LED恒流MBI5151最新技术文档

LED恒流MBI5151最新技术文档
LED恒流MBI5151最新技术文档

最简单地恒流源LED驱动电路

WMZD系列专门为LED照明做温度补偿的电阻,采用热敏电阻补偿法的LED恒流源,具有电路简洁,可靠性好,组合方便,经济实用,适用各种LED头灯,日光灯,路灯;车船灯,太阳能LED庭院灯;LED显示屏等对恒流的需求。是专门针对LED照明出现的由于温度引起的LED PN结电压VF下降,即-2mV/℃,称为PN结的负温效应。该特性在发光应用上是个致命的缺陷,直接影响到LED器件的发光效率、发光亮度、发光色度。比如,常温25℃时LED最佳工作电流20mA,当环境温度升高到85℃时,PN结电压VF下降,工作电流急剧增加到35mA~37mA,此时电流的增加并不会产生亮度的增加,称为亮度饱和。更为严重的是,温度的上升,引起光谱波长的偏移,造成色差。如长时工作在此高温区还将引起器件老化,发光亮度逐步衰减。同样,当环境温度下降至-40℃时,结电压VF上升,最佳工作电流将从20mA减小到8mA~10mA,发光亮度也随电流的减少而降低,达不到应用场所所需的照度。 为了避免上述特性带来的不足,一般在LED灯的相关产品上,通常采用如下措施:1.将LED装在散热板上,或风机风冷降温。2.LED采用恒流源的供电方式,不因LED随温度上升引起使回生电流增加,防止PN结恶性升温。或这两种方法并用。实践证明,这两种方法用于大功率LED灯(如广告背景灯、街灯)。确实是行之有效的措施。但当LED 灯进入寻常百姓家就碰到如下问题了:散热板和风冷能否集成在一个普通灯头的空间内;采用集成电路或诸多元器件组成的恒流源电路,它的寿命不取于LED,而取决整个系统的某块“短板”;有没有吸引眼球的价格。用热敏电阻补偿法来解决LED恒流源问题,既经济又实用。 我公司采用具有正温度系数的热敏电阻(+2mV/℃)与负温度特性的LED(-2mV/℃)串联,互补成一个温度系数极小电阻型负载。一旦工作电压确定后,串联回路中的电流,将不会随温度变化而变化,通俗地讲,当LED随温度升高电流增加时,热敏电阻也随温度升高电阻变大,阻止了回路电流上升,当LED 随温度下降电流减小时,热敏电阻也随温度下降电阻变小,阻止了回路电流的减少,如匹配得当,当环境温度在-40℃-85℃范围内变化时,LED的最佳工作电流不会明显变化,见图1电流曲线Ⅱ。 2:应用: 从图1可见,采用热敏电阻温度补偿方法与采用集成电路等元件组成的恒源相比,热敏电阻温度补偿法只用1个热敏电阻元件就可解决LED恒流源问题,其价格、体积、寿命等优势不言而喻。我们采用的

几种简单恒流源电路1

几种简单的恒流源电路 恒流电路应用的范围很广,下面介绍几种由常用集成块组成的恒流电路。 1.由7805组成的恒流电路,电路图如下图1所示: 电流I=Ig+VOUT/R,Ig的电流相对于Io是不能忽略的,且随Vout,Vin及环境温度的变化而变化,所以 这个电路在精度要求有些高的场合不适用。 2.由LM317组成的恒流电路如图2所示,I=Iadj+Vref/R,他的恒流会更好,另外他是低压差稳 压IC。 摘要:本文论述了以凌阳16位单片机为控制核心,实现数控直流电流源功能的方案。设计采用MOSFET和精密运算放大器构成恒流源的主体,配以高精度采样电阻及12位D/A、A/D转换器,完成了单片机对输出电流的实时检测和实时控制,实现了10mA~2000mA范围内步进小于2mA恒定电流输出的功能,保证了纹波电流小于0.2mA,具有较高的精度与稳定性。人机接口采用4×4键盘及LCD液晶显示器,控制界面直观、简洁,具有良好的人机交互性能。 关键字:数控电流源 SPCE061A 模数转换数模转换采样电阻 一、方案论证 根据题目要求,下面对整个系统的方案进行论证。 方案一:采用开关电源的恒流源 采用开关电源的恒流源电路如图1.1所示。当电源电压降低或负载电阻Rl降低时,采样电阻RS上的电压也将减少,则 SG3524的12、13管脚输出方波的占空比增大,从而BG1导通时间变长,使电压U0回升到原来的稳定值。BG1关断后,储能元件L1、E2、E3、E4保证负载上的电压不变。当输入电源电压增大或负载电阻值增大引起U0增大时,原理与前类似,电路通过反馈系统使U0下降到原来的稳定值,从而达到稳定负载电流Il的目的。 图 1.1 采用开关电源的恒流源 优点:开关电源的功率器件工作在开关状态,功率损耗小,效率高。与之相配套的散热器体积大大减小,同时脉冲变压器体积比工频变压器小了很多。因此采用开关电源的恒流源具有效率高、体积小、重量轻等优点。 缺点:开关电源的控制电路结构复杂,输出纹波较大,在有限的时间内实现比较困难。 方案二:采用集成稳压器构成的开关恒流源 系统电路构成如图1.2所示。MC7805为三端固定式集成稳压器,调节,可以改变电流的大小,其输出电流为: ,式中为MC7805的静态电流,小于10mA。当较小即输出电流较大时,可以忽略,当负载电阻 变化时,MC7805改变自身压差来维持通过负载的电流不变。

最新压控恒流源电路设计资料

3、电流源模块的选择方案 方案一:由晶体管构成镜像恒流源 一缺点在于,集电极最大输出电流约为几百毫安,而题目要求输出电流为200~2000mA,因此由晶体管构成的恒流源不适合采用。 方案二:由运算放大器构成恒流电路 运算放大器构成的恒流电路摆脱了晶体管恒流电路受限于工艺参数的缺点。但是只由运放构成的恒流电路,输出电流同样只能达到几十毫安,远远不能满足设计要求,因此必须加上扩流电路。采用运算放大器加上扩流管构成恒流电路,既能利用运算放大器准确的特性,输出又能达到要求。该电路的缺点之一在于电流的测量精度受到两个晶体管的匹配程度影响,其中涉及到比较复杂的工艺参数。 方案三:由运算放大器加上扩流管构成恒流电路 采用高精度运算放大器OP07,更能增加其准确的性能;采用达林顿管TP127 进行扩流,具有很大的扩流能力,两者结合,可以实现比较精确的恒流电路。 鉴于上面分析,本设计采用方案三。 (3)恒流源电路的设计 恒流源电路如图8.15 所示。其中,运算放大器U3 是一个反相加法器,一路输入为控制信号V1,另一路输入为运放U1 的输出反馈,R8 是U3 的反馈电阻。用达林顿管TIP122 和TIP127 组成推挽式电路,两管轮流导通。U2 是电压跟随器,输入阻抗高,基本没有分流,因此流经R2 的电流全部流入负载RL。U1 是反相放大器,取R14=R11 时,放大 倍数为-1,即构成反相器。 针对运算放大器输出电流小的不足,该电路加了扩流电路。采 图8.15 恒流源部分电路 若U3 的输入电压为Vin,根据叠加原理,有

由U2 的电压跟随特性和U1 的反相特性,有 代入得到 即流经R7 的电流完全由输入控制电压Vin 决定 由于U2 的输入端不取电流,流经负载RL 的电流完全由输入控制电压Vin 决定,实现了压控直流电流源的功能。由于R7 中流过的电流就是恒流源的输出电流,按照题目要求,输出的直流电流需要达到2A,这里采用康锰铜电阻丝作为电阻R7。 2压控恒流源电路设计 压控恒流源是系统的重要组成部分,它的功能是用电压来控制电流的变化,由于系统对输出电流大小和精度的要求比较高,所以选好压控恒流源电路显得特别重要。采用如下电路:电路原理图如图8.5 所示。该恒流源电路由运算放大器、大功率场效应管Q1、采样电阻R2、负载电阻RL 等组成。

压控恒流源电路设计

压控恒流源电路设计 Last updated on the afternoon of January 3, 2021

3、电流源模块的选择方案 方案一:由晶体管构成镜像恒流源 一缺点在于,集电极最大输出电流约为几百毫安,而题目要求输出电流为200~2000mA,因此由晶体管构成的恒流源不适合采用。 方案二:由运算放大器构成恒流电路 运算放大器构成的恒流电路摆脱了晶体管恒流电路受限于工艺参数的缺点。但是只由运放构成的恒流电路,输出电流同样只能达到几十毫安,远远不能满足设计要求,因此必须加上扩流电路。采用运算放大器加上扩流管构成恒流电路,既能利用运算放大器准确的特性,输出又能达到要求。该电路的缺点之一在于电流的测量精度受到两个晶体管的匹配程度影响,其中涉及到比较复杂的工艺参数。 方案三:由运算放大器加上扩流管构成恒流电路 采用高精度运算放大器OP07,更能增加其准确的性能;采用达林顿管TP127进行扩流,具有很大的扩流能力,两者结合,可以实现比较精确的恒流电路。 鉴于上面分析,本设计采用方案三。 (3)恒流源电路的设计 恒流源电路如图所示。其中,运算放大器U3是一个反相加法器,一路输入为控制信号 V1,另一路输入为运放U1的输出反馈,R8是U3的反馈电阻。用达林顿管TIP122和TIP127组成推挽式电路,两管轮流导通。U2是电压跟随器,输入阻抗高,基本没有分流,因此流经R2的电流全部流入负载RL。U1是反相放大器,取R14=R11时,放大 倍数为-1,即构成反相器。 针对运算放大器输出电流小的不足,该电路加了扩流电路。采 图恒流源部分电路 若U3的输入电压为Vin,根据叠加原理,有

关于恒流源电路的研究与几种设计方案

第一章引言 随着现代技术的发展,恒定电流源的应用将十分重要,如机器人、工业自动化、卫星通信、电力通讯、智能化仪器仪表以及其它数字控制等方面都迫切需要应用恒定电流器件,因此, 研究和开发恒流器件具有十分重要的意义。许多场合, 尤其是高精度测控系统需要高精度的电压源与电流源。微电子工艺的高度发展, 给我们提供了许多小型化、集成化的高精度电压源, 但电流源, 特别是工作电流大的高精度电流源仍需使用者自行设计实现。 恒流源是能够向负载提供恒定电流的电源,因此恒流源的应用范围非常广泛,并且在许多情况下是必不可少的。例如在用通常的充电器对蓄电池充电时,随着蓄电池端电压的逐渐升高,充电电流就会相应减少。为了保证恒流充电,必须随时提高充电器的输出电压,但采用恒流源充电后就可以不必调整其输出电压,从而使劳动强度降低,生产效率得到了提高。恒流源还被广泛用于测量电路中,例如电阻器阻值的测量和分级,电缆电阻的测量等,且电流越稳定,测量就越准确。 本论文主要概括了恒流源的基本概念,并设计出几种不同要求的恒流源,运用了SPCE061A单片机设计出新型数控恒流源,具有高稳定性和高灵敏性。对以往恒流源进行了改进创新。 第二章基本恒流源电路 2.1恒流源基础知识 基本恒流源电路是恒流源电路的基本组成,是分析恒流源电路的基础。2.1.1恒流源介绍 恒流源,是一种能向负载提供恒定电流之电路.它既可以为各种放大电路提供偏流以稳定其静态工作点,又可以作 为其有源负载,以提高放大倍数.并且在差动放大电路、脉冲产生电路中得到了广泛应用. 过一定的论述.然而,对各种恒流电路之对比分析,各自应用特点,以及需要改进的方面,还有待进一步研究,本文就来探 讨这些问题. 2.1.2恒流源的原理和特点

直流可调恒流源设计说明

2013年3月 直流可调恒流源设计 学生:徐乐 指导教师:王留留 电气信息工程学院自动化专业 1课程设计的任务与要求 1.1课程设计的任务 设计一个直流可调恒流源电路。通过调节线性电位器,产生可控恒定电流,当固定时产生恒定电流。 1.2课程设计的要求 设计一个简易可调恒流源产生电路,满足日常生活对恒定电流的需要 (1)输入(AC):U=220V,f=50HZ。 (2)输出电流稳定,在一定围可调。 (3)设计电路结构,选择电路元件,计算确定元件参数,画出实用原理电路图。 (4)自拟实验方法、步骤及数据表格,提出测试所需仪器及元器件的规格、数量。 (5)在Multisim软件上画出电路图,并仿真和调试,并测试其主要性能参数。 1.3课程设计的研究基础 电子技术基础(模电部分) 变压器、整流电路、滤波电路、稳压芯片、镜像电流源的工作原理 2 直流可调恒流源系统方案制定 2.1 方案提出 方案一 (1)电网提供交流220V(有效值)频率为50Hz的电压,要获得低压直流输出,首先必须采用 电源变压器将电网电压降低获得所需要交流电压。 (2)降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大。 (3)脉动大的直流电压经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留

其直流成份。 (4)滤波后的直流电压,再通过稳压经可调恒流源电路,便可得到可调的恒定直流电流输出, 供给负载R L 。 方案二 (1)将交流电220v 电压转化为可调恒压源输出。包括降压器、整流电路、滤波稳压芯片、 取样电路。 (2)电压电流转换电路。 (3)两电路整合,将220v 电压转化为可调恒流源。 2.2 方案论证 第一种方案是直接设计直流可调恒流源电路,只有一个电路。第二种方案是通过电压电流转换电路,将两个电路整合,要设计的电路比较多。第一种方案比较简单,通过比较选择第一种方案。 3 直流可调恒流源系统方案设计 3.1各单元模块功能介绍及电路设计 直流恒流电源是一种将220V 交流电转换成恒流输出的直流电的装置,它需要变压、整流、滤波、恒流四个环节才能完成。一般由电源变压器、整流滤波稳压电路及恒流电路所组成,基本框图如下: 图1 系统框图 (1) 电源变压器:它的作用是将220V 的交流电压变换成整流滤波电路所需要的交流电压。变压 器的变比由变压器的副边确定,变压器副边与原边的功率比为P2/P1=n ,式中n 是变压器的效率。 (2)整流电路:利用单向导电元件,将50HZ 的正弦交流电变换成脉动的直流电路。 T 负 载

简单恒流源电路设计

微安级恒流源的电路设计方法 微安级数控恒流源广泛地应用于智能仪器和先进检测技术中。与一般的恒流源电路相比,微安级恒流源输出电流小,更易受到电路中纹波和噪声的影响,在器件选择和电路设计方面尤其要注意高精度和高阻抗。正是由于这些特点,微安级恒流源的电路设计方法与普通的恒流源电路有所区别。 1微安级数控恒流源的一般设计方法 虽然恒流源的电路形式各种各样,但是其电路结构基本一样,都是基于闭环反馈的思想,反馈的形式主要有晶体管反馈、场效应管反馈、并联稳压器反馈、运算放大器反馈等。数控恒流源的一般结构框图如图l所示,根据所需的恒流电路的电流值,系统首先通过微处理器计算出对应的电压值,由DA转换环节输出电压,经过滤波电路的处理,和误差放大、功率放大、电流检测比较放大以及电压电流转换等环节,在负载电阻所在回路输出恒定的电流。 精密的恒流源电路多是使用运算放大器作为负反馈的误差放大器,以晶体管或场效应管作为功率放大器件,从而形成闭环反馈电路。微安级恒流源电路的设计也是基于这种闭环反馈的思想,所不同的是由于在功率放大环节使用的晶体管或场效应管都有数微安或者数十微安的漏电流,会影响电路的精度,远超过微安级电路所允许的误差范围。而一般运放的输出带载能力都能达到数毫安或者数十毫安,能满足微安级恒流源电路所需的输出要求。因此在微安级恒流源中无需采用功率放大器件,而直接使用运放向负载电阻输出电流。即运放既起到误差放大器的作用,又起到功率放大器的作用。如此设计不仅能满足要求,也能减小由于功率放大引起的误差和功率损耗,提高电路的精度和效率。

图2所示为典型的微安级恒流源电路。DA转换器输出给定电压后,经R1和C1组成的低通滤波器送入运放同相输入端,运放输出端接负载,电流采样电阻R3将输出电流转换为电压,进入运放的反向输入端构成负反馈。图中R3为采样电阻,需采用初始精度高、温度漂移系数低的精密电阻。 下面举例说明元器件参数的选择,如需要设计0~10μA的数控电流源,所选DA 转换器的参考电压为2.5V,即DA转换器的最大输出电压Vmax为2.5V,在此电路中,应该对应最大的输出电流Imax为10μA,根据运放“虚短虚断”的原则,R3的值应由式(1)确定。 因此R3应取250kΩ。 2差分电路在微安级恒流源电路中的应用 图2所示的微安级恒流源电路,简单可靠,但存在两个问题。a.运放反向输入端的偏置电流会影响电路的精度,尤其是对于微安级的电路影响很大。因此必须选用偏置电流较小的运放,如FET型的运放。b.在此电路中,负载没有共地。由于在地线上串入了电阻,流入地电平的电流将在取样电阻上产生电压,此电压将以地电平噪声的形式出现在系统的所有地节点上,这样将严重影响模拟电路的精度甚至会导致系统数字电路的误动作。 为了使电路的应用更为广泛,可以采用图3所示的电路结构。

微安级恒流源设计

微安级恒流源电路设计 微安级数控恒流源广泛地应用于智能仪器和先进检测技术中。与一般的恒流源电路相比,微安级恒流源输出电流小,更易受到电路中纹波和噪声的影响,在器件选择和电路设计方面尤其要注意高精度和高阻抗。正是由于这些特点,微安级恒流源的电路设计方法与普通的恒流源电路有所区别。 1微安级数控恒流源的一般设计方法 虽然恒流源的电路形式各种各样,但是其电路结构基本一样,都是基于闭环反馈的思想,反馈的形式主要有晶体管反馈、场效应管反馈、并联稳压器反馈、运算放大器反馈等。数控恒流源的一般结构框图如图l所示,根据所需的恒流电路的电流值,系统首先通过微处理器计算出对应的电压值,由D A转换环节输出电压,经过滤波电路的处理,和误差放大、功率放大、电流检测比较放大以及电压电流转换等环节,在负载电阻所在回路输出恒定的电流。 精密的恒流源电路多是使用运算放大器作为负反馈的误差放大器,以晶体管或场效应管作为功率放大器件,从而形成闭环反馈电路。微安级恒流源电路的设计也是基于这种闭环反馈的思想,所不同的是由于在功率放大环节使用的晶体管或场效应管都有数微安或者数十微安的漏电流,会影响电路的精度,远超过微安级电路所允许的误差范围。而一般运放的输出带载能力都能达到数毫安或者数十毫安,能满足微安级恒流源电路所需的输出要求。因此在微安级恒流源中无需采用功率放大器件,而直接使用运放向负载电阻输出电流。即运放既起到误差放大器的作用,又起到功率放大器的作用。如此设计不仅能满足要求,也能减小由于功率放大引起的误差和功率损耗,提高电路的精度和效率。

图2所示为典型的微安级恒流源电路。D A转换器输出给定电压后,经R1和C1组成的低通滤波器送入运放同相输入端,运放输出端接负载,电流采样电阻R3将输出电流转换为电压,进入运放的反向输入端构成负反馈。图中R3为采样电阻,需采用初始精度高、温度漂移系数低的精密电阻。 下面举例说明元器件参数的选择,如需要设计0~10μA的数控电流源,所选D A转换器的参考电压为2.5V,即D A转换器的最大输出电压V m a x为2.5V,在此电路中,应该对应最大的输出电流I m a x为10μA,根据运放“虚短虚断”的原则,R3的值应由式(1)确定。 因此R3应取250kΩ。 2差分电路在微安级恒流源电路中的应用 图2所示的微安级恒流源电路,简单可靠,但存在两个问题。a.运放反向输入端的偏置电流会影响电路的精度,尤其是对于微安级的电路影响很大。因此必须选用偏置电流较小的运放,如F E T型的运放。b.在此电路中,负载没有共地。由于在地线上串入了电阻,流入地电平的电流将在取样电阻上产生电压,此电压将以地电平噪声的形式出现在系统的所有地节点上,这样将严重影响模拟电路的精度甚至会导致系统数字电路的误动作。 为了使电路的应用更为广泛,可以采用图3所示的电路结构。 此电路通过差分放大器的拓扑形式解决了恒流源负载不共地的问题,负载是接在输出与地线之间。在此电路中,由于采用了差分结构,因此需慎重选择电阻,其中R l和R2,R3和 R4,R5和R6分别相等,如果这三对电阻选得不对称,将会严重影响输出电流的精度。通过运放“虚短虚断”的原则,可以计算出在此电路中D A转换器输出l V的电压对应恒流源电路的输出电流为10μA。 3运用仪表放大器设计微安级恒流源电路

相关文档
最新文档