LED光通量的测试方法 积分球光度法(光度计积分球) 光谱光度法(光谱仪) 变角光度法(配光曲线)

LED光通量的测试方法 积分球光度法(光度计积分球) 光谱光度法(光谱仪) 变角光度法(配光曲线)
LED光通量的测试方法 积分球光度法(光度计积分球) 光谱光度法(光谱仪) 变角光度法(配光曲线)

测试光通量的方法有三种

1)积分光度法

2)光谱光度法

3)变角光度法

第一种方法,积分光度法,最简单的测试方法,系统价位可控制在万元之内,需要设备如下:

1.1 积分球,营造光通量的测试环境,大小由被测对象的指标而定,详见下述百科网址的光通积分球选型方案,

https://www.360docs.net/doc/4c1673189.html,/view/86c9b51bc5da50e2524d7fa0.html

1.2 光度计,测试光通量的数显仪表,可以直接读出光通量的数值,详见下述网址的光度计说明,https://www.360docs.net/doc/4c1673189.html,/Shop/ShowProduct.asp?ProductID=43

1.3 标准灯,在不同尺寸积分球内,校准光度计光通量读数

第二种方法,光谱光度法,采用分光分色发,除了可以测量光通量外,还可以测量色温,显色指数等,系统价位在2万到6万之间,需要设备如下

2.1 积分球,营造光通量的测试环境,大小由被测对象的指标而定,详见下述百科网址的光通积分球选型方案,

https://www.360docs.net/doc/4c1673189.html,/view/86c9b51bc5da50e2524d7fa0.html

2.2 光谱仪,测试光通量及色温,显色指数等的分光分色仪器,测试过程由计算机自动完成,详见下述网址的光谱仪说明,

https://www.360docs.net/doc/4c1673189.html,/Shop/ShowProduct.asp?ProductID=23

2.3 标准灯,在不同尺寸积分球内,校准光谱仪光通量读数及光谱的分布

第三种方法,变角光度法(又称配光曲线法),采用分布式光度计,除了可以测量光通量外,还可以测量光强,平面照度等,系统价位在3万到80万之间,需要设备如下

3.1 变角控制转台,转动机构,被测对象可以通过其变换不同角度,资料请参考百科中https://www.360docs.net/doc/4c1673189.html,/view/49179528ed630b1c58eeb507.html

3.2 智能角度光强控制仪表,控制转动机构自动旋转,并采集相应角度的光强度信号,设备资料请参考https://www.360docs.net/doc/4c1673189.html,/Shop/ShowProduct.asp?ProductID=1

3.3 测试软体,编程控制转动机构自动旋转,采集相应角度的光强信号,并计算分析计算结果,并出具测试报告

各种光谱仪的区别及应用

各种光谱仪的区别及应用 ICP光谱仪, 火花直读光谱仪, 光电直读光谱仪, 原子发射光谱仪, 原子吸收光谱仪, 手持式光谱仪, 便携式光谱仪, 能量色散光谱仪, 真空直读光谱仪? 随着ICP-AES的流行使很多实验室面临着再增购一台ICP-AE S,还是停留在原来使用AAS上的抉择。现在一个新技术ICP-MS 又出现了,虽然价格较高,但ICP-MS具有ICP-AES的优点及比石墨炉原子吸收(GF-AAS)更低的检出限的优势。因此,如何根据分析任务来判断其适用性呢? ICP-MS是一个以质谱仪作为检测器的等离子体,ICP-AES和I CP-MS的进样部分及等离子体是极其相似的。ICP-AES测量的是光学光谱(120nm~800nm),ICP-MS测量的是离子质谱,提供在3~250amu范围内每一个原子质量单位(amu)的信息。还可测量同位素测定。尤其是其检出限给人极深刻的印象,其溶液的检出限大部份

为ppt级,石墨炉AAS的检出限为亚ppb级,ICP-AES大部份元素的检出限为1~10ppb,一些元素也可得到亚ppb级的检出限。但由于ICP-MS的耐盐量较差,ICP-MS的检出限实际上会变差多达50倍,一些轻元素(如S、Ca、Fe、K、Se)在ICP-MS中有严重的干扰,其实际检出限也很差。下面列出这几种方法的检出限的比较: 这几种分析技术的分析性能可以从下面几个方面进行比较: ★★容易使用程度★★ 在日常工作中,从自动化来讲,ICP-AES是最成熟的,可由技术不熟练的人员来应用ICP-AES专家制定的方法进行工作。ICP-MS 的操作直到现在仍较为复杂,尽管近年来在计算机控制和智能化软件方面有很大的进步,但在常规分析前仍需由技术人员进行精密调整,ICP-MS的方法研究也是很复杂及耗时的工作。GF-AAS的常规工作虽然是比较容易的,但制定方法仍需要相当熟练的技术。 ★★分析试液中的总固体溶解量(TDS)★★ 在常规工作中,ICP-AES可分析10%TDS的溶液,甚至可以高至30%的盐溶液。在短时期内ICP-MS可分析0.5%的溶液,但在大多情况下采用不大于0.2%TDS的溶液为佳。当原始样品是固体时,与ICP-AES,GP-AAS相比,ICP-MS需要更高的稀释倍数,折算到原始固体样品中的检出限就显示不出很大的优势了。 ★★线性动态范围(LDR)★★ ICP-MS具有超过105的LDR,各种方法可使其LDR开展至1 08。但不管如何,对ICP-MS来说:高基体浓度会使分析出现问题,

LED光通量检测

LED总光通量高精度检测最新进展 一. LED的特点和总光通量测量的挑战 众所周知,LED具有以下独特的发光性能: LED产品对温度十分敏感;LED产品光束一般较窄,且通常采用光源和灯具一体化的设计,传统的相对测量不再适用,而绝对光通量和光强分布测量对方法和设备要求更高;LED产品的发光存在明显的空间颜色不均匀性等。 由于LED产品特殊的发光性能,其总光通量的精确测量极具挑战性,LED产品光效测量横向可比性还很不理想。LED产品总光通量测量已成为各国相关标准研究和制定中的重点关注问题。 二.测量LED总光通量的方法和设备 2.1 利用积分球系统精确测量LED光通量的挑战 积分球系统测量总光通量已被人们所熟知。但积分球系统中,LED产品的光谱分布和空间光强分布与常用标准灯间存在较大差异,会带来较大的测量误差。采用同类LED产品定标积分球系统能大幅提高测量精度,但需要更高精度的总光通量测量方法和设备作为LED产品的量值传递基准。 2.2 分布光度计测量LED的总光通量

分布光度计通过测量LED产品在空间的光强或照度分布,并对全空间积分得到总光通量,根据测量光路安排不同,分为光强积分法和照度积分法。分布光度计系统对LED产品的外形、尺寸和光束角没有特别限制,但保持LED产品自身温度稳定是十分关键的。 2.2.1 光强积分法:中心旋转反射镜式分布光度计 中心旋转反射镜式分布光度计已有几十年历史,如图1,被测LED产品必须在相当大的空间范围内绕反射镜反向同步旋转。除了同步误差不可避免外,该分布光度计中的被测LED产品的温度存在较大的不稳定性:暗室中往往存在上部温度高而下部温度低的现象,温度差一般在2~5℃,被测LED产品实际工作在交变的环境温度之中,且运转空间越大,温差也越大; 被测LED产品在运动中产生气流,导致表面温度大幅变化,热惯性则会进一步加剧这种变化。由这些不稳定因素带来的测量误差因LED产品的设计不同而不同,严重时可达5%以上,加之中心反射镜所无法避免的原理性误差[4],对于总光通量测量则可达到10%以上的误差。 2.2.2光强积分法:灯具旋转式分布光度计

ASD野外光谱仪操作规范 修改版

ASD 野外光谱仪操作规范 1 地物光谱测量原理 反射率(Reflectance )定义为物体反射能量与入射能量的比值。光谱反射率(Spectral Reflectance )为某个特定波长间隔下测定的物体反射率,连续波长测定的物体反射率曲线构成反射率波谱(Reflectance Spectrum )。由于测定方式的差异,反射率波谱可以根据入射能量的照明方式及反射能量测定方式给定如下4种定义: (1) 方向-方向反射率波谱:入射能量照明方式为平行直射光,没有或可以忽略散射光;波谱测定仪器仅测定某个特定方向的反射能量。地物双向反射特性主要就是研究方向-方向反射率波谱。晴天条件下,以太阳光为照明光源,利用野外便携式地物光谱仪测定的地物反射率波谱就可以近似为方向-方向反射率波谱。方向-方向反射率的定义与二向反射率(Bidirectional Reflectance Distribution Function ,BRDF )基本一致,其定义如下: (,)(,,,)(,)r r i i r r i i L E πθφρθφθφθφ= (1) ,,,i i r r θφθφ分别为入射方向的天顶角和方位角及观测方向的天顶角和方位角,(,)i i E θφ为(,)i i θφ方向直射辐射的辐照度值,(,)r r L θφ为传感器在观测方向(,)r r θφ测定的物体表面的辐亮度值。暗含假设目标物为朗伯体。 需要注意的是,公式(1)定义的方向-方向反射率测定要求其它入射方向没有任何散射光。 (2) 半球-方向反射率波谱:入射能量在2π半球空间内均匀分布,波谱测定仪器仅测定某个特定方向的反射能量。全阴天条件下,以太阳散射光为照明光源,利用野外便携式地物光谱仪测定的地物反射率波谱就可以近似为半球-方向反射率波谱。半球-方向反射率的定义如下, 2200(,) (,)(,)(,)cos sin r r r r r r d i i i i i i L L E E d πππθφπθφρθφθφθφθφ==?? (2) 式中d E 为2π半球空间内到达物体表面所有辐照度值的总和。 (3) 方向-半球反射率波谱:入射能量照明方式为平行直射光,没有或可以忽略散射光;波谱测定仪器测定2π半球空间的平均反射能量。利用积分球原理测定的物体反射率波谱就是方向-半球反射率波谱。方向-半球反射率的定义如下,

光谱仪原理

光谱仪原理 光谱仪是将复杂的光分解成光谱线的科学仪器,一般主要由棱镜或衍射光栅等构成。光谱仪可以检测物体表面所反射的光,通过光谱仪对光信息的抓取、以照相底片显影,或通过电脑化自动显示数值仪器显示和分析,从而测知物品中含有何种元素。光谱仪不仅可以测量可见光,还可以检测肉眼不可见的光谱,比如利用光谱仪将阳光分解,并按波长排列,可以看到可见光只占了光谱的很小的一个范围,其余都是肉眼不可见的光谱,如红外线、微波、紫外线、X射线等等。 总体来说,光谱仪是利用光学原理,对物质的组成成分和结构进行检测,分析和处理的科学设备,具有分析精度高、测量范围大、速度快和样品用量少等优点。因此,其广泛应用于冶金、地质、石油化工、医药卫生、环境保护等部门,也是军事侦察、宇宙探索、资源和水文勘测所必不可少的仪器。 根据现代光谱仪的工作原理,可以将光谱仪分为两大类,即经典光谱仪和新型光谱仪。经典光谱仪是依据空间色散原理来工作,而新型光谱仪则是依据调制原理,因此经典光谱仪都是狭缝光谱仪器,而调制光谱仪则由圆孔进光,它是非空间分光的。下面简单介绍一下经典光谱仪的原理。 由于光谱仪要测量所研究光(即所研究物质的反射、吸收、散射或受激发的荧光等)的光谱特性,如波长、强度等,所以,光谱仪应具有以下功能:一、分光:按一定波长或波数把被研究光在一定空间内分开;二、感光:按照光信号强度,将其转化成相应的电信号,从而测量出各个波长的光的强度,以及光强度随着波长变化的规律;三、绘谱线图:记录保存分开的光波及其强度按波长或波数的发布规律或显示出对应光谱图。 要具备上述功能,一般光谱仪器都可分成四部分:光源和照明系统,分光系统,探测接收系统和传输存储显示系统。下面是经典光谱仪的一张结构示意图: 一、光源和照明系统。一般来说,在研究物质的发射光谱如气体火焰、交直流电弧以及电火花等激发试样时,光谱仪研究对象就是光源;而在研究吸收光谱、拉曼光谱或荧光光谱时,光源则作为照明工具(如汞灯、红外干燥灯、乌灯、氙灯、LED、激光器等等)照射在研究物质上,光谱仪测量研究物质所反射的光,因此为了尽可能多地会聚光源照射的光强度,并传递给后面的分光系统,就需要专门设计照明系统。 二、分光系统。分光系统是任何光谱仪的核心部分,一般由准直系统、色散

光谱仪的原理、功能以及分类【详尽版】

光谱仪的原理光谱仪的主要功能以及具体的分类 内容来源网络,由SIMM深圳机械展整理 更多相关展示,就在深圳机械展! 光谱仪器是进行光谱研究和物质结构分析,利用光学色散原理及现代先进电子技术设计的光电仪器,光谱仪的主要功能是什么,在它工作原理的基础上怎么对其进行分类的,本文将详细的为大家介绍。 光谱仪的主要功能 它的基本作用是测量被研究光(所研究物质反射、吸收、散射或受激发的荧光等)的光谱特性,包括波长、强度等谱线特征。因此,光谱仪器应具有以下功能: (1)分光:把被研究光按一定波长或波数的发布规律在一定空间内分开。 (2)感光:将光信号转换成易于测量的电信号,相应测量出各波长光的强度,得到光能量按波长的发布规律。 (3)绘谱线图:把分开的光波及其强度按波长或波数的发布规律记录保存或显示对应光谱图。 要具备上述功能,一般光谱仪器都可分成四部分组成:光源和照明系统,分光系统,探测接收系统和传输存储显示系统。 主要分类 根据光谱仪器的工作原理可以分成两大类:一类是基于空间色散和干涉分光的光谱仪;另一类是基于调制原理分光的新型光谱仪。本设计是一套利用光栅分光的光谱仪,其基本结构如

图。 光源和照明系统可以是研究的对象,也可以作为研究的工具照射被研究的物质。一般来说,在研究物质的发射光谱如气体火焰、交直流电弧以及电火花等激发试样时,光源就是研究的对象;而在研究吸收光谱、拉曼光谱或荧光光谱时,光源则作为照明工具(如汞灯、红外干燥灯、乌灯、氙灯、LED、激光器等等)。为了尽可能多地会聚光源照射的光强度,并传递给后面的分光系统,就需要设计照明系统。 分光系统是任何光谱仪的核心部分,它一般是由准直系统、色散系统、成像系统三部分组成,作用是将照射来的光在一定空间内按照一定波长规律分开。如图2-1所示,准直系统一般由入射狭缝和准直物镜组成,入射狭缝位于准直物镜的焦平面上。光源和照明系统发出的光通过狭缝照射到准直物镜,变成平行光束投射到色散系统上。色散系统的作用是将入射的单束复合光分解为多束单色光。多束单色光经过成像物镜按照波长的顺序成像在透镜焦平面上;这样,单束的复合光经过分光系统后变成了多束单色光的像。目前主要的色散系统主要有物质色散(如棱镜)、多缝衍射(如光栅)和多光束干涉(如干涉仪)。 探测接收系统的作用是将成像系统焦平面上接收的光谱能量转换成易于测量的电信号,并测

地物光谱仪在野外光谱测量中的使用解析

地物光谱仪在野外光谱测量中的使用(一) 论文关键词地物光谱仪;野外测量;工作规范 论文摘要在遥感技术中,为了更精确地判读多光谱图像,掌握地面上各种地物的光谱辐射特性是十分重要的。介绍FieldSpec?悖HandHeld手持便携式 光谱分析仪的测量原理方法、工作规范及注意事项,概要地说明了影响光谱测量的因素。 在遥感领域中,为了研究各种不同地物或环境在野外自然条件下的可见和近红外波段反射光谱,需要适用于野外测量的光谱仪器。对野外地物光谱进行测量,我们使用的是美国 ASD公司FieldSpec?悖HandHeld手持便携式光谱分析仪。其主要技术指标为:波长范围为 300~1100nm光谱采样间隔为1.6nm, 灵敏度线性:土1% FieldSpec?悖HandHeld手持便携式光谱分析仪可用于户外目标可见一近红外波段的光谱辐射测量。该光谱仪在户外主要利用太阳辐射作为照明光源,利用响应度定标数据,可测量并获得地物目标的光谱辐亮度;利用漫反射参考板对比测量,可获得目标的反射率光谱信息;通过对经过标定的漫反射参考板的测量,可获得地面的总照度以及直射、漫射照度光谱信息;利用特定的辅助测量机械装置,可获得地面目标的BRDF(方向反射因子)光谱信 息参数。 为了使地物光谱数据可靠和高的质量,使数据便于对比和应用,有必要提出地物光谱测试规范和测量要求。 1仪器的标准和标定 1.1光谱分辨率 实用分辨宽度对0.04~1.10卩m小于5nm 1.1~2.5卩m小于15nm。对于FieldSpec?悖HandHeld手持便携式光谱分析仪,起始波长为325nm终止波长 为1075nm波长步长为1nm则光谱分辨率取3nm 1.2线性标定 线性动态范围有3个量级,最大信号对应为0.8~1.0,太阳常数照明的白板(V 90%)峰值响应输出。线性误差小于 3%(回归误差)。 1.3光谱响应度的标定 反射率小于、等于15%(大于1%)的目标,信噪比应大于10。反射率大于15%的目标,信噪比应大于20。 2野外测定方法与工作规范 2.1目标选取 选取测量目标要具有代表性,应能真实反映被测目标的平均自然性。对于植被冠层及用物的测量应考虑目标和背景的综合效应。 2.2能见度的要求

实验室常用光谱仪及其它们各自的原理

实验室常用光谱仪及其它们各自的原理 光谱仪,又称分光仪。以光电倍增管等光探测器在不同波长位置,测量谱线强度的装置。其构造由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。以色散元件将辐射源的电磁辐射分离出所需要的波长或波长区域,并在选定的波长上(或扫描某一波段)进行强度测定。分为单色仪和多色仪两种。 下面就介绍几种实验室常用的光谱仪的工作原理,它们分别是:荧光直读光谱仪、红外光谱仪、直读光谱仪、成像光谱仪。 荧光直读光谱仪的原理: 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为(10)-12-(10)-14s,然后自发地由能量高的状态 跃迁到能量低的状态.这个过程称为发射过程.发射过程既可以是非辐射跃迁,也可以是辐射跃迁. 当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子.它的能量是特征的,与入射辐射的能量无关.当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X 射线荧光,其能量等于两能级之间的能量差.因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系. K层电子被逐出后,其空穴可以被外层中任一电子所填充,ad4yjmk从而可产生一系列的谱线,称为K系谱线: 由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线同样,L层电子被逐出可以产生L系辐射.如果入射的X 射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释放出来,且ΔE=EK-EL,这个能量是以X射线形式释放,产生的就是Kα 射线,同样还可以产生Kβ射线,L系射线等. 莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下: λ=K(Z-s)-2 这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础.此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析. 红外光谱仪的原理: 红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。

光谱仪原理

光纤光谱仪的原理及基础知识 2014-05-25 光谱学是测量紫外、可见、近红外和红外波段光强度的一种技术。光谱测量被广泛应用于多种领域,如颜色测量、化学成份的浓度检测或电磁辐射分析等。 上海辰昶仪器设备有限公司是国内领先的光纤光谱仪的生产厂商,以“光谱引领生活”为理念,致力于为国内广大用户提供符合国情的一揽子光谱系统解决方案! 光谱仪器一般都包括入射狭缝、准直镜、色散元件(光栅或棱镜)、聚焦光学系统和探测器。而在单色仪中通常还包括出射狭缝,让整个光谱中一个很窄的部分照射到单象元探测器上。单色仪中的入射和出射狭缝往往位置固定而宽度可调,可以通过旋转光栅来对整个光谱进行扫描。 在九十年代,微电子领域中的多象元光学探测器迅猛发展,如CCD 阵列、光电二极管(PD )阵列等,使生产低成本扫描仪和CCD 相机成为可能。光纤光谱仪使用了同样的CCD 和光电二极管阵列(PDA )探测器,可以对整个光谱进行快速扫描而不必移动光栅。 由于光通信技术对光纤的需求大大增长,从而开发了低损耗的石英光纤。该光纤同样可以用于测量光纤,把被测样品产生的信号光传导到光谱仪的光学平台中。由于光纤的耦合非常容易,所以可以很方便地搭建起由光源、采样附件和光纤光谱仪组成的模块化测量系统。 光纤光谱仪的优点在于系统的模块化和灵活性。上海辰昶仪器的微小型光纤光谱仪的测量速度非常快,使得它可以用于在线分析。而且由于它选用低成本的通用探测器,所以光谱仪的成本也大大降低,从而大大扩展了它的应用领域。 ?光学平台设计 上海辰昶仪器的光谱仪采用Czerny-Turner 光学平台设计(如图1 所示)。 图1 EQ2000光学平台设计图

分布光度计与光谱仪总光通量测试的利弊对比_CN

分布光度计与光谱仪总光通量测试的利弊对比 根据IESNA-LM-79-08,SSL 产品的总光通量(流明)应该使用积分球系统或测角光度计进行测量。具体的选用方法取决于还需要测量其它哪些测量值(颜色,强度分布)以及SSL 产品尺寸和其它要求。 积分球系统适合用于集成LED 灯具和相对较小的LED 光源测量总光通量和色度,积分球系统具有测量速度快和无须暗室的优点。空气流动达到最小,球体内温度不易受温度控制室内潜在的气流影响。注意安装在积分球内部或表面的SSL 产品散发的热量可能会集聚并增加所测产品的环境温度。积分球有两种使用方法,一种采用的是V(λ)校正的光度探头,另一种采用光谱分析仪作为探测器。由于积分球光度计存在V(λ)光谱响应偏差,所以使用第一种方法会产生光谱非匹配误差,而第二种方法理论上没有光谱非匹配误差。 分光辐射仪是SSL 产品测量的首选方法,因为采用光度探头产生的光谱非匹配误差非常严重而不仅仅只对于LED 发射光和校正很重要,它需要用到系统光谱响应以及被测装置频谱方面的知识。另外,采用测角光度计同时也可以测出色度和总光通量。 测角光度计可以测量光强分布以及总光通量。测角光度计在测量小型SSL 产品的同时,还能测 量尺寸相对较大的SSL 产品(相对于传统荧光灯照明)的总光通量。测角光度计通常安装在有温度控制的暗室内,不易从被测光源吸收热量。但要注意通风装置可能影响对温度敏感的SSL 产品的测量。使用测角光度计测量比球体光度计更耗时。使用宽带光探测器的测角光度计易受上述光谱非匹配误差的影响。事实上,如果在颜色和角度方面改变很大,校正光谱非匹配误差就更难。 一般积分球系统和测角光度计测试裸光源的时候,数据相差不大。如果测试灯具,以分布光度计的测试结果为准,当然这个是要确保分布光度计的校准是准确的。按照正规测试要求来说,积分球是用于测试光源的,测角光度计是用于测试灯具的。 力汕LSG-2000旋转反光镜立式分布式光度计是一款自动测试3D光强分布曲线的旋转反光镜立式分布光度计系统,可实现C-γ、A-α和B-β测量方案,完全满足CIE,IESNA,GB等国际国内标准。测试距离要求5-30米不等,可满足各种光源的测试要求,如LED光源,HID光源,室内外照明,路灯,格栅灯等各种照明灯具。 力汕电子推出的LSG-2000已被广泛应用于生产企业和实验室,如Sharp Electronics in Memphis TN(USA), CS TECH MEXICO, S.A. DE C.V. (Mexico),DORADO Praha s.r.o.(Czech)等。力汕之所以能赢得如此多的客户,是源于我们始终实践着正确的产品,正确的价格和正确的服务,未来力汕将始终以高质量的产品和优质的售后来服务广大客户,同时也欢迎各位新老客户的咨询。

便携式光谱仪解读

SPECTROTEST 便携式光谱仪 ——现场金属分析的新标准 新的设计新的技术卓越的性能 SPECTROTEST是一台通用的金属分析仪,广泛用于金属材料生产,加工和废旧金属回收。无论对小样品,细丝,曲面或焊缝,无论是在野外或炼钢平台以及在金属回收的料场,SPECTROTEST凭借其先进的技术和可靠的性能,都可有卓越的表现。 等离子体数字化的激发光源,特殊设计的光学系统,新的高性能的读出系统,以及ICAL 标准化的专利技术等等,所有这些使得SPECTROTEST便携式光谱仪分析更准确,操作更简便,使用更可靠。使SPECTROTEST成为同类产品中最为出色的一种。 方便地移动和转向使仪器小车可以适合长时间使用和频繁移动。安全基座使小车可以和仪器连为一体。符合人体工程学设计,使仪器可以垂直操作,并且有适当的操作高度。如果需要,小车可以分解为几部分,只需要很小的空间就可以方便地储存或运输。 新的等离子体激发光源是第一个用于火花发射光谱的全数字激发光源。该技术可以大大避免传统技术的弱点,显著提高检测精度和重复性,缩短分析时间。特殊设计的光学系统与实验室光谱仪采用的光绪系统一致,可以记录所有分析波长范围内的谱线,并且具有优异的精确度,稳定性和分辨率。 这个光学系统为了适合移动光谱而设计得更加紧凑,光学器件,如全息光栅、CCD检测器等都是完全密封的,使得光学系统不受灰尘和震动等外界因素的影响。 分析数据由全新的高性能读出系统进行处理,数据处理速度比以前的系统快50倍,大大提高了SPECTROTEST的分析能力和数据处理能力。 ICAL标准化功能可以时刻监控光谱仪的测量系统,保证其处在最佳状态。使光谱仪免受环境温度和地点变化带来的影响。 等离子体激发光源,特殊设计的光学系统,新的功能强大的读出系统以及ICAL标准化功能使仪器的分析准确度和可扩展性在同类产品中出类拔萃。同时仪器的维护和使用费用达到最低。 开始检测时只需将激发枪抵住样品表面,按住激发键即可,分析结果可在十几秒内获得。

光谱仪工作原理+图

海洋光纤光谱特有的信息 1.光谱仪的工作原理 CCD探测器型的海洋光学光谱仪的工作原理如动画展示。光通过光纤有效的耦合到光谱仪中,经球面镜将进入光谱仪中的发散光束会聚准直到衍射光栅上,衍射分光后又经第二面球面镜会聚聚焦,光谱像投射到线性CCD阵列上,数据信号经A/D转换传至计算机上。 光子撞击CCD像素上的光敏二极管后,这些反向偏置的二极管释放出与光通量成比例的电容器,当探测器积分时间结束,一系列开关关闭并传输电荷至移位寄存器中。当传输完成,开关打开并且与二极管关联的电容器又重新充电开始一个新的积分周期。同时,光能被累积,通过A/D转换数据被读出移位寄存器。数字化的数据最后显示在计算机上。 2.光学分辨率

单色光源的光学分辨率以半高全宽值(FWHM)来表征,它依赖于光栅刻槽密度(mm-1)及光学入瞳直径(光纤或狭缝)。海洋光纤光谱配置客户所要求的系统时,必须平衡两个重要的因素: 1) 光栅刻槽密度增加,分辨率增大,但光谱范围及信号强度会减小。 2) 狭缝宽度或光纤直径变窄,分辨率增大,但信号强度会减小。 如何估算光学分辨率(nm,FWHM) 2. 1. 确定光栅光谱范围,找到光栅的光谱范围通过: 选择光栅:“S”光学平台;选择光栅:“HR”光学平台;选择光栅:“NIR”光学平台。(有想详细了解的,烦请光纤专家予以解释) 2. 2. 光栅光谱范围除以探测器像元数,结果为Dispersion。Dispersion (nm/pixel) = 光谱范围/像元数 探测器像元素见图2

3.像素分辨率 下表列出了不同狭缝(或光纤直径)尺寸下的像素分辨率。尽管狭缝入射宽度不同,但高度一致(1000um)。有想深入了解的版友直接向专家提问。 4.计算光学分辨率(nm) Dispersion (Step 2) x Pixel Resolution (Step 3) 举例:确定光学分辨率,光谱仪型号:USB4000,光栅型号:#3,狭缝宽度:10um 650nm(#3光栅光谱范围)/3648(USB4000探测器像元数)X5.6(像素分辨率)=0.18X5.6nm=1.0nm(FWHM) 5.海洋光纤光谱仪的系统灵敏度 海洋光纤光谱仪对系统灵敏度的定义打破常规,不需要对影响光谱幅度的各种因素进行校正。他们提供一种更有用的方法:NIST-traceable 辐射标准(LS-1-CAL),它可以用能量项来标准化光谱数据。在他们的SpectraSuite操作软件中,可以使用“I”模式下相对能量分布(0到1)或绝对值(以 W/cm2/nm或流明或勒克斯/单位面积为单位)来标准化光谱数据。对透射或反射实验,可以使一个物理标准来标准化(归一化)数据如利用空气中的传播或漫射白板来确定。 6.海洋光纤光谱解决影响光谱幅度值的因素

LED光通量的测试方法 积分球光度法(光度计积分球) 光谱光度法(光谱仪) 变角光度法(配光曲线)

测试光通量的方法有三种 1)积分光度法 2)光谱光度法 3)变角光度法 第一种方法,积分光度法,最简单的测试方法,系统价位可控制在万元之内,需要设备如下: 1.1 积分球,营造光通量的测试环境,大小由被测对象的指标而定,详见下述百科网址的光通积分球选型方案, https://www.360docs.net/doc/4c1673189.html,/view/86c9b51bc5da50e2524d7fa0.html 1.2 光度计,测试光通量的数显仪表,可以直接读出光通量的数值,详见下述网址的光度计说明,https://www.360docs.net/doc/4c1673189.html,/Shop/ShowProduct.asp?ProductID=43 1.3 标准灯,在不同尺寸积分球内,校准光度计光通量读数 第二种方法,光谱光度法,采用分光分色发,除了可以测量光通量外,还可以测量色温,显色指数等,系统价位在2万到6万之间,需要设备如下 2.1 积分球,营造光通量的测试环境,大小由被测对象的指标而定,详见下述百科网址的光通积分球选型方案, https://www.360docs.net/doc/4c1673189.html,/view/86c9b51bc5da50e2524d7fa0.html 2.2 光谱仪,测试光通量及色温,显色指数等的分光分色仪器,测试过程由计算机自动完成,详见下述网址的光谱仪说明, https://www.360docs.net/doc/4c1673189.html,/Shop/ShowProduct.asp?ProductID=23 2.3 标准灯,在不同尺寸积分球内,校准光谱仪光通量读数及光谱的分布

第三种方法,变角光度法(又称配光曲线法),采用分布式光度计,除了可以测量光通量外,还可以测量光强,平面照度等,系统价位在3万到80万之间,需要设备如下 3.1 变角控制转台,转动机构,被测对象可以通过其变换不同角度,资料请参考百科中https://www.360docs.net/doc/4c1673189.html,/view/49179528ed630b1c58eeb507.html 3.2 智能角度光强控制仪表,控制转动机构自动旋转,并采集相应角度的光强度信号,设备资料请参考https://www.360docs.net/doc/4c1673189.html,/Shop/ShowProduct.asp?ProductID=1 3.3 测试软体,编程控制转动机构自动旋转,采集相应角度的光强信号,并计算分析计算结果,并出具测试报告

光谱仪光谱检测作业指导书

光谱仪光谱检测作业指导书 (ISO9001-2015) 1.0总则 (1)为了规范光谱检测工作,保证检测工作质量和安全操作,特制定本检测工艺。 (2)本工艺适用于ARC-MET930、NITON XLT800光谱仪的锅炉、压力容器、压力管道等特种设备产品的光谱检测工作。适用于碳、硫、磷、硅、锰、镍、铬、钛、铝、钨、铜、钼、铌、钒和钴等元素的定量或半定量测定。其他型号的光谱仪的光谱检测工作可参照本工艺,编制相应的专用工艺或检验方案。 2.0依据 (1)相关的规程、材料标准等 (2)ARC-MET930光谱仪使用手册 (3)NITON XLT800系列合金分析仪使用手册 3.0方法、程序、内容和要求 3.1 要求 3.1.1安全要求 (1)环境要求:对于易燃易爆环境中的作业,应当具备动火条件。 (2)位置要求:要求工位易于操作,即够得着。 (3)空间要求:打磨的空间,放置仪器设备的空间。 (4)安全措施不到位,不准进行检测工作。 3.1.2 人员要求 负责资料审查的人员必须具有3年以上特种设备设计、制造经验,材料专业,

大专以上学历,且具有工程师及以上职称;负责检测的人员必须具备特种设备检验人员或材料检验资质。 3.2 程序、方法、内容 3.2.1 资料审查 (1)审查试样的设计、材料牌号、规格等资料。 (2)审查试样以往的检测、运行资料等。 3.2.2 检测准备 按照使用说明书的要求,做好仪器开机启动工作。对于有辐射影响的,要做好防护工作。 3.2.3 试样准备: (1)平面试样直接用标准探头适配器,圆棒、管、螺栓等选择适当的适配器。(2)打磨试样时,一定要将氧化层锈层打磨掉,全部露出金属本体,打磨面积φ30mm左右。被测点要干净,不能有手印、锈迹、油污、裂纹。 (3)有些试样可以用酒精清洗。 (4)不同基体的被测材料最好用不同的砂纸打磨,以免影响测试精度。 (5)测点要能代表被测材料的成分含量。 3.2.4 取样 (1)现场装置上的设备、管道等,由于其在役的状况,进行宏观检查,选择具有代表性的相关部位 (2)出于安全的原因,在上条所确定的部位中,选择可安全操作的位置。(3)要详细记录取样点的位置,并绘制测点布置示意图。 3.2.5 校准

发光二极管光通量的测定及研究(精)

发光二极管光通量的测定及研究 发光二极管光通量的测定及研究 上海时代之光 二,LED光通量的积分球相对法测量研究 LED光通量的积分球测量系统连接如图所示. 测量前的准备: 1, 依照被测LED功率的不同,我们选用不同直径的LED测量专用积分球. 2, 采用恒定直流源作为 实验1 温度对LED光通量输出的影响 下表为采用我们的积分球系统测量所得到的某一350mA LED光通量随着LED点 亮后温度 的升高而变化的数据. 记录温度(℃) 光通量(lm) 1 25 41.9 2 25 41.9 3 25 40.9 4 26 41.8 5 28 39.9 6 30 38.2 7 30 38.4 8 31 38.0 9 31 37.8 10 32 38.0 11 32 37.3 12 35 37.4 13 35 37.1 14 38 36.7 15 38 36.2 16 39 36.4 17 40 36.7 18 40 36.2 19 42 35.8 20 42 36.1 21 42 35.5 22 42 35.8 23 42 36.0 *说明:上表中的温度指的是LED光出射方向中心表面封装处的温度. 上表相应的350m A LED 温度—光通量关系变化趋势经过直线拟合后绘制如下: 从图中我们可以看到,被测LED光通量大小随封装表面温度的升高出现了下降的 情况.

而从我们其他LED相关试验的结果来看,都呈现出了光通量与温度相反方向的变化关系,只 是随着被测LED的功率不同,功率大的LED光通量变化明显一些,功率较小的LED光通量变 化相对小些. LED环氧树脂封装表面温度,作为表征LED内部P-N结温度的外部表现,从被测LED点 燃开始的温度升高过程中,该LED光通量的输出也发生了或多或少,但相对明显的降低,LED 内部P-N温度的升高导致了LED光通量输出的减少. Lamina公司也曾做过其产品BL-4000 白色LED光通量输出跟节点温度之间变化关系的 相关研究. 发现其产品BL-4000 白色LED的光输出会随着节点温度的升高而降低,同时发现这种 效果在580nm到780nm之间的范围内会更加明显.所以,对于大功率LED产品来说,为了保 证其有最大(或最佳)的光输出,必须要有最优化的散热设计,尽可能地把LED内部P-N 节点温度保持在较低的状态. 较长时间点亮后的LED,其内部P-N节点温度达到一个相对的稳定;而这个稳定温度无 疑正受着环境温度等的影响.通过本实验,要说明的是:LED作为一个受测量环境影响比较 明显的光源,我们在进行LED相关参数包括光通量等的测量时,必须要有统一并严格保持这 一恒定的环境温度,否则测量结果里就可能存在着比较明显的偏差. 同时,LED测量专用积分球内部空间相对狭小,由于被测LED长时间的点亮很可能就会 造成积分球内部温度的升高.所以,对于LED这种对温度相当敏感的光源来说,更不能在封 闭的积分球内进行长时间的点亮测量.这些都是LED光通量测量结果产生偏差的原因. 实验2 LED放置方向对其总光通量测量结果的影响 积分球放置:探测器所在窗口在测量者所面对积分球的正背面. 定义LED的放置方向: 上:LED机械轴垂直,LED光出射方向向上. 左:LED光出射方向向左. 右:LED光出射方向向右. 前:LED光出射方向向观察者方向. 后:LED光出射方向背观察者方向,向挡屏方向.

光纤光谱仪大全解读

光谱仪器:微型光纤光谱仪Miniature Fiber Optic Spectrometer 微型光纤光谱仪Miniature Fiber Optic Spectrometer MFS 微型光纤光谱仪Miniature Fiber Optic Spectrometer 本公司的微型光纤光谱仪不但在工业、农业、医疗卫生、交通、环保、教育领域应用,还在各项前沿应用技术,如拉曼光谱、 微区荧光、分子光谱、等离子光谱、多光谱成像、诱导光谱、大气光谱有实际应用。 另外特种用途的光谱仪内部采用隔离真空室进行敏感器件的保护。大规模集成电路ASIC和处理器可实现用户算法定制、预处理以及保密功能。产品适合实验室检测、野外便携式检测、也适合7×24小时快速在线或者远距离无人值守监测,可以单机测量、也可以组网测量,可连接远程数据库或DCS分布控制系统 ★ MFS-4000系列紫外可见近红外光纤光谱仪 光纤光谱仪基于110mm光学平台,采用对称光路设计,为3648 像素 CCD 探测器阵列,测量范围覆盖了紫外可见和近红外,产品设计专门针对全光谱测量进行优化,适合各种吸收光谱、发射光谱、反射光谱、激光光谱、辐射源光谱等测量, 有优秀的信噪比和灵敏度。另外还可选择主动出发特性的型号MFS-4000P,专门针对频闪光源测试。 MFS-4000P的主动触发特性为:光谱仪在每次采集光谱信号时,发出触发电平,打开用户频闪光源,然后使得光源工作在特定的时间(

用户设定的触发脉冲宽度)。另外提供[触发延时],该参数表示在光谱数据开始采集后的 N 微秒后,再触发光源。产品型号命名 MFS-4000 (后缀P表示主动触发特性) 光学设计平台对称式光路设计,110mm 焦距波长范围 200-1100nm 光栅 300lines@250nm & 750nm,混合衍射光栅杂散光 < 0.1% 灵敏度(评估) 96光子/计数(600nm) 探测器 3648个象素 信噪比 >350 : 1 (10ms) AD 转换器 12 位, 2MHz 积分时间 4ms到 10s 接口USB2.0 数据传输速度 10ms(取决于传输数据量) 输出触发口 3.3V/5V TTL 电平,时间精度0.066μs,范围:0----积分时间 电源要求 5VDC USB 电源 狭缝尺寸 10μm,20μm,50μm,100μm,200μm 光学分辨率 0.4~10.0 nm 光纤连接 SMA905接口,与0.1-0.6mm的单股光纤相连外型尺寸 150mm*110mm*48mm 其它型号产品 □MFS-4000NIR 采用平像场光路设计,90mm焦距,专用于近红外光谱测试,适合波长范围:780-960nm □MFS-4000UV 采用对称光路设计,110mm焦距,专门针对紫外进行优化,适合波长范围:200-400nm □MFS-4000TC 采用了TE制冷到-10℃,大大提高系统灵敏度,可用于较弱光信号的测试。基于110mm对称光路平台,适合 波长范围:340-800nm。分辨率:0.4-10nm。 配套附件 □MFS-FB1 紫外可见近红外光纤,适合光谱范围:200-1100nm,数值孔径:0.22,光纤直径:400um,长度0.8m(其它长度可定制0.1m-10m); □MFS-FB1 Y形光纤,适合波长范围:200-1100nm,数值孔径:0.22,入射光纤直径100um,出射光纤直径:400um,长度:1.5m。适合应用场合:反射测量,荧光激发等等。

野外光谱仪操作规范修改版

野外光谱仪操作规范 1 地物光谱测量原理 反射率(Reflectance )定义为物体反射能量与入射能量的比值。光谱反射率(Spectral Reflectance )为某个特定波长间隔下测定的物体反射率,连续波长测定的物体反射率曲线构成反射率波谱(Reflectance Spectrum )。由于测定方式的差异,反射率波谱可以根据入射能量的照明方式及反射能量测定方式给定如下4种定义: (1) 方向-方向反射率波谱:入射能量照明方式为平行直射光,没有或可以忽略散射光;波谱测定仪器仅测定某个特定方向的反射能量。地物双向反射特性主要就是研究方向-方向反射率波谱。晴天条件下,以太阳光为照明光源,利用野外便携式地物光谱仪测定的地物反射率波谱就可以近似为方向-方向反射率波谱。方向-方向反射率的定义与二向反射率(Bidirectional Reflectance Distribution Function ,BRDF )基本一致,其定义如下: (,)(,,,)(,)r r i i r r i i L E πθφρθφθφθφ= (1) ,,,i i r r θφθφ分别为入射方向的天顶角和方位角及观测方向的天顶角和方位角,(,)i i E θφ为(,)i i θφ方向直射辐射的辐照度值,(,)r r L θφ为传感器在观测方向(,)r r θφ测定的物体表面的辐亮度值。暗含假设目标物为朗伯体。 需要注意的是,公式(1)定义的方向-方向反射率测定要求其它入射方向没有任何散射光。 (2) 半球-方向反射率波谱:入射能量在2π半球空间内均匀分布,波谱测定仪器仅测定某个特定方向的反射能量。全阴天条件下,以太阳散射光为照明光源,利用野外便携式地物光谱仪测定的地物反射率波谱就可以近似为半球-方向反射率波谱。半球-方向反射率的定义如下, 2200(,) (,)(,)(,)cos sin r r r r r r d i i i i i i L L E E d πππθφπθφρθφθφθφθφ==?? (2) 式中d E 为2π半球空间内到达物体表面所有辐照度值的总和。 (3) 方向-半球反射率波谱:入射能量照明方式为平行直射光,没有或可以忽略散射光;波谱测定仪器测定2π半球空间的平均反射能量。利用积分球原理测定的物体反射率波谱就是方向-半球反射率波谱。方向-半球反射率的定义如下,

实验一 地物光谱反射率的野外测定

实验一 地物光谱反射率的野外测定 一 实验目的 1、学习地物光谱的测定方法 2、认识地物光谱反射率的规律 3、掌握绘制地物反射光谱曲线的方法 二 原理及方法 地物光谱反射率的野外测定原理主要是利用电磁辐射和各地物光谱特征进行测定(参照课本)。 实验采用垂直测量方法,计算公式为: ()()() () λρλλλρs Vs V ?= 式中, () λρ为被测物体的反射率,()λρs 为标准板的反射率, () λV , () λVs 分别为测量 物体和标准板的仪器测量值。 三 实验仪器 1、可见光-近红外光谱辐射计,波长范围0.4—2.5μm(有0.4—1.1μm 或1.3—2.5μm 二种仪器),仪器性能稳定,携带方便,数据提取容易。表1.1列出了目前常用的光谱仪。 2、标准参考板(白板或灰板)。 表1.1常见的光谱辐射仪

四实验步骤 1、测量目标和条件的选择 环境:无严重大气污染,光照稳定,无卷云或浓积云,风力小于3级,避开阴影和强反射体的影响(测量者不穿白色服装)。 时间:地方时9:30—14:30。 取样:选择物体自然状态的表面作为观测面,取样面积大于地物自然表面起伏和不均匀的尺度,被测目标面要充满视场。 标准板:标准板表面与被测地物的宏观表面相平行,与观测仪器等距,并充满仪器视场,保证板面清洁。 2、记录测量目标基本信息 主要内容如下: 土壤:土类、土属、土种;地貌类型、成土母质、侵蚀状况;干湿度、粗糙度等。 植被:植物名称、所属类别、覆盖率、生长状况、叶色、高度等。 水体:水体名称、水体状况、水色、水温、透明度、泥沙含量、叶绿素含量、污染状况等。 人工目标:目标名称、内容描述、估算面积、几何特征、表面颜色、坡度、坡面等。 岩矿:岩矿名称、所属类别、植被覆盖及名称、土壤覆盖及名称、岩矿露头面积、所属构造、地质年代、风化状况等。 3、记录环境参数 主要内容如表1.2,内容由教学教师定,制成表格填写。见附表。 4、安装仪器开始测试 ①对准标准板,读取数据为Vs。 ②移开标准板对准地物,读取数据Vg。 ③重复步骤①②,测量5—9次,记录数据,计算平均值。 ④更换目标,做好信息记录,重复①—③步骤。 ⑤整理数据,根据上述公式计算反射率 ()λ ρg ,标 ()λ ρs 为已知值。 仪器安装注意事项: 测量高度:仪器保持水平架设,离被测地物表面距离不小于1m。 几何关系:仪器轴线与天顶的倾斜角<±2°,标准面水平放置。

地物光谱仪在光谱测量中的使用

地物光谱仪在光谱测量中的使用 在遥感领域中,为了研究各种不同地物或环境在野外自然条件下的可见和近红外波段反射光谱,需要适用于野外测量的光谱仪器。对野外地物光谱进行测量,我们使用的是美国asd公司fieldspec?誖handheld手持便携式光谱分析仪。其主要技术指标为:波长范围为300~1100nm,光谱采样间隔为1.6nm,灵敏度线性:±1%。fieldspec?誖handheld手持便携式光谱分析仪可用于户外目标可见—近红外波段的光谱辐射测量。该光谱仪在户外主要利用太阳辐射作为照明光源,利用响应度定标数据,可测量并获得地物目标的光谱辐亮度;利用漫反射参考板对比测量,可获得目标的反射率光谱信息;通过对经过标定的漫反射参考板的测量,可获得地面的总照度以及直射、漫射照度光谱信息;利用特定的辅助测量机械装置,可获得地面目标的brdf(方向反射因子)光谱信息参数。 为了使地物光谱数据可靠和高的质量,使数据便于对比和应用,有必要提出地物光谱测试规范和测量要求。 1仪器的标准和标定 1.1光谱分辨率 实用分辨宽度对0.04~1.10μm小于5nm,1.1~2.5μm小于15nm。对于fieldspec?誖handheld手持便携式光谱分析仪,起始波长为325nm,终止波长为1075nm,波长步长为1nm,则光谱分辨率取3nm。 1.2线性标定 线性动态范围有3个量级,最大信号对应为0.8~1.0,太阳常数照明的白板(<90%)峰值响应输出。线性误差小于3%(回归误差)。 1.3光谱响应度的标定 反射率小于、等于15%(大于1%)的目标,信噪比应大于10。反射率大于15%的目标,信噪比应大于20。 2野外测定方法与工作规范 2.1目标选取 选取测量目标要具有代表性,应能真实反映被测目标的平均自然性。对于植被冠层及用物的测量应考虑目标和背景的综合效应。 2.2能见度的要求

相关文档
最新文档