定更高上网电价,2018~2019年大概率抢装 机;2)边际变化下来看,2017年弃风率反转拐点,度电成本处于持续下降通道,企业通过创新金融手段解决财务压力。 ?弃风限电改善驱动及趋势:1)政策重视,弃风限电问题已被提升至重要 高度,我国已出台多项解决弃风限电的政策,从控制增量、增量结构变化、消化存量、增加电力外送通道等多个维度解决弃风问题;2)部分区域移出红色预警意味弃风限电出现明显好转,特高压及装机结构东移有利于进一步优化弃风限电的问题。

压缩空气储能

国际电力储能技术分析——压缩空气储能 (一)技术原理 传统压缩空气储能系统是基于燃气轮机技术的储能系统。其工作原理是,在用电低谷,将空气压缩并存于储气室中,使电能转化为空气的内能存储起来;在用电高峰,高压空气从储气室释放,进入燃气轮机燃烧室燃烧,然后驱动透平发电,如图3所示。传统压缩空气储能系统具有储能容量较大、储能周期长、效率高和投资相对较小等优点。但是,传统压缩空气储能系统不是一项独立的技术,它必须同燃气轮机电站配套使用,不能适合其他类型电站,特别不适合我国以燃煤发电为主,不提倡燃气燃油发电的能源战略。而且,传统压缩空气储能系统仍然依赖燃烧化石燃料提供热源,面临化石燃料价格上涨和污染物控制的限制。此外,同抽水蓄能电站类似,压缩空气储能系统也需要特殊的地理条件建造大型储气室,如岩石洞穴、盐洞、废弃矿井等。 (二)关键技术 压缩空气储能系统的关键技术包括高效压缩机技术、膨胀机技术、燃烧室技术、储热技术、储气技术和系统集成与控制技术等。压缩机和膨胀机是压缩空气储能系统核心部件,其性能对整个系统的性能具有决定性影响。尽管压缩空气储能系统与燃气轮机类似,但压缩空气储能系统的空气压力比燃气轮机高得多。因此,大型压缩空气储能电站的压缩机常采用轴流与离心压缩机组成多级压缩、级间和级后冷却的结构形式;膨胀机常采用多级膨胀加中间再热的结构形式。相对于常规燃气轮机,压缩空气储能系统的高压燃烧室的压力较大。因此,燃烧过程中如果温度较高,可能产生较多的污染物,因而高压燃烧室的温度一般控制在500oC以下。压缩空气储能系统要求的压缩空气容量大,通常储气于地下盐矿、硬石岩洞或者多孔岩洞,对于微小型压缩空气储能系统,可采用地上高压储气容器以摆脱对储气洞穴的依赖等 (三)应用现状 目前,世界上已有两座大型压缩空气储能电站投入商业运行。第一座是1978年投入商业运行的德国Huntorf电站,目前仍在运行中。机组的压缩机功率60MW,释能输出功率为290MW,系统将压缩空气存储在地下600米的废弃矿洞中,矿洞总容积达3.1×105 m3,压缩空气的压力最高可达100bar。机组可连续充气8小时,连续发电2小时。该电站在1979年至1991年期间共启动并网5000多次,平均启动可靠性97.6%。第二座是于1991年投入商业运行的美国Alabama州的McIntosh压缩空气储能电站。其地下储气洞穴在地下450米,总容积为5.6×105m3,压缩空气储气压力为7.5MPa。该储能电站压缩机组功率为50MW,发电功率为110MW,可以实现连续41小时空气压缩和26小时发电。该电站由Alabama州电力公司的能源控制中心进行远距离自动控制。 美国Ohio州Norton从2001年起开始建一座2700MW的大型压缩空气储能商业电站,该电站由9台300MW机组组成。压缩空气存储于地下670米的地下岩盐层洞穴内,储气洞穴容积为9.57×106m3。日本于2001年投入运行的上砂川盯压缩空气储能示范项目,位于北海道空知郡,输出功率为2MW,是日本开发400MW机组的工业试验用中间机组。它利用废弃的煤矿坑(约在地下450m处)作为储气洞穴,最大压力为8MPa。瑞士ABB公司(现已并入阿尔斯通公司)正在开发联合循环压缩空气储能发电系统。目前除德、美、日、瑞士外,俄、法、意、卢森堡、南非、以色列和韩国等也在积极开发压缩空气储能电站。 我国对压缩空气储能系统的研究开发开始比较晚,但随着电力储能需求的快速增加,相关研究逐渐被一些大学和科研机构所重视。中科院工程热物理研究所、华北电力大学、西安交通大学、华中科技大学等单位对压缩空气储能电站的热力性能、经济性能、商业应用等进行了研究,但大多集中在理论和小型实验层面,目前还没有投入商业运行的压缩空气储能电站。我所正在建设1.5MW先进压缩空气储能示范系统。(四)发展趋势 压缩空气储能技术的主要发展趋势包括带储热的压缩空气储能技术、液态空气储能、超临界空气储能技术、与燃气蒸汽联合循环的压缩空气储能技术、与可再生能源的耦合的压缩空气储能技术等。

风能与储能技术

风能与储能技术 风电是我国唯一已经被大规模开发利用的可再生能源。2010年底,我国风电装机总容量达到4473.3万千瓦,超过美国成为世界第一,风电并网容量也达到了2956万千瓦,十二五末总装机容量达到1亿千瓦。但是由于风力发电固有的间歇性和波动性,风电大规模接入电网必然会使电网的可靠性降低,从而影响电网的调度和运行方式,现阶段的情况是风电场的建设速度已经超出了电网的接受能力,出现了一些风电场弃风,因此如何让电网大规模的接受风电成为我国风电发展的关键因素。使用储能技术以抵消风电的间歇性与波动性是一种有效的方法。 一、能源发展趋势 人类的能源利用从最初的薪柴时代到后来的煤炭时代,再到现在的油气时代的演变,总量不断增长,同时能源结构也在不断变化。而每次生产力的巨大飞跃都和是能源的变迁离不开,可以说能源极大地推动了人类经济社会的发展。但是,伴随着人口的剧烈增长,而传统的化石能源是有限的,以至于现在人类经济和社会发展受能源的制约越来越明显。众所周知,我们现在消耗的,主要是地球上千万年来存储下来的化石能源,是不可再生的能源,而且正面临耗竭的危机,下图是传统化石能源开发利用的年限,由图1可以看出油气的使用年限为40-60年。 图1 BP 2011世界化石能源开采年限统计 如今谁也无法否认高油价时代已经到来,而传统化石能源给中国带来的污染问题更已让中国经济的发展蒙上了另一层阴影。中国经济如果无法摆脱高能耗高

污染的惯性,那么未来之路将充满变数。正是在这样的背景下,通过风能、生物 质能、太阳能等绿色能源来解决问题已成为中国经济发展不可避免的现实,同时 国家也在加快智能电网建设。 二、新能源发展迅速 相比与传统的化石能源,新能源具有绿色无污染的特点,所以世界各国都在 大力发展清洁的新能源技术。特别是近年来新能源的发展十分迅速。 来自《BP2011世界能源统计年鉴》的信息表明,2010年世界消费的能源强 劲增长,其中新能源较常规化石能源更是实现了大幅增长,生物燃料增长了 13.8%,,风能发电量持续强劲增长(+22.7%),而风能增长由中国和美国带动, 两者风能发电量增长总和差不多占全球增长的70%,在此带动下用于发电的可再 生能源总体增长15.5%,如下图2,这些类型的可再生能源占全球能源消费的比 例从2000年的0.6%上升至1.8%。 图2 2010年世界消费的各种能源增长率 三、风能 当前全球风电发展迅速,据资料显示,全球风电总装机自1997年至2008 年,年均增长30%,而中国同期增长更快,约50%(表1),尤其是近期,增长 更快,仅仅内蒙地区,2010年底总装机量就达到1000万千瓦。 表1 1997-2008全球和中国风电装机容量演变表(单位GW) 年份1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 全球总装机容量7.6 10.2 13.6 17.4 23.9 31.1 39.4 47.6 59.1 74.2 93.9 120.8 新装机容量 1.5 2.5 3.4 3.8 6.5 7.3 8.1 8.2 11.5 15.2 19.9 27.1 中国 总装机容量0.17 0.22 0.27 0.34 0.10 0.47 0.67 0.76 1.26 2.6 5.9 12.21 新装机容量0.11 0.06 0.04 0.08 0.06 0.07 0.19 0.20 0.50 1.34 3.30 3.6 作为风力发电行业最权威的中文媒体期刊《风能世界》杂志预测:到2020 年风能将成为世界最重要的能源力量。

风力发电的调研报告

风力发电的调研报告 摘要: 风力发电是一项高新技术,它涉及到气象学、空气动力学、结构力学、计算机技术、电子控制技术、材料学、化学、机电工程、电气工程、环境科学、等十几个专业学科,是一项系统技术。风力发电作为现在新能源利用的重要技术之一,电气工程和它是息息相关,密不可分的。 关键词:风力发电、装机容量、发电机、发电技术。 一.发展风力发电的意义、重要性及其必要性。 在全球生态环境恶化和化石能源逐渐枯竭的双重压力下,对新能源的研究和利用已成为全球各国关注的焦点。除水力发电技术外,风力发电是新能源发电技术中最成熟、最具大规模开发和最有商业化发展前景的发电方式。由于在改善生态环境、优化能源结构、促进社会经济可持续发展等方面的突出作用,目前世界各国都在大力发展和研究风力发电及其相关技术。 风能很早就被利用,主要用来风车抽水、风车磨面等,风能是一种清洁的可再生能源,其蕴藏的能量巨大,全球的风能约为2.74亿MW,其中可利用的部分约为2百万MW,它比地球上可开发利用的水能总量要大十倍,是每年全世界燃烧煤获得能量的三倍;我国每年依靠煤发电占了80%,产生了大量的温室气体,大力发展风力发电实现了低碳环保;风能不需要成本,也不造成辐射或空气污染,可带来巨大的经济效益;还有我国的风力资源是相当雄厚的,也为风能来源提供充足的保障。 二.国内外的研究现状 就全球外风力发电的情况来看,其未来各方面的效益是相当可观的。全球风力能源在2008年增长28.8%,美国2008年新建了8.35GW的风力发电产能,总产能为25.1GW占全球风力发电的五分之一;欧盟在2008年末,风力发电总装机容量为64.94GW;2009年,虽然金融危机引起的全球经济秩序的动荡仍在持续,但风电行业发展势头迅猛,全球年度市场增长率达41%,行业市场格局基本没有发生实质性的改变,美国、欧盟和亚洲仍处于全球风电发展的主要领导地位,明显的变化是中国超越美国,成为了2009年新增装机容量全球第一的国家。根据全球风能理事会GWEC统计报告显示,截止2009年,全球风电装机容量累计已达1.58亿kW,增长率累计达31.9%,产出总值为450亿欧元,从业人数约50万,该产业已经成为世界能源市场的重要组成部分。到2009年底,全球已有100多个国家涉足风电领域,目前17国累计装机容量超过百万千瓦[1]。 对于中国,我国在2009年风能装机容量为25GW,与美国相差了1000万kW;2009年中国风电新增装机容量1380万kW,居全球第一;中国风电累计装机容量2580万kW,仅次于美国的3506万kW;风电机组装备与制造能力居全球第一。2010年新增和累计风电装机容量双居全球第一位;2020年的风电累计装机可达2.3亿kW,相当于13个三峡水电站的规模,年总发电量约4649亿kW·h,风电总装机容量占15%左右,可取代200个火电厂,减少二氧化碳排放量4.1亿t/a,节约标准煤近1.5亿t/a[1]。

全球及中国风电行业研究报告-20200619

全球及中国风电行业研究报告

1、全球风电行业概况 世界风能协会(WWEA)发布数据显示,全球风电装机容量持续增长,由2013年318,919MW增长到2019年的650,758MW,年复合增长率为13%。全球风电装机累计容量TOP10如下表所示: 图表2:2014-2019年全球风电机组新增装机容量 数据来源:世界风能协会(WWEA)

图表3:2019年全球风电装机累计容量市场份额分布 图表4:2019年全球风电装机新增容量市场份额分布 数据来源:世界风能协会(WWEA) 2、中国风电行业概况 目前我国风电叶片步入稳定增长阶段,2019年中国新增风电机组装机容量占全球新增装机容量的46%,风电领域玻璃纤维需求存在较大空间。风能成为我国能源市场正在快速发展的重要领域,中国在风电领域已经逐步加大力度投资。

中国《可再生能源发展“十三五”规划》提出,实现2020、2030年非化石能源占一次能源消费比重分别达到15%、20%的能源发展战略目标,加快对化石能源的替代进程,改善可再生能源经济性。 中国风能协会(CWEA)预计,到2020年国内在风力发电领域将投资3,500亿元,其中,20%(即700亿元)左右的领域需要使用玻璃纤维(如风机叶片),这对中国玻璃纤维企业来说是一个很大的市场。玻纤织物约占叶片总成本的20%;而叶片是风电机组最重要的部件之一,约占其总成本的25%。 世界风能协会(WWEA)发布数据显示,中国风电机组累计装机容量由2013年91,412MW增长到2019年的237,029MW,年复合增长率为17%。 图表5:2014-2019年中国风电机组累计及新增装机容量 数据来源:世界风能协会(WWEA) 根据2019年发改委发布的《国家发展改革委关于完善风电上网电价政策的通知》:“2018年底之前核准的陆上风电项目,2020年底前仍未完成并网的,国家不再补贴;2019年1月1日至2020年底前核准的陆上风电项目,2021年底前仍未完成并网的,国家不再补贴。自2021年1月1日开始,新核准的陆上风电项目全面实现平价上网,国家不再补贴。”随着2021年陆上风电平价上网时间节点的临近,政策节点临近驱动产业大规模抢装。因此,2020年风机设备抢装仍将进行,并且2020年将成为抢装高峰,根据国盛证券研究中心预测,2019

相关文档
最新文档