现代数字信号处理及应用仿真题答案

现代数字信号处理及应用仿真题答案
现代数字信号处理及应用仿真题答案

仿真作业

姓名:李亮

学号:S130101083

4.17程序

clc;

clear;

for i=1:500

sigma_v1=0.27;

b(1)=-0.8458;

b(2)=0.9458;

a(1)=-(b(1)+b(2));

a(2)=b(1)*b(2);

datlen=500;

rand('state',sum(100*clock));

s=sqrt(sigma_v1)*randn(datlen,1);

x=filter(1,[1,a],s);

%%

sigma_v2=0.1;

u=x+sqrt(sigma_v2)*randn(datlen,1);

d=filter(1,[1,-b(1)],s);

%%

w0=[1;0];

w=w0;

M=length(w0);

N=length(u);

mu=0.005;

for n=M:N

ui=u(n:-1:n-M+1);

y(n)=w'*ui;

e(n)=d(n)-y(n);

w=w+mu.*conj(e(n)).*ui;

w1(n)=w(1);

w2(n)=w(2);

ee(:,i)=mean(e.^2,2);

end

end

ep=mean(ee');

plot(ep);

xlabel('迭代次数');ylabel('MSE');title('学习曲线'); plot(w1);

hold;

plot(w2);

仿真结果:

步长0.015仿真结果

0.10.20.30.4

0.50.60.7迭代次数

M S E

学习曲线

步长0.025仿真结果

步长0.005仿真结果

4.18 程序

data_len = 512; %样本序列的长度

trials = 100; %随机试验的次数

A=zeros(data_len,2);EA=zeros(data_len,1);

B=zeros(data_len,2);EB=zeros(data_len,1);

for m = 1: trials

a1 = -0.975;

a2 = 0.95;

sigma_v_2 =0.0731;

v = sqrt(sigma_v_2) * randn(data_len, 1, trials);%产生v(n)

u0 = [0 0];

num = 1;

den = [1 a1 a2];

Zi = filtic(num, den, u0); %滤波器的初始条件

u = filter(num, den, v, Zi); %产生样本序列u(n)

%(2)用LMS滤波器来估计w1和w2

mu1 = 0.05;

mu2 = 0.005;

w1 = zeros(2, data_len);

w2 = zeros(2, data_len);

e1 = zeros(data_len, 1);

e2 = zeros(data_len, 1);

d1 = zeros(data_len, 1);

d2 = zeros(data_len, 1);

%LMS迭代过程

for n =3 :data_len - 1

w1( :, n+1) = w1( :, n) + mu1 * u(n-1 : -1: n-2, : , m) * conj(e1(n));

w2( :, n+1) = w2( :, n) + mu2 * u(n-1 : -1: n-2, : , m) * conj(e2(n));

d1(n+1) = w1( : , n+1)' * u(n: -1: n-1, :, m);

d2(n+1) = w2( : , n+1)' * u(n: -1: n-1, :, m);

e1(n+1) = u(n+1, : ,m) - d1(n+1);

e2(n+1) = u(n+1, : ,m) - d2(n+1);

end

A = A + conj(w1)';

EA = EA +e1.^2;

B = B + conj(w2)';

EB = EB + e2.^2;

end

%剩余均方误差和失调参数

wopt=zeros(2,trials);

Jmin=zeros(1,trials);

sum_eig=zeros(trials,1);

for m=1:trials;

rm=xcorr(u(:,:,m),'biased');

R=[rm(512),rm(513);rm(511),rm(512)];

p=[rm(511);rm(510)];

wopt(:,m)=R\p;

[v,d]=eig(R);

Jmin(m)=rm(512)-p'*wopt(:,m);

sum_eig(m)=d(1,1)+d(2,2);

end

sJmin=sum(Jmin)/trials;

e1_100trials_ave=sum(e1)/trials;

e2_100trials_ave=sum(e2)/trials;

Jex1=e1_100trials_ave-sJmin;

Jex2=e2_100trials_ave-sJmin;

sum_eig_100trials=sum(sum_eig)/100;

Jexfin=mu1*sJmin*(sum_eig_100trials/(2-mu1*sum_eig_100trials)); Jexfin2=mu2*sJmin*(sum_eig_100trials/(2-mu2*sum_eig_100trials)); M1=Jexfin/sJmin

M2=Jexfin2/sJmin

figure(1);

plot(A/trials);hold on;

plot(conj(w1)');

xlabel('迭代次数');ylabel('权向量');title('步长为0.05权向量收敛曲线');

figure(2);

plot(B/trials);hold on;

plot(conj(w2)');

xlabel('迭代次数');ylabel('权向量');title('步长为0.005权向量收敛曲线');

figure(3);

plot(EA/trials,'*');hold on;

plot(EB/trials,'-');

xlabel('迭代次数');ylabel('均方误差');title('步长分别为0.05和0.005学习曲线'); 仿真结果

失调参数

M1= 0.0545 M2= 0.0052

4.19

程序

clear all

%产生观测信号和期望信号

trials = 100; %随机试验的次数

data_len = 1000; %样本数目

n =1 : data_len;

A1 = zeros(data_len, 2);

EA1 = zeros(data_len, 1);

for i = 1: trials

sigma_v_2 = 0.5;

phi = 2 * pi * rand(1, 1); %随机相位

signal = sin(pi/2 * n' +phi); %信号s(n)

u = signal + sqrt (sigma_v_2) * randn(data_len, 1); %观测信号u(n)

d = 2 * cos(pi/2 * n' +phi); %期望响应信号d(n)

%LMS迭代算法

mu = 0.015;

M = 2;

w = zeros(M,data_len);

e = zeros(data_len,1);

y = zeros(data_len,1);

for m = 2: data_len-1

w(:, m + 1) = w(: , m) + mu * u(m: -1: m - 1) * conj(e(m));

y(m + 1) = w(: , m + 1)' * u(m + 1:-1: m);

e(m + 1) = d(m + 1) - y(m + 1);

end

A1 = A1 + conj(w)';

EA1 = EA1 +e.^2;

end

figure(1);

plot(e);

xlabel('迭代次数');ylabel('均方误差');title('单次实验学习曲线');

figure(2);

plot(EA1/trials);

xlabel('迭代次数');ylabel('均方误差');title('100次独立试验学习曲线');

figure(3);

plot(A1/trials);hold on;

plot(conj(w)');

xlabel('迭代次数');ylabel('权向量');title('权向量收敛曲线'); 仿真结果:

5.10

(1)

247.04846.5783 46.578347.0487

R

??=????

(2)

347.048746.578346.1125 46.578347.048746.5783 46.112546.578647.0487

R

??

??=??

????

(3) 特征值分解

eig(R2)=diag{0.4704,93.6270}

Eig(R3)=diag{0.3148,0.9362,139.8951}

特征值扩展:

X(R2)=199.0370

X(R3)=444.4107

(4)程序

clear all

clc;

L=10000;

sigma_v1=0.93627;

A1 = zeros(L, 2);

EA1 = zeros(L, 1);

for i=1:100

v=sqrt(sigma_v1)*randn(L,1);

a1=-0.99;

u(1)=v(1);

for k=2:L

u(k)=-a1*u(k-1)+v(k);

end

% u=u(500:end);

M=2;

w(1,:)=zeros(1,M);

e(1)=u(1);

mu=0.001;

uu=zeros(1,M);

w(2,:)=w(1,:)+mu*e(1)*uu;

uu=[u(1) uu(1:M-1)];

dd=(w(2,:)*uu')';

e(2)=u(2)-dd;

for k=3:L

w(k,:)=w(k-1,:)+mu*e(k-1)*uu;

uu=[u(k-1) uu(1:M-1)];

dd=(w(k,:)*uu')';

e(k)=u(k)-dd;

end

A1 = A1 + conj(w);

EA1 = EA1 +(e.^2)';

end

figure(1);

plot(EA1/100);

xlabel('迭代次数');ylabel('均方误差');title('迭代500次,步长0.001');

figure(2);

plot(A1/100);hold on;

plot(conj(w));

xlabel('迭代次数');ylabel('权向量');title('权向量收敛曲线');

5.11

clear all

clear;

clc;

for i=1:1500

N=1000;

M=5;

L=2;

h=[0.389 1 0.389];

sigma=1e-3;

vn=sqrt(sigma)*randn(2*M+N,1); H=zeros(2*M+1,2*M+L+1);

for k=1:2*M+1

H(k,k:1:k+L)=h;

end

s=randsrc(2*M+L+N,1);

S=zeros(2*M+L+1,N);

V=zeros(2*M+1,N);

for k=1:N

S(:,k)=s(2*M+L+k:-1:k);

V(:,k)=vn(2*M+k:-1:k);

end

U=H*S+V;

dn=S(M+L+1,:);

if (i<=500)

mu=0.01;

elseif (i>500&&i<=1000)

mu=0.025;

else

mu=0.05;

end

a=size(U);

M=a(1);

N=a(2);

err=zeros(N,1);

w=zeros(M,N);

w((M-1)/2+1,1)=1;

err(1)=dn(1)-w(:,1)'*U(:,1);

for k=1:N-1

w(:,k+1)=w(:,k)+mu*U(:,k)*conj(err(k)); err(k+1)=dn(k+1)-w(:,k+1)'*U(:,k+1);

end

if (i<=500)

ee1(:,i)=mean(abs(err).^2,2);

elseif (i>500&&i<=1000)

ee2(:,i)=mean(abs(err).^2,2);

else

ee3(:,i)=mean(abs(err).^2,2);

end

end

ep1=mean(ee1');

ep2=mean(ee2');

ep3=mean(ee3');

figure(1);

plot(ep1);

hold on;

plot(ep2);

hold on;

plot(ep3)

xlabel('μü′ú′?êy');ylabel('?ù·??ó2?');

现代数字信号处理及其应用——LMS算法结果及分析

LMS 算法MATLAB 实现结果及其分析 一、LMS :为课本155页例题 图1.1:LMS 算法学习曲线(初始权向量[]T 00w ?=) 图1.2滤波器权系数迭代更新过程曲线(步长075.0=μ) 图1.3滤波器权系数迭代更新过程曲线(步长025.0=μ)图1.4滤波器权系数迭代更新过程曲线(步长015.0=μ) 分析解释: 在图1.1中,收敛速度最慢的是步长为015.0=μ的曲线,收敛速度最快的是步长075.0=μ的曲线,所以可以看出LMS 算法的收敛速度随着步长参数的减小而相应变慢。图1.2、1.3、1.4分别给出了步长为075.0=μ、025.0=μ、025.0=μ的滤波器权系数迭代更新过程曲线,可以发现其不是平滑的过程,跟最抖下降法不一样,体现了其权向量是一个随机过程向量。

LMS2:为课本155页例题,156页图显示结果 图2.1:LMS 算法学习曲线(初始权向量[]T 00w ?=) 图2.2滤波器权系数迭代更新过程曲线(步长025.0=μ) 图2.3滤波器权系数迭代更新过程曲线(步长025.0=μ)图2.4最陡下降法权值变化曲线(步长025.0=μ) 分析解释: 图2.1给出了步长为025.0=μ的学习曲线,图2.2给出了滤波器权向量的单次迭代结果。图2.3给出了一 次典型实验中所得到的权向量估计()n w ?=,以及500次独立实验得到的平均权向量()}n w ?E{=的估计,即()∑==T t n w T 1 t )(?1n w ?,其中)(?n w t 是第t 次独立实验中第n 次迭代得到的权向量,T 是独立实验次数。可以发现,多次独立实验得到的平均权向量()}n w ?E{=的估计平滑了随机梯度引入的梯度噪声,使得其结果与使用最陡下降法(图2.4)得到的权向量趋于一致,十分接近理论最优权向量[]T 7853.08361.0w 0-=。 LMS3:为课本172页习题答案

数字信号处理习题集(附答案)

第一章数字信号处理概述 简答题: 1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用? 答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称为“抗混叠”滤波器。 在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。 判断说明题: 2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。 () 答:错。需要增加采样和量化两道工序。 3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。() 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。故离散时间信号和系统理论是数字信号处

理的理论基础。 第二章 离散时间信号与系统分析基础 一、连续时间信号取样与取样定理 计算题: 1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。 (a ) 如果kHz T rad n h 101,8)(=π截止于,求整个系统的截止频 率。 (b ) 对于kHz T 201=,重复(a )的计算。 采样(T) () n h () n x () t x () n y D/A 理想低通T c πω=() t y 解 (a )因为当0)(8=≥ω πωj e H rad 时,在数 — 模变换中 )(1)(1)(T j X T j X T e Y a a j ωω=Ω= 所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为 8 π = ΩT c 因此 Hz T f c c 625161 2==Ω= π

现代数字信号处理复习题

现代数字信号处理复习题 一、填空题 1、平稳随机信号是指:概率分布不随时间推移而变化的随机信号,也就是说,平稳随机信号的统计特性与起始 时间无关,只与时间间隔有关。 判断随机信号是否广义平稳的三个条件是: (1)x(t)的均值为与时间无关的常数:C t m x =)( (C 为常数) ; (2)x(t)的自相关函数与起始时间无关,即:)(),(),(ττx i i x j i x R t t R t t R =+=; (3)信号的瞬时功率有限,即:∞<=)0(x x R D 。 高斯白噪声信号是指:噪声的概率密度函数满足正态分布统计特性,同时其功率谱密度函数是常数的一类噪 声信号。 信号的遍历性是指:从随机过程中得到的任一样本函数,好象经历了随机过程的所有可能状态,因此,用一个 样本函数的时间平均就可以代替它的集合平均 。 广义遍历信号x(n)的时间均值的定义为: ,其时间自相关函数的定义为: 。 2、连续随机信号f(t)在区间上的能量E 定义为: 其功率P 定义为: 离散随机信号f(n)在区间 上的能量E 定义为: 其功率P 定义为: 注意:(1)如果信号的能量0

现代数字信号处理仿真作业

现代数字信号处理仿真作业 1.仿真题3.17 仿真结果及图形: 图 1 基于FFT的自相关函数计算

图 3 周期图法和BT 法估计信号的功率谱 图 2 基于式3.1.2的自相关函数的计算

图 4 利用LD迭代对16阶AR模型的功率谱估计16阶AR模型的系数为: a1=-0.402637623107952-0.919787323662670i; a2=-0.013530139693503+0.024214641171318i; a3=-0.074241889634714-0.088834852915013i; a4=0.027881022353997-0.040734794506749i; a5=0.042128517350786+0.068932699075038i; a6=-0.0042799971761507 + 0.028686095385146i; a7=-0.048427890183189 - 0.019713457742372i; a8=0.0028768633718672 - 0.047990801912420i a9=0.023971346213842+ 0.046436389191530i; a10=0.026025963987732 + 0.046882756497113i; a11= -0.033929397784767 - 0.0053437929619510i; a12=0.0082735406293574 - 0.016133618316269i; a13=0.031893903622978 - 0.013709547028453i ; a14=0.0099274520678052 + 0.022233240051564i; a15=-0.0064643069578642 + 0.014130696335881i; a16=-0.061704614407581- 0.077423818476583i. 仿真程序(3_17): clear all clc %% 产生噪声序列 N=32; %基于FFT的样本长度

数字信号处理习题及答案1

数字信号处理习题及答案1 一、填空题(每空1分, 共10分) 1.序列()sin(3/5)x n n π=的周期为 。 2.线性时不变系统的性质有 律、 律、 律。 3.对4()()x n R n =的Z 变换为 ,其收敛域为 。 4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。 5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。 6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出 y(n)= 。 7.因果序列x(n),在Z →∞时,X(Z)= 。 二、单项选择题(每题2分, 共20分) 1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n ) 的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 7 3.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n ) 4.下面描述中最适合离散傅立叶变换 DFT 的是 ( ) A.时域为离散序列,频域为连续信号 B.时域为离散周期序列,频域也为离散周期序列 C.时域为离散无限长序列,频域为连续周期信号 D.时域为离散有限长序列,频域也为离散有限长序列 5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即 可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理 想带阻滤波器 6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)

现代信号处理大作业题目+答案

研究生“现代信号处理”课程大型作业 (以下四个题目任选三题做) 1. 请用多层感知器(MLP )神经网络误差反向传播(BP )算法实现异或问题(输入为[00;01;10;11]X T =,要求可以判别输出为0或1),并画出学习曲线。其中,非线性函数采用S 型Logistic 函数。 2. 试用奇阶互补法设计两带滤波器组(高、低通互补),进而实现四带滤波器组;并画出其频响。滤波器设计参数为:F p =1.7KHz , F r =2.3KHz , F s =8KHz , A rmin ≥70dB 。 3. 根据《现代数字信号处理》(姚天任等,华中理工大学出版社,2001)第四章附录提供的数据(pp.352-353),试用如下方法估计其功率谱,并画出不同参数情况下的功率谱曲线: 1) Levinson 算法 2) Burg 算法 3) ARMA 模型法 4) MUSIC 算法 4. 图1为均衡带限信号所引起失真的横向或格型自适应均衡器(其中横向FIR 系统长M =11), 系统输入是取值为±1的随机序列)(n x ,其均值为零;参考信号)7()(-=n x n d ;信道具有脉冲响应: 1 2(2)[1cos( )]1,2,3()20 n n h n W π-?+=?=???其它 式中W 用来控制信道的幅度失真(W = 2~4, 如取W = 2.9,3.1,3.3,3.5等),且信道受到均 值为零、方差001.02 =v σ(相当于信噪比为30dB)的高斯白噪声)(n v 的干扰。试比较基 于下列几种算法的自适应均衡器在不同信道失真、不同噪声干扰下的收敛情况(对应于每一种情况,在同一坐标下画出其学习曲线): 1) 横向/格-梯型结构LMS 算法 2) 横向/格-梯型结构RLS 算法 并分析其结果。

数字信号处理习题及答案

三、计算题 1、已知10),()(<<=a n u a n x n ,求)(n x 的Z 变换及收敛域。 (10分) 解:∑∑∞ =-∞ -∞=-= = )()(n n n n n n z a z n u a z X 1 111 )(-∞=--== ∑ az z a n n ||||a z > 2、设)()(n u a n x n = )1()()(1--=-n u ab n u b n h n n 求 )()()(n h n x n y *=。(10分) 解:[]a z z n x z X -=? =)()(, ||||a z > []b z a z b z a b z z n h z H --=---= ?=)()(, ||||b z > b z z z H z X z Y -= =)()()( , |||| b z > 其z 反变换为 [])()()()()(1n u b z Y n h n x n y n =?=*=- 3、写出图中流图的系统函数。(10分) 解:2 1)(--++=cz bz a z H 2 1124132)(----++= z z z z H 4、利用共轭对称性,可以用一次DFT 运算来计算两个实数序列的DFT ,因而可以减少计算量。设都是N 点实数序列,试用一次DFT 来计算它们各自的DFT : [])()(11k X n x DFT = []) ()(22k X n x DFT =(10分)。 解:先利用这两个序列构成一个复序列,即 )()()(21n jx n x n w +=

即 [][])()()()(21n jx n x DFT k W n w DFT +== []()[]n x jDFT n x DFT 21)(+= )()(21k jX k X += 又[])(Re )(1n w n x = 得 [])(})({Re )(1k W n w DFT k X ep == [] )())(()(2 1*k R k N W k W N N -+= 同样 [])(1 })({Im )(2k W j n w DFT k X op == [] )())(()(21*k R k N W k W j N N --= 所以用DFT 求出)(k W 后,再按以上公式即可求得)(1k X 与)(2k X 。 5、已知滤波器的单位脉冲响应为)(9.0)(5n R n h n =求出系统函数,并画出其直接型 结构。(10分) 解: x(n) 1-z 1-z 1-z 1-z 1 9.0 2 9.0 3 9.0 4 9.0 y(n) 6、略。 7、设模拟滤波器的系统函数为 31 11342)(2+-+=++=s s s s s H a 试利用冲激响应不变法,设计IIR 数字滤波器。(10分) 解 T T e z T e z T z H 31111)(-------=

现代数字信号处理习题

1.设()u n 是离散时间平稳随机过程,证明其功率谱()w 0S ≥。 证明:将()u n 通过冲激响应为()h n 的LTI 离散时间系统,设其频率响应()w H 为 ()001,w -w w 0, w -w w H w ???? 输出随机过程()y n 的功率谱为()()()2y S w H w S w = 输出随机过程()y n 的平均功率为()()()00201 1r 022w w y y w w S w dw S w dw π π π+?-?= =?? 当频率宽度w 0???→时,上式可表示为()()()01 r 00y S w w π =?≥ 由于频率0w 是任意的,所以有()w 0 S ≥ 3、已知:状态方程 )()1,()1()1,()(1n n n n x n n F n x ν-Γ+--=观测方程 )()()()(2n n x n C n z ν+= )()]()([111n Q n n E H =νν )()]()([222n Q n n E H =νν 滤波初值 )]0([)|0(0x E x =ξ } )]]0([)0()]][0([)0({[)0(H x E x x E x E P --= 请简述在此已知条件下卡尔曼滤波算法的递推步骤。 解:步骤1 状态一步预测,即 1 *11)|1(?)1,()|(N n n C n x n n F n x ∈--=--∧ ξξ 步骤2 由观测信号z(n)计算新息过程,即 1*11)|(?)()()|(?)()(M n n C n x n C n z n z n z n ∈-=-=--ξξα 步骤3 一步预测误差自相关矩阵 N N H H C n n n Q n n n n F n P n n F n n P *1)1,()1()1,() 1,()1()1,()1,(∈-Γ--Γ+---=- 步骤4 新息过程自相关矩阵M M H C n Q n C n n P n C n A *2)()()1,()()(∈+-= 步骤5 卡尔曼增益M N H C n A n C n n P n K *1)()()1,()(∈-=- 或 )()()()(1 2n Q n C n P n K H -= 步骤6 状态估计 1*1)()()|(?)|(?N n n C n n K n x n x ∈+=-αξξ 步骤7 状态估计自相关矩阵 N N C n n P n C n K I n P *)1,()]()([)(∈--= 或 )()()()]()()[1,()]()([)(2n K n Q n K n C n K I n n P n C n K I n P H H +---= 步骤8 重复步骤1-7,进行递推滤波计算 4、经典谱估计方法:

(完整版)数字信号处理复习题-答案

、填空题 1.序列x(n) sin(3 n / 5)的周期为10 。2.线性时不变系统的性质有交换律律结合律分配律。 3.从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率 f 与信号最高频率fs 关系为:f>=2fs 4.若正弦序列x(n)=sin(30n π/120) 是周期的,则周期是N= 8 。 5.序列x(n) sin(3 n / 5)的周期为10 。 6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 7.因果序列x(n) ,在Z→∞时,X(Z)= x(0) 。二、单项选择题 1.δ (n)的傅里叶变换是( A ) A. 1 B.δ (ω ) C.2πδ (ω) D.2π 2.序列x1(n)的长度为4,序列x2( n)的长度为3,则它们线性卷积的长度是( C ) A. 3 B. 4 C. 6 D. 7 3.LTI 系统,输入x(n)时,输出y( n);输入为3x (n-2),输出为( B ) A. y (n-2) B.3y (n-2) C.3y (n) D.y(n) 4.下面描述中最适合离散傅立叶变换DFT 的是(D ) A. 时域为离散序列,频域为连续信号 B. 时域为离散周期序列,频域也为离散周期序列 C. 时域为离散无限长序列,频域为连续周期信号 D. 时域为离散有限长序列,频域也为离散有限长序列 5.设系统的单位抽样响应为h(n),则系统因果的充要条件为( C ) A.当n>0 时,h(n)=0 B.当n>0时,h(n) ≠0

6.下列哪一个系统是因果系统( 5.所谓采样,就是利用采样脉冲序列 p(t) 从连续时间信号 x a (t)中抽取一系列的离散样值。 ( 6.数字信号处理只有硬件方式实现。 ( × ) 7.对正弦信号进行采样得到的正弦序列一定是周期序列。 ( × ) 8.数字信号处理仅仅指的是数字处理器。 ( × ) 9.信号处理的两种基本方法:一是放大信号,二是变换信号。 ( × 10.在时域对连续信号进行抽样,在频域中,所得频谱是原信号频谱的周期延拓。 ( × ) 四、简答题 1.用 DFT 对连续信号进行谱分析的误差问题有哪些? 答:混叠失真;截断效应(频谱泄漏) ;栅栏效应 2.画出模拟信号数字化处理框图,并简要说明框图中每一部分的功能作用。 1 2 3 部分:按照预制要 求对数字信号处理加工; 第 4部分:数字信号变为模拟信号; 第 5 部分:滤除高频部分, 平滑模拟信号。 A.N ≥M B.N ≤M C.N ≤ 2M D.N ≥ 2M 10 .设因果稳定的 LTI 系统的单位抽样响应 h(n) , 在 n<0 时, h(n)= ( A ) A.0 B.∞ C. - ∞ D.1 三、 判断题 1. 序列的傅立叶变换是频率ω的周期函数,周期是 2π。 ( √ ) 2 . x(n)= sin (ω ( √ ) 0n) 所代表的序列不一定是周期 3. 卷积的计算过程包括翻转,移位,相乘,求和四个过程 ( √ ) 4. y(n)=cos[x(n)] 所代表的系统是非线性系统。 ( √ ) ) 则频域抽样点数 N 需满足的条件是 ( A C .当 n<0 时, h(n)=0 D .当 n<0 时, h(n) ≠0 A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n) 7. A. x(n)= δ (n-3)的傅里叶变换为( A e 3jw B. e 3jw C.1 D.0 x(n) a n u(n),0 a 1 的傅里叶变换为 11 A. jw B. jw 1 ae 1-ae 8. C ) 1 C. -jw 1-ae 1 D.1 ae - jw 9.若序列的长度为 M ,要能够由频域抽样信号 X(k) 恢复原序列,而不发生时域混叠现象, √)

现代数字信号处理-第七章-7.17 仿真题

仿真题7.17 现有一个在二维平面内运动的目标,它从(60000m,40000m )处,以 (-172m/s,246m/s )的速度出发。在400s 的运动过程中,目标运动速率保持为300m/s ,并在56~105s,182~245s,285~314s 和348~379s 期间分别以1g,-1.5g,3g 和-2.5g(g=9.8m/2s )的转弯速率进行机动,其余时间段则进行匀速运动。系统在两个方向的观测噪声标准差为m y x 100==σσ。采用IMM 算法实现对该目标的跟踪,其中的模型集合由具有不同转弯速率的协同转弯模型构成。定义状态向量由目标在各方向的位置和速度分量构成,即 ()()()[] T y x n v n y n v n x n x )()(= 在协同转弯模型中,状态转移矩阵及状态噪声输入矩阵分别为 ()()()??????? ?????????T T T T -T -T T --T =-ωωωωωωωωωωωωωcos 0sin 0)sin(1) cos(10)sin(0cos 0)cos(10)sin(1)1,(n n F ()?????? ????????T T T T =-Γ2/00002/1,22n n 其中,ω为转弯速率,T 为采样周期。模型集合由7个协同转弯模型组成,转弯速率分别为 s s s s s s s /6.5,/74.3,/87.1,/0,/87.1,/74.3,/6.57654321 ====-=-=-=ωωωωωωω。转速0ω对应模型的系统状态噪声标准差为1.8m/2s ,其余模型的系统状态噪声标准差为2.5m/2s 。模型初始概率为{0.03,0.03,0.03,0.92,0.03,0.03,0.03},转移概率矩阵为 ?????????? ????????????=0.90.1000000.10.80.10000 00.10.80.1000000.10.80.1000000.10.80.1000000.10.80.1000000.10.9π 请给出: (1)目标的真实运动轨迹。

数字信号处理习题解答1

第一章 第二章 11-=--m/2 m=-m -/2 12 m=--/2 -/21 2 m=-m=-()121.7DTFT[x(2n)]=(2n)e m=2n DTFT[x(2n)]=(m)e =[()(1) ()]e [()e e ()e ] [()()] j n n j m j m j m j m j m j j x x x m x m x m x m X e X e ωωωωπ ωωωπ∞ ∞∞ ∞∞ ∞∞ ∞ ∞ ∞-+-=+ =+∑∑ ∑∑∑,为偶数 求下列序列的傅里叶变换()x(2n) 令,于是 -n 1 1 121 z (1) 2u(n)()2 ()2 1,|(2)|11(2),||n n n n n n X z u n z z z z z z z +∞ --=-∞+∞ --=-∞ --=== <-=>-∑∑14.求出下列序列的变换及收敛域 3.3(1).()cos(),781() 8 (2).()5.25n 640() (5)()x n A n A j n x n e x n y n e πππω=--==判断下面的序列是否周期的是常数 试判断系统是否为线性时不变的()y(n)=x (n)(7) y(n)=x(n)sin() .试判断系统是否为因果稳定系统()y(n)=x(n-n )

-1 -1-2 -1 -1112 1-317.X(z)=,2-5+2105< | z | < 2x(n)(2) | z | > 2x(n) 11 X(z)= -1-z 1-2z 05< | z | < 2(n)=2(-n-1)+()(n) | z | > 2(n)=()(n)-2(n)n n n n z z z u u u u 已知分别求:()收敛域.对应的原序列收敛域对应的原序列解:收敛域.时: x 收敛域时: x -1-1 -1 -1-1 -1 21.(n)=0.9y(n-1)+x(n)+0.9x(n-1)(1)h(n)(2)H(e )1+0.9(1)H(z)=,|z|>0.91-0.91+0.9F(z)=H(z)z =z 1-0.9n 1z=0.9(n j n n z z z z h ω≥已知线性因果网络用下面差分方程表示: y 求网络的系统函数及单位脉冲响应写出网络频率响应函数的表达式,并定性画出其幅频特性曲线解: 令当时,有极点-1-1=0.9-112-1-1-1-1=0=0.9-1-1)=Res[F(z),0.9]1+0.9=z (z-0.9)|1-0.9=20.9(n)=0,n<0 n=0z =0,=0.9(n)=Res[F(z),0]+Res[F(z),0.9]1+0.91+0.9=z z|+z (z-0.9)|1-0.91-0.9=-1+2=1 h(n)=n z n z z z z z h z z z z ?∴因为系统是因果系统,所以有h 当时,有极点00000000=0n-m =0n -m =0 n n 20.9(n-1)+(n)+0.9 (2)H(e )=-0.9 (3)y(n)=h(n)*x(n) =(m)x(n-m) =(m)e =(m)e e =e H(e )+0.9=e -0.9 n j j j m j m j j m j j j j j u e e h h h e e ωω ω ωωωωωωωωδ∞ ∞ ∞ ?∑∑∑( )

现代数字信号处理及应用仿真题答案

仿真作业 姓名:李亮 学号:S130101083

4.17程序 clc; clear; for i=1:500 sigma_v1=0.27; b(1)=-0.8458; b(2)=0.9458; a(1)=-(b(1)+b(2)); a(2)=b(1)*b(2); datlen=500; rand('state',sum(100*clock)); s=sqrt(sigma_v1)*randn(datlen,1); x=filter(1,[1,a],s); %% sigma_v2=0.1; u=x+sqrt(sigma_v2)*randn(datlen,1); d=filter(1,[1,-b(1)],s); %% w0=[1;0]; w=w0; M=length(w0); N=length(u); mu=0.005; for n=M:N ui=u(n:-1:n-M+1); y(n)=w'*ui; e(n)=d(n)-y(n); w=w+mu.*conj(e(n)).*ui; w1(n)=w(1); w2(n)=w(2); ee(:,i)=mean(e.^2,2); end end ep=mean(ee'); plot(ep); xlabel('迭代次数');ylabel('MSE');title('学习曲线'); plot(w1); hold; plot(w2); 仿真结果:

步长0.015仿真结果 0.10.20.30.4 0.50.60.7迭代次数 M S E 学习曲线

步长0.025仿真结果

步长0.005仿真结果 4.18 程序 data_len = 512; %样本序列的长度 trials = 100; %随机试验的次数 A=zeros(data_len,2);EA=zeros(data_len,1); B=zeros(data_len,2);EB=zeros(data_len,1); for m = 1: trials a1 = -0.975; a2 = 0.95; sigma_v_2 =0.0731; v = sqrt(sigma_v_2) * randn(data_len, 1, trials);%产生v(n) u0 = [0 0]; num = 1; den = [1 a1 a2]; Zi = filtic(num, den, u0); %滤波器的初始条件 u = filter(num, den, v, Zi); %产生样本序列u(n) %(2)用LMS滤波器来估计w1和w2 mu1 = 0.05; mu2 = 0.005; w1 = zeros(2, data_len);

现代数字信号处理实验报告

现代数字信号处理实验报告 1、估计随机信号的样本自相关序列。先以白噪声()x n 为例。 (a) 产生零均值单位方差高斯白噪声的1000个样点。 (b)用公式: 999 1?()()()1000x n r k x n x n k ==-∑ 估计()x n 的前100个自相关序列值。与真实的自相关序列()()x r k k δ=相比较,讨论你的估计的精确性。 (c) 将样本数据分成10段,每段100个样点,将所有子段的样本自相关的平均值作为()x n 自相关的估值,即: 999 00 1?()(100)(100) , 0,1,...,991000x m n r k x n m x n k m k ===+-+=∑∑ 与(b)的结果相比,该估计值有什么变化?它更接近真实自相关序列()()x r k k δ=吗? (d)再将1000点的白噪声()x n 通过滤波器1 1 ()10.9H z z -= -产生1000点的y (n ),试重复(b)的工作,估计y (n )的前100个自相关序列值,并与真实的自相关序列()y r k 相比较,讨论你的估计的精确性。 仿真结果: (a)

图1.1零均值单位方差高斯白噪声的1000个样本点 分析图1.1:这1000个样本点是均值近似为0,方差为1的高斯白噪声。(b) 图1.2() x n的前100个自相关序列值 分析上图可知:当k=0时取得峰值,且峰值大小比较接近于1,而当k≠0时估计的自相关值在0附近有小幅度的波动,这与真实自相关序列r (k)=δ(k) x 比较接近,k≠0时估计值非常接近0,说明了估计的结果是比较精确的。

数字信号处理习题及答案

数字信号处理习题及答案

==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV ==================第一章 时域离散时间信号与系统================== 1. ①写出图示序列的表达式 答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期 ) 5 4sin( )8 sin( )4() 51 cos()3() 54sin()2() 8sin( )1(n n n n n πππ π -

②判断下面的序列是否是周期的; 若是周期的, 确定其周期。 (1) A是常数 8ππn 73Acos x(n)???? ? ?-= (2))8 1 (j e )(π-=n n x 解: (1) 因为ω=73π, 所以3 14 π2=ω, 这是有理数, 因此是周期序列, 周期T =14。 (2) 因为ω=81, 所以ω π 2=16π, 这是无理数, 因此是非周期序列。 ③序列)Acos(nw x(n)0 ?+=是周期序列的条件是是有理数2π/w 0 。 3.加法 乘法 序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。 移位 翻转:①已知x(n)波形,画出x(-n)的波形图。 ② 尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。

现代数字信号处理期末试题

现代数字信号处理期末试题 1.短时Fourier变换、小波变换和Gabor变换都是时频信号分析的(线性变换)或(线性时频)表示,而Wigner-Ville分布则属于时频信号分析的(非线性变换)。 2. 简述小波变换的概念及其优点。 答:小波变换从基函数角度出发,吸取傅里叶变换中的三角基(进行频率分析)与短时傅里叶变换中的时移窗函数的特点,形成振荡、衰减的基函数,因为它的定义域有限,故称为小波。小波基函数是时间t、尺度因子a和时移参数b的函数。 小波变换的优点: ⑴小波分解可以覆盖整个频域(提供了一个数学上完备的描述)。 ⑵小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性。 ⑶小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口)。 ⑷小波变换实现上有快速算法(Mallat小波分解算法)。 3. 相对于Mallat塔形算法而言,第二代小波方法的优势在哪里? 答:1.它不依赖于傅里叶变换,完全在时域中完成对双正交小波的构造,具有结构化设计和自适应构造方面的有点 2.构造方法灵活,可以从一些简单的小波函数,通过提升改善小波函数的特性,从而构造出具有期望特性的小波 3.不再是某一给定小波函数的伸缩和平移,它适合于不等间隔采样问题的小波构造 4.算法简单,运算速度快,占用内存少,执行效率高,可以分析任意长度的信号。4.EMD方法在机械设备故障诊断中的应用有(机车轮对轴承损伤定量识别方法)、(烟气轮机摩擦故障诊断)。 5. 随机信号特点? 答:随机信号也称随机过程,随机信号在任何时间的取值都是不能先验证确定的随机变量。虽然随机信号取值不能先验证确定,但这些取值却服从某种统计规律,换言之,随机信号或过程可以用概率分布特点(简称统计性能)统计的描述。6. 简述经典功率谱估计与现代功率谱估计的差别。 答:功率谱反映了随机信号各频率成份功率能量的分布情况,可以揭示信号中隐含的周期性及靠得很近的谱峰等有用信息,在许多领域都发挥了重要作用。然而,实际应用中的平稳随机信号通常是有限长的,只能根据有限长信号估计原信号的真实功率谱,这就是功率谱估计。功率谱估计分为经典谱估计和现代谱估计。经典谱估计是将数据工作区外的未知数据假设为零,相当于数据加窗,主要方法有相关法和周期图法;现代谱估计是通过观测数据估计参数模型再按照求参数模型输出功率的方法估计信号功率谱,主要是针对经典谱估计的分辨率低和方差性能不好等问题提出的。 7.自适应滤波方法主要是基于几种基本理论再融合递推算法导出来的? 答:(1)基于维纳滤波理论的方法。基于维纳滤波原理,利用相关的瞬时值通过在工作过程中的逐步调整参数逼近信号的统计特性,实现最优滤波。由此得到一种最常用的算法——最小均方算法,简称LMS算法 (2)基于卡尔曼滤波理论的方法。利用卡尔曼滤波理论的递推求解法导出自适应滤波器更新权矢量得不同递推算法。

数字信号处理习题解答

第一章 2、已知线性移不变系统的输入为()x n ,系统的单位抽样相应为()h n ,试求系统的输出()y n 。 (2)3()(),x n R n = 4()()h n R n = 解:此题考察线性移不变系统的输出为激励与单位抽样相应的卷积,即:()()*(){1,2,3,3,2,1}y n x n h n == 4、判断下列每个序列的周期性,若是周期性的,试确定其周期。 3()cos( ) 78 x n A n ππ=- 解:03 ()cos() 78 314 N=2/2/73 14,3x n A n k k k k ππππωπ=-==∴=是周期的,周期是。 6、试判断系统的线性和移不变性。 ()2 (2) ()y n x n =???? 解:()2 ()y n x n =???? ()[]()[]2111)(n x n x T n y == ()()[]()[]2 222n x n x T n y == ()()()[]()[]2 12121n bx n ax n by n ay +=+ ()()[] ()()[] ()[]()[]()()()()[]()() n by n ay n bx n ax T n x n abx n bx n ax n bx n ax n bx n ax T 2121212 22 12 21212 +≠+++=+=+即 ()[]()[]()()[] ()[]() 系统是移不变的即∴-=--=--=-m n y m n x T m n x m n y m n x m n x T 2 2 8、以下序列是系统的单位抽样响应()h n ,试说明系统的因果性和稳定性。 (4)3()n u n - 解: 因果性:当0n <时,()0h n ≠,∴是非因果的; 稳定性:0123|()|3332 n h n ??? ∞ --=-∞=+++ = ∑,∴是稳定的。 11、有一理想抽样系统,抽样角频率为6s πΩ=,抽样后经理想低通滤波器()a H j Ω还原,其中 1 ,3()2 0,3a H j ππ?Ω==∴=<==?? ? ?? ? π ππππ πππΩΩ 第二章 1、求以下序列的z 变换,并求出对应的零极点和收敛域。 (1)|| (),||1n x n a a =< 解:由Z 变换的定义可知: 1 1 212 ()111(1)(1) 1(1)1 ()() n n n n n n n n n n n n n n n X z a z a z a z a z a z az a a az az az z a z a z z a a ∞ -∞ ----=-∞ =-∞=∞ ∞ -==-= ?= +=+-=+= -----= --∑∑∑∑∑ ∞ ====<<< 3/4 , 为右边序列 系统不是线性系统 ∴0 00()sin[()] sin[] x n N A n N A N n ωφωωφ+=++=++02N k ωπ=0 2k N πω=

姚天任现代数字信号处理习题解答第一章答案

第一章 ) ,(服从正态分布,即之间的唯一性定理知:由特征函数与分布函数)()()()()()(的特征函数则),,,(此外,)(的特征函数为: )()()()()。概率密度函数为: ,(服从正态分布,即 、证明:∑ ∑∑∑∑∑ ∑ =-=-===-=? ? ? ???---= -x T x x T T T x x T T T T T x T x N x T T x X x T x x x N x x B B B m N X B B B B m j B B B m j B f f t t t t t t t m j t f X m X m X x p m N X X ~]2 1exp[]2 1exp[ ]2 1exp[21exp 21 ~121121 2 ξξμμμμμμμμξπξ [] 相互独立。 与) ()()()(),(的联合概率密度函数为 ,),(的协方差为 ,的协方差为 设、证明: Y X Y p X p Y Y X X Y X R Y X R Y X p Y X Y X E R Y X Cov Y X T X T X Y X M N T XY T XY M N Y X Y X T Y X N N N N ∴=??????--= ??? ?????????????????????-= ∴??? ???? ?===∑∑∑ ∑∑ ∑ ∑ ∑ ++??2121exp 21 21exp 21 00 ][22 12122 12 ππ 。 且,则,,则要使))((则,为常量。,其中设、证明: ∑ = =-==∴====+-=----==+=x T x x xx ee x T ee T T x x xx T x x ee T x x x Cov m m R R m x a a a aa R aa m m R a m x a m x E R ee E a a m x ),(?0 0min ] [][?3

现代数字信号处理

现代数字信号处理Advanced Digital Signal Processing 东南大学信息科学与工程学院 杨绿溪

教科书、参考书 ?杨绿溪, 现代数字信号处理, 科学出版社, 2008年12月。?胡广书,数字信号处理----理论、算法与实现,清华大学出版社,1997(或2003)年。 ?皇甫堪等,现代数字信号处理,电子工业出版社,2004年6月。 ?丁玉美等,数字信号处理-----时域离散随机信号处理,西安电子科技大学出版社,2002年12月。 ?金连文,韦岗,现代数字信号处理简明教程,清华大学出版社,2004年1月。 ?何子述等,现代数字信号处理及其应用,清华大学出版社,2009年5月。 ?S.Haykin, Adaptive Filter Theory, Prentice Hall, 2001.

课程基本内容 1.离散时间信号处理基础(本科内容复习) 2.离散随机信号分析基础 –离散时间随机信号基本概念? –基本的正交变换(与信号正交展开、去相关) –基本的参数估计方法 3.线性预测和格型滤波器(语音编码应用)? 4.随机信号的线性建模? 5.功率谱估计(与频率估计、子空间分析)? 6.最优线性滤波: 维纳滤波与卡尔曼滤波? 7.自适应滤波器(线性系统的学习)?

可能选讲或简介的内容 8.多速率数字信号处理和滤波器组 9. 神经智能信息处理;压缩感知等 10. 盲信号处理 11.空时、阵列与MIMO信号处理 12.信号的时频分析

第一章离散时间信号处理基础??本科课程内容复习?? ?数字信号与数字信号处理(DSP)概述 ?滤波器--简单的数字信号处理系统 ?信号的变换-z变换、DTFT、DFT和FFT ?特殊的序列(和对应的滤波器) –全通序列、最小相位序列、线性相位、半正定序列

相关文档
最新文档