ABAQUS中的损伤模型

ABAQUS中的损伤模型
ABAQUS中的损伤模型

本周主要是研究了ABAQUS中自带的损伤模型。关于弹塑性力学的内容,感觉再看下去会跑偏,故先回归损伤力学。

主要阅读ABAQUS用户帮助手册及一些用ABAQUS建立损伤模型的相关文献。

[1]Abaqus Analysis User’s Manual

[2]婴幼儿摇椅金属底座的破裂分析.2010Abaqus Taiwan Users’ Conference.

[3]曹明,ABAQUS损伤塑性模型损伤因子计算方法研究.

[4]Failure Modeling of Titanium 6Al-4V and Aluminum 2024-T3 With the Johnson-Cook MaterialModel

另外,在Abaqus Example Problems Manual中有考虑损伤的模拟薄板铝材在准静态荷载和动力荷载下的累进失效分析的操作范例,还没来得及看。

ABAQUS中包括延性金属损伤、服从Traction-Separation法则的损伤、纤维增强复合物的损伤、弹性体损伤。实际上对于混凝土还有塑性损伤模型,东南大学的曹明[3]对该模型有详尽描述。在此仅讨论金属损伤模型。

对于损伤的主菜单,定义的是损伤的萌发模型,子选项为损伤的演化。先来谈谈损伤的萌发模型。

1、损伤萌发模型

延性金属损伤包括柔性损伤、Johnson-Cook损伤、剪切损伤、FLD损伤、FLSD 损伤、M-K损伤、MSFLD损伤。

服从Traction-Separation法则的损伤是针对Cohesive Element(黏着单元),应该不适合厚钢板结构,不予考虑。

纤维增强复合物损伤不考虑。

弹性体损伤针对于类似橡胶类物质,不考虑。

对于延性金属损伤,剪切损伤模型用于预测剪切带局部化引起的损伤,FLD、FLSD、MSFLD、M-K损伤都是用于预测金属薄片成型引起的损伤,故现在只剩柔性损伤和Johnson-Cook损伤符合厚钢板结构的损伤研究。

柔性损伤和Johnson-Cook损伤都是一类模型,预测由于延性金属内部空隙成核、成长、集结引起的损伤萌生。模型假定损伤萌生时的等效塑性应变是三轴应力和应变率的函数。该延性准则由MISES、Johnson-Cook、Hill、Drucker-Prager 塑性模型整合得到。

柔性损伤需输入的参数是断裂应变(损伤发生时的等效断裂应变)(Equivalent fracture strain at damage initiation)、应力三轴度(η=?p/q,其中p 是压应力(pressure stress,也可译为静水压应力),q是MISES等效应力)、应变

率(等效塑性应变率ε pl)。三者关系是,在不同的三轴应力和应变率下,损伤萌生的断裂应变是不同的。三者是以表格的形式输入的,表现了材料的一种性能。

所以应用该模型的前提是材料性能已知或已经假定,有点类似ABAQUS中对塑性材料的定义。

Johnson-Cook损伤需要输入五个失效参数D1-D5、熔点θmelt、转变温度θtransition、参考应变率ε0。五个失效参数是由实验获得的材料参数,不容易获得。

在文后会附录该模型的表达式。当小于等于转变温度θtransition时,损伤应变ε D pl表

达式不依赖于温度。材料参数必须在转变温度之下测量。

2、损伤演化

在ABAQUS中的损伤演化菜单属于损伤模型的子选项,且对于不同的模型,其菜单项变化不大,对于柔性损伤和Johnson-Cook损伤,子选项都是一样的。

损伤演化的类型分为位移和能量,分别从破坏时的位移和断裂能的角度求损伤的演化。个人见解,对于位移求损伤变量,其应该采用类似脆塑性模型的方法(见《损伤力学》2.5)。对于能量方法,通过断裂所需的能量求出损伤变量,有点类似《损伤力学》2.2的方法。不过,具体采用什么模型,无从得知。

ABAQUS中的损伤演化是从损伤萌生开始算起的,表现为材料刚度的降低。默认损伤萌生之前损伤因子为0,材料断裂时损伤因子为1。

总结

ABAQUS中的损伤模型,都是损伤萌发的预测模型,由于课题研究是将残余应力描述为一种初始损伤,即损伤变量一开始就不为0,故采用ABAQUS损伤模型的意义不大。

其次,参数的输入还依赖于实验得到的各种参数,不易获取。Johnson-Cook 模型对损伤演化的考虑较细致,但是有五个失效参数需从实验获取;柔性损伤模型且ABAQUS中的损伤演化过于简单、笼统,考虑的因素较少,如沈祖炎的模型中还考虑了最大塑性应变及权值β等(当然,沈祖炎模型是针对低周循环荷载而言的)。在用户帮助手册中也提到了考虑低周循环荷载的损伤萌生和演化,还未看,不过其采用的各种模型仍属于上述类型。

故考虑使用用户子程序UMAT编写材料本构关系,模拟损伤。

附Johnson-Cook损伤模型[4]

Johnson-Cook模型中的失效累积(failure accumulation也可能是损伤累积)并不直接使屈服面退化,定义失效时的应变为:

εfailure=D1+D2exp D3σ?1+D4lnε ?1+D5T?

第一个括号表示断裂应变随着静水应力张量的增加而减小,第二个括号表示增加的应变率对失效应变的影响效应,第三个括号表示材料延性的热软化效应。

式中,D1-D5是材料系数,由实验获得。

σ?是静水压应力与等效应力的比值(应与柔性模型中的应力三轴度一样)

σ?=presure

σ

等效应力定义为

σ=3

σijσij

无量纲应变率ε ?是有效塑性应变率与参考应变率(通常取1.0)的比值

ε ?=ε p ε 0

无量纲温度

T?=T?T room melt room

T是当前温度,T room是环境温度,T melt是熔点。在绝热环境下,假定所有的内部塑性作用都转变成了温度的变化,如下:

?T=σ ε p ρC v

σ是有效应力,ε p是有效塑性应变,ρ是密度,C v是比热容。有效塑性应变定义如下:

ε p=dε p

t

有效塑性应变增量由塑性应变张量的增量决定:

dε p=2

3

dεij dεij

Johnson-Cook模型中,当损伤因子D达到1.0,就发生断裂。D的演化由等效塑性应变增量除以当前失效应变的求和得到:

D=

?ε p εfailure

Ductile damage model

延性准则是用于预测由于孔隙成核、生长、集结引起的损伤萌发的唯象模型。模型假设损伤发生时的等效塑性应变ε D pl是应力三轴比和应变率的函数:

ε D pl η,εpl

应力三轴度(η=?p/q,其中p是压应力(pressure stress,也可译为静水压应力),q是MISES等效应力)、应变率(等效塑性应变率ε pl)。当满足下面的条件时,会发生损伤:

ωD=

dε pl

ε

D

η,εpl

=1

ωD是一个随着塑性变形单调增加的状态变量。ωD的增量计算如下:

ΔωD=

Δε pl

ε

D

pl η,εpl

≥0

Abaqus中复合材料的累积损伤与失效

纤维增强材料的累积损伤与失效:Abaqus拥有纤维增强材料的各向异性损伤的建模功能(纤维增强材料的损伤与失效概论,19.3.1节)。假设未损伤材料为线弹性材料。因为该材料在损伤的初始阶段没有大量的塑性变形,所以用来预测纤维增强材料的损伤行为。Hashin标准最开始用来预测损伤的产生,而损伤演化规律基于损伤过程和线性材料软化过程中的能量耗散理论。 另外,Abaqus也提供混凝土损伤模型,动态失效模型和在粘着单元以及连接单元中进行损伤与失效建模的专业功能。 本章节给出了累积损伤与失效的概论和损伤产生与演变规律的概念简介,并且仅限于塑性金属材料和纤维增强材料的损伤模型。 损伤与失效模型的通用框架 Abaqus提供材料失效模型的通用建模框架,其中允许同一种的材料应用多种失效机制。材料失效就是由材料刚度的逐渐减弱而引起的材料承担载荷的能力完全丧失。刚度逐渐减弱的过程采用损伤力学建模。 为了更好的了解Abaqus中失效建模的功能,考虑简单拉伸测试中的典型金属样品的变形。如图19.1.1-1中所示,应力应变图显示出明确的划分阶段。材料变形的初始阶段是线弹性变形(a-b段),之后随着应变的加强,材料进入塑性屈服阶段(b-c段)。超过c点后,材料的承载能力显著下降直到断裂(c-d段)。最后阶段的变形仅发生在样品变窄的区域。C点表明材料损伤的开始,也被称为损伤开始的标准。超过这一点之后,应力-应变曲线(c-d)由局部变形区域刚度减弱进展决定。根据损伤力学可知,曲线c-d可以看成曲线c-d‘的衰减,曲线c-d‘是在没有损伤的情况下,材料应该遵循的应力-应变规律曲线。

图19.1.1-1 金属样品典型的轴向应力-应变曲线 因此,在Abaqus中失效机制的详细说明里包括四个明显的部分: ●材料无损伤阶段的定义(如图19.1.1-1中曲线a-b-c-d‘) ●损伤开始的标准(如图19.1.1-1中c点) ●损伤发展演变的规律(如图19.1.1-1中曲线c-d) ●单元的选择性删除,因为一旦材料的刚度完全减退就会有单元从计算中移除(如图19.1.1-1 中的d点)。 关于这几部分的内容,我们会对金属塑性材料(金属塑性材料的损伤与失效概论,19.2.1节)和纤维增强材料(纤维增强符合材料的损伤与失效概论,19.3.1节)进行分开讨论。 网格依赖性 在连续介质力学中,通常是根据应力-应变关系建立材料本构模型。当材料表现出导致应变局部化的应变软化行为时,有限元分析的结果带有强烈的网格依赖性,能量的耗散程度取决于网格的精简程度。在Abaqus中所有可使用损伤演化模型都使用减轻网格依赖性的公式。这是通过在公式中引入特征长度来实现的,特征长度作为一个应力-位移关系可以表达本构关系中软化部分,它与单元尺寸有关系。在此情况下,损伤过程中耗散的能量不是由每个单位体积衡量,而是由每个单位面积衡量。这个能量值作为另外一个材料参数,用来计算材料发生完全损伤时的位移。这是与材料断裂力学中临界能量释放率的概念一致的。此公式确保了合适能量的耗散以及最大程度减轻网格的依赖。

ABAQUS混凝土塑性损伤模型

4.5.2 混凝土和其它准脆性材料的塑性损伤模型 这部分介绍的是ABAQUS提供分析混凝土和其它准脆性材料的混凝土塑性损伤模型。ABAQUS 材料库中也包括分析混凝的其它模型如基于弥散裂纹方法的土本构模型。他们分别是在ABAQUS/Standard “An inelastic constitutive model for concrete,” Section 4.5.1, 中的弥散裂纹模型和在ABAQUS/Explicit, “A cracking model for concrete and other brittle materials,” Section 4.5.3中的脆性开裂模型。 混凝土塑性损伤模型主要是用来为分析混凝土结构在循环和动力荷载作用下的提供一个普遍分析模型。该模型也适用于其它准脆性材料如岩石、砂浆和陶瓷的分析;本节将以混凝土的力学行为来演示本模型的一些特点。在较低的围压下混凝土表现出脆性性质,主要的失效机制是拉力作用下的开裂失效和压力作用下的压碎。当围压足够大能够阻止裂纹开裂时脆性就不太明显了。这种情况下混凝土失效主要表现为微孔洞结构的聚集和坍塌,从而导致混凝土的宏观力学性质表现得像具有强化性质的延性材料那样。 本节介绍的塑性损伤模型并不能有效模拟混凝土在高围压作用下的力学行为。而只能模拟混凝土和其它脆性材料在与中等围压条件(围压通常小于单轴抗压强度的四分之一或五分之一)下不可逆损伤有关的一些特性。这些特性在宏观上表现如下: ?单拉和单压强度不同,单压强度是单拉强度的10倍甚至更多; ?受拉软化,而受压在软化前存在强化; ?在循环荷载(压)下存在刚度恢复; ?率敏感性,尤其是强度随应变率增加而有较大的提高。 概论 混凝土非粘性塑性损伤模型的基本要点介绍如下: 应变率分解 对率无关的模型附加假定应变率是可以如下分解的: 是总应变率,是应变率的弹性部分,是应变率的塑性部分。 应力应变关系 应力应变关系为下列弹性标量损伤关系: 其中是材料的初始(无损)刚度,是有损刚度,是刚度退化变量其值在0(无损)到1(完全失效)之间变化,与失效机制(开裂和压碎)相关的损伤导致了弹性刚度的退化。在标量损伤理论框架内,刚度退化是各向同性的,它可由单个标量d来描述。按照传统连续介质力学观点,有效应力可定义如下:

混凝土塑性损伤模型1

混凝土和其它准脆性材料的塑性损伤模型 这部分介绍的是ABAQUS提供分析混凝土和其它准脆性材料的混凝土塑性损伤模型。ABAQUS 材料库中也包括分析混凝的其它模型如基于弥散裂纹方法的土本构模型。他们分别是在ABAQUS/Standard “An inelastic constitutive model for concrete,” Section 4.5.1, 中的弥散裂纹模型和在ABAQUS/Explicit, “A cracking model for concrete and other brittle materials,” Section 4.5.3中的脆性开裂模型。 混凝土塑性损伤模型主要是用来为分析混凝土结构在循环和动力荷载作用下的提供一个普遍分析模型。该模型也适用于其它准脆性材料如岩石、砂浆和陶瓷的分析;本节将以混凝土的力学行为来演示本模型的一些特点。在较低的围压下混凝土表现出脆性性质,主要的失效机制是拉力作用下的开裂失效和压力作用下的压碎。当围压足够大能够阻止裂纹开裂时脆性就不太明显了。这种情况下混凝土失效主要表现为微孔洞结构的聚集和坍塌,从而导致混凝土的宏观力学性质表现得像具有强化性质的延性材料那样。 本节介绍的塑性损伤模型并不能有效模拟混凝土在高围压作用下的力学行为。而只能模拟混凝土和其它脆性材料在与中等围压条件(围压通常小于单轴抗压强度的四分之一或五分之一)下不可逆损伤有关的一些特性。这些特性在宏观上表现如下: ?单拉和单压强度不同,单压强度是单拉强度的10倍甚至更多; ?受拉软化,而受压在软化前存在强化; ?在循环荷载(压)下存在刚度恢复; ?率敏感性,尤其是强度随应变率增加而有较大的提高。 概论 混凝土非粘性塑性损伤模型的基本要点介绍如下: 应变率分解 对率无关的模型附加假定应变率是可以如下分解的: 是总应变率,是应变率的弹性部分,是应变率的塑性部分。 应力应变关系 应力应变关系为下列弹性标量损伤关系: 其中是材料的初始(无损)刚度,是有损刚度,是刚度退化变量其值在0(无损)到1(完全失效)之间变化,与失效机制(开裂和压碎)相关的损伤导致了弹性刚度的退化。在标量损伤理论框架内,刚度退化是各向同性的,它可由单个标量d来描述。按照传统连续介质力学观点,有效应力可定义如下:

(仅供参考)Abaqus混凝土损伤塑性模型的参数标定

Abaqus 混凝土损伤塑性模型的参数标定 1. 塑性参数(Plasticity ) 1) 剪胀角(Dilation Angle ) = 30° 2) 流动势偏移量(Eccentricity ) 3) 双轴受压与单轴受压极限强度比 = 1.16 4) 不变量应力比 = 0.667 5) 粘滞系数(Visosity Parameter ) = 0.0005 2. 受压本构关系 应力-Yield Stress :第一行应输入本构模型刚进入非弹性段非弹性应变为0时所对应的应力。 非弹性应变-Inelastic Strain (受拉时为开裂应变-Cracking Strain ):根据应力按混凝土本构模型得出对应的应变值,并通过 , 和 ,得出非弹性应变。 3. 受压损伤因子(Damage Parameter )计算 根据《Abaqus Analysis User's Manual (6.10)》 - 20.6.3 “Concrete damaged plasticity ”中公式: 假设非弹性应变 in c ε中塑性应变 pl c ε所占的比例为c β,通过转换可得损伤因子c d 的计算公式: () () 0 011in c c in c c c c E E d βεσβε-=+- 根据《ABAQUS 混凝土损伤塑性模型参数验证》规定,混凝土受压时c β的取值范围为0.35 ~ 0.7。

4. 受拉损伤因子(Damage Parameter )计算 受拉损伤因子的计算与受压损伤因子的计算方法基本相同,只需将对应受压变量更换为受拉即可: () () 0011in t t in t t t t E E d βεσβε-=+- 而根据参考文献混凝土受拉时t β的取值范围为0.5 ~ 0.95。 5. 损伤恢复因子 受拉损伤恢复因子(Tension Recovery ):缺省值0t w =。 受压损伤恢复因子(Compression Recovery ):缺省值1c w =。

ABAQUS中的损伤模型

本周主要是研究了ABAQUS中自带的损伤模型。关于弹塑性力学的内容,感觉再看下去会跑偏,故先回归损伤力学。 主要阅读ABAQUS用户帮助手册及一些用ABAQUS建立损伤模型的相关文献。 [1]Abaqus Analysis User’s Manual [2]婴幼儿摇椅金属底座的破裂分析.2010 Abaqus Taiwan Users’Conference. [3]曹明,ABAQUS损伤塑性模型损伤因子计算方法研究. [4] Failure Modeling of Titanium 6Al-4V and Aluminum 2024-T3 With the Johnson-Cook Material Model 另外,在Abaqus Example Problems Manual中有考虑损伤的模拟薄板铝材在准静态荷载和动力荷载下的累进失效分析的操作范例,还没来得及看。 ABAQUS中包括延性金属损伤、服从Traction-Separation法则的损伤、纤维增强复合物的损伤、弹性体损伤。实际上对于混凝土还有塑性损伤模型,东南大学的曹明[3]对该模型有详尽描述。在此仅讨论金属损伤模型。 对于损伤的主菜单,定义的是损伤的萌发模型,子选项为损伤的演化。先来谈谈损伤的萌发模型。 1、损伤萌发模型 延性金属损伤包括柔性损伤、Johnson-Cook损伤、剪切损伤、FLD损伤、FLSD

损伤、M-K损伤、MSFLD损伤。 服从Traction-Separation法则的损伤是针对Cohesive Element(黏着单元),应该不适合厚钢板结构,不予考虑。 纤维增强复合物损伤不考虑。 弹性体损伤针对于类似橡胶类物质,不考虑。 对于延性金属损伤,剪切损伤模型用于预测剪切带局部化引起的损伤,FLD、FLSD、MSFLD、M-K损伤都是用于预测金属薄片成型引起的损伤,故现在只剩柔性损伤和Johnson-Cook损伤符合厚钢板结构的损伤研究。 柔性损伤和Johnson-Cook损伤都是一类模型,预测由于延性金属内部空隙成核、成长、集结引起的损伤萌生。模型假定损伤萌生时的等效塑性应变是三轴应力和应变率的函数。该延性准则由MISES、Johnson-Cook、Hill、Drucker-Prager塑性模型整合得到。 柔性损伤需输入的参数是断裂应变(损伤发生时的等效断裂应变)(Equivalent fracture strain at damage initiation)、应力三轴度(η=?p/q,其中p是压应力(pressure stress,也可译为静水压应力),q是MISES等效应力)、应变率(等效塑性应变率ε???pl)。三者关系是,在不同的三轴应力和应变率下,损伤萌生的断裂应变是不同的。三者是以表格的形式输入的,表现了材料的一种性能。所以应用该模型的前提是材料性能已知或已经假定,有点类似ABAQUS中对塑性材料的定义。 Johnson-Cook损伤需要输入五个失效参数D1-D5、熔点θmelt、转变温度

ABAQUS中的损伤模型

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 本周主要是研究了ABAQUS中自带的损伤模型。关于弹塑性力学的内容,感觉再看下去会跑偏,故先回归损伤力学。 主要阅读ABAQUS用户帮助手册及一些用ABAQUS建立损伤模型的相关文献。 [1]Abaqus Analysis User’s Manual [2]婴幼儿摇椅金属底座的破裂分析.2010 Abaqus Taiwan Users’Conference. [3]曹明,ABAQUS损伤塑性模型损伤因子计算方法研究. [4]Failure Modeling of Titanium 6Al-4V and Aluminum 2024-T3 With the Johnson-Cook Material Model 另外,在Abaqus Example Problems Manual中有考虑损伤的模拟薄板铝材在准静态荷载和动力荷载下的累进失效分析的操作范例,还没来得及看。 ABAQUS中包括延性金属损伤、服从Traction-Separation法则的损伤、纤维增强复合物的损伤、弹性体损伤。实际上对于混凝土还有塑性损伤模型,东南大学的曹明[3]对该模型有详尽描述。在此仅讨论金属损伤模型。 对于损伤的主菜单,定义的是损伤的萌发模型,子选项为损伤的演化。先来谈谈损伤的萌发模型。 1、损伤萌发模型 延性金属损伤包括柔性损伤、Johnson-Cook损伤、剪切损伤、FLD损伤、FLSD损伤、M-K损伤、MSFLD损伤。 服从Traction-Separation法则的损伤是针对Cohesive Element(黏着单元),应该不适合厚钢板结构,不予考虑。 纤维增强复合物损伤不考虑。 弹性体损伤针对于类似橡胶类物质,不考虑。

abaqus损伤准则总结

ABAQUS中有四种初始断裂准则: 在高应变速率下变形时,有shear failure和tensile failure(旋压用不到,不再介绍) 对于断裂延性金属:可以选用A:韧性准则(ductile criteria)和B:剪切准则(shear criteria) 对于缩颈不稳定性可以使用(钣金):C:FLD、FLSD、M-K以及MSFLD 对于铝合金、镁合金以及高强钢在变形过程中会出现不同机制的断裂,可能会将以上准则联合起来进行使用。 损伤的感念如下图所示:

1.韧性断裂准则中提供的韧性断裂准则需要输入的参数为:1.1ABAQUS断裂应变;应力三轴度;应变速率 要测量不同应力三轴度下的断裂应变需要进行大量的实验,这是不可取的。Hooputra et al,2004通过实验和理论推导得到了在定应变速率下,断裂应变和应力三轴度的关系: 公式中::应力三轴度。即平均应力和屈服应力的比值; 为等双轴拉伸时的应力三:等双轴拉伸时,断裂时的等效塑性应变,轴度,其值为2/3;

为等双轴压缩时的应:等双轴压缩时,断裂时的等效塑性应变, 力三轴度,其值为-2/3; 因此,为了得到断裂时等效塑性应变和应力三轴度的关系,只需要求出 和参数三个参数即可。根据方程已得到不同应力三轴度下的断、裂应变。 、和在一个应变速率下只需要三组数据,就可以求出方程中的 。帮助文件中的建议:ABAQUS ==2/3方程一(是不是:例如在杯突试验中,应力三轴度为已知量杯突实验和等双轴拉伸的变形时等效的,杯突实验如何在高温下进行,能否用双向拉伸实验代替?) =此时,通过对进行杯突实验的板料印制网格,可以得

混凝土塑性损伤模型 -ABAQUS

4.5.2 混凝土塑性损伤模型ABAQUS ABAQUS 材料库中也包括分析混凝的其它模型如基于弥散裂纹方法的土本构模型。他们分别是在ABAQUS/Standard “An inelastic constitutive model for concrete,” Section 4.5.1, 中的弥散裂纹模型和在ABAQUS/Explicit, “A cracking model for concrete and other brittle materials,” Section 4.5.3中的脆性开裂模型。 混凝土塑性损伤模型主要是用来为分析混凝土结构在循环和动力荷载作用下的提供一个普遍分析模型。该模型也适用于其它准脆性材料如岩石、砂浆和陶瓷的分析;本节将以混凝土的力学行为来演示本模型的一些特点。在较低的围压下混凝土表现出脆性性质,主要的失效机制是拉力作用下的开裂失效和压力作用下的压碎。当围压足够大能够阻止裂纹开裂时脆性就不太明显了。这种情况下混凝土失效主要表现为微孔洞结构的聚集和坍塌,从而导致混凝土的宏观力学性质表现得像具有强化性质的延性材料那样。 本节介绍的塑性损伤模型并不能有效模拟混凝土在高围压作用下的力学行为。而只能模拟混凝土和其它脆性材料在与中等围压条件(围压通常小于单轴抗压强度的四分之一或五分之一)下不可逆损伤有关的一些特性。这些特性在宏观上表现如下: ?单拉和单压强度不同,单压强度是单拉强度的10倍甚至更多; ?受拉软化,而受压在软化前存在强化; ?在循环荷载(压)下存在刚度恢复; ?率敏感性,尤其是强度随应变率增加而有较大的提高。 概论 混凝土非粘性塑性损伤模型的基本要点介绍如下: 应变率分解 对率无关的模型附加假定应变率是可以如下分解的: 是总应变率,是应变率的弹性部分,是应变率的塑性部分。 应力应变关系 应力应变关系为下列弹性标量损伤关系: 其中是材料的初始(无损)刚度,是有损刚度,是刚度退化变量其值在0(无损)到1(完全失效)之间变化,与失效机制(开裂和压碎)相关的损伤导致了弹性刚度的退化。在标量损伤理论框架内,刚度退化是各向同性的,它可由单个标量d来描述。按照传统连续介质力学观点,有效应力可定义如下: Cauchy应力通过标量退化变量(d)转化为有效应力

Abaqus损伤总结

Abaqus损伤总结 初始损伤 初始损伤对应于材料开始退化,当应力或应变满足于定义的初始临界损伤准则,则此时退化开始。Abaqus 的Damage for traction separation laws 中包括:Quade Damage、Maxe Damage、Quads Damage、Maxs Damage、Maxpe Damage、Maxps Damage 六种初始损伤准则,其中前四种用于一般复合材料分层模拟,后两种主要是在扩展有限元法模拟不连续体(比如crack 问题)问题时使用。前四种对应于界面单元的含义如下:Maxe Damage 最大名义应变准则: Maxs Damage 最大名义应力准则: Quads Damage 二次名义应变准则: Quade Damage 二次名义应力准则: 其中σ1 层间正应力σ2 σ3 层间剪应力对应的分别是有实验测的极限正应力第一二剪应力 ε1 层间正应变ε2 ε3 层间剪应变对应的分别是有实验测的极限正应变第一二剪应变 1、三维空间中任一点应力有6个分量,在ABAQUS中分别对应S11,S22,S33,S12,S13,S23。 2、一般情况下,通过该点的任意截面上有正应力及其剪应力作用。但有一些特殊截面,在这些截面上仅有正应力作用,而无剪应力作用。称这些无剪应力作用的面为主截面,其上的正应力为主应力,主截面的法线叫主轴,主截面为互相正交。主应力分别以表示,按代数

值排列(有正负号)为。其中在ABAQUS中分别对应Max. Principal、Mid. Principal、Min. Principal,这三个量在任何坐标系统下都是不变量。 在ABAQUS中对应变的部分理解 1、E—总应变;Eij—应变分量 2、EP---主应变;EPn----分为Minimum, intermediate, and maximum principal strains (EP1 EP2 EP3) 3、NE----名义应变;NEP---主名义应变; 4、LE----真应变(或对数应变);LEij---真应变分量;LEP---主真应变; 5、EE—弹性应变; 6、IE---非弹性应变分量; 7、PE---塑性应变分量; 8、PEEQ---等效塑性应变---在塑性分析中若该值〉0,表示材料已经屈服;描述整个变形过程中塑性应变的累积结果; 若单调加载则PEEQ=PEMAG ; 9、PEMAG----塑性应变量(幅值Manitude)---描述变形过程中某一时刻的塑性应变,与加载历史无关; 10、THE---热应变分量; 损伤曲线

19.Abaqus累积损伤与失效解析

总结 本章主要讲解累积损伤与失效的概论、塑性金属材料的累积损伤与失效和纤维增强复合材料的累积损伤与失效。其中重点内容有: ●塑性金属材料损伤萌生准则,包括有:塑性准则、Johnson-Cook准则、剪切 准则、成形极限图准则、成形极限应力图准则、M-K准则和M-S成形极限图准则,其中M-K准则较难理解。 ●塑性金属材料的演化规律,包括有:基于有效塑性位移的损伤演化规律和基 于能量耗散理论的损伤演化规律。 ●塑性金属材料失效后网格中单元的移除,其中壳单元的移除较难理解。 ●纤维增强复合材料损伤萌生准则,包括有:纤维拉伸断裂、纤维压缩屈曲和 扭结、基体拉伸断裂和基体压缩破碎。 ●纤维增强复合材料损伤的演化,四种失效模式(纤维拉伸失效、纤维压缩失 效、基体拉伸断裂失效和基体压缩破碎失效)均基于能量耗散理论,并对应不同的损伤变量,其中损伤变量的求解比较繁琐。

目录 19 累积损伤与失效分析 (3) 19.1累积损伤与失效概述 (3) 19.1.1 累积损伤与失效 (3) 19.2 金属塑性材料的损伤与失效 (6) 19.2.1 金属塑性材料损伤与失效概论 (6) 19.2.2 金属塑性材料损伤初始阶段 (8) 19.2.3 塑性金属材料的损伤演化与单元的移除 (24) 19.3 纤维增强复合材料的损伤与失效 (35) 19.3.1纤维增强复合材料的损伤与失效:概论 (35) 19.3.2 纤维增强复合材料的损伤初始产生 (38) 19.3.3 损伤演化与纤维增强复合材料的单元去除 (41)

19 累积损伤与失效分析 19.1累积损伤与失效概述 19.1.1 累积损伤与失效 Abaqus提供了以下材料模型来预测累积损伤与失效: 1)塑性金属材料的累积损伤与失效:Abaqus/Explicit拥有建立塑性金属材料的累积损伤与失效模型的功能。此功能可以与the Mises, Johnson-Cook, Hill, 和Drucker-Prager等塑性材料本构模型一起使用(塑性材料的损伤与失效概论,19.2.1节)。模型中提供多个损伤萌生的参数标准,其中包括塑性准则、剪切准则、成形极限图(FLD)、成形极限压力图(FLSD),MSFLD和M-K等标准。根据以往的损伤规律可知,损伤开始形成后,材料的强度会越来越弱。累积损伤模型对于材料刚度的平滑减弱是允许的,这在准静态和动态环境中都允许,这也是优于动态失效模型的有利条件(动态失效建模,18.2.8节)。 2)纤维增强材料的累积损伤与失效:Abaqus拥有纤维增强材料的各向异性损伤的建模功能(纤维增强材料的损伤与失效概论,19.3.1节)。假设未损伤材料为线弹性材料。因为该材料在损伤的初始阶段没有大量的塑性变形,所以用来预测纤维增强材料的损伤行为。Hashin标准最开始用来预测损伤的产生,而损伤演化规律基于损伤过程和线性材料软化过程中的能量耗散理论。 另外,Abaqus也提供混凝土损伤模型,动态失效模型和在粘着单元以及连接单元中进行损伤与失效建模的专业功能。 本章节给出了累积损伤与失效的概论和损伤产生与演变规律的概念简介,并且仅限于塑性金属材料和纤维增强材料的损伤模型。 损伤与失效模型的通用框架 Abaqus提供材料失效模型的通用建模框架,其中允许同一种的材料应用多种失效机制。材料失效就是由材料刚度的逐渐减弱而引起的材料承担载荷的能力完全丧失。刚度逐渐减弱的过程采用损伤力学建模。 为了更好的了解Abaqus中失效建模的功能,考虑简单拉伸测试中的典型金

ABAQUS中的损伤模型精选文档

A B A Q U S中的损伤模 型精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

本周主要是研究了ABAQUS中自带的损伤模型。关于弹塑性力学的内容,感觉再看下去会跑偏,故先回归损伤力学。 主要阅读ABAQUS用户帮助手册及一些用ABAQUS建立损伤模型的相关文献。 [1]Abaqus Analysis User’s Manual [2]婴幼儿摇椅金属底座的破裂分析.2010 Abaqus Taiwan Users’Conference. [3]曹明,ABAQUS损伤塑性模型损伤因子计算方法研究. [4] Failure Modeling of Titanium 6Al-4V and Aluminum 2024-T3 With the Johnson-Cook Material Model 另外,在Abaqus Example Problems Manual中有考虑损伤的模拟薄板铝材在准静态荷载和动力荷载下的累进失效分析的操作范例,还没来得及看。 ABAQUS中包括延性金属损伤、服从Traction-Separation法则的损伤、纤维增强复合物的损伤、弹性体损伤。实际上对于混凝土还有塑性损伤模型,东南大学的曹明[3]对该模型有详尽描述。在此仅讨论金属损伤模型。 对于损伤的主菜单,定义的是损伤的萌发模型,子选项为损伤的演化。先来谈谈损伤的萌发模型。 1、损伤萌发模型

延性金属损伤包括柔性损伤、Johnson-Cook损伤、剪切损伤、FLD损伤、FLSD 损伤、M-K损伤、MSFLD损伤。 服从Traction-Separation法则的损伤是针对Cohesive Element(黏着单元),应该不适合厚钢板结构,不予考虑。 纤维增强复合物损伤不考虑。 弹性体损伤针对于类似橡胶类物质,不考虑。 对于延性金属损伤,剪切损伤模型用于预测剪切带局部化引起的损伤,FLD、FLSD、MSFLD、M-K损伤都是用于预测金属薄片成型引起的损伤,故现在只剩柔性损伤和Johnson-Cook损伤符合厚钢板结构的损伤研究。 柔性损伤和Johnson-Cook损伤都是一类模型,预测由于延性金属内部空隙成核、成长、集结引起的损伤萌生。模型假定损伤萌生时的等效塑性应变是三轴应力和应变率的函数。该延性准则由MISES、Johnson-Cook、Hill、Drucker-Prager塑性模型整合得到。 柔性损伤需输入的参数是断裂应变(损伤发生时的等效断裂应变)(Equivalent fracture strain at damage initiation)、应力三轴度(η= ?p/q,其中p是压应力(pressure stress,也可译为静水压应力),q是MISES 等效应力)、应变率(等效塑性应变率ε???pl)。三者关系是,在不同的三轴应力和应变率下,损伤萌生的断裂应变是不同的。三者是以表格的形式输入的,表现了材料的一种性能。所以应用该模型的前提是材料性能已知或已经假定,有点类似ABAQUS中对塑性材料的定义。

Abaqus常用损伤分析模型

Abaqus常用损伤分析模型 内聚力模型准则 cohesive element 中失效位移(能量)的计算是一个比较复杂的过程, 它反映材料在复杂应力状态下的断裂能量释放率。在这个过程中, 通常用到两个重要的准则,指数准则与BK ( Benzeggagh-Kenane) 准则。 abaqus损伤变量计算 dk:degradation中设置为multiplicative的损伤变量 dj:degradation中设置为maximum的损伤变量 损伤演化 当定义了材料开始损伤的初始情况,而材料的最终失效是当材料的损伤值达到1的时候发生的。这是就需要用户自己来定义材料的损伤演化了(damage evolution),具体定义材料损伤演化的方式较多,可以在damage的suboption中看到,一般的类型包括displacement与energy,如果是脆性材料,那肯定是线性下降,如果是金属等塑性很好的材料,肯定是抛物线下降。直线、抛物线、正弦等这些模型是abaqus或者是断裂力学中用理论去接近实际 裂纹扩展

当材料的能量释放率超过材料自身的断裂能时,裂纹扩展,材料将发生呢个断裂。 Cohesive element 一般的cohesive element,厚度为0,对于厚度为0的单元,实际上是不存在stress和strain这样的概念的,所以一般都是叫traction 和separation,但是Abaqus为了使这两个概念和stress和strain联系起来,就又引入了thickness这个概念, traction/thickness = stress, separation/thickness=strain,这样当你定义thickness-=1的时候,traction=stress,separation=strain,就容易理解一点,可以将材料试验里面的结果放进去。对于0厚度单元的elastic 性质,理论上说,其Knn,Kss,Ktt都应该取无限大,但是取得太大,收敛就很困难,所以一般都将其当作一个罚因子。 厚度方向:由于cohesive element划分网格时必须用sweep,一般规定cohesive element 的厚度方向就是sweep 的方向。 abaqus中如何根据损伤云图看出裂缝走向 答:Following Lubliner et. al. (1989), we can assume that cracking initiates at points where the tensile equivalent plastic strain is greater than zero, , and the maximum principal plastic strain is positive. The direction of the vector normal to the crack plane is assumed to be parallel to the direction of the maximum principal plastic strain. This direction can be viewed in the Visualization module of Abaqus/CAE.”即沿着最大主应力方向扩展。 Drucker-Prager

相关文档
最新文档