航天器姿态机动的鲁棒自适应控制器设计

航天器姿态机动的鲁棒自适应控制器设计
航天器姿态机动的鲁棒自适应控制器设计

第1期宋斌等:航天器姿态机动的鲁棒自适应控制器设计125

图5控制输入“的时间历程

Fig.5

TimehistoryofthecontrolinputⅡ

了姿态机动任务,即误差四元数和角速度均收敛到零平衡点的一个较小范围内。仿真结果表明了设计的鲁棒自适应控制器实现了对航天器惯量参数的估计,并有效地抑制了外干扰力矩对航天器姿态的影响。

4结论

本文研究了同时存在未知惯量矩阵和外干扰力矩的航天器姿态机动问题。根据航天器运动学与航天器动力学的串联结构,基于自适应反步设计方法,结合非线性阻尼算法,提出了一种鲁棒自适应控制器。并通过对某型航天器姿态控制系统的仿真验证了该控制器的可行性。该控制器实现了对航天器惯量参数的估计,克服了外干扰力矩引起的不确定性,具有结构简单,便于工程实现等优点。该控制器无需航天器惯量矩阵的精确值和外干扰力矩的界,符合工程实际,具有工程应用价值。参考文献:

[1]Ei-GohⅡy

A.Optimalcontrolof

arigid

spacecraft

programmed

motionwithoutangularvelocity

mcosurements[J].Eulol瑚n

Journal

ofMe—

chanicsA/Solids,2006,25:854—866.

【2】LaoWC,Chu

C,Ling

KV.H。inverse

o曲ll“attitude-tracking

control

0f

rigid掣∞cf埘J】.Joumal

of

Guidance,Control,and

Dy?

nami∞,2005,28(3):481—493,

[3]Song

B,Mn

G,“C.Rohmt缸呵controller

design

fora

agid

,叩日ce枷attitude

regulation

system[C]//Proceeding

of1stInterns?

tional

Symposium

on

SystemsandControlin

Aerespace

andAstroanu-

ties.Harbin,2006:424—429.

[4]LiC,MaG,SongB.SpacecraftaRitude

tracking

controlbasedOU

nonlinear日。control[C]//Proceeding

of

1stInternationalSymposiumon

Systems

andControlin

Aerospace

and

Astronautics.Harbin。

2006:395—399。

[5】陈金莉,李东海,孙先仿.航天器姿态的非线性鲁棒分散控制

器设计[J].宇航学报,2006,27(1):6一11.[CHENJin—li,LI

Dong-hai,SUN

Xian-fang.Nonlinearrobust

decentralizedeontmller

design

forspacecraftcontrol

system[J].Journal

of

Astronautics,2006,

27(1):6—11.]

[6]Benaskeur

AR,DesbiensA.Baekstepping-basedadaptive

PID[J】.

1EE

Proceedings-Control

Theory

and

Applications,2002,149(1):

54—59.

[7】Khalil

HK.Nonlinearsystems.3nded.NewJersey:Prentice

Hall,

2002.

[8]Kim

KS,KimYK.Robust

baeksteppingcontrol

forslewmaneuver

usingnonlineartrackingfunctions[J].IEEE

Transactionon

Control

Systems

Technology,2003,11(6):822—829.

[9]Kristiansen

R,Nick‰P

J.Satellite

aaitudecontrol

by

ClUster—

nion-based

boekstepping[C]//Proceeding

of

2005

AmericanControl

Conference.Portland,OR,2005:907—912.

[10]

KrstieM,Kanelhkopoules

I,Kokotovic

V.NonlinearandAdaptive

Control

Design[M】.NewYork:Wiley,1995.

[II]HughesP

C.sp删attitudec姗es[M].New

York:Wiley,1994.

[12]Qu

z,DawsonD,Doreey

J.A

newclassofrobustcontrollawfor

trackingofrobots[J].The

InternationalJournalof

Robotics

Re—

search.1994.13(4):355—363.

作者简介:宋斌(1981一)。男.博士,主要研究方向是航天器姿态控制,鲁棒控制。通信地址:哈尔滨工业大学327信箱主楼606(150001)

电话:(0451)86413411—8606

E—mail:songbin@hit.edu.cn

RobustAdaptiveControllerDesignforSpacecraftDuringAttitude

Maneuver

SONGBinl,LI

Chuan.jian92,MA

Guang-fu2

(1.Aerospace

System

Engineering,Shanghai201108,China;2.Schoolof

Astronautics,HarbinInstitute

ofTechnology,Harbin

150001,China)

Abstract:This

paperproposes

robustadaptivecontrollerfortheattitudemaneuverproblemofrigidspacecraft

in

the

pres?

ence

ofunknowninertiamatrixandexternaldisturbancetorques.Theproposeddesignalgorithm,whichcombinedadaptiveback—

stepping

techniquewithnonlineardampingalgorithm,guaranteedthattheinertialparametersofthespacecraft

wereestimatedand

theuncertaintermofdisturbance

torquesw88

counteracted.TheproposedcontroRerensuredall

stateswere

globallyuniformlyulti—

mate

boundedandattitudemaneuver

errors

converged

to

smallset

aroundtheequilibriumpoint.ByusingMatlab/Simulinkpro-

gramming,the

paperalsodiscussedthemodelingandsimulationofspacecraftattitudemaneuversystem.Simulationresultsdemon—

strate

theeffectivenessandfeasibilityoftheproposedcontrolalgorithm.

Keywords:Attitudemaneuver;Adaptive

backstepping;Nonlineardamping;Robustcontrol;Nonlinearcontrol

日.,_,

航天器姿态机动的鲁棒自适应控制器设计

作者:宋斌, 李传江, 马广富, SONG Bin, LI Chuan-jiang, MA Guang-fu

作者单位:宋斌,SONG Bin(上海宇航系统工程研究所,上海,201108), 李传江,马广富,LI Chuan-jiang,MA Guang-fu(哈尔滨工业大学航天学院,哈尔滨,150001)

刊名:

宇航学报

英文刊名:JOURNAL OF ASTRONAUTICS

年,卷(期):2008,29(1)

被引用次数:2次

参考文献(12条)

1.Ei-Gohary A Optimal control of a rigid spacecraft programmed motion without angular velocity measurements 2006

2.Luo W C.Chu Y C.Ling K V H∞.inverse optimal attitude-trackingcontrol of rigid spacecraft 2005(03)

3.Song B.Ma G.Li C Robust fuzzy controller design for a rigid spacecraft attitude regulation system [外文会议] 2006

4.Li C.Ma G.Song B Spacecraft attitude tracking control based on nonlinear H∞ control 2006

5.陈金莉.李东海.孙先仿航天器姿态的非线性鲁棒分散控制器设计[期刊论文]-宇航学报 2006(01)

6.Benaskeur A R.Desbiens A Backstepping-based adaptive PID 2002(01)

7.Khalil H K Nonlinear systems 2002

8.Kim K S.Kim Y K Robust backstepping control for slew maneuver using nonlinear tracking functions 2003(06)

9.Kristiansen R.Nicklasson P J Satellite attitude control by quater-nion-based backstepping[外文会议] 2005

10.Krstic M.Kanellakopoulos I.Kokotovic V Nonlinear and Adaptive Control Design 1995

11.Hughes P C Spacecraft attitude dynamics 1994

12.Qu Z.Dawson D.Dorsey J A new class of robust control law for tracking of robots 1994(04)

引证文献(2条)

1.胡庆雷.肖冰.马广富输入受限的航天器姿态调节小波滑模反步控制[期刊论文]-哈尔滨工业大学学报 2010(5)

2.王鲜芳.杜志勇.潘丰一类非线性系统鲁棒自适应控制器[期刊论文]-控制工程 2009(4)

本文链接:https://www.360docs.net/doc/401931615.html,/Periodical_yhxb200801021.aspx

非线性系统的鲁棒自适应控制

非线性系统的鲁棒自适应控制 Robust Adaptive Control of Uncertain Nonlinear Systems 郝仁剑3120120359 摘要:本文以非线性系统的控制问题为背景,介绍了多种经典的非线性系统的控制方法以及研究进展,分析了各种控制方法存在的优点和不足。着重介绍了鲁棒自适应控制在非线性系统中的应用,结合该领域的近期研究进展和实际应用背景,给出对鲁棒自适应控制的进一步研究目标。 关键词:非线性系统鲁棒控制自适应控制 1.前言 任何实际系统都具有非线性特性,非线性现象无处不在。严格地说,线性特性只是其中的特例,但是非线性系统与线性系统又具有本质的区别。由于非线性系统不满足叠加原理,因此非线性特性千差万别,这也给非线性系统的研究带来了很大的困难。同时,对于非线性系统很难求得完整的解,一般只能对非线性系统的运动情况做出估计。众所周知,控制理论经历了经典控制理论和现代控制理论两个发展阶段。在第二次世界大战前后发展起来的经典控制理论应用拉普拉斯变换等工程数学工具来分析系统的品质。它广泛地应用于单输入单输出、线性、定常、集中参数系统的研究中。随着控制对象的日益复杂以及人们对控制系统精度的不断提高,经典控制理论的局限性就暴露出来了。在20世纪50年代,Bellman根据最优原理创立了动态规划。同时庞特里亚金等学者创立了最大值原理。后来,Kalman提出了一系列重要的概念,如可观性,可控性,最优线性二次状态反馈,Kalman滤波等。这些理论和概念的提出大大促进了现代控制理论的发展。控制系统的设计都需要以被控对象的数学模型为依据,然而对于任何被控对象不可能得到其精确的数学模型,如在建立机器人的数学模型时,需要做一些合理的假设,而忽略一些不确定因数。不确定性的必然存在也正促使了现代控制理论中另一重要的研究领域——鲁棒控制理论的发展。Zmaes关于小增益定理的研究以及Kalman关于单输入单输出系统LQ调节器稳定裕量的分析为鲁棒控制理论的发展产生了重要的影响。特别是Zmaes1981年发表的论文[1]标志H∞控制理论的起步。1984年Francis和Zmaes基于古典插值理论提出H∞问题的初步解法。Glover运用Hankel算子理论给出了H∞问题的解析解。Doyle在状态空间上对Glover解法进行整理和归纳。至此H∞控制理论体系初步形成。同时,Doyle首次提出结构化奇异值的概念,后来形成了μ解析理论。另外一种重要的控制器设计方法是基于Lyapunov函数的方法。在进行鲁棒控制器的设计时,一般都假设系统的不确定性属于一个可描述集,比如增益有界,且上界己知等。一般来说,鲁棒控制是比较保守的控制策略。对所考虑集合内的个别元素,该系统并不是最佳控制。对于具有参数不确定性的一类系统,自适应控制技术被提了出来,如模型参考自适应控制和自校正控制等。在实际应用中,由于被控对象具有未建模动态,过程噪声或扰动的统计特性远比设计时所设想的情况更复杂,以及持续激励条件和严正实条件等“理想条件”被打破,这都会导致自适应控制算法的失稳。于是自适应控制的鲁棒性课题,即鲁棒自适应控制受到了广泛的关注。大量的工程实践表明,对于复杂的工业对象和过程,引入自适应策略能够提高控制精度,提高生产效率,降低成本。近年来,非线性自适应控制技术取得突破性的发展,控制器的结构化设计技术也正日益得到广泛的研究与应用。

基于MATLAB_Simulink机器人鲁棒自适应控制系统仿真研究

第18卷第7期 系统仿真学报?V ol. 18 No. 7 2006年7月Journal of System Simulation July, 2006 基于MATLAB/Simulink机器人鲁棒自适应控制系统仿真研究 高道祥,薛定宇 (东北大学教育部暨辽宁省流程工业综合自动化重点实验室,沈阳 110004) 摘要:介绍了一种在MATLAB/Simulink环境下进行机器人鲁棒自适应控制系统仿真的方法,利 用Matlab软件强大的数值运算功能,将系统模型用Matlab语言编写成M-Function(或S-Function) 文件,通过User-Defined-Function模块嵌入到Simulink仿真环境中,可以充分发挥Simulink模块 实时的动态仿真功能,简化仿真模型的设计,修改和调整。基于M-Function建立机器人系统模型 的方法可以推广到其他复杂控制系统的建模,SimMechanics在建立多自由度连杆机器人受控对象 仿真模型时,简单可靠。 关键词:机器人;Matlab/Simulink;SimMechanics;仿真;鲁棒自适应控制 中图分类号:TP391.9 文献标识码:A 文章编号:1004-731X(2006) 07-2022-04 Simulation Research of Robust Adaptive Control System for Robotic Manipulators Based on MATLAB/Simulink GAO Dao-xiang, XUE Ding-yü (Key Laboratory of Process Industry Automation, Ministry of Education, Northeast University, Shenyang 110004, China) Abstract: A simulation method of robust adaptive control was proposed for the robotic manipulator system. The method took the advantage of the powerful computing function of Matlab to programme M-function (or S-Function) for the system model by Matlab language and embedded it to the Simulink by User-Defined-Function module. The real time dynamic simulating function of Simulink would be exerted adequately and the design, modification and adjust of the system model could be greatly simplified. The method of constructing manipulator control system model based on M-Function could be generalized to the other complicated control system and SimMechanics would make the n-links manipulator model conveniently and credibly. Key words: robotic manipulator; Matlab/Simulink; SimMechanics; simulation; robust adaptive control 引言 一个新的控制算法在付诸使用之前,无论从经济原因还是技术角度,都需要经过仿真阶段来测试控制系统的性能和缺陷。尤其对复杂系统控制的研究,虽然仿真并不能说明控制算法是绝对合理与可靠的,但随着仿真技术的发展,仿真的确是系统设计必不可少的中间步骤。 Matlab/Simulink以其强大的数学运算能力,方便实用的绘图功能及语言的高度集成性成为系统仿真和自动控制领域首选的计算机辅助设计工具。Simulink可以将可视化的模块很方便地组成系统模型的仿真框图,对于使用普通Simulink模块不易搭建的复杂控制系统,用Matlab语言编写M-Function或S-Function文件,通过User-Defined-Function 模块嵌入到Simulink仿真环境中,大大扩充了Simulink的功能。对于机器人这类的复杂控制系统,通过Simulink可以很方便的建立其仿真模型。 机器人控制系统仿真模型中不易采用普通Simulink模块搭建的部分是控制器模型和受控对象—机器人模型,可以采用Matlab语言编写M-Function实现控制器和机器人模型。 收稿日期:2005-05-09 修回日期:2005-08-02 作者简介:高道祥(1972-),男,山东蓬莱人,博士生,研究方向为机器人鲁棒自适应控制。薛定宇(1963-),男,辽宁沈阳人,教授,博导,研究方向为控制系统CAD,机器人控制。另外,由于SimMechanics提供了机构的仿真模块集,对于n自由度的连杆机器人,也可以采用SimMechanics模块进行组建。 1 n连杆机器人的仿真模型 如果不考虑摩擦力等外界干扰的作用,机器人的动力学方程可由下式描述, τ= + +) ( ) , ( ) (q G q q q C q q M (1) 式中,q q q , ,是1 × n向量,表示各个关节的位置,速度,加速度。) (q M是n n×阶对称正定的惯量矩阵。q q q C ) , (是1 × n向量,表示离心力和哥氏力项。) (q G是1 × n向量,表示重力项。τ表示外界输入的控制力矩。由式(1)可以看出,机器人的动力学模型是一个高度复杂,强耦合的非线性时变方程,尤其模型的复杂程度随着自由度的增加呈指数上升趋势。因此,在用Matlab/Simulink进行机器人控制系统的仿真研究时,需要寻求一种简单可靠却行之有效的方法建立机器人控制系统仿真模型。 采用M-Function定制的Simulink模块与普通模块一样具有输入和输出向量,控制器与机器人受控对象的仿真模型函数可用如下关系式描述, ) , , , , (0q q q q q f d d d = τ(2) ) , , (1τ q q f q =(3)

非线性系统自适应鲁棒控制器设计

第37卷第3期一一一一一一一一一一一哈一尔一滨一工一程一大一学一学一报一一一一一一一一一一Vol.37?.3 2016年3月一一一一一 一一 一一一 JournalofHarbinEngineeringUniversity一一一一一一一一一一一Mar.2016 非线性系统自适应鲁棒控制器设计 焦鑫,江驹 (南京航空航天大学自动化学院,江苏南京200016) 摘一要:针对非线性系统模型参数具有不确定性的问题,利用二型模糊逻辑控制器特别适合于解决不确定性问题的优点和特点,提出二型模糊自适应滑模控制方法,设计了具有自适应和鲁棒性的非线性系统控制器三首先对非线性系统进行精确线性化,然后选取合适的滑模面,并设计了二型模糊逻辑系统,通过李亚普诺夫稳定性理论分析,得到自适应控制律三通过仿真实例验证,对比分析并验证了该控制方法能够克服不确定性参数的干扰,从而更好地控制非线性系统,使其具有一定的自适应性和鲁棒性三 关键词:自适应鲁棒控制器;非线性系统;不确定性;二型模糊逻辑系统;自适应性;滑模控制doi:10.11990/jheu.201411020 网络出版地址:http://www.cnki.net/kcms/detail/23.1390.u.20151224.1405.002.html中图分类号:TP273一文献标志码:A一文章编号:1006?7043(2016)03?402?06 Designofanadaptiverobustcontrollerfornonlinearsystem JIAOXin,JIANGJu (CollegeofAutomationEngineering,NanjingUniversityofAeronauticsandAstronautics,Nanjing200016,China) Abstract:Toaddresstheproblemofanonlinearsystemwithuncertainparameters,inthispaperweproposeatype?2fuzzy?sliding?modecontrolmethodfordesigninganadaptiverobustcontrollerfornonlinearsystems.Webasedtheproposedmethodonthecharacteristicsoftype?2fuzzylogicsystems,whichareespeciallyadaptedforsolvinguncer?taintyproblems.Forthisnovelmethod,wefirstpreciselylinearizedthenonlinearmodel.Then,wedesignedatype?2fuzzylogicsystemwithselectedappropriateslidingmodesurfacestoovercometheuncertainparameters.Torapid?lystabilizethesystem,wealsodesignedadaptivelawsbydirectconstructiveLyapunovanalysis.Acomparisonofthesimulationresultsindicatesthattheproposedcontrolschemecanovercomeuncertaintiesandbettercontrolthenonlinearsystem,thusmakingthewholesystemmoreadaptiveandrobust. Keywords:adaptiverobustcontroller;nonlinearsystem;uncertainty;type?2fuzzylogicsystem;adaptivity;slidingmodecontrol 收稿日期:2014?11?10.网络出版日期:2015?12?24.基金项目:国家自然科学基金资助项目(61304223);江苏省普通高校 研究生科研创新基金资助项目(CXZZ13_0170);南京航空航天大学校博士学位论文创新与创优基金资助项目(BCXJ13?06). 作者简介:焦鑫(1986?),女,博士研究生; 江驹(1963?),男,教授,博士生导师. 通信作者:焦鑫,E?mail:jiaoxin_mengqu@163.com. 一一对非线性系统进行控制器设计时,往往会涉及模型参数不确定的问题,控制器设计的好坏直接决定系统性能和安全[1?2]三例如,飞行器在高空飞行时,由于大气参数和气动参数具有不确定性[3],如果飞行控制器不能很好的适应环境,缺乏一定的鲁棒性,那么飞行器的安全性将得不到保证[4?5]三 近年来,国内外学者针对这一问题进行了一定的研究三文献[6]利用神经网络参数的在线调整和动态非线性阻尼控制设计了飞行控制器,使飞行控制系统能够跟踪给定信号,具有一定的鲁 棒性三文献[7]将多输入系统看作多分布子系统,提出一种自律鲁棒自适应分散控制的新方法,结合直接反馈线性化和最优控制,给出了自律最优鲁棒自适应分散控制的设计方法三文献[8]利用确定性鲁棒控制方法对参数摄动的最坏情况进行研究,提出一种基于概率估计的H¥鲁棒控制方法,设计出的控制器具有较大的保守性和较高的控制成本三文献[9]结合高增益的反馈控制和基于在线优化跟踪控制器的前馈控制针对具有约束条件和不确定性的MIMO系统设计了自适应鲁棒控制器三 本文针对非线性系统模型参数不确定问题提出基于二型模糊自适应滑模控制的控制方法,该方法利用二型模糊逻辑控制器特别适合于解决不确定性问题的优点和特点[10?11],选取合适的滑模面,作为二型模糊控制系统的输入,经过降

航天器的姿态与轨道最优控制

航天器的姿态与轨道最优控制 董丽娜唐晓华吴朝俊司渭滨(第八小组) (西安交通大学电气工程学院,陕西省,西安市 710049) 【摘要】从航天器的轨道运动学方程出发, 运用线性离散系统最优控制理论, 提出了一种用于航天器轨道维持与轨道机动的最优控制方法, 建立了相关的最优控制模型并给出了求解该模型的算法。仿真计算结果表明, 本文提出的最优控制方法是正确和可行的。 【关键词】航天器轨道保持轨道机动最佳控制 Optimal Control of Spacecraft State and Orbit Dong LiNa,Tang XiaoHua,Wu ChaoJun,Si WeiBin (EE School of Xi’an Jiaotong university,Xi’an, Shannxi province, 710049)【Abstract】This paper provides a new optimal control method for orbital maintenance and maneuver ,which begins with the kinetics equation of spacecraft and is based on the linear discrete optimal control theory , establishes the relative optimal control model and gives its solution. The simulation results show that the given optimal control method in this paper is correct and feasible. 【Key word】Spacecraft ,Orbital keeping ,Orbital maneuver ,Optimal control 1 引言 一般地,常见的航天器有:运载火箭、人造卫星、载人飞船、宇宙飞船、空间站等。宇宙飞船也称太空飞船,它和航天飞机都是往返于地球和在轨道上运行的航天器(如空间站) 。

航天器控制大作业

航天器控制课程大作业 1.基本内容 ?建立带有反作用飞轮的三轴稳定对地定向航天器的姿态动力学和姿态运动学模型; ?基于欧拉角或四元数姿态描述方法,设计PD型或PID型姿态控制律(任选一种); ?利用MATLAB/Simulink软件建立航天器闭环姿态控制系统,设计姿态控制器进行闭合回路数学仿真,实现给定控制指标和 性能指标。 ?调研基于星敏感器+陀螺的姿态确定算法并撰写报告,要求不少于1500字。内容包括: ?星敏感器、陀螺数学模型 ?Landsat-D卫星姿态确定调研 包括:姿态敏感器组成、姿态敏感器性能、姿态确定算法及其精度 ?单星敏感器+陀螺的kalman滤波器姿态估计 ?双星敏感器姿态确定算法(双矢量定姿) ?列出主要参考文献 2.具体要求和相关参数 1)建立航天器姿态动力学方程以及基于欧拉角描述(3-1-2转序)的姿态运动学方程。基于如下假设,对航天器姿态动力学和姿态运动学模型进行简化: ?航天器的轨道为近圆轨道,对应轨道角速度为常数; ?航天器的本体坐标系与其主惯量坐标系重合,惯量积为零;

? 航天器姿态稳定控制时,姿态角和姿态角速度均为小量。 进一步建立适用于航天器姿态稳定或小姿态角度工况下的线性化航天器姿态动力学和运动学模型。 2) 航天器转动惯量矩阵 2200024142460018kg m 14182500????=??????? I 轨道角速度00.0012rad/s ω=。设航天器本体系三轴方向所受干扰力矩如下: 040003cos 1() 1.510 1.5sin 3cos N m 3sin 1d t t t t t ωωωω-+????=?+?????+??T 仿真中,假设初始三轴姿态角为002~5和初始三轴姿态角速度000.01/s ~0.05/s 。 3) 采用三正装反作用飞轮作为执行机构,飞轮最大控制力矩为0.4Nm ,最大角动量20Nms 。飞轮采用力矩模式,模型采用一阶惯性环节(时间常数为0.005s ),考虑库仑摩擦力矩4410Nm -?,要求飞轮的数学模型带有饱和特性。 4) 控制指标和性能指标: ? 稳定度(姿态角速度):优于0.005deg/s ; ? 指向精度(姿态角):优于0.1deg ; ? 姿态稳定收敛时间小于100s 。

鲁棒控制系统设计

鲁棒控制设计报告 学院 专业 报告人

目 目 1 绪论 (2) 1.1控制系统设计背景 (2) 1.2本文主要工作分配 (3) 2 一级倒立摆模型建立 (4) 2.1一级倒立摆的工作原理 (4) 2.2一级倒立摆的数学模型 (4) 3 H∞鲁棒控制器设计 (6) 3.1基于Riccati方程的H∞控制 (7) 3.2基于LMI的H∞控制 (7) 4 一级倒立摆系统的仿真 (9) 4.1一级倒立摆控制系统设计 (9) 4.2闭环控制系统仿真及分析 (10) 5 结论 (13)

1 绪论 1.1控制系统设计背景 一级倒立摆系统是一个典型非线性多变量不稳定系统,在研究火箭箭身的姿态稳定控制、机器人多自由度运动稳定设计、直升机飞行控制等多种领域中得到了广泛的应用,因此以倒立摆作为被控对象进行控制方法的研究具有重要的现实意义。为解决一级倒立摆系统的非线性、强耦合、多变量、自然不稳定问题,本文利用H∞鲁棒控制实现对一级倒立摆的控制。 Mg 图1.1 一级倒立摆系统结构图 本文采用的直线一级倒立摆的基本系统如图1.1所示,它是由沿直线导轨运动的小车以及一端固定于小车上的材质均匀的摆杆组成,它是一个不稳定的系统,当倒立摆出出现偏角θ后,如果不给小车施加控制力,倒立摆会倾倒。所以本文采用H∞鲁棒控制方法的目的是通过调节水平力F的大小控制小车的运动,使倒立摆处于竖立的垂直位置。控制指标为:倒立摆系统的从初始状态调节到小车停留在零点、并使摆杆的摆角为0的稳定状态。

1.2本文主要工作分配 第一章:对一级倒立摆系统的特点、结构以及控制要求进行阐述。 第二章:根据一级倒立摆的结构,利用机理建模法建立被控对象的精确数学模型,并在系统平衡点处进行线性化,得到系统简化的状态方程。 第三章:首先H∞鲁棒控制的基本原理,然后分别利用Riccati方程和LMI 方法设计H∞状态反馈控制器。 第四章:首先使用MATLAB计算基于Riccati方程的H∞状态反馈控制器和基于LMI的H∞状态反馈控制器,然后进行闭环控制系统的仿真并控制系统的性能分析。 第五章:对本次设计进行总结。

姿态控制系统

第一章航天器控制的基本概念1.轨道控制 a.轨道确定(导航) 研究如何确定航天器的位置和速度b. 轨道控制(制导) 根据位置、速度、飞行最终目标,对质心施以控制力,以改变运动轨迹的技术轨道机动、轨道保持轨道交会、再入返回控制2.姿态控制a.姿态确定研究航天器相对于某个基准的确定姿态方法;可以是惯性基准或其他基准,如地球;采用姿态敏感器和相应的数据处理方法;确定精度取决于数据处理方法和敏感器精度。b. 姿态控制在规定或预定方向(参考方向)上定向的过程;姿态稳定是指使姿态保持在指定方向;姿态机动是指航天器从一个姿态过渡到另一个姿态的再定向过程。3.姿态稳定 a.特点长期而持续的所需控制力矩较小b.种类定向粗对准精对准4. 姿态机动a.特点短暂过程所需控制力矩较大b.种类再定向捕获跟踪和搜索4. 姿态控制与轨道控制的关系为实现轨道控制,航天器姿态必须符合要求;在某些具体情况或某些飞行过程中,可把姿态控制和轨道控制分开考虑;某些应用任务对航天器轨道没有严格要求,而对航天器姿态确有要求;例如:空间环境探测卫星绕地球的运行往往不需要轨道控制,卫星在开普勒轨道上运行就能满足对环境探测的要求。5.姿态控制系统分类 a.根据姿态稳定方式三轴稳定.保持航天器本体三条正交轴线在某一参考空间的方向自旋稳定.绕自旋轴旋转,依靠旋转动量矩在惯性空间的指向b.根据力来源被动控制.不需消耗星上能源,如重力梯度力矩、磁力矩等主动控制.星上自主控制、星-地大回路控制,消耗电能和工质6.姿态控制系统的设计要求可靠性控制性能a.动量、稳定性b.稳态精度c.动态响应控制系统质量和能源需求附带要求a.经济性b.坚固性c.生产可能性7.姿态控制系统设计任务a.了解任务参数任务类型、质量、结构、轨道几何参数、任务寿命、精度、机动要求b.推导出控制系统质量和能源需求可靠性及寿命动量要求力矩要求:大小、频率、杠臂限制动态响应精度 能源要求c.具体设计 第二章姿态运动学与动力学1.方向余弦阵的性质及特点方向余弦阵只有三个独立参数方向余弦阵是正交矩阵AA T=E方向余弦阵的行列式为1|A|=1方向余弦阵可作为坐标变换矩阵V a=A Vb相继姿态运动的方向余弦阵具有中间脚标的吸收性质。缺点:不直观,缺乏明显的几何图象概念,使用不方便2.用EulerEuler轴/角描述姿态的理论依据Euler定理:刚体绕固定点的任一位移,可由绕通过此点的某一轴转过一个角度得到。姿态描述可用转轴e和绕此轴的转角φ来描述两个坐标系间的相对姿态。Euler轴/角的形式及特点形式转轴e在参考坐标系中的三个方向余弦(ex, ey, ez)转角φ优点具有明确的几何意义,直观,易于理解;是四元素、Rodrigues参数等其它姿态描述方法的基础。缺点仍具有一个约束条件,不是姿态描述的最小实现;与姿态之间不是一一对应的。常用Euler角3-1-3 ψ, θ, ?自旋卫星绕oZ轴旋转, Rz(ψ)绕oX'轴旋转, Rx(θ)绕oZ"轴旋转Rz(?)3-1-2 ψ, ?, θ三轴稳定卫星绕oZ轴旋转, Rz(ψ)绕oX'轴旋转, Rx(?)绕oY"轴旋转,Ry(θ) 在轨道坐标系内ψ为偏航角?为滚动角θ为俯仰角。3. Euler角的特点优点几何意义直观、明显小角度线性化方便在某些情况下,可直接测量缺点包含三角函数,计算效率低运动学方程有奇点4. 四元数特点与方向余弦阵相比,四元素只包含4个变量和1个约束与Euler轴/角相比,四元素姿态矩阵不含三角函数四元素可看作姿态机动参数。缺点:四元数仍存在一个约束条件,不是姿态描述的最小实现。5.Rodrigues参数的优缺点优点姿态描述的最小实现;简单、直观,计算效率高;由其描述的运动学方程结构简洁,无多余约束。缺点当φ→±180°时,x→±∞,不能有效描述姿态;当φ远小于180°时,才能有效描述姿态。6.重力梯度力矩的性质重力梯度力矩与主惯量差成正比重力梯度力矩与轨道角速度的平方成反比重力梯度力矩与姿态偏差角(小角度假设下)成正比当Izz<1000Km),占优势的是太阳辐射力矩;当轨道降至700Km时,太阳辐射力矩与气动力矩是同数量级的;在中高轨道(1000Km左右),重力梯度力矩、磁力矩较大。第三章自旋航天器姿态确定与控制1.如何测量自旋姿态测量工具:姿态敏感器。姿态信息测量: 不能直接测出自旋姿态只能观测到空间中某些参考体相对卫星的方向测量自旋轴与参考体方向之夹角夹角也不是直接得到的,只能测得与夹角相关的信息。姿态确定参考天体在赤道惯性系中的方向可以精确确定根据夹角和参考天体的方向,确定姿态。2.自旋航天器的原理。利用绕自旋轴旋转的陀螺定轴性,实现自旋轴在惯性空间固定自旋轴一般与轨道平面垂直。自旋航天器的特点:简单、抗干扰能力强当受到恒定干扰力矩时,自旋轴以等速漂移,而不是加速漂移可减小推力偏心的影响,静止轨道卫星在远地点点火时通常用自旋稳定。控制系统不需频繁工作,可以采用星-地大回路的工作方式。3.自旋运动稳定条件。a.如果令ωy、ωz是Lyapunov稳定的,必须令Ω2>0;b.Ix>Iy,且Ix>Iz,即星体绕最大惯量轴旋转;c.Ix

相关文档
最新文档