遥控直升机控制原理

遥控直升机控制原理
遥控直升机控制原理

一、话说旋翼头

旋翼头是直升机中最神奇,也是最关键的部件。直升机的绝大多数性质,比如稳定性、灵活性,包括所谓操纵感觉,都是由旋翼头决定的。遥控直升机的旋翼头采用贝尔-希拉操纵方式,也就是一对主旋翼,产生升力,同时靠一对小翼控制升力的方向,从而达到控制直升机的目的。我们下面就来细说一下贝尔-希拉方式是如何达到操纵直升机的目的的。

I、陀螺效应

所谓陀螺效应,就是旋转着的物体具有像陀螺一样的效应。陀螺有两个特点:进动性和定轴性。当高速旋转的陀螺遇到外力时,它的轴的方向是不会随着外力的方向发生改变的,而是轴围绕着一个定点进动。大家如果玩过陀螺就会知道,陀螺在地上旋转时轴会不断地扭动,这就是进动(不考虑章动)。以下是陀螺效应的示意图:

图一、陀螺效应示意图

在上图中,圆盘是陀螺。L是圆盘的角动量,其大小是R×Mv或者Iω。由

于在力学中,有,所以和方向相同。这直接导致了(如图)高速

转动的陀螺在受到F后,整个陀螺以X轴为转轴转动而不是以Y轴为转轴。这就是神奇的陀螺效应。这种效应一直伴随着直升机的飞行。例如:要使直升机仰俯,就必须要使直升机左右的升力不平衡而不是使其前后不平衡。基于这种原理我们下面就来解释遥控直升机的所谓贝尔-希拉操纵方式。

II、贝尔-希拉操纵方式的初步分析

说起贝尔-希拉,同好们映像最深的一定是那对“希拉”小翼。这是遥控直升机唯一区别于真飞机的地方。那么这对小翼的作用究竟是什么呢?她所带来的好处是什么?下面就听我细细说来。

在I中,我们已经看到陀螺效应的基本原理。在遥控直升机中,主旋翼就是一个大陀螺,它本身具有陀螺效应。当我们改变主旋翼倾角时,直升机的运动状态就会发生改变。但同时,如果用舵机直接改变主旋翼的倾角来控制飞机,问题是很多的。首先,主旋翼倾角的改变需要较大的力矩。如果用十字盘直接控制的话,强大的、交变的力矩将会直接作用到舵机上。这样舵机将会受到很大负荷,操纵精度会严重下降。第二,当直升机受到轻微扰动后,由于陀螺的进动性,直升机将不会恢复原来状态,而是绕着垂线方向进动(如图)。

图如图,由于重力不通过旋翼头中心,所以造成力矩的产生,从而导致主旋翼发生进动。这个问题是严重的,会直接导致遥控直升机悬停及飞行时无法稳定。基于以上问题,贝尔-希拉操纵方式产生了。

操纵过程是这样的:

一、初始状态

希拉小翼由于空气和离心力作用,和主旋翼平面平行。此时两片主旋翼升力相等,飞行状态不发生变化

二、操纵时

上图为同一个视角,主旋翼转动到不同角度时的状态。在图I中,操纵者将十字盘倾斜。希拉小翼就与空气呈10°倾角。由于空气的作用,希拉小翼在图I 位置受力。由于陀螺效应,希拉小翼不会在图I位置立即上抬,而是在转过90°后在上图II位置上抬。

于是希拉小翼旋转平面与主旋翼平面呈10°夹角并稳定于此。

在图II中,我们清晰地看见,由于希拉小翼通过连杆控制着主旋翼的倾角,所以希拉小翼旋转平面的改变导致了主旋翼与空气产生夹角。从而使主旋翼在图II位置受力。由于陀螺效应,主旋翼不会在图II位置立即上抬,而是在转过90°后在图I位置上抬。从而使得主旋翼平面趋于平行于希拉小翼。

至此,遥控直升机主旋翼平面的倾转过程已经分析完毕。我们看到,遥控直升机的倾转总是希拉小翼旋转平面先倾转,主旋翼平面跟上趋于平行的过程。有意思的是,在这一过程中主旋翼操纵的负荷被希拉小翼完全承担。舵机只需承担操纵希拉小翼的负荷。这就有效地化解了一般操纵方式舵机负荷过重的问题。

下面再来初步分析希拉小翼对遥控直升飞机稳定性带来的好处。为此,我们来看贝尔-希拉操纵系统的干扰-稳定过程:

一、初始状态

希拉小翼由于空气和离心力作用,和主旋翼平面平行。此时两片主旋翼升力相等,飞行状态不发生变化

二、外界气流对飞机进行干扰。

当遇到气流时,由于主旋翼的旋转,会导致左、右主旋翼相对于空气的速度不同,从而产生力矩,使飞机偏离平衡位置。如图:

在上图中,飞机机身及主旋翼平面由于干扰而失去平衡位置。但由于希拉小翼采用对称翼型,不会受到外界干扰。由于陀螺效应的定轴性,希拉小翼平面保持不变。所以此时主旋翼平面由于与希拉小翼平面有夹角而产生恢复力矩,抵抗外界干扰。这就是贝尔-希拉控制方式的自稳定过程。也正是这个过程,使得遥控直升飞机避免了被干扰后就陷于进动的问题。同时,当直升飞机高速前进时,由于左、右主旋翼相对空气的速度不同,会导致力矩的产生,使飞机抬头的现象也被这种贝尔-希拉控制方式有效抑制,从而有效地提高了遥控直升飞机的可操纵性。值得注意的是,贝尔-希拉自稳定过程不能抑制过强的干扰。原因是希拉小翼旋转平面保持原来运动状态的同时,由于机身的倾斜,小翼与空气平面会产生夹角,从而破坏小翼原来的运动状态。如图:

由于β角的存在,希拉小翼旋转平面会向主旋翼旋转平面方向旋转,最后趋于平行。所以贝尔-希拉的自稳定过程是有限的。还需要其他手段(比如使希拉小翼不太灵敏)来增加稳定性。

通过以上的初步分析,大家应该已经对遥控直升飞机的控制原理有了一个大概的了解,对直升机旋翼头有了一定的认识。对于一般以及能力有限的同好,了解这些已经足够。但对于另一些喜欢刨根问底的或者是希望参加比赛的发烧级同好,改装、调整飞机成了必要的工作。所以应该深入、定量地分析贝尔-希拉的操纵过程。我下面就做一些这方面的工作。希望能给大家一点启发。

III、贝尔-希拉操纵方式的定量分析

(看不懂这一章的可以直接看最下方的总结)

(1)微扰动过程。

在进行定量分析之前,我将贝尔-希拉控制过程分为两类-——微扰动过程和一般过程,目的是从易到难,逐个分析,从而简化难度。从II中,我们已经知道直升飞机的操纵主要过程是:小翼与空气产生夹角→小翼旋转平面倾斜→主旋翼与空气产生夹角→主旋翼旋转平面倾斜。在某些情况下,比如阵风对飞机干扰时,小翼旋转平面的倾斜大大大于主旋翼平面的倾斜,所以我们就将主旋翼平面的倾斜忽略不计。这样,只要研究小翼的运动而不必考虑主旋翼平面的转动对小翼造成的影响。这样分析是有益的,能让我们方便地看清飞机在悬停时有风的情况下的运动方式,以及诸如转速、希拉小翼的质量分布对飞机稳定性的影响。

首先将希拉小翼看作陀螺。

令:

希拉小翼:角动量为L

转动惯量为I

半径为R

由舵机控制而转过的角度或者机身由于扰动主旋翼平面与小翼的平面夹角(不是小翼旋转平面)为θ(如图)

旋转平面与主旋翼夹角为ψ

平面以X轴为轴的转动角速率为ω

主旋翼转速为

// F是小翼与空气有夹角后受到的力。

因为是微扰动,ψ很小。

上式的意思是,主旋翼转速为

,转动惯量为I的希拉小翼受到力矩M后,其平面转动速率(也可以理解为一端向上抬起的速率)

-------

对于同一级别的直升机,由于主旋翼转速是固定的,希拉小翼的转动惯量

也是定值,所以当主旋翼转速越快,ω越小,也就是希拉小翼上抬的速率越小,或者说直升机在悬停时遇到风的情况就越稳定。对于90级直升机,其希拉小翼的转动惯量I大于50级直升机。所以也就比50级稳定。上式充分说明了直升机的转速以及希拉小翼+平衡杆的转动惯量的大小与直升机的稳定性成正比。大直升机稳定性的根源就在于此。

为了了解直升机的运动状态,光有上式是不够的。因为M会随着直升机姿态的恢复而变化。不同品牌,不同型号的直升机,M的变化方式不同。比如,有的直升机在收到扰动后恢复姿态时,M一开始变化很快,后来逐渐变慢;而有的是M的变化趋于平稳。这样也就导致了希拉小翼的ω,即一端上抬存在加速度,这也就是不同直升机有不同操纵感觉的原因。为了充分分析问题,我们必须找出ω随时间t的变化规律ω(t)以及希拉小翼的平面与主旋翼夹角ψ的变化规律

ψ(t)。

//这是升力公式,F是小翼受到的力

根据一开始的定义,由舵机控制而转过的角度或者机身由于扰动主旋翼平面与小翼的平面夹角(不是小翼旋转平面)为θ

在θ不太大的情况下,

即正比关系。令

两边求导,

我们认为θ是定值。C为积分常数,由初始条件定出:当t=0时,ψ=0

-----------------

这就是微扰动情况下希拉小翼旋转平面随时间的运动方程。从这个方程中我们可以看到,平衡杆的转动惯量

越大,随时间的变化就越慢,飞机也就越稳定。这也就是为什么hirobo的练习机在平衡杆上加重物的原因。

(主旋翼转速) ,

(空气密度),R(平衡杆长度),S(希拉小翼面积)越大,平衡杆的变化也就越灵敏。原则上飞机就越灵活。

这似乎与前面得到的一个结论相矛盾,也与我们平时飞行的感觉不符。

我们平时飞行时,总觉得主旋翼转速越高,飞机越稳定。事实也是如此。那么问题关键出在什么地方呢?原来,B式所要描述的过程已经不同于微扰-稳定过程。因为在分析中,我们用了

这个条件。这个条件是有前提的,即θ不太大也不太小的情况下这个条件成立。也就是说,上式给出了一个在θ不太大也不太小,正好满足微扰条件的希拉小翼旋转平面的运动方程。这个方程是有局限性的。当我们让遥控直升飞机作大动作的时候,上式不适用。对于θ极小的情况下,上式也不适用。因为

,而是等于一个由于摩擦或其他效应造成的小量m。所以此时只能用方程

来描述希拉小翼旋转平面的运动。A式告诉我们,越高,即主旋翼转速越高,

飞机越稳定。同时,B式告诉我们,越高,直升机越灵活。所以提高

对飞机来说好处很多。尤其对F3D,提高可以使飞机做到静如处子,动如脱兔

的地步。。。。。。飞起来会得心应手。

2)、大幅度操纵过程

对于大幅度地操纵遥控直升飞机,主旋翼旋转平面的变化就不能被忽略了。这会使问题十分复杂。为了相对清晰地研究这个问题,我决定以上一个分析为基础进行研究。

令:

主旋翼:角动量为转动惯量为半径为旋转平面与初始平面夹角为

平面以X轴为轴的转动角速率为主旋翼转速为 ,根据角动量守恒原则。

其中,是主旋翼与空气的夹角,是主旋翼产生的生力差。是主旋翼升力焦点到主轴的距离。是由希拉小翼旋转平面与主轴的夹角决定的。令

,其大小决定了飞机的灵敏度。这个比例可以通过改变主旋翼夹头上摇臂与主轴的距离来调节。于是,问题转化为:

在前面的分析中,

现在考虑机身倾转因素,则

这是二阶常系数齐次线性微分方程。求解,得:

其中,

、是待定系数,由t=0时的状态决定。+=0于是,主旋翼即直升飞机的倾转的运动方程是:

这个方程说明,我们在操作飞机时,飞机的运动状态并不是匀速改变的,而是有一个加速-减速的过程。这也就是所谓hirobo和雷虎飞行时操作感觉不同的原因。

IV、小结。

以上定量分析的内容可能会给大家带来一些困难。于是我将在这一节中总结一下我从公式中得到的结论。主旋翼旋转平面运动类型所对应的实际情况运动方程结论

微扰-稳定过程悬停时受到微风的干扰

悬停时主旋翼转速和平衡杆的转动惯量的乘积反比于飞机的稳定性

微扰过程

轻微的人为操作或强风

轻微操作时,主旋翼转速越高,希拉小翼面积越大,空气密对越大,平衡杆越长,飞机就越灵敏;平衡杆转动惯量越大,飞机越迟钝

大动作过程

大幅度的人为操作

主旋翼转动惯量越大,飞机越迟钝;飞机的倾转运动经过加速-减速过程。

说明:

由于大动作操作的运动方程比较复杂,需要用模拟软件对方程进行曲线模拟才能得出具体结论。

以上情况为理想状态下,且未计入机身转动惯量对运动的影响。

基于单片机的红外遥控小车设计

单片机系统设计实例 红外遥控小车 专业:信息对抗技术 姓名:吴志飞 学号:1411050121 指导教师:张东阳

目录 1 绪论 (1) 2 系统分析 (2) 2.1系统框架 (2) 2.2电机驱动模块 (3) 2.3 LCD显示模块 (4) 3 系统硬件设计 (5) 3.1主控模块的电路设计 (6) 3.1.1AT89C51单片机的简介 (8) 3.1.2AT89C51管脚功能 (8) 3.2红外遥控模块的电路设计 (9) 3.2.1红外遥控的实现原理 (10) 3.2.2红外发射器 (11) 3.2.3红外接收器 (12) 3.3电机驱动模块的电路设计 (12) 3.4显示模块的电路设计 (13) 4 系统软件设计 (14) 4.1程序代码 (14) 4.2软件流程图 (17) 5 调试与仿真 (18) 5.1在keil中进行调试 (18) 5.2在Proteus中进行仿真 (19) 6 总结 (21) 参考文献 (22) I

沈阳理工大学课程设计说明书 1 绪论 随着计算机、微电子、信息技术的快速进步,智能化技术的开发速度越来越快,,智能化程度越来越高,应用范围也越来越广,包括海洋开发、宇宙探测、工农业生产、军事、社会服务、娱乐等各个领域。智能电动小车系统以迅猛发展的汽车电子为背景,涵盖了控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科。主要由路径识别、角度控制及车速控制等功能模块组成。同时,当今机器人技术发展的如火如荼,其在国防等众多领域的应用广泛开展。神五、神六升天、无人飞船等等无不得益于机器人技术的迅速发展。一些发达国家已把机器人制作比赛作为创新教育的战略性手段,参加者多数为学生,目的在于通过大赛全面培养学生的动手能力、创造能力、合作能力和进取精神,同时也普及智能机器人的知识。从某种意义上来说,机器人技术反映了一个国家综合技术实力的高低,而智能电动小车是机器人的雏形,它的控制系统的研制将有助于推动智能机器人控制系统的发展,同时为智能机器人的研制提供更有利的手段。 本次课设设计的红外遥控智能小车可以分为四大组成部分:红外遥控部分、显示部分、执行部分、控制部分。智能小车可以实现按遥控指示前行,后退,左转和右转。该设计主要通过对系统硬件电路的设计,软件设计和程序的编写,然后通过后期软硬件调试达到设计初衷。 1

无线遥控开关电路图及原理

. 无线遥控开关电路图及原理 随着社会进步,无线遥控开关被大量的使用,无线遥控开关是采用高科技的射频识别技术设计制作,用无线遥控开关设备控制各类灯饰、家电、门、窗帘等家居用品,是一种新型智能化开关,可对室内灯具、家电等进行无线控制,操作简单方便,性能稳定可靠,受到广大消费者喜爱和追捧,下面就是小编对无线遥控开关原理的具体介绍。 > 随着社会不断发展,科技技术也在不断提升,现在无线遥控开关被大量的使用于我们日常生活中各个角落,例如:家庭、酒店、商场、医院、仓库、办公室等场所用于灯饰照明控制及其它用途电器控制,相信大家对于无线遥控开关并不陌生,但大多数人对于无线遥控开关工作原理都不是很了解,下面小编就对无限遥控开关进行具体介绍,希望对大家有所借鉴作用。 在了解无线遥控开关原理之前,我们先来了解一下无线遥控开关功能,无线遥控开关在设计制作上采用射频识别技术,无方向性,与其它同型号产品间不会造成任何影响和干扰,具有高保密性、性能稳定、功耗低、存储量大、使用方便,可以让灯具同时或个别进行开光,开关和遥控器不必配套购买,用户可自由选配,误码率低,抗干扰能力强。 无线遥控开关安装异常简单方便,不需要接零线,也不需要对灯饰电器进行任何改动,可直接替换原有开关,电网停电后再来电,开关会自动处于关闭状态,避免浪费不必要的电能,可以集中控制全家所有的智能遥控开关。在款式设计上也是多种多样,可供选择面非常广泛,可以将无线遥控开关与传统机械开关进行结合使用,方便简单。 无线遥控开关-原理 无线遥控开关是由发射器和接收器两者组合而成,发射器将控制者的控制按键经过编码,调制到射频信号上进行发射出无线信号,也可以说成是一个编码器。而接收器是将接收到的无线信号进行编码信号再解码,得到与控制按键相对应的信号,然后去控制相应的电路工作了,也被称为解码器。随着科技进步无线遥控开关在工业控制和无线智能家居领域都得到了广泛使用。 无线遥控开关-分类 由于科技进步无线遥控开关种类和功能繁多,按传输控制指令信号的载体分可以分为为:无线电遥控、超声波遥控、红外线遥控,按信号的编码方式不同可以分为:频率编码和脉冲编码,按传输通道数可以分为:多通道遥控和单通道,按同一时间能够传输的指令数目不同可以分为:单路和多路遥控,按指令信号对被控目标的控制技术可以分为:开关型比例型遥控。 无线遥控开关-组成 日常比较常用的无线遥控开关由发射和接收两个部分组成,其无线遥控开关的原理也按照发射和接受来分析。发射部分即遥控器与发射模块,遥控器是作为一个整机来独立使用,对外引出有接线桩头,遥控模块被当作一个元件来使用,接收部分即超外差与超再生接收方式,超再生解调电路它实际上是工作在间歇振荡状态下的再生检波电路。 ;.

遥控飞机模型的制作

遥控飞机模型的制作 从人类诞生以来,一直都有一个梦,梦想着能像鸟儿一样飞翔。人类为此伤透了脑筋:为什么鸟儿有翅膀就能飞上天空,人类却不能。为此,我们的祖先制作出了种类繁多的风筝、竹晴蜒、孔明灯和木鸟模型。它们在飞机发明的过程中起了重要的作用。经过一代又一代人的努力。人类终于梦想成真了。 1903年,美国莱特兄弟(哥哥威尔伯,弟弟奥维尔)利用汽油发动机制造的“飞行者”号在美国基蒂霍克成功进行了历史上第一次机械动力飞行,12秒钟飞行了36米。此后在第一次世界大战中,飞机的性能得到迅速改善。1927年,美国飞行员林白曾驾驶“圣路易精神号(Spirit of Saint Louis)”成功飞越纽约和巴黎之间的大西洋,连续飞行5809公里,飞行时间为33小时50分钟。 但是,我国在航空同工业发达的国家相比,还有不少差距。开展航空模型小制作活动,可以使学生了解我国航空发展的历史和现状,激发学生从小立志献身于祖国的航空事业,为四化建设作出贡献。 航空模型的制作需要运用许多的科学知识,通过模型的制作,可以启发学生运用所学知识勇于实践,培养动手能力和创造能力。 初级橡筋动力模型飞机 初级橡筋动力模型飞机是一个比较典型的传统普及项目。通过制作、放飞初级橡筋动力模型飞机,可以对带有动力的自由飞项目有一个初步了解,为进一步学习制作复杂的模型飞机打下一个扎实的基础,是在初级模型滑翔机的基础上学习的延伸。下面让我们来做一架初级橡筋动力模型飞机. 第一节飞机的制作 一、材料工具: 一套初级橡筋动力模型飞机材料。砂纸板、壁纸刀、尖嘴钳、铅笔、尺子、透明胶带、双面胶带、模型快干胶(白乳胶、502胶水均可)。 二、制作过程: 1、制作机翼: 将吹塑纸按图示尺寸裁出左右机翼

直升机的飞行原理

直升机的飞行原理 延直升机旋翼叶片的切向做剖面,可得到一个形状,我们称之为桨型。该形状与机翼翼型(定义与桨型定义类似)相似,均具有较好的气动力特征,即在与空气的相对运动中,能够产生向上的气动升力。与固定翼飞机不同的是,固定翼飞机是通过机翼与气流的直线(这说法不确切,但宏观上说,问题不大,可以这么理解)运动产生上述气动升力。而直升机是通过使旋翼做圆周运动,产生上述气动升力。该气动升力通过旋翼的传载将直升机拉起(飞起来)。 上面已经提到,直升机飞起来需要旋翼的旋转。我们知道,当旋翼旋转的时候,同时将对机身产生一个反方向旋转的反扭矩。为平衡该反扭矩,故设置一个尾梁和一个尾桨,产生一个扭矩去平衡旋翼的反扭矩。 最后,直升机的旋翼,剖面应该是一个桨型(即翼型),通常是上凸下平(或凹)。这个有现成的桨型手册或桨型数据库的。而平面形状来说,是一个长宽比很大的矩形,在桨尖处,为避免激波的产生,有后掠角或弯曲。 旋翼的空气动力特点 (1)产生向上的升力用来克服直升机的重力。即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓直升机下降趋势。 (2)产生向前的水平分力克服空气阻力使直升机前进,类似于飞机上推进器的作用(例如螺旋桨或喷气发动机)。 (3)产生其他分力及力矩对直升机;进行控制或机动飞行,类似于飞机上各操纵面的作用。旋翼由数片桨叶及一个桨毂组成。工作时,桨叶与空气作相对运动,产生空气动力;桨毂则是用来连接桨叶和旋翼轴,以转动旋翼。桨叶一般通过铰接方式与桨毂连接。 旋翼的运动与固定翼飞机机翼的不,因为旋翼的桨叶除了随直升机一同作直线或曲线动外,还要绕旋翼轴旋转,因此桨叶空气动力现象要比机翼的复杂得多。 先来考察一下旋翼的轴向直线运动这就是直升机垂直飞行时旋翼工作的情况,它相当于飞机上螺旋桨的情况。由于两者技术要求不同,旋翼的直径大且转速小;螺旋桨的直径小而转速大。在分析、设计上就有所区别设一旋冀,桨叶片数为k,以恒定角速度Ω绕轴旋转,并以速度 Vo沿旋转轴作直线运动。如果在想象中用一中心轴线与旋翼轴重合,而半径为 r的圆柱面把桨叶裁开(参阅图 2,1—3),并将这圆柱面展开成平面,就得到桨叶剖面。既然这时桨叶包括旋转运动和直线运动,对于叶剖面来说,应有用向速度 (等于Ωr)和垂直于旋转平面的速度(等于 Vo),而合速度是两者的矢量和。显然可以看出(如图2.1—3),用不同半径的圆柱面所截出来的各个桨叶剖面,他们的合速度是不同的:大小不同,方向也不相同。如果再考虑到由于桨叶运动所激起的附加气流速度(诱导

亚超声遥控开关原理

亚超声遥控开关原理 亚超声遥控开关电路主要由直流供电电路,触发信号产生电路,双稳态电路等组成,其电路原理图如下图所示。 工作原理:(1)直流供电电路:由220V交流电压(市电)经电容降压式电路R1、C1 降压后直接送至桥式整流电路VD1~VD4进行整流,再通过滤波电容C2滤波得到20V左右的较平滑的直流电,又经降压电阻R2和滤波电容C3后得近8V左右的直流电(以上电压是指开关“非工作”时的电压,开关“工作”时,以上电压会降低),即为整个电路的直流供电电源。 (2)触发信号产生电路:R3是VT1的偏置电阻,ZD是压电陶瓷片,L 、C4组成并联谐振选频电路,LC并联谐振频率为f0=18KHz,当气囊发出亚超声波时,压电陶瓷片ZD将接收到的亚超声信号转换成相应的电信号,经VT1放大,由VT1的集电极的并联谐振回路选取出18KHz的信号,以排除其它声频的干扰,防止误动作,再通过耦合电容C5送至VD5、R4、VT2、R5、C6构成的放大和整形电路,以尖脉冲形式经R5、C6输出,即产生了能控制双稳态电路的触发信号。 (3)双稳态电路:该电路具有对称性,由于VT3和VT4的性能参数不可能绝对一一样,当VT4的放大能力略好于VT3时,当有尖脉冲输入时,VT4首先导通,Uc 4≈0.3V,促使VT3截止,这是一种稳定状态;当又有尖脉冲输入时,VT4由导通变为截止,VT3由截止变为导通,这又是一种稳定状态。当VT4导通时,Uc 4≈0.3 V,通过R12使VT5截止,Uc5高电平,继电器J两端的电压为0,开关J是“断开”的,发光二极管LED也不发光,即遥控开关处于“非工作”状态。当VT4截止时,Uc4≈8 V,通过R12使VT5饱和导通,Uc 5≈0.3 V,继电器J两端的电压约为1 2V,开关J是“闭合”的,发光二极管LED发光指示,即遥控开关处于“工作”状态,插在遥控开关上的用电设备即可工作。

无线遥控模块T控制原理

无线电遥控,就是利用无线电波对被控对象进行远距离控制,在工业控制、航空航天、家电领域应用广泛。 一、无线遥控模块的构成: 由发射部分和接收部分组成。 发射部分由,按键,编码芯片,315M调制器,功率放大电路等构成 其中编码部分电路由PT2262编码IC来组成,具体电路见图所示。 编码电路原理图

接收部分由无线信号接收电路,解码芯片构成 D0,D1,D2,D3 为按键状态输出端,当某个按键按下后,相应的数据端口就输出高电平,在这几个端口加一级放大就可以驱动继电器,功率三极管,进行负载遥控开关控制。也可以直接连到单片机的I/O脚上,通过单片机采集数据端口状态,然后进行外部控制。 二、编码解码芯片PT2262/PT2272 PT2262/2272是一对带地址、数据编码功能的无线遥控发射/接收芯片。其中发射芯片PT2262-IR将载波振荡器、编码器和发射单元集成于一身,使发射电路变得非常简洁。 接收芯片PT2272的数据输出位根据其后缀不同而不同,数据输出具有“暂存”和“锁存”两种方式,方便用户使用。后缀为“M”为“暂存型”,后缀为“L”为“锁存型”,其数据输出又分为0、2、4、6不同的输出,例如:PT2272-M4则表示数据输出为4位的暂存型无线遥控接

收芯片。 在通常使用中,我们一般采用8位地址码和4位数据码,这时编码芯片PT2262和解码芯片PT2272的第1~8脚为地址设定脚,有三

种状态可供选择:悬空、接正电源、接地三种状态,地址编码不重复度为38=6561组,只有发射端PT2262和接收端PT2272的地址编码完全相同,才能配对使用,遥控模块的生产厂家为了便于生产管理,出厂时遥控模块的PT2262和PT2272的八位地址编码端全部悬空,这样用户可以很方便选择各种编码状态,用户如果想改变地址编码,只要将PT2262和PT2272的1~8脚设置相同即可,例如将发射机的PT2262的第2脚接地,第3脚接正电源,其它引脚悬空,那么接收机的PT2272只要也第2脚接地,第3脚接正电源,其它引脚悬空就能实现配对接收。地址设置跳线如图7所示,用户可以在PCB板上直接将地址引脚(PCB板中间8个过孔焊盘)与L(低电平)或H(高电平)相连,从而实现地址设置。PT2262与PT2272地址设置要完全一样。当两者地址编码完全一致时,接收机对应的D1~D4端输出约4V互锁高电平控制信号,同时VT端也输出解码有效高电平信号。

多用无线遥控开关电路

多用无线遥控开关电路 本遥控开关采用无线电编译码方式,不受方向性限制,直线控制距离≤100m。可控制功率在400W左右的电器的开/关。它由遥控器与接收电路两部分组成。遥控器体积小巧、外形美观,可挂于钥匙串上,随身携带。其上有四个按键,可分别发射四路控制信号。 图1为遥控发射器电路。IC1是采用CMOS技术的低功耗编码发射芯片,~脚是8位3态地址设定脚,每个引脚可以接高电平、低电平或者悬空,从而可提供6561(3的8次方)个地址码,可有效地避免重码。另外,~脚为4位数据引脚,可产生四路控制信号。当任一按键按下时,由IC1形成的与按键对应的编码脉冲串便从脚输出,去调制高频振荡电路,JT1为高频谐振器,它与VT1组成稳定的高频振荡电路。另外,VT1还兼作高频发射,信号通过L1发射出去。 图2、图3分别为高频接收和译码控制电路。图2中天线接收到的信号经VT1高频放大之后进入VT2进行选频,选出与发射器载波频率相同的信号,进入IC1A放大,放大后的信号进入IC1B整形后由Dout输出至图3的Din,再经过IC2A的进一步滤波整形送入PT2272的脚。PT2272是与PT2262配套使用的译码集成电路,它也有8位3态地址引脚,只有与PT2262的地址引脚设置相同时,才能正确译出数据信号,在PT2272的对应输出端输出高电平。D1、R2、R3、C1组成消除按键抖动的电路,以保证遥控操作的可靠性。D1的正端可以接在PT2272的脚至脚之任一处,它们分别与发射器的4个按键对应。C2和R4完成对CD4013的预置,使初次加电时CD4013的输出端为低电平,即受控电器处于断电状态。IC4为带过零触发功能的光电耦合器,当CD4013输出高电平时,光耦工作,同时触发双向可控硅导通,在输出端输出220V电压。采用可控硅作为开关控制可以消除采用继电器产生的噪音,同时整体电路的可靠性也得以提高。接收部分的供电采用阻容降压方式,实现了整个电路的小型化。 本套板全部调试好,不需要任何处理就可工作。安装完毕后,按一下按键,电器通电,再按一下,电器断电。

最新无线遥控开关电路图及原理

__________________________________________________ 无线遥控开关电路图及原理 随着社会进步,无线遥控开关被大量的使用,无线遥控开关是采用高科技的射频识别技术设计制作,用无线遥控开关设备控制各类灯饰、家电、门、窗帘等家居用品,是一种新型智能化开关,可对室内灯具、家电等进行无线控制,操作简单方便,性能稳定可靠,受到广大消费者喜爱和追捧,下面就是小编对无线遥控开关原理的具体介绍。 > 随着社会不断发展,科技技术也在不断提升,现在无线遥控开关被大量的使用于我们日常生活中各个角落,例如:家庭、酒店、商场、医院、仓库、办公室等场所用于灯饰照明控制及其它用途电器控制,相信大家对于无线遥控开关并不陌生,但大多数人对于无线遥控开关工作原理都不是很了解,下面小编就对无限遥控开关进行具体介绍,希望对大家有所借鉴作用。 在了解无线遥控开关原理之前,我们先来了解一下无线遥控开关功能,无线遥控开关在设计制作上采用射频识别技术,无方向性,与其它同型号产品间不会造成任何影响和干扰,具有高保密性、性能稳定、功耗低、存储量大、使用方便,可以让灯具同时或个别进行开光,开关和遥控器不必配套购买,用户可自由选配,误码率低,抗干扰能力强。 无线遥控开关安装异常简单方便,不需要接零线,也不需要对灯饰电器进行任何改动,可直接替换原有开关,电网停电后再来电,开关会自动处于关闭状态,避免浪费不必要的电能,可以集中控制全家所有的智能遥控开关。在款式设计上也是多种多样,可供选择面非常广泛,可以将无线遥控开关与传统机械开关进行结合使用,方便简单。 无线遥控开关-原理 无线遥控开关是由发射器和接收器两者组合而成,发射器将控制者的控制按键经过编码,调制到射频信号上进行发射出无线信号,也可以说成是一个编码器。而接收器是将接收到的无线信号进行编码信号再解码,得到与控制按键相对应的信号,然后去控制相应的电路工作了,也被称为解码器。随着科技进步无线遥控开关在工业控制和无线智能家居领域都得到了广泛使用。 无线遥控开关-分类 由于科技进步无线遥控开关种类和功能繁多,按传输控制指令信号的载体分可以分为为:无线电遥控、超声波遥控、红外线遥控,按信号的编码方式不同可以分为:频率编码和脉冲编码,按传输通道数可以分为:多通道遥控和单通道,按同一时间能够传输的指令数目不同可以分为:单路和多路遥控,按指令信号对被控目标的控制技术可以分为:开关型比例型遥控。 无线遥控开关-组成 日常比较常用的无线遥控开关由发射和接收两个部分组成,其无线遥控开关的原理也按照发射和接受来分析。发射部分即遥控器与发射模块,遥控器是作为一个整机来独立使用,对外引出有接线桩头,遥控模块被当作一个元件来使用,接收部分即超外差与超再生接收方式,超再生解调电路它实际上是工作在间歇振荡状态下的再生检波电路。 收集于网络,如有侵权请联系管理员删除

基于Android的蓝牙遥控小车设计

成绩评定表

课程设计任务书

阐述一种通过手机蓝牙遥控小车行走的软、硬件设计。手机蓝牙作为客户端,小车上的蓝牙模块HC-05作为服务端。客户端采用Eclipse 开发环境,J2ME编程,服务端采用单片机控制。双方通过串口仿真协议进行通信,单片机驱动直流电机控制小车行动。实验结果表明,小车可以接收手机遥控信号并灵活地进行前行、倒退、左转、右转和停止等功能。 关键词:89c52,hc-05,遥控小车,Andriod

目录 1引言 (1) 1.1课题设计目的及意义 (1) 1.1.1设计的目的 (1) 1.1.2设计的意义 (2) 2 方案比较与论证 (2) 2.1无线单元方案与比较 (2) 3 硬件电路设计 (4) 3.1 总体设计 (4) 3.2 单片机模块 (5) 3.2.1 STC89C52简介 (5) 3.2.2 L298N驱动模块及原理介绍 (6) 3.2.3 蓝牙模块 (7) 4 软件设计 (8) 4.1 智能车运动控制程序 (8) 4.2 Android蓝牙客户端设计与实现 (9) 4.2.1 客户端界面设计 (10)

4.2.2 BluetoothCar类设计 (10) 4.2.3 单片机C语言代码 (10) 5 实验结果及分析 (16) 6 心得体会 (17) 参考文献 (17)

1引言 1.1课题设计目的及意义 1.1.1设计的目的 遥控小车起源于美国,由于政府对无线遥控小车研发的资助以及相关资助的推动作用,日本、美国、德国等工业大国在遥控小车技术上占据着明显优势。我国的无线遥控小车研究工作始于20世纪中后期,在国家的863、973等技术发展计划的重点支持下,国内已大范围地进行无线遥控小车的研究。在研发应用方面取得了重要发展,但是与国际先进还存在一定的差距。无线遥控实现方法包括蓝牙、红外、射频几种,其中蓝牙技术具有一定优势。目前在信息家电方面应用正在铺。遥控小车起源于美国,由于政府对无线遥控小车研发的资助以及相关资助的推动作用,日本、美国、德国等工业大国在遥控小车技术上占据着明显优势。我国的无线遥控小车研究工作始于20世纪中后期,在国家的863、973等技术发展计划的重点支持下,国内已大范围地进行无线遥控小车的研究。在研发应用方面取得了重要发展,但是与国际先进还存在一定的差距。无线遥控实现方法包括蓝牙、红外、射频几种,其中蓝牙技术具有一定优势。目前在信息家电方面应用正在铺开。各种家电共用遥控,并可组网与公众互联网相接,共享有用信息。目前蓝牙技术实现无线遥控的短板在于传输距离短和芯片

教你制作航模

教你制作你的航模 可爱的自製小飞机(翼展大慨只有60CM),珍珠版翼面,370马达直驱(有红色散热片),速度非常快,据说飞起来非常稳定,抗风性又佳,便宜又简易,自己也想DIY一下,不知各位是否有设计图,或是把照片POST上来,以造福飞友 本帖是关于遥控飞机制作原理方面的知识,如果您需要模型飞机图纸及制作资料,可以在本版块(模型图纸)查找,这里向您提供上万张的遥控飞机制作图纸及大量的制作资料。 主翼使用1mm珍珠板及5x8mm木条製成,机身与安定面為3mm珍珠板,全配重约220~230g 300直驱马达+4025桨(也可使用4040桨,很猛但也很伤电池)+7.4V 1800 mA鋰电 DIY小飞机製作 目前作品概述: 机身长度:35cm 机翼:宽10cm 长45cm 全配重:225g 马达:350 桨:4x2.5 电池:7.4 1800

速度概况:极佳 无动力滑翔降落:平稳 马达是用束带直接绑在木棒上 电池由下方放入 照片二 1. 1mm珍珠版 2.肋版间隔5CM,肋版下面使用双面胶,上面使用速乾型保丽龙胶(可用环氧树脂)

3.下面加3mm炭纤棒,以(可使用木条代替) 4.下缘使用1mm巴尔沙木加双面胶带。 原机的副翼控制是装在上方,我改為下方 这是完成后的图片 看看多重 全配约45g

此机「蚊子60」个人认為不太适合初学者。 製作机身 1.接合部份使用双面胶带 2.使用有顏色的「四*胶带」补强及造型 3.放电池的地方加投影片补强 机身组合完成

1.马达使用束带绑住 2.控製為升降及副翼 3.马达有下偏角 完成了! 1.蚊子机身 2.蚊子机翼 3.蚊子发射机 这样小小一台,走到那里带到那里!又不容易被发现 组合起来的样子

飞机各个系统的组成及原理

一、外部机身机翼结构系统 二、液压系统 三、起落架系统 四、飞机飞行操纵系统 五、座舱环境控制系统 六、飞机燃油系统 七、飞机防火系统 一、外部机身机翼结构系统 1、外部机身机翼结构系统组成:机身机翼尾翼 2、它们各自的特点和工作原理 1)机身 机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。 2)机翼 机翼是飞机上用来产生升力的主要部件,一般分为左右两个面。 机翼通常有平直翼、后掠翼、三角翼等。机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。近来先进飞机还采用了边条机翼、前掠机翼等平面形状。

左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。 即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。襟翼平时处于收上位置,起飞着陆时放下。 3)尾翼 尾翼分垂直尾翼和水平尾翼两部分。 1.垂直尾翼 垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。 通常垂直尾翼后缘设有方向舵。飞行员利用方向舵进行方向操纵。当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。同样,蹬左舵时,方向舵左偏,机头左偏。某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。 2.水平尾翼 水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生

数字电路课程设计--- 遥控开关设计

数字电路课程设计--- 遥控开关设计

中国地质大学长城学院 电气工程及其自动化 课程设计 题目数字电子课程设计 遥控开关设计 系别信息工程系 学生姓名 专业电气工程及其自动化 学号 指导教师 职称高级工程师 2011年11月21日

目录 摘要 (2) 一、实验内容 (3) 1、概述 (3) 2、课程设计任务及要求 (3) 3、系统设计 (3) 二、元件及工具说明 (5) (1)继电器 (6) (2)稳压管的工作原理 (6) 三、安装调试过程 (7) 四、故障分析 (8) 五、总结 (8) 心得体会 (8)

摘要 随着无线通信技术的发展,目前,一些只由微控制器和集成射频芯片构成的无线通信模块不断推出,这种微功率短距离无线数据传输技术在工业、民用等领域得到应用广泛。无线射频技术作为本得到业界的高度重视。该技术利用射频方式进行非接触双向通信,可以自动识别目标对象并获取相关数据,具有精度高、适应环境能力强、抗干扰强、操作快捷等许多优点。随着无线电技术的不断成熟,大量遥控设备已经在人们的生活中应用,让我们体会到许多的方便。 随着无线电技术的不断成熟,各种遥控设备已大量地在人们的生活中应用,让我们体会到了许多的方便。本文介绍一款2路遥控开关的制作,采用了数据加密处理,具有可靠性好,不会产生误动作,密码可设定,电路主要由供电部分、无线接收部分、数据解码部分和开关控制部分组成。220V交流市电接在进线端子上,经C1、R1、VD1-VD4组成的降压整流电路后,在CW1上形成24V左右的直流电压,为电路提供工作电源。当接收模块IC2收到遥控器发射的无线电编码信号后,就会在其输出端输出一串控制数据码,这个编码信息经专用解码集成电路IC1解码后,相应继电器吸合,从而点亮电灯,达到遥控控制电灯的目的。 关键词:继电器无线电遥控

遥控小汽车电路图

自制无线遥控小汽车电路图 PT2262 无线发射PT2272 无线接收

T10A发射模块 XY-R04A接收模块

无线遥控发射和接受原理图 编码芯片PT2262 发出的编码信号由:地址码、数据码、同步码组成一个完整的码字,解码芯片PT2272 接收到信号后,其地址码经过两次比较核对后,VT 脚才输出高电平,与此同时相应的数据脚也输出高电平,如果发送端一直按住按键,编码芯片也会连续发射。当发射机没有按键按下时,PT2262 不接通电源,其17 脚为低电平,所以315MHz 的高频发射电路不工作,当有按键按下时,PT2262 得电工作,其第17 脚输出经调制的串行数据信号,当17 脚为高电平期间315MHz 的高频发射电路起振并发射等幅高频信号,当17 脚为低平期间315MHz 的高频发射电路停止振荡,所以高频发射电路完全收控于PT2262 的17 脚输出的数字信号,从而对高频电路完成幅度键控(ASK 调制)相当于调制度为100%的调幅。

PT2262和PT2272除地址编码必须完全一致外,振荡电阻还必须匹配,一般要求译码器振荡频率要高于编码器振荡频率的2.5~8倍,否则接收距离会变近甚至无法接收,随着技术的发展市场上出现一批兼容芯片,在实际使用中只要对振荡电阻稍做改动就能配套使用。在具体的应用中,外接振荡电阻可根据需要进行适当的调节,阻值越大振荡频率越慢,编码的宽度越大,发码一帧的时间越长。市场上大部分产品都是用2262/1.2M=2272/200K 组合的,少量产品用2262/4.7M=2272/820K。 解码接收模块包括接收头和解码芯片PT2272两部分组成。接收头将收到的信号输入PT2272的14脚(DIN),PT2272再将收到的信号解码。 接收板工作电压为DC 5V,接收灵敏度:-103dBm ,尺寸(mm):49*20*7 ,工作频率:315MHz,工作电流:5mA ,编码类型:固定码(板上焊盘跳接设置) 应用说明:与各类型遥控器配合使用,解码输出后进行相应控制,在通常使用中,我们一般采用8位地址码和4位数据码,这时编码芯片PT2262和解码芯片PT2272的第1~8脚为地址设定脚,有三种状态可供选择:悬空、接正电源、接地三种状态,地址编码不重复度为38=6561组,只有发射端PT2262和接收端PT2272的地址编码完全相同,才能配对使用,遥控模块的生产厂家为了便于生产管理,出厂时遥控模块的PT2262和PT2272的八位地址编码端全部悬空,这样用户可以很方便选择各种编码状态,用户如果想改变地址编码,只要将PT2262和PT2272的1~8脚设置相同即可,例如将发射机的PT2262的第2脚接地,第3脚接正电源,其它引脚悬空,那么接收机的PT2272只要也第2脚接地,第3脚接正电源,其它引脚悬空就能实现配对接收。当两者地址编码完全一致时,接收机对应的D1~D4端输出约4V互锁高电平控制信号,同时VT端也输出解码有效高电平信号。 电机驱动L298N

直升机操纵原理与固定翼飞机的对比,让你分分钟明白

直升机操纵原理与固定翼飞机的对比,让你分分钟明白 直升机的操纵原理,与固定翼飞机完全不同。先做个对比,以单旋翼带尾桨直升机为例。固定翼飞机升力以及操纵力矩来源:前飞动力:由发动机直接喷气或螺旋桨产生拉力。升力:由机翼产生。俯仰力矩:由水平尾翼活动舵面产生。滚转力矩:由副翼产生。偏转力矩:由垂直尾翼的活动舵面产生直升机各种力和力矩的来源:前飞动力:由旋翼桨盘前倾产生。升力:由旋翼产生。俯仰力矩:由旋翼桨盘前后倾斜产生。滚转力矩:由旋翼桨盘左右倾斜产生。偏转力矩:由尾桨拉力大小变化产生。结论:两者的动力和操纵力矩产生方式完全不同。固定翼飞机操纵力矩来自于各个可动舵面。直升机除了偏转力矩之外,其余动力和操纵力矩全部来自旋翼。这就自然导致操纵原理与操纵方式的大相径庭。再对比一下飞行员直接面对的操纵设备:固定翼飞机:右手:驾驶杆。(大型机的驾驶盘先忽略吧)左手:油门杆。双脚:脚蹬。直升机:右手:驾驶杆(真名:周期变距杆)左手:总距油门杆。双脚:脚蹬。驾驶杆VS 周期变距杆他们长得样子都是一样的,产生的操纵效果也是一样的,都是用来控制航空器的倾斜和俯仰状态。向前推杆是低头,向后拉杆是抬头,向左压杆是左滚转,向右压杆是右滚转。效果一样的,可是原理不一样。固定翼飞机:驾驶杆的左右运动,带动的是机翼外侧的副翼,前后运动,带动的

是尾部的水平尾翼。直升机:驾驶杆的运动,通过液压动作筒,带动自动倾斜器的不动环向驾驶杆运动的方向倾斜。自动倾斜器上方的动环在跟随旋翼旋转的同时,跟随不动环倾斜,带动变距拉杆运动,使所有桨叶的迎角周期性改变,产生强制挥舞,整个桨盘向驾驶杆运动的方向倾斜,产生操纵力矩。没有接触过直升机原理的话可能不太好理解,只要记住驾驶杆向哪里运动,上面的大桨盘就朝哪里倾斜就好了。油门杆VS总距油门杆固定翼飞机:油门,就是单纯的油门,直接控制发动机的功率,决定动力的大小。直升机:油门实际上有两个,一个显形的,一个隐形的。显形的那个,就是和固定翼飞机一样的油门杆,一般是在驾驶室顶棚的上方,只是起动的时候用,操纵的时候就不用了。隐形的那个,就是总距油门杆了。它的操纵方式是上提和下放。上提总距杆时,通过液压动作筒,带动自动倾斜器的不动环整体上升,动环跟随上升,带动变距拉杆运动,使所有桨叶的迎角同时增大,每片桨叶的升力都增加,导致整个旋翼的拉力增加。上提总距杆的同时,还有一根钢索,连接到燃油调节器,增大活门开度,提升发动机功率,用来在总桨距提升导致旋翼旋转阻力增大的同时,增加动力维持恒定的旋翼转速。下放总距杆的动作与前面相反。因为它带动的是所有桨叶的桨距,所以叫做总桨距,简称总距。有一个概念需要明确一下,直升机旋翼的旋转速度在正常工作状态下是相对恒定的,增减功率靠

无线遥控开关制作

无线遥控开关制作 [日期:2008-06-27 ] [来源:net 作者:佚名] [字体:大中小] (投递新闻) 1、电路工作原理 电路原理图见图1。电路主要由供电部分、无线接收部分、数据解码部分和开关控制部分组成。220V交流市电接在进线端子上,经C1、R1、VD1、VD2组成的降压整流电路后,在CW1上形成9V左右的直流电压,为电路提供工作电源。9V直流电压经三端稳压集成电路IC2稳压后,在其输出端输出稳定的5V工作电压,作为无接接收模块和解码电路的工作电源。 平时,IC1的11脚输出低电平,双向可控硅关断,当接收模块SH9902收到遥控器发射的无线电编码信号后,就会在其输出端输出一串控制数据码,这个编码信息经专用解码集成电路IC1解码后,在数据输出端输出相应的控制数据,本文介绍的数据信息为有效时D2输出为高电平,这个高电平经R2输入到双向可控硅的控制极,使其导通,从而点亮电灯;当无线接收部分收到的数据信息为D2数据为0时,由于双向可控硅控制端失去控制电压而使其关断,从而达到遥控控制电灯的目的。 图 1

根据电路原理图,我们设计的PCB板图见图2: 图2 2、调试与安装 这款无线遥控开关制作比较简单,所有元器件参数我们都测试完成,读者只要按我们提供的元件参数安装便可完成。在制作中,先将阻容元件等焊上,然后焊上集成电路插座,最后焊上无线接收模块SH9902,78L05先不焊。 有条件的网友可用外接5V直流电源对无线接收部分进行调试,插上IC1,将负极接于电路中的地,+5V接于78L05的输出端,万用表直流电压档测量IC1第14脚电压,当按动遥控器时,每按一次,14脚电压应有时显的变化,否则就说明无线接收模块没有正常工作,查看接收模块有无插反等,如正常,再测IC1第17脚对地电压,按住遥控器时,这个脚的电压应为高电平输出,否则检查IC1有无插反,R4是否焊接可靠等,另外一点需要说明的是,有些制作者在焊集成电路插座时,由于焊接技术不熟练,将1到8脚的地址端与地或高电平相碰,无意中对解码芯片进行了编码,造成发射端与接收端地址密码不统一而无法解码,关于如何进行地址编码,我们在下面的文章中进行介绍;最后测11脚电压,当按一下关按钮时,这个脚的电压应为0,按一下开按钮时应为高电平。 市电供电部分的调试:将电源线接在接线端子上,万用表负端接地,正表笔接78L05的输入端,查看电压是否为9V左右,否则请检查元件有无焊反等。由于电路采用市电直接供电,制作时须特别注意安全,所有线路板上的导电部分都不要用手去碰,否则容易发生触电事故。有条件的话最好通过1:1的隔离变压器进行调试。 经过以上两部工作后,如各项指标都正常,就将78L05焊上,注意不要焊反!全部元件安装好后,将整块线路板装于外壳中,然后装上固定螺丝,一款遥控开关就制作完成了。接下

一款遥控车的电路剖析电路图

一款遥控车的电路剖析电路图 雷奇威遥控玩具赛车在市场上的拥有量较大,现根据产品将其电路剖析给大家,供维修时参考。 该车采用台湾瑞昱公司生产的专用于遥控车模的CMOS大规模集成电路TX-2/RX-2。该集成电路具有5种控制功能,即前进、后退加速、左转和右转等。由于采用了编码发射及解码接收电路,所以具有较高的抗干扰性能。 图1为遥控电路,当某控制脚接地后,此脚所对应的功能选通,并由锁存电路锁存,锁存信号控制编码电路进行编码,产生对应控制功能的编码信号。由Q2及XT等产生的载波信号受到从{8}脚输出的编码信号的调制后,再经Q1放大发射。{7}脚为带载波编码信号输出端,{8}脚为不带载波编码信号的输出端。TX-2中的R7为振荡电阻,LED为电源兼发射指示灯。 图2为接收机电路,在发射端发出的高频信号经接收天线接收,Q1、L2、C2、C3等构成的超再生接收电路,L2、C2为并联谐振回路,其作用是选频,C3为超再生正反馈电容,调整L2可改变接收频率。R1、R2、C5决定超再生的熄灭电压。接收信号经R4、C7送入译码电路RX-2的{14}脚进行放大,放大后的信号由{1}脚输出经R8送入译码信号输出端{3}脚进行译码。当译码电路将收到的信号译码后,若是前进信号,则{11}脚输出高电平,Q11导通→Q12、Q13分别导通,+4。5V等经Q12→MA→MB→Q13→地,电机正转,车子前进,其他功能依此类推,不再赘述。R9为振荡电阻。RX-2中的{6}、{7}、{10}、{11}、{12}脚分别为右转、左转、后退、前进、加速等功能的输出端。R20、D1、C1、C14组成简单的稳压电路,为RX-2提供稳定的工作电压,D2为隔离二极管。 为使该车更加美观逼真,笔者进行了小小的改进,如图2中虚线所示。购两只赛车专用小灯泡,两只LED按图安装,小灯泡作遥控车的前大灯使用,LED为倒车灯。当车子前进时,大灯亮,LED反偏不亮;倒车时在前大灯亮着的同时,LED为正偏也亮起来作倒车灯使用。经如此改装后,夜晚玩车时,更为有趣。

电动遥控飞机教案

遥控飞机活动教案 辅导教师:____________________________

领航者电动遥控飞机 (教案) 课题电动遥控飞机模型飞机课时2课时 教学目标知识目标了解遥控模型飞机的工作原理,能独立制作一 架电动遥控模型飞机 情感目标启发学生运用所学知识勇于实践 技能目标培养动手能力和创造能力 材料一套电动遥控模型飞机材料 教学内容电动遥控飞机是由电池充电带动电机运转来提供能量飞行的一种模型。今天我们要制作出一架电动遥控模型飞机。 学生结合套材中的图纸和教材内容,组装飞机模型 (具体过程见教材) 试飞 竞赛。 反思这款模型装配相对简单,重要的是图纸的阅读及遥控操作的熟练掌握程度

一、模型飞机介绍 本次训练选用领航者电动遥控飞机,该模型飞机结构、性能简单介绍如下: (一)机翼上单翼凹凸翼型,具有良好的横侧安定性和滑翔性能。 (二)机头舱内安置遥控接收机、伺服舵机、电源和动力机,机头后上方是高 架机翼翼台。模型重心远远低于机翼位置,增加模型的横侧安定性。接收天线和尾舵操纵线,均从尾杆中穿引到机身后端。 (三)起落架2mm直径弹簧钢丝弯制,两个橡塑轮胎小轮,可在地面滑跑起飞。(四)遥控系统分别控制电机调速和左右尾舵。操纵方向杆时,左右尾舵一上一下反向偏转,双舵提供转弯力矩,使模型具有良好、灵敏的方向操纵性,可以实 现小半径转弯。多模式的操纵功能设计,既使初学者能够安全练习飞行,又使 飞行高手能够尽兴,拓宽了一架飞机的适飞范围。领航者电动遥控模型飞机优良的设计和飞行性能,把它作为我们遥控模型飞机入门训练的首选机种,是非常合适的。 二、基本飞行原理 (一)飞机的升力飞机的升力来自空气动力,是作用于机翼的空气动力在垂 直于飞行速度方向的分力(平行于飞行速度方向的分力为阻力),向上为正。机 翼和空气发生相对运动时,气流对机翼上下表面产生大小不等的压强,上下翼面的压强差形成了托举机翼以及飞机的升力。 机翼上下表面产生压强差的条件有两个:一是翼型,即机翼横剖面的形状; 二是飞行迎角,即机翼相对迎面气流的夹角。迎角是以连接翼型的前缘、后缘两点的翼弦和相对气流速度方向的夹角来度量的。 (二)飞机的操纵对尾翼舵面的操纵的实质,是改变了尾翼的翼型和迎角,使尾翼的升力大小、方向发生变化,导致尾翼对飞机重心的各向力矩(方向 力矩、俯仰力矩)发生变化,从而达到改变飞机飞行姿态的目的。 三、飞机的操纵技法 (一)发射机的握持方法 大拇指指肚轻轻按摇杆顶端,手指自然弯曲,避免关节僵直、指尖上跷。两手其余四指托在发射机两侧下面。左手食指或中指指肚按在调速滑钮上。

直升机飞行原理

直升机与旋翼机的飞行原理 直升机的飞行原理 1. 概况 与普通飞机相比,直升机不仅在外形上,而且在飞行原理上都有所不同。一般来讲它没有固定的机翼和尾翼,主要靠旋翼来产生气动力。这里所说的气动力既包括使机体悬停和举升的升力,也包括使机体向前后左右各个方向运动的驱动力。直升机旋翼的桨叶剖面由翼型构成,叶片平面形状细长,相当于一个大展弦比的梯形机翼,当它以一定迎角和速度相对于空气运动时,就产生了气动力。桨叶片的数量随着直升机的起飞重量而有所不同。重型直升机的起飞重量在20t以上,桨叶的数目通常为六片左右;而轻、小型直升机,起飞重量在以下,一般只有两片桨叶。 直升机飞行的特点是: (1) 它能垂直起降,对起降场地要求较低; (2) 能够在空中悬停。即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓下降趋势; (3) 可以沿任意方向飞行,但飞行速度较低,航程相对来说也较短。 2. 直升机旋翼的工作原理 直升机旋翼绕旋翼转轴旋转时,每个叶片的工作类同于一个机翼。旋翼的截面形状是一个翼型,如图所示。翼型弦线与垂直于桨毂旋转轴平面(称为桨毂旋转平面)之间的夹角称为桨叶的安装角,以表示,有时简称安装角或桨距。各片桨叶的桨距的平均值称为旋翼的总距。驾驶员通过直升机的操纵系统可以改变旋翼的总距和各片桨叶的桨距,根据不同的飞行状态,总距的变化范围约为2o~14o。

气流V 与翼弦之间的夹角即为该剖面的迎角。显然,沿半径方向每段叶片上产生的空气动力在桨轴方向上的分量将提供悬停时需要的升力;在旋转平面上的分量产生的阻力将由发动机所提供的功率来克服。 旋翼旋转时将产生一个反作用力矩,使直升机机身向旋翼旋转的反方向旋转。前面提到过,为了克服飞行力矩,产生了多种不同的结构形式,如单桨式、共轴式、横列式、纵列式、多桨式等。对于最常见的单桨式,需要靠尾桨旋转产生的拉力来平衡反作用力矩,维持机头的方向。使用脚蹬来调节尾桨的桨距,使尾桨拉力变大或变小,从而改变平衡力矩的大小,实现直升机机头转向(转弯)操纵。 3. 直升机旋翼的操纵 直升机的飞行控制与飞机的飞行控制不同,直升机的飞行控制是通过直升机旋翼的倾斜实现的。直升机的控制可分为垂直控制、方向控制、横向控制和纵向控制等,而控制的方式都是通过旋翼实现的,具体来说就是通过旋翼桨毂朝相应的方向倾斜,从而产生该方向上的升力的水平分量达到控制飞行方向的目的。 直升机体放在地面时,旋翼受其本身重力作用而下垂。发动机开车后,旋翼开始旋转,桨叶向上抬,直观地看,形成一个倒立的锥体,称为旋翼锥体,同时在桨叶上产生向上的升力。随着旋翼转速的增加,升力逐渐增大。当升力超过重力时,直升机即铅垂上升(图;若升力与重力平衡,则悬停于空中;若升力小于重力,则向下降落。 旋转旋翼桨叶所产生的拉力和需要克服阻力产生的阻力力矩的大小,不仅取决于旋翼的转速,而且取决于桨叶的桨距。从原理上讲,调节转速和桨距都可以调节拉力的大小。但是 桨毂旋转面 桨毂旋转轴线 前缘 后缘 b ? α V 图 直升机的旋翼 (a) (b)

相关文档
最新文档