仿真实验六 非线性电路

仿真实验六 非线性电路
仿真实验六 非线性电路

六、非线性放大电路仿真实验

一、电路课程设计目的

1、掌握用非线性电路元件设计放大器的方法,掌握非线性三极管元件的伏安特性;

2、学会用Multisim 仿真软件,对所设计的非线性放大电路进行仿真测试;

3、了解并掌握电路中各个元件参数的改变,对输出波形的影响,熟练掌握非线性电

路的图解分析法和小信号分析法。 二、仿真电路设计原理

在以前的实验中研究的都是线性电路问题,即各元件的参数不随电压或电流变化,如果电路元件的参数随着电压或电流而变化,就称之为非线性元件含有非线性元件的电路称为非线性电路。

根据下面原理图,当给电路加上V U CC 12+=直流电压后,通过偏置电阻2,1Rb Rb ,

可给三极管提供一个合适的工作状态,静态值由下式估算E E

BE CC b b b C R R U U R R R I +'????

??-?+=

211

式中,BE U 对硅管一般可取0.7V ,对锗管可取0.2V 。

静态工作点的设置,应考虑到在整个信号变化的范围内晶体管始终处于线性工作状态。如果选择不合适,使静态工作电流C I 太小,工作点下移,就会出现截止失真;反之,则工作点上移,就会出现饱和失真。而,为了得到最大的动态范围,应将静态工作点调在交流负载线的中点。

实际电路的元件的参数总是或多或少的随电压电流变化的。在工程计算中,可以把非线性程度比较弱的电路元件当做线性元件来处理,从而简化电路分析。但对许多本质因素具有非线性特性的元件,如果忽略其非线性特性就将导致计算结果和实际量值相差太大而无意义。因此分析研究非线性电路具有重要的工程物理意义。

小信号分析法是分析非线性电路的主要方法之一,因为在模拟电子电路中遇到的非线性电路,同时有作为偏置电压的直流电源0U 和随时间变化的输入信号源()s u t 作用。如果在任何时刻都有0U 远远大于()s u t ,则将输入的信号源做小信号处理。具体来说,所谓小信号法是在直流偏置电源产生的静态工作点附近建

立一个局部线性的模型,求解非线性电路中的交流小信号激励下的响应,就可以运用线性电路的分析方法来进行分析计算。

双极结型三极管是一种三段器件,内部含有两个离的很近的背靠背排列的PN 结(发射结和集电结)。两个PN 结上加不同极性、不同大小的偏置电压时,半导体三极管呈现不同的特性和功能。三极管是放大电路最重要的组成之一。

实例分析:

如下图所示的三极管放大电路中,计算该三极管的静态工作点以及其放大倍数Vi A ,已知三极管有关参数:100,0.8BE V V β==。

计算该三极管静态工作点:

V R R R V B 330

1010

1212

121=+=+=

3

430.8

1.1210

B BE

C E V V I I mA R --≈=

==? 1.1

11100

C

C B B I I I I A βμβ

=?=

=

= 3412()12 1.1(2.42)7.16CE C V I R R V

=-+=-+=

2626

200(1)

20010125871.1

be C mA r I β=++=+?=Ω

计算该放大电路的增益

()34100 2.4

1.1731

2.5871012

Vi be R A r R ββ--?===-+++?

三、仿真实验电路搭建与测试

1、

按上图所示电路在仿真软件中连接各个电路元件,断开交流元件电

容只保留该放大电路的直流部分,直接利用电压、电流表测量出三极管静态工作点处的各参数。 实验结果如下所示:

由图上数据可知:

V V mA I mA I CE C B 313.7061.1011.0===,,

均与理论计算值近似相等。

由图可得,静态工作点Q

随着各个电路参数的变化

2、将电路交流部分连接好,利用示波器同时观察放大电路的输入和输出波形,比较两波形的相位与幅值。

实验结果如下图所示:

由示波器中波形可见,输出电压与输入电压相差相位角π,故其增益为一负值,同时观察输入输出电压波形的幅值,出入电压约为 1.40.50.7i u V V =?=,而输

出电压约为0 1.60.50.8u V V =?=。则'

00.8 1.1430.7

Vi i u A u =-

=-=-,同样与先前理论计算值近似相等。

3、调整1100R k =Ω,使三极管静态工作点降低,输出波形出现截止失真,用示波器观察此时输出的波形。如下图所示:

4、调整

110

R k

=Ω,使三极管的静态工作点升高,输出波形出现饱和失真,用示波器观察此时输出的波形。如下图所示:

四、结论分析

此次实验是用非线性电阻来设计放大电路。这个实验的原理图是共射放大电路。在设计时,最重要的是要在连接电路图之前的,要先计算好,电路中的各个参数值,再来连接原理图。在设计完电路图之后,要先用静态电路图来测试,静态工作点。再用动态电路图来试验,慢慢、细细改变电路参数,使其满足电路设计的各个要求。

如上述仿真实验过程中所述,本次试验中测得的数据均与理论计算值存在一定的误差,一般来说误差在非线性电路的研究中是不可避免的,误差存在的原因主要有以下几个方面:1、小信号分析法本身就是在三极管静态工作点附近把非线性元件当做线性元件来处理,可以说这种方法本身就带有一定的近似性。2、在计算时使用部分的近似计算,比如近似认为C E I I =。同时在对电容进行处理时将其在交流通路下视为短路,而实际上不是,所以输入输出的波形相差也只是近似180?。3、仿真实验时所用的电流电压表是带有内阻的,并不是理想的。 五、思考与总结

通过这个实验,我更加深刻的掌握里有关用非线性元件来设计电路,特别是用三极管来设计放大电路。

本次试验研究的是非线性电路,这是我们在以往理论计算上很少遇到的,在准备实验的过程中,我进一步理解并掌握了非线性电路的图解分析法和小信号分析法,知道了这些方法在工程中的广泛应用。在具体的实验中,特别是对于三极管的处理中用到了很多模拟电子技术的知识,这也使我认识到了学科之间灵活应用的重要性。本次试验对我电路知识的学习有很大帮助。

三相交流电路实验报告1

中国石油大学(华东)现代远程教育 实验报告 课程名称:电工电子学 实验名称:三相交流电路 实验形式:在线模拟 +现场实践 提交形式:在线提交实验报告 学生姓名:赵军学号: 年级专业层次:14 春石油开采技术高起专 学习中心:江苏油田学习中心 提交时间:2014 年 6 月8 日

一、实验目的 1 . 练习三相交流电路中负载的星形接法。 2 . 了解三相四线制中线的作用。 二、实验原理 1 . 对称三相电路中线、相电压和线、相电流的关系,三相电路中,负载的连接分为星形连接和三角形连接两种。一般认为电源提供的是对称三相电压。 ( 1 )星形连接的负载如图1 所示: 图1 星形连接的三相电路 A、B、C表示电源端,N为电源的中性点(简称中点),N'为负载的中性点。无论是三线制或四线制,流过每一相负载的相电流恒等于与之相连的端线中的线电流: (下标I 表示线的变量,下标p 表示相的变量) 在四线制情况下,中线电流等于三个线电流的相量之和,即 端线之间的电位差(即线电压)和每一相负载的相电压之间有下列关系:

当三相电路对称时,线、相电压和线、相电流都对称,中线电流等于零,而线、相电压满足: ( 2 )三角形连接的负载如图2 所示: 其特点是相电压等于线电压: 线电流和相电流之间的关系如下: 当三相电路对称时,线、相电压和线、相电流都对称,此时线、相电流满足: 2 . 不对称三相电路 在三相三线制星形连接的电路中,若负载不对称,电源中点和负载中点的电位不再相等,称为中点位移,此时负载端各相电压将不对称,电流和线电压也不对称。 在三相四线制星形连接的电路中,如果中线的阻抗足够小,那么负载端各相电压基本对称,线电压也基本对称,从而可看出中线在负载不对称时起到了很重要的作用。但由于负载不对称,因此电流是不对称的三相电流,这时的中线电流将不再为零。 在三角形连接的电路中,如果负载不对称,负载的线、相电压仍然对称,但线、相电流不再 对称。 如果三相电路其中一相或两相开路也属于不对称情况。

模拟电子电路仿真和实测实验方案的设计实验报告111-副本

课程专题实验报告 (1) 课程名称:模拟电子技术基础 小组成员:涛,敏 学号:0,0 学院:信息工程学院 班级:电子12-1班 指导教师:房建东 成绩: 2014年5月25日

工业大学信息工程学院课程专题设计任务书(1)课程名称:模拟电子技术专业班级:电子12-1 指导教师(签名): 学生/学号:涛 0敏0

实验观察R B 、R C 等参数变化对晶体管共射放大电路放大倍数的影响 一、实验目的 1. 学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及R B 、R C 等参数对放大倍数的影响。 3. 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、 信号发生器 2、 双踪示波器 SS —7802 3、 交流毫伏表 V76 4、 模拟电路实验箱 TPE —A4 5、 万用表 VC9205 四、实验容 1.测量静态工作点 实验电路如图1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +? I E =E BE B R U U -≈Ic U CE = U CC -I C (R C +R E )

图1 晶体管放大电路实验电路图 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 根据实验结果可用:I C ≈I E = E E R U 或I C = C C CC R U U U BE =U B -U E U CE =U C -U E 计算出放大器的静态工作点。 五.晶体管共射放大电路Multisim仿真 在Multisim中构建单管共射放大电路如图1(a)所示,电路中晶体管采用FMMT5179 (1)测量静态工作点 可在仿真电路中接入虚拟数字万用表,分别设置为直流电流表或直流电压 表,以便测量I BQ 、I CQ 和U CEQ ,如图所示。

差分放大电路Multisim仿真

差分放大电路仿真 双端输入双端输出差分放大电路模型: 双端输入双端输出差分放大电路的调零和静态工作点求解: XMM1和XMM2的电压都为6.398V,输出电压为零。双端输入双端输出时静态工作点如下图所示,Ib=4.975uA,Ie=1.13mA,Vcq=6.398V。 双端输入单端输出时的静态工作点: Ib=5.197uA, Ie=1.13mA,Vcq1=6.398V,Vcq2=2.169V。 对比上图的静态工作点可知,XMM2的静态工作点基本不变,但XMM1的静态工作点变化较大,计算公式可参照模电书上的静态工作点计算公式,经计算和实际的仿真结果非常接近。

VCC’=VCC*R6/(R1+R6)=12*5/(10+5)=4V,Rc’=R1//R6=10*5/(10+5)=3.33,Ieq1=(VCC-Ubeq1)/2R11=(12-0.7)/2/10=0.565mA,Vcq1=Vcc’-Ieq1*Rc’=4-0.565*3.33=2.11167V,基本和仿真结果相同。 双端输入双端输出差分放大电路差分放大倍数: 输入电压Ui=7.071mV,输出电压Uo=124.194,Aod=Uo/Ui=17.56 把R3和R4减小为510Ω后,放大倍数如下图所示:放大倍数为26.28。 共模放大倍数: 下图测量的是差分放大电路对共模信号的放大作用,Ui=7.071mV,输出电压为6.935nV,对共模信号有很强的抑制作用

把R11改为一个由三极管组成的恒流源: Uo=55.676pV,相对于加10KΩ的电阻R11,能更好的抑制共模信号,能模电书上的公式和结论吻合。

模拟电路实验报告.doc

模拟电路实验报告 实验题目:成绩:__________ 学生姓名:李发崇学号指导教师:陈志坚 学院名称:专业:年级: 实验时间:实验室: 一.实验目的: 1.熟悉电子器件和模拟电路试验箱; 2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影 响; 3.学习测量放大电路Q点、A V、r i、r o的方法,了解公发射极电路特 性; 4.学习放大电路的动态性能。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 三、预习要求 1.三极管及单管放大电路工作原理: 2.放大电路的静态和动态测量方法:

四.实验内容和步骤 1.按图连接好电路: (1)用万用表判断试验箱上三极管的好坏,并注意检查电解电容 C1,C2的极性和好坏。 (2)按图连接好电路,将Rp的阻值调到最大位置。(注:接线前先 测量电源+12V,关掉电源后再连接) 2.静态测量与调试 按图接好线,调整Rp,使得Ve=1.8V,计算并填表 心得体会:

3.动态研究 (一)、按图连接好电路 (二)将信号发生器的输入信号调到f=1kHz,幅值为500mVp,接至放大电路A点。观察Vi和V o端的波形,并比较相位。 (三)信号源频率不变,逐渐加大信号源输出幅度,观察V o不失真时的最大值,并填表: 基本结论及心得: Q点至关重要,找到Q点是实验的关键, (四)、保持Vi=5mVp不变,放大器接入负载R L,在改变Rc,R L数值的情况下测量,并将计算结果填入表中:

实验总结和体会: 输出电阻和输出电阻影响放大效果,输入电阻越大,输出电阻越小,放大效果越好。 (1)、输出电阻的阻值会影响放大电路的放大效果,阻值越大,放大的倍数也越大。 (2)、连在三极管集电极的电阻越大,电压的放大倍数越大。 (五)、Vi=5mVp,增大和减小Rp,观察V o波形变化,将结果填入表中: 实验总结和心得体会: 信号失真的时候找到合适Rp是产生输出较好信号关键。 (1)Rp只有在适合的位置,才能很好的放大输入信号,如果Rp阻值太大,会使信号失真,如果Rp阻值太小,则会使输入信号不能被

电路仿真实验报告42016年度

电路仿真实验报告 实验一直流电路工作点分析和直流扫描分析 一、实验目的 (1)学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。 (2)学习使用Pspice进行直流工作点的分析和直流扫描的操作步骤。 二、原理与说明 对于电阻电路,可以用直观法列些电路方程,求解电路中各个电压和电流。Pspice软件是采用节点电压法对电路进行分析的。 使用Pspice软件进行电路的计算机辅助分析时,首先编辑电路,用Pspice的元件符号库绘制电路图并进行编辑。存盘。然后调用分析模块、选择分析类型,就可以“自动”进行电路分析了。 三、实验示例 1、利用Pspice绘制电路图如下 2、仿真 (1)点击Psipce/New Simulation Profile,输入名称; (2)在弹出的窗口中Basic Point是默认选中,必须进行分析的。点击确定。 (3)点击Pspice/Run(快捷键F11)或工具栏相应按钮。 (4)如原理图无错误,则显示Pspice A/D窗口。

(5)在原理图窗口中点击V,I工具栏按钮,图形显示各节点电压和各元件电流值如下。 四、选做实验 1、直流工作点分析,即求各节点电压和各元件电压和电流。 2、直流扫描分析,即当电压源的电压在0-12V之间变化时,求负载电阻R l中电流虽电压源的变化

曲线。 曲线如图: 直流扫描分析的输出波形3、数据输出为: V_Vs1 I(V_PRINT1) 0.000E+00 1.400E+00 1.000E+00 1.500E+00 2.000E+00 1.600E+00 3.000E+00 1.700E+00 4.000E+00 1.800E+00 5.000E+00 1.900E+00 6.000E+00 2.000E+00 7.000E+00 2.100E+00 8.000E+00 2.200E+00 9.000E+00 2.300E+00 1.000E+01 2.400E+00 1.100E+01 2.500E+00 1.200E+01 2.600E+00

3.2模拟集成电路设计-差分放大器版图

集成电路设计实习Integrated Circuits Design Labs I t t d Ci it D i L b 单元实验三(第二次课) 模拟电路单元实验-差分放大器版图设计 2007-2008 Institute of Microelectronics Peking University

实验内容、实验目的、时间安排 z实验内容: z完成差分放大器的版图 z完成验证:DRC、LVS、后仿真 z目的: z掌握模拟集成电路单元模块的版图设计方法 z时间安排: z一次课完成差分放大器的版图与验证 Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page1

实验步骤 1.完成上节课设计放大器对应的版图 对版图进行、检查 2.DRC LVS 3.创建后仿真电路 44.后仿真(进度慢的同学可只选做部分分析) z DC分析:直流功耗等 z AC分析:增益、GBW、PM z Tran分析:建立时间、瞬态功耗等 Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page2

Display Option z Layout->Options ->Display z请按左图操作 Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page3

由Schematic创建Layout z Schematic->Tools->Design Synthesis->Layout XL->弹出窗口 ->Create New->OK >选择Create New>OK z Virtuoso XL->Design->Gen From Source->弹出窗口 z选择所有Pin z设置Pin的Layer z Update Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page4

电工电子综合实验1--裂相电路仿真实验报告格 2

电子电工综合实验论文 专题:裂相(分相)电路 院系:自动化学院 专业:电气工程及其自动化 姓名:小格子 学号: 指导老师:徐行健

裂相(分相)电路 摘要: 本实验通过仿真软件Mulitinism7,研究如何将一个单相的交流分裂成多相交流电源的问题。用如下理论依据:电容、电感元件两端的电压和电流相位差是90度,将这种元件和与之串联的电阻当作电源,这样就可以把单相交流源分裂成两相交流电源、三相电源。同时本实验还研究了裂相后的电源接不同的负载时电压、功率的变化。得到如下结论: 1.裂相后的电源接相等负载时两端的电压和负载值成正相关关系; 2.接适当的负载,裂相后的电路负载消耗的功率将远大于电源消耗的功率; 3.负载为感性时,两实验得到的曲线差别较小,反之,则较大。 关键词:分相两相三相负载功率阻性容性感性 引言 根据电路理论可知,电容元件和电感元件最容易改变交流电的相位,又因它们不消耗能量,可用作裂相电路的裂相元件。所谓裂相,就是将适当的电容、电感与三相对称负载相配接,使三相负载从单相电源获得三相对称电压。而生活和工作中一般没有三相动力电源,只有单相电源,如何利用单相电源为三相负载供电,就成了值得深入研究的问题了。 正文 1.实验材料与设置装备 本实验是理想状态下的实验,所有数据都通过在电路专用软件Multisim 7中模拟实验测得的;所有实验器材为(均为理想器材) 实验原理: (1). 将单相电源分裂成两相电源的电路结构设计 把电源U1分裂成U1和U2输出电压,如下图所示为RC桥式分相电压原理,可以把输入电压分成两个有效值相等,相位相差90度的两个电压源。 上图中输出电压U1和U2与US之比为

北航电子电路设计训练模拟分实验报告

北航电子电路设计训练模拟部分实验报告

————————————————————————————————作者:————————————————————————————————日期:

电子电路设计训练模拟部分实验 实验报告

实验一:共射放大器分析与设计 1.目的: (1)进一步了解Multisim的各项功能,熟练掌握其使用方法,为后续课程打好基础。 (2)通过使用Multisim来仿真电路,测试如图1所示的单管共射放大电路的静态工作点、电压放大倍数、输入电阻和输出电阻,并观察 静态工作点的变化对输出波形的影响。 (3)加深对放大电路工作原理的理解和参数变化对输出波形的影响。 (4)观察失真现象,了解其产生的原因。 图 1 实验一电路图 2.步骤: (1)请对该电路进行直流工作点分析,进而判断管子的工作状态。 (2)请利用软件提供的各种测量仪表测出该电路的输入电阻。 (3)请利用软件提供的各种测量仪表测出该电路的输出电阻。 (4)请利用软件提供的各种测量仪表测出该电路的幅频、相频特性曲线。 (5)请利用交流分析功能给出该电路的幅频、相频特性曲线。 (6)请分别在30Hz、1KHz、100KHz、4MHz和100MHz这5个频点利用示波器测出输入和输出的关系,并仔细观察放大倍数和相位差。 (提示:在上述实验步骤中,建议使用普通的2N2222A三极管,并请注 意信号源幅度和频率的选取,否则将得不到正确的结果。) 3.实验结果及分析: (1)根据直流工作点分析的结果,说明该电路的工作状态。 由simulate->analyses->DC operating point,可测得该电路的静态工作点为:

电工电子学实验报告_实验三_三相交流电路.doc

一、实验目的 1.学习三相交流电路中三相负载的连接。 2.了解三相四线制中线的作用。 3.掌握三相电路功率的测量方法。 二、主要仪器设备 1.实验电路板 2.三相交流电源 3.交流电压表或万用表 4.交流电流表 5.功率表 6.单掷刀开关 7.电流插头、插座 三、实验内容 1.三相负载星形联结 按图 3-2 接线,图中每相负载采用三只白炽灯,电源线电压为220V。 图3-2 三相负载星形联结 (1) 测量三相四线制电源的线电压和相电压,记入表3-1( 注意线电压和相电压的关系) 。 U UV/V U VW/V U WU/V U UN/V U VN/V U WN/V 219218 220127 127127 表 3-1 (2)按表 3-2 内容完成各项测量,并观察实验中各白炽灯的亮度。表中对称负载时为每相开亮三 只灯;不对称负载时为 U相开亮一只灯, V 相开亮两只灯, W相开亮三只灯。 测量值相电压相电流中线电流中点电压负载情况U UN’ /V U VN’ /V U WN’ /VI U/AI V/AI W/A I N/A U N’N/V 对称有中线124 124 124 0 负载无中线125 125 123 1 不对称有中线126 125 124

负载 无中线 167 143 78 50 表 3-2 2. 三相负载三角形联结 按图 3-3 连线。测量功率时可用一只功率表借助电流插头和插座实现一表两用, 具体接法见图 3-4 所示。接好实验电路后,按表 3-3 内容完成各项测量,并观察实验中白炽灯的亮度。表中对称负载和不 对称负载的开灯要求与表 3-2 中相同。 图 3-3 三相负载三角形联结 图 3-4 两瓦特表法测功率 测量值 线电流 (A) 相电流 (A) 负载电压 (V) 功率 (W) 负载情况 I U I V I W I UV I VW I WU UV VW WU 1 2 U U U P P 对称负载 213 212 215 -111 -109 不对称负载 220 217 216 表 3-3

加法器及差分放大器项目实验报告

加法器及差分放大器项目实验报告 一、项目内容和要求 (一)、加法器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容: 2.1 设计一个反相加法器电路,技术指标如下: (1)电路指标 运算关系:)25(21i i O U U U +-=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 5.0,5.021±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1.0,1,5.021为正弦波±=信号,测试两种输入组合情况下的输出电 压波形。 C :输入信号V U i 01=,改变2i U 的幅度,测量该加法器的动态范围。 D :输入信号V U i 01=,V U i 1,2为正弦波,改变正弦波的频率,从1kHz 逐渐增加,步长为 2kHz ,测量该加法器的幅频特性。 2.2 设计一个同相加法器电路,技术指标如下: (1)电路指标 运算关系:21i i O U U U +=。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 1,121±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1,1,121为正弦波±=信号,测试两种输入组合情况下的输出电压 波形。 (二)、差分放大器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容 2.1 设计一个基本运放差分放大器电路,技术指标如下: (1)电路指标 运算关系:)(521i i O U U U --=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件

三相交流电路实验报告-百度文库(精)

三相交流电路实验报告-百度文库(精)

中国石油大学(华东)现代远程教育 实验报告 课程名称:电工电子学 实验名称:三相交流电路 实验形式:在线模拟+现场实践 提交形式:在线提交实验报告 学生姓名:毕义合学号:12952112061 年级专业层次:网络12春高起专 学习中心:建设工程分院函授站 提交时间: 2013 年 6 月 23 日

一、实验目的 1. 练习三相交流电路中负载的星形接法。 2. 了解三相四线制中线的作用。 二、实验原理 1. 对称三相电路中线、相电压和线、相电流的关系,三相电路中,负载的连接分为星形连接和三角形连接两种。一般认为电源提供的是对称三相电压。 (1)星形连接的负载如图1所示: 图1 星形连接的三相电路

A、B、C表示电源端,N为电源的中性点(简称中点),N' 为负载的中性点。无论是三线制或四线制,流过每一相负载的相电流恒等于与之相连的端线中的线电流: (下标I表示线的变量,下标p表示相的变量) 在四线制情况下,中线电流等于三个线电流 的相量之和,即 端线之间的电位差(即线电压)和每一相负载的相电压之间有下列关系: 当三相电路对称时,线、相电压和线、相电流都对称,中线电流等于零,而线、相电压满足: (2)三角形连接的负载如图2所示:

其特点是相电压等于线电压: 线电流和相电流之间的关系如下: 当三相电路对称时,线、相电压和线、相电 流都对称,此时线、相电流满足: 2.不对称三相电路 在三相三线制星形连接的电路中,若负载不对称,电源中点和负载中点的电位不再相等,称

为中点位移,此时负载端各相电压将不对称,电流和线电压也不对称。 在三相四线制星形连接的电路中,如果中线的阻抗足够小,那么负载端各相电压基本对称,线电压也基本对称,从而可看出中线在负载不对称时起到了很重要的作用。但由于负载不对称,因此电流是不对称的三相电流,这时的中线电流将不再为零。 在三角形连接的电路中,如果负载不对称,负载的线、相电压仍然对称,但线、相电流不再对称。 如果三相电路其中一相或两相开路也属于不对称情况。 3.三相负载接线原则 连接后加在每相负载上的电压应等于其额定

模电仿真实验报告。

模拟电路仿真实验报告 张斌杰生物医学工程141班学号6103414032 Multisim软件使用 一、实验目的 1、掌握Multisim软件的基本操作和分析方法。 二、实验内容 1、场效应管放大电路设计与仿真 2、仪器放大器设计与仿真 3、逻辑电平信号检测电路设计与仿真 4、三极管Beta值分选电路设计与仿真 5、宽带放大电路设计与仿真 三、Multisim软件介绍 Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 一、实验名称: 仪器放大器设计与仿真 二、实验目的 1、掌握仪器放大器的设计方法 2、理解仪器放大器对共模信号的抑制能力 3、熟悉仪器放大器的调试功能 4、掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器,毫伏表信 号发生器等虚拟仪器的使用 三、设计实验电路图:

四、测量实验结果: 差模分别输入信号1mv第二条线与第三条线:第一条线输出为差模放大为399mv。 共模输入2mv的的电压,输出为2mv的电压。 五、实验心得: 应用Multisim首先要准备好器件的pspice模型,这是最重要的,没有这个东西免谈,当然Spice高手除外。下面就可以利用Multisim的元件向导功能制作自己的仿真元件模型了。将刚刚做好的元件保存,你可能注意到了,保存的路径里面没有出现Master Database,即主数据库,这就是Multisim做的较好的其中一方面,你无论是新建元件还是修改主数据库里面的元件,都不会影响主数据库里面的元件,选好路径以后点击Finish即可,一个新元件就被创建了。在应用电子仿真软件 Multisim进行虚拟仿真时,有许多传感器或新器件,只要知道了它们的电特性或在电路中的作用,完全可以灵活采用变通的办法代替进行仿真,本来软件就是进行虚拟实验的,并不一定非要用真实元件不可,这样可以大大地拓宽电子仿真软件 Multisim的应用范围。再说用软件仿真时不存在损坏和烧毁元件、仪器的问题,只要设计好了电路都可以试一试,仿真成功了就可以进行实际电路的组装和调试,不

模电课设单入双出恒流源式差分放大电路的设计

目录 1 课程设计的目的与作用 (1) 1.1设计目的及设计思想 (1) 1.2设计的作用 (1) 1.3 设计的任务 (1) 2 所用multisim软件环境介绍 (1) 3 电路模型的建立 (3) 4 理论分析及计算 (4) 4.1理论分析 (4) 4..1.1静态分析 (4) 4.1.2动态分析 (5) 4.2计算 (5) 5 仿真结果分析 (6) 6 设计总结和体会 (9) 6.1设计总结 (9) 6.2心得体会 (9) 7参考文献 (10)

1 课程设计的目的与作用 1.1设计目的及设计思想 根据设计要求完成对单入双出恒流源式差分放大电路的设计,加强对模拟电子技术的理解,进一步巩固课堂上学到的理论知识。了解恒流源式差分放大电路的工作原理,掌握外围电路设计与主要性能参数的测试方法。 1.2设计作用 通过multisim软件仿真电路可以使我们对恒流源式差分放大电路有更深的理解,同时可以与长尾式放大电路加以比较,看到恒流源式差分放大电路的优越性。 1.3设计任务 1.设计一个单入双出恒流源是差分放大电路,在实验中通过调试电路,能够真正理解和掌握电路的工作原理。 2.正确理解所设计的电路中各元件对放大倍数的影响,特别是三极管的参数。 3.正确处理理论计算数据,并非仿真数据进行比较在比较中加深理解。 2 所用multisim软件环境介绍 multisim软件环境介绍 Multisim是加拿大IIT公司(Interrative Image Technologies Ltd)推出的基于Windows的电路仿真软件,由于采用交互式的界面,比较直观、操作方便,具有丰富的元器件库和品种繁多的虚拟仪器,以及强大的分析功能等特点,因而得到了广泛的引用。 针对不同的用户,提供了多种版本,例如学生版、教育版、个人版、专业版和超级专业版。其中教育版适合高校的教学使用。

实验三差分放大电路

EDA(一)模拟部分电子线路仿真实验报告 实验名称:差分放大电路 姓名:殷琦 学号:150320150 班级:15自动化一班 时间:2016.12.4 南京理工大学紫金学院计算机系

一.实验目的 1.熟悉差分放大电路的结构。 2.了解差分放大电路抑制零点漂移的原理。 3.掌握差分放大电路静态工作点的估算方法及仿真分析方法。 4.掌握差分放大电路电压放大倍数,输入电阻,输出电阻的估算 方法及仿真分析方法。 5.了解差分放大电路的大信号特性。 6.理解差分放大电路提高共模抑制比的方法。 二、实验原理 1.单端输出差模电压放大倍数可正可负,当信号从3端口输出时,1端口称为同相输入端,2端口称为反相输入端;当信号从4端口输出时,1端口称为同相输入端,2端口称为反相输入端。 2.单端输出差模电压放大倍数与双端输出差模放大倍数的比值与负载大小有关系,当RL=RC时比值为4:3,当负载为空载时比值为2:1。 3.共模电压放大倍数为负值。 4.长尾电路双端输出:

E C V -==+= V U I I R 12U -V I 1CE 1 B 1 C E BE EE 1B ββ)( 11,1d 2,2A o o i id u R R R R A === 单端输出: 3端输出: 11,1d ,22 1 A o o i id u R R R R A === 4端输出:1 1,1d ,22 1-A o o i id u R R R R A === 三.实验内容 包括搭建的电路图,必要的文字说明,对结果的分析等。 差分放大电路如图所示,三极管型号为2N3439,bb r =50Ω

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告

实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共 射级电路的特性。 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1.仿真电路图 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 1 R7 5.1kΩ 9 XMM1 6 E级对地电压25.静态数据仿真

仿真数据(对地数据)单位;V计算数据单位;V 基级集电极发射级Vbe Vce RP 2.834 6.126 2.2040.63 3.92210k 26.动态仿真一 1.单击仪表工具栏的第四个,放置如图,并连接电路。 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9

2.双击示波器,得到如下波形 5.他们的相位相差180度。 27.动态仿真二 1.删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2.重启仿真。

基于multisim的晶闸管交流电路仿真实验分析报告

基于multisim的晶闸管交流电路仿真实验报告

————————————————————————————————作者:————————————————————————————————日期:

自动化(院、系)自动化专业112 班组电力电子技术课 学号21 姓名易伟雄实验日期2013.11.24 教师评定 实验一、基于Multisim的晶闸管交流电路仿真实验 一、实验目的 (1)加深理解单相桥式半控整流电路的工作原理。 (2)了解晶闸管的导通条件和脉冲信号的参数设置。 二、实验内容 2.1理论分析 在单相桥式半控整流阻感负载电路中,假设负载中电感很大,且电路已工作于稳态。在u2正半周,触发角α处给晶闸管VT1加触发脉冲,u2经VT1和VD4向负载供电。u2过零变负时,因电感作用使电流连续,VT1继续导通。但因a点电位低于b点电位,使得电流从VD4转移至VD2,VD4关断,电流不再流经变压器二次绕组,而是由VT1和VD2续流。此阶段,忽略器件的通态压降,则ud=0,不会像全控桥电路那样出现ud为负的情况。 在u2负半周触发角α时刻触发VT3,VT3导通,则向VT1加反压使之关断,u2经VT3和VD2向负载供电。u2过零变正时,VD4导通,VD2关断。VT3和VD4续流,ud又为零。此后重复以上过程。 2.2仿真设计

(院、系)专业班组课学号姓名实验日期教师评定 触发脉冲的参数设计如下图

(院、系)专业班组课学号姓名实验日期教师评定 2.3仿真结果 当开关S1打开时,仿真结果如下图

(院、系)专业班组课学号姓名实验日期教师评定 三、实验小结与改进 此次实验在进行得过程中遇到了很多的问题,例如:触发脉冲参数的设置,元器件的选择等其中。还有一个问题一直困扰着我,那就是为什么仿真老是报错。后来,通过不断在实验中的调试发现,这是因为一些元器件的参数设置过小,导致调试出错。总的来说,这次实验发现了很多问题,但在反复的调试下,最后我还是完成了实验。同时,也让我认识到实践比理论更难掌握。通过不断的发现问题,然后逐一解决问题,最后得出自己的结论,我想实验的乐趣就在于此吧。 而对于当开关S1打开时的实验结果,这是因为出现了失控现象。我从书中发现:当一个晶闸管持续导通而二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud 为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形 另外,在实验过程中,我们如果进行一些改进:电路在实际应用中可以加设续流二极管,以避免可能发生的失控现象。实际运行中,若无续流二极管,则当α突然增大至180度或触发脉冲丢失时,会发生一个晶闸管持续导通而二极管轮流导通的情况,这使ud成为正弦半,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形。有二极管时,续流过程由二极管完成,在续流阶段晶闸管关断,这就避免了某一个晶闸管持续导通从而导致失控的想象。同时续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。

实验三 差分放大电路

EDA(一)模拟部分 电子线路仿真实验报告 实验名称:差分放大电路 姓名:殷琦 学号: 150320150 班级: 15自动化一班 时间: 2016.12.4 南京理工大学紫金学院计算机系

一. 实验目的 1.熟悉差分放大电路的结构。 2.了解差分放大电路抑制零点漂移的原理。 3.掌握差分放大电路静态工作点的估算方法及仿真分析方法。 4.掌握差分放大电路电压放大倍数,输入电阻,输出电阻的估算方法及仿真分析方法。 5.了解差分放大电路的大信号特性。 6.理解差分放大电路提高共模抑制比的方法。 二、实验原理 1.单端输出差模电压放大倍数可正可负,当信号从3端口输出时,1端口称为同相输入端,2端口称为反相输入端;当信号从4端口输出时,1端口称为同相输入端,2端口称为反相输入端。 2.单端输出差模电压放大倍数与双端输出差模放大倍数的比值与负载大小有关系,当RL=RC 时比值为4:3,当负载为空载时比值为2:1。 3.共模电压放大倍数为负值。 4.长尾电路双端输出: E C V -==+= V U I I R 12U -V I 1CE 1B 1C E BE EE 1B ββ)(

11,1d 2,2A o o i id u R R R R A === 单端输出: 3端输出: 11,1d ,22 1 A o o i id u R R R R A === 4端输出:1 1,1d ,22 1-A o o i id u R R R R A === 三.实验内容 包括搭建的电路图,必要的文字说明,对结果的分析等。 差分放大电路如图所示,三极管型号为2N3439,bb r =50Ω

交流谐振电路(电脑仿真)实验报告模板

实验时间:2019年月日,第批 签到序号:【进入实验室后填写】 福州大学 【实验八】交流谐振电路 (信息技术实验中心209实验室) 学院 班级 学号 姓名 实验前必须完成【实验预习部分】 登录下载预习资料 携带学生证提前10分钟进实验室

实验预习部分【实验目的】 【实验仪器】(名称) 【实验原理】(文字叙述、主要公式、原理图)

实验预习部分【实验内容和步骤】

实验预习部分 【1】写出示波器以下功能对应的标号 电源开关:,聚焦:,辉度:, 垂直方式开关:,水平位移:,垂直位移:与,【2】示波器校准信号为峰峰值4 V、1 KHz的方波,校准时垂直偏转灵敏度(衰减器开关10/15)应设定为V/DIV,并调节垂直微调旋钮(14/19)让波形垂直方向占大格,扫描时间因数(20)选择ms/DIV,并调节扫描微调(24)让一个波形周期水平方向占大格。 【3】R LC串联谐振电路,当信号源频率与谐振频率相同时,电流与信号源电压位相差;当信号源频率小于谐振频率时,电流位相于信号源电压位相,整个电路呈性;当信号源频率大于谐振频率时,电流位相于信号源电压位相,整个电路呈性。 【4】用示波器器观察和两波形,调节信号源频率,当示波器上显示的两列波时信号源频率为RLC串联电路谐振频率(注2)。 注1:示波器仪器介绍中校准信号为峰峰值2 V,但是仿真实验中是作为峰峰值4 V来校准。 注2:当示波器同时显示两路波形时,按“X-Y”按键(30)两次后两波形按照相同时序显示。

数据记录与处理 观测RLC串联谐振电路的特性 信号源峰峰值:; 电阻取值:,电感取值:,电容取值:; 谐振频率计算值:,品质因数计算值:。 谐振频率测量值 f:。

多级放大电路的设计与测试

多级放大电路的设计与测试 一、实验目的 1.理解多级直接耦合放大电路的工作原理与设计方法 2.熟悉并熟悉设计高增益的多级直接耦合放大电路的方法 3.掌握多级放大器性能指标的测试方法 4.掌握在放大电路中引入负反馈的方法 二、实验预习与思考 1.多级放大电路的耦合方式有哪些?分别有什么特点? 2.采用直接偶尔方式,每级放大器的工作点会逐渐提高,最终导致电路无法正常工作,如何从电路结构上解决这个问题? 3.设计任务和要求 (1)基本要求 用给定的三极管2SC1815(NPN),2SA1015(PNP)设计多级放大器,已知V CC=+12V, -V EE=-12V,要求设计差分放大器恒流源的射极电流I EQ3=1~1.5mA,第二级放大射极电流 I EQ4=2~3mA;差分放大器的单端输入单端输出不是真电压增益至少大于10倍,主放大器的不失真电压增益不小于100倍;双端输入电阻大于10kΩ,输出电阻小于10Ω,并保证输入级和输出级的直流点位为零。设计并仿真实现。 三、实验原理 直耦式多级放大电路的主要涉及任务是模仿运算放大器OP07的等效内部结构,简化部分电路,采用差分输入,共射放大,互补输出等结构形式,设计出一个电压增益足够高的多级放大器,可对小信号进行不失真的放大。 1.输入级 电路的输入级是采用NPN型晶体管的恒流源式差动放大电路。差动放大电路在直流放大中零点漂移很小,它常用作多级直流放大电路的前置级,用以放大微笑的直流信号或交流信号。 典型的差动放大电路采用的工作组态是双端输入,双端输出。放大电路两边对称,两晶体管型号、特性一致,各对应电阻阻值相同,电路的共模抑制比很高,利于抗干扰。

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告 实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了

解共射级电路的特性。 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1.仿真电路图 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 1 R7 5.1kΩ 9 XMM1 6 E级对地电压25.静态数据仿真

仿真数据(对地数据)单位;V计算数据单位;V 基级集电极发射级Vbe Vce RP 10k 26.动态仿真一 1.单击仪表工具栏的第四个,放置如图,并连接电路。 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9

2.双击示波器,得到如下波形 5.他们的相位相差180度。 27.动态仿真二 1.删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2.重启仿真。

电路分析基础实验报告

实验一 1. 实验目的 学习使用workbench软件,学习组建简单直流电路并使用仿真测量仪表测量电压、电流。 2.解决方案 1)基尔霍夫电流、电压定理的验证。 解决方案:自己设计一个电路,要求至少包括两个回路和两个节点,测量节点的电流代数和与回路电压代数和,验证基尔霍夫电流和电压定理并与理论计算值相比较。 2)电阻串并联分压和分流关系验证。 解决方案:自己设计一个电路,要求包括三个以上的电阻,有串联电阻和并联电阻,测量电阻上的电压和电流,验证电阻串并联分压和分流关系,并与理论计算值相比较。 3.实验电路及测试数据 4.理论计算 根据KVL和KCL及电阻VCR列方程如下: Is=I1+I2, U1+U2=U3, U1=I1*R1,

U2=I1*R2, U3=I2*R3 解得,U1=10V,U2=20V,U3=30V,I1=5A,I2=5A 5. 实验数据与理论计算比较 由上可以看出,实验数据与理论计算没有偏差,基尔霍夫定理正确; R1与R2串联,两者电流相同,电压和为两者的总电压,即分压不分流; R1R2与R3并联,电压相同,电流符合分流规律。 6. 实验心得 第一次用软件,好多东西都找不着,再看了指导书和同学们的讨论后,终于完成了本次实验。在实验过程中,出现的一些操作上的一些小问题都给予解决了。 实验二 1.实验目的 通过实验加深对叠加定理的理解;学习使用受控源;进一步学习使用仿真测量仪表测量电压、电流等变量。 2.解决方案 自己设计一个电路,要求包括至少两个以上的独立源(一个电压源和一个电流源)和一个受控源,分别测量每个独立源单独作用时的响应,并测量所有独立源一起作用时的响应,验证叠加定理。并与理论计算值比较。 3. 实验电路及测试数据 电压源单独作用:

相关文档
最新文档