陶瓷多管旋风除尘器及氧化镁法脱硫工艺设计

陶瓷多管旋风除尘器及氧化镁法脱硫工艺设计
陶瓷多管旋风除尘器及氧化镁法脱硫工艺设计

陶瓷多管旋风除尘器及氧化镁法脱硫工艺设计

摘要:文章首先阐述了除尘、脱硫工艺选择及确定、除尘器,脱硫塔设备设计及配套系统确定,最后将本工艺与传统工艺对比分析,旨在选择切实可行的、技术先进成熟的烟气陶瓷多管旋风除尘器及氧化镁法脱硫方法,确保烟气中污染物粉尘和SO2达到国家和地方规定的排放标准。

关键词:陶瓷多管旋风除尘器;氧化镁法脱硫效率;工艺设计

1 项目总则

1.1 方案简介

烟气净化流程:锅炉→陶瓷多管旋风除尘器→引风机→脱离塔→烟囱→达标排放。

新建如下设施及土建:除尘装置1台,脱硫装置1套,水循环系统循环泵2台,反冲洗系统一套,综合调节池一座,新建脱硫剂制备系统一套,脱硫剂搅拌罐一台。

电气控制系统配套附属件等,水管路及附属件等,脱硫塔及除尘设备土建基础,排水沟等配套土建工程。

1.2 工况条件(业主提供)

锅炉发热量:1台×100t,锅炉烟气量:260000m3/h,锅炉出口烟气温度:150℃,锅炉出口SO2最高浓度:1900mg/Nm3,运行时间:4300h/a。

1.3 设计原则

脱硫工艺技术为国内领先、成熟可靠、经济实用、稳定达标。系统操作维护简单,不结垢、不堵塞,无二次污染,与锅炉同步运行率达100%。

1.4 设计指标及规范标准

设计指标:脱硫效率>90%

本方案编制应用下列技术规范和标准。

·《锅炉大气污染物排放标准》(GB13271-2003)

·《工业锅炉及炉窑湿法烟气脱硫工程技术规范》(HJ462-2009)

氧化镁法脱硫

双碱法和氧化镁法优缺点对比1.1双碱法脱硫工艺化学反应原理:基本化学原理可分为脱硫过程和再生过程两部分。钠-钙双碱法[Na/Ca]采用纯碱启动,钠碱吸收SO2、石灰再生的方法。其基本化学原理可分脱硫过程和再生过程。脱硫过程:Na2CO3+SO2→Na2SO3+CO2(1)2NaOH+SO2→Na2SO3+H2O(2)Na2CO3+SO2 +H2O→NaHSO3(3)(1)式为吸收启动反应式;(2)式为主要反应式,pH>9(碱性较高时)(3)式为当碱性降低到中性甚至酸性时(5<pH <9)再生过程:2NaHSO3+Ca(OH)2→Na2SO3++CaSO3↓+2H2O(5)Na2SO3+Ca(OH)2→2Na OH+CaSO3↓(6)在石灰浆液(石灰达到达饱和状况)中,NaHSO3很快与Ca(OH)2反应从而释放出[Na],[SO3]与[Ca]反应,反应生成的CaSO3以半水化合物形式沉淀下来从而使[Na]离子得到再生。Na2CO3只是一种启动碱,起动后实际上消耗的是石灰,理论上不消耗纯碱(只是清渣时会带走一些,因而有少量损耗)。再生的NaOH和Na2SO3等脱硫剂循环使用。技术特点钠-钙双碱法【Na2SO3-Ca(OH)2】采用钠碱启动、钠碱吸收SO2、钙碱再生的方法。该工艺具有以下优点:1投资省、脱硫效率高。与传统的双碱法脱硫相比较,钠碱吸收剂较钙碱的反应活性高、吸收速度快,可大大降低脱硫吸收的液气比,从而降低吸收液循环泵的功率和投资,而脱硫效率达80%以上,除尘脱硫后的烟气确保完全满足环保排放要求;2该工艺在多个燃煤锅炉的除尘脱硫项目中运行效果良好,技术成熟,运行可靠性高,烟气除尘脱硫装置投入率为95%以上,系统主要设备很少发生故障,因此不

旋风除尘器的设计与计算

一、实习目的 1、进一步了解旋风除尘器的有关计算 2、熟悉用CAD画效果图 3、查阅和整理各方面资料,了解旋风除尘器各方面性能及影响因素; 二、设计题目 设计一台处在常温(20°C),常温下含尘空气的旋风除尘器。已知条件为:处理气量Q=1300m3/h,粉尘密度ρp=1960kg/m3,空气密度ρ=1.29 kg/m,空气粘度μ=1.8x10-5Pa.s,进入的粉尘粒度分布见下表: 设计要求:XLT旋风除尘器,最后实现污染物的达标排放,且除尘效率为85%,压力损失不高于2000Pa。 提交文件:设计说明+旋风除尘器图(CAD制图),图纸输出A4纸。 三、旋风除尘器的工作原理 1.1 工作原理 (1)气流的运动 普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:内涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。 (2)尘粒的运动:

切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。 1.2特点 (1)旋风除尘器与其他除尘器相比,具有结构简单、占地面积小、投资低、操作维修方便以及适用面宽的优点。 (2)旋风除尘器的除尘效率一般达85%左右,高效的旋风除尘器对于输送、破碎、卸料、包装、清扫等工业生产过程产生的含尘气体除尘效率可达95%-98%,对于燃煤炉窑产生烟气的除尘效率可以达到92%-95%。 (3)XLT 旋风除尘器的主要特点 (4)旋风除尘器捕集<5μm 颗粒的效率不高,一般可以作为高浓度除尘系统的预除尘器,与其他类型高效除尘器合用。可用于10μm 以上颗粒的去除,符合此题的题设条件。 1.3影响旋风除尘器除尘效率的因素 (1)入口风速 由临界计算式知,入口风速增大,c d 降低,因而除尘效率提高。但是风速过大,压力损失也明显增大 (2)除尘器的结构尺寸 其他条件相同,筒体直径愈小,尘粒所受的离心力愈大,除尘效率愈大。筒体高度对除尘效率影响不明显,适当增大锥体长度,有利于提高除尘效率。减小排气管直径,有利于提高除尘效率。 (3)粉尘粒径和密度 大粒子离心力大,捕集效率高,粒子密度愈小,越难分离,本题中<5m μ的粒子质量频率约25%,所以导致除尘效率变低,以至于达不到除尘标准。 (4)灰斗气密性 若气密性不好,漏入空气,会把已经落入灰斗的粉尘重新带走,降低了除尘效率。 四、设计计算 1旋风除尘器各部分尺寸的确定 1.1形式的选择 根据国家规定的粉尘排放标准、粉尘的性质、允许的阻力和制造条件、经济性合理选择旋风除尘器的形式,选通用型旋风除尘器。 1.2 确定进口风速 设:风速u=20m/s 1.3 确定旋风除尘器的尺寸 (1)进气口面积A 的确定 进气口截面一般为长方形,尺寸为高度H 和宽度B ,根据处理气量Q 和进气速度u 可得 u Q A =

氧化镁法烟气脱硫工艺介绍

氧化镁法烟气脱硫工艺介绍 1. 前言 我国是世界上SO2排放量最大的国家之一,年排放量接近2000万吨。其主要原因是煤炭在能源消费结构中所占比例太大。烟气脱硫(FGD)是目前控制SO2污染的重要手段。 湿法脱硫是应用最广的烟气脱硫技术。其优点是设备简单,气液接触良好,脱硫效率高,吸收剂利用率高,处理能力大。根据吸收剂不同,湿法脱硫技术有石灰(石)—石膏法、氧化镁法、钠法、双碱法、氨法、海水法等。 氧化镁湿法烟气脱硫技术,以美国化学基础公司(Chemico-Basic)开发的氧化镁浆洗—再生法发展较快,在日本、台湾、东南亚得到了广泛应用。近年,随着烟气脱硫事业的发展,氧化镁湿法脱硫在我国的研究与应用发展很快。 2. 基本原理 氧化镁烟气脱硫的基本原理是用MgO的浆液吸收烟气中的SO2,生成含水亚硫酸镁和硫酸镁。化学原理表述如下: 2.1氧化镁浆液的制备 MgO(固)+H2O=Mg(HO)2(固) Mg(HO)2(固)+H2O=Mg(HO)2(浆液)+H2O Mg(HO)2(浆液)=Mg2++2HO- 2.2 SO2的吸收 SO2(气)+H2O=H2SO3 H2SO3→H++HSO3- HSO3-→H++SO32- Mg2++SO32-+3H2O→MgSO3?3H2O Mg2++SO32-+6H2O→MgSO3?6H2O Mg2++SO32-+7H2O→MgSO3?7H2O SO2+MgSO3?6H2O→Mg(HSO3)2+5H2O Mg(OH)2+SO2→MgSO3+H2O MgSO3+H2O+SO2→Mg(HSO3)2 Mg(HSO3)2+Mg(OH)2+10H2O→2MgSO3?6H2O 2.3 脱硫产物氧化 MgSO3+1/2O2+7H2O→MgSO4?7H2O MgSO3+1/2O2→MgSO4 3. 工艺流程 整个脱硫工艺系统主要可分为三大部分:脱硫剂制备系统、脱硫吸收系统、脱硫副产物处理系统。图1为氧化镁湿法脱硫的工艺流程图。

旋风除尘器设计说明

旋风除尘器设计计算说明书 1、旋风除尘器简介 旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。工业上已有100多年的历史。 特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。 优点:效率80%左右,捕集<5μm颗粒的效率不高,一般作预除尘用。 旋风除尘器的结构形式按进气方式可分为直入式、蜗壳式和轴向进入式;按气流组织分类有回流式、直流式、平流式和旋流式多种 1.1 工作原理 (1)气流的运动 普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。 图1 (2)尘粒的运动: 切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。 1.2 影响旋风器性能的因素 (2)二次效应-被捕集粒子的重新进入气流 在较小粒径区间,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率; 在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率; 通过环状雾化器将水喷淋在旋风除尘器壁上,能有效地控制二次效应;

临界入口速度。 (2)比例尺寸 在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降; 锥体适当加长,对提高除尘效率有利; 排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加,一般取排出管直径d e =(0.6~0.8)D ; 特征长度(natural length )-亚历山大公式: 2 1/3e 2.3()=D l d A 排气管的下部至气流下降的最低点的距离 旋风除尘器排出管以下部分的长度应当接近或等于l ,筒体和锥体的总高度以不大于5倍的筒体直径为宜。 (3)运行系统的密闭性,尤其是除尘器下部的严密性:特别重要,运行中要特别注意。 在不漏风的情况下进行正常排灰 (4) 烟尘的物理性质 气体的密度和粘度、尘粒的大小和比重、烟气含尘浓度 (5)操作变量 提高烟气入口流速,旋风除尘器分割直径变小,除尘器性能改善 ;入口流速过大,已沉积的粒子有可能再次被吹起,重新卷入气流中,除尘效率下降;效率最高时的入口速度,一般在10~25m/s 围。 2、设计资料 (1)所处理的粉尘为某水泥干燥窑的排烟,主要成分为水泥粉尘; (2)平均烟气量为2300 m 3/h ,最大烟气量为3450 m 3/h (3)烟气日变化系数K 日=1.5 (4)气温293 K,大气压力为101325 Pa (5)烟气颗粒物特征: 粒径围: 5~80m μ 中位径:36.5m μ 主要粒径频数分布: 颗粒物浓度:3000 kg/m 3 空气密度:1.205 kg/m 3 空气粘度:1.81×10-5Pa ﹒s (6)作为后继处理的前处理器,要求颗粒物的总去除效率不低于90%。压力损失不高 于2500Pa. 3、旋风除尘器的选型设计

氧化镁湿法脱硫工艺

氧化镁湿法脱硫工艺 【信息时间:2010-10-22 阅读次数:261 】【我要打印】【关闭】 一、工作原理 氧化镁湿法脱硫工艺(简称:镁法脱硫)与石灰-石膏法脱硫工艺类似,它是以氧化镁(MgO)为原料,经熟化生成氢氧化镁(Mg(OH) 2 )作为脱硫剂的一种先进、高效、经济的脱硫系统。在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的氢氧化镁进行化学反应从而被脱除,最终反应产物为亚硫酸镁和硫酸镁混合物。如采用强制氧化工艺,最终反应产物为硫酸镁溶液,经脱水干燥后形成硫酸镁晶体。 二、反应过程 1、熟化 MgO+H 2O —>Mg(OH) 2 2、吸收 SO 2 + H 2 O—> H 2 SO 3 SO 3 + H 2 O—> H 2 SO 4 3、中和 Mg(OH) 2+ H 2 SO 3 —> Mg SO 3 +2H 2 O Mg(OH) 2+ H 2 SO 4 —>Mg SO 4 +2H 2 O Mg(OH) 2+2HCl—>Mg Cl 2 +2H 2 O Mg(OH) 2+2HF —>MgF 2 +2H 2 O 4、氧化 2 Mg SO 3+O 2 —>2Mg SO 4 5、结晶 Mg SO 3+ 3H 2 O—> Mg SO 3 〃3H 2 O

Mg SO 4+ 7H 2 O —>Mg SO 4 〃7H 2 O 三、系统组成 脱硫系统主要由烟气系统、吸收塔系统、氢氧化镁浆液制备系统、浓缩塔系统、副产品处理系统、废水处理系统、公用系统(工艺水、压缩空气、事故浆液罐系统等)、电气控制系统等几部分组成。 四、工艺流程 锅炉/窑炉—>除尘器—>引风机—>浓缩塔—>吸收塔—>烟囱 来自于锅炉或窑炉的烟气经过除尘后在引风机作用下进入浓缩塔、吸收塔,吸收塔为逆流喷淋空塔结构,集吸收、氧化功能于一体,上部为吸收区,下部为氧化区,经过除尘后的烟气与吸收塔内的循环浆液逆向接触。系统一般装3-4 台浆液循环泵,每台循环泵对应一层雾化喷淋层。当只有一台机组运行时或负荷较小时,可以停运1-2层喷淋层,此时系统仍保持较高的液气比,从而可达到所需的脱硫效果。吸收区上部装二级除雾器,除雾器出口烟气中的游离水份不超过75mg/Nm3。吸收SO 2 后的浆液进入循环氧化区,在循环氧化区中,亚硫酸镁被鼓入的空气氧化成硫酸镁晶体。同时,由吸收剂制备系统向吸收氧化系统供给新鲜的氢氧化镁浆液,用于补充被消耗掉的氢氧化镁,使吸收浆液保持一定的pH值。反应生成物浆液达到一定密度时先排至吸收塔前的浓缩塔,经浓缩后进入脱硫副产品系统,经过脱水形成硫酸镁晶体。 五、工艺特点 1、反应性好,脱硫效率高 湿法脱硫的反应强度取决于脱硫剂碱金属离子的溶解碱性。由于镁离子的溶解碱性比钙离子高数百倍,因而镁基脱硫剂具有比钙基脱硫剂高数十倍的脱硫反应能力。工业实践证明,镁基脱硫剂能比钙基脱硫剂更高的脱硫效率,可达99%以上,同时采用镁基脱硫所要求的喷淋水量仅相当于达到同样脱硫效率的钙基脱硫的1/3,耗电量也大为降低。 2、运行可靠性高 由于镁基脱硫生成物的溶解度较高,其固体悬浮物为松散的结晶体,不易沉积,因此没有钙基湿法脱硫系统中存在的结垢、结块、堵塞等现象,运行可靠,维护更容易。

旋风除尘器电除尘器课程设计

旋风除尘器电除尘器课 程设计 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

目录一.设计内容 (3) 1.设计基础资料 (3) 2.设计要求 (3) 二.设计计算 (3) 1.集气罩设计 (3) 2.风量计算 (4) 3.旋风除尘器设计选型 (4) 4.旋风除尘器效率计算 (7) 5.二级除尘器设计选型 (8) 6.管道设计计算 (12) 7.风机和电机的选择 (17) 8.排气烟囱的设计 (18) 三.心得体会与总结 (19) 参考文献 (20) 附图 (21) 题目:水泥厂配料车间粉尘污染治理工程(课程)设计一.设计内容 1. 设计基础资料 ●计量皮带宽度:450mm ●配料皮带宽度:700mm ●皮带转换落差:500mm

●设粉尘收集后,粉尘浓度为2000mg/m3,粉尘的粒径分布如下表. 2. 设计要求 ●排放浓度小于50 mg/m3 ●设计二级除尘系统,第一级为旋风除尘器,第二级为电除尘器或者袋式除尘器. ●计算旋风除尘器的分级除尘效率和除尘系统的总效率. ●选择风机和电机 ●绘制除尘系统平面布置图 ●绘制除尘器本体结构图 ●编制设计说明书 二.设计计算 1.集气罩设计 集气罩的设计原则: ①改善排放粉尘有害物的工艺和环境,尽量减少粉尘排放及危害。 ②集气罩尽量靠近污染源并将其包围起来。 ③决定集气罩的安装位置和排气方向。 ④决定开口周围的环境条件。 ⑤防止集气罩周围的紊流。 ⑥决定控制风速。

本设计采用密闭集气罩,密闭罩设计的注意事项:密闭罩应力求密闭,尽量减少罩上的孔洞和缝隙;密闭罩的设置应不妨碍操作和便于检修;应注意罩内气流的运动特点。 搅拌机上方采用整体密闭集气罩,尺寸φ2000×500(高度)mm 。 传送带上方采用局部密闭集气罩,尺寸1210×1210mm 。 2.风量计算 对于整体集气罩,取断面风速为s 对于局部集气罩,取断面风速为s 总风量 /s 5.748m 0.73260.67826Q 2Q Q 3 21=?+?=+= 3.旋风除尘器的设计选型 1) 设计选型 一级除尘系统采用旋风除尘器,其特点是旋风除尘器没有运动部件,制作、管理十分方便;处理相同风量的情况下体积小,价格便宜;作为预除尘器使用时,可以立式安装,亦可以卧式安装,使用方便;处理大风量是便于多台联合使用,效率阻力不受影响,但是也存在着除尘效率不高,磨损严重的问题。 普通除尘器是由进风管、筒体、锥体和排气管组成。含尘气体进入除尘器后,沿外壁由上而下做旋转运动,同时少量气体沿径向运动到中心区域。当旋转气流的大部分到达锥体底部后,转而向上沿轴心旋转,最后经排出管排出。 旋风除尘器净化气量应与实际需要处理的含尘气体量一致。选择除尘器直径时应尽量小些;旋风除尘器入口风速要保持18—23m/s ;选择除尘器时,要根据工况考虑阻力损失及结构形式,尽可能减少动力消耗减少,便于制造维护;结构密闭要好,确保不漏风。

氧化镁脱硫工艺

氧化镁脱硫工艺 一、工作原理 氧化镁湿法脱硫工艺(简称:镁法脱硫)与石灰-石膏法脱硫工艺类似,它是以氧化镁(MgO)为原料,经熟化生成氢氧化镁(Mg(OH) 2 )作为脱硫剂的一种先进、高效、经济的脱硫系统。在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的氢氧化镁进行化学反应从而被脱除,最终反应产物为亚硫酸镁和硫酸镁混合物。如采用强制氧化工艺,最终反应产物为硫酸镁溶液,经脱水干燥后形成硫酸镁晶体。 二、反应过程 1、熟化 MgO+H 2O —>Mg(OH) 2 2、吸收 SO 2 + H 2 O—> H 2 SO 3 SO 3 + H 2 O—> H 2 SO 4 3、中和 Mg(OH) 2+ H 2 SO 3 —> MgSO 3 +2H 2 O Mg(OH) 2+ H 2 SO 4 —> MgSO 4 +2H 2 O Mg(OH) 2+2HCl—> MgCl 2 +2H 2 O Mg(OH) 2+2HF —>MgF 2 +2H 2 O 4、氧化 2 MgSO 3+O 2 —>2MgSO 4 5、结晶 MgSO 3+ 3H 2 O—> MgSO 3 ·3H 2 O MgSO 4+ 7H 2 O —>MgSO 4 ·7H 2 O 三、系统组成 脱硫系统主要由烟气系统、吸收塔系统、氢氧化镁浆液制备系统、浓缩塔系统、副产品处理系统、废水处理系统、公用系统(工艺水、压缩空气、事故浆液罐系统等)、电气控制系统等几部分组成。 四、工艺流程

锅炉/窑炉—>除尘器—>引风机—>浓缩塔—>吸收塔—>烟囱 来自于锅炉或窑炉的烟气经过除尘后在引风机作用下进入浓缩塔、吸收塔,吸收塔为逆流喷淋空塔结构,集吸收、氧化功能于一体,上部为吸收区,下部为氧化区,经过除尘后的烟气与吸收塔内的循环浆液逆向接触。系统一般装3-4 台浆液循环泵,每台循环泵对应一层雾化喷淋层。当只有一台机组运行时或负荷较小时,可以停运1-2层喷淋层,此时系统仍保持较高的液气比,从而可达到所需的脱硫效果。吸收区上部装二级除雾器,除雾器出口烟气中的游离水份不超过75mg/Nm3。吸收SO 后的浆液进入循环氧化区,在循环氧化区中,亚硫酸镁被鼓 2 入的空气氧化成硫酸镁晶体。同时,由吸收剂制备系统向吸收氧化系统供给新鲜的氢氧化镁浆液,用于补充被消耗掉的氢氧化镁,使吸收浆液保持一定的pH值。反应生成物浆液达到一定密度时先排至吸收塔前的浓缩塔,经浓缩后进入脱硫副产品系统,经过脱水形成硫酸镁晶体。 五、工艺特点 1、反应性好,脱硫效率高 湿法脱硫的反应强度取决于脱硫剂碱金属离子的溶解碱性。由于镁离子的溶解碱性比钙离子高数百倍,因而镁基脱硫剂具有比钙基脱硫剂高数十倍的脱硫反应能力。工业实践证明,镁基脱硫剂能比钙基脱硫剂更高的脱硫效率,可达99%以上,同时采用镁基脱硫所要求的喷淋水量仅相当于达到同样脱硫效率的钙基脱硫的1/3,耗电量也大为降低。 2、运行可靠性高 由于镁基脱硫生成物的溶解度较高,其固体悬浮物为松散的结晶体,不易沉积,因此没有钙基湿法脱硫系统中存在的结垢、结块、堵塞等现象,运行可靠,维护更容易。 3、造价低 由于反应强度高,镁基喷淋反应吸收塔的高度只有钙基脱硫的2/3左右,因此,镁基脱硫的主体设备的造价要明显低于钙基吸收塔。 同时,由于氧化镁的分子量(40)是氧化钙(56)的73%,是碳酸钙(石灰石,分子量为100)的40%,因此,去除等量的二氧化硫所需的氧化镁要比钙基

氧化镁法脱硫方案

供热有限公司40t/h锅炉 脱硫工程项目 技术文件 (MgO) 有限公司 2016年4月12日 目录一、企业简介2

1.1公司介绍2 1.2 项目概况3 1.3 设计原则3 1.4 设计指标3 1.5 设计依据4 二、现有脱硫系统的工艺流程4 2.1 氧化镁法工艺原理4 2.2镁法脱硫的工艺特点5 2.3系统工艺流程8 三、现有锅炉系统分析9 四、脱硫系统改造方案总体设计9 4.1系统总体技术要求9 4.2 烟气系统10 4.3 吸收系统10 4.4 脱硫液循环系统11 4.5 脱硫剂制备系统11 4.6 脱硫渣处理系统11 五、脱硫系统主要技术指标11 六、脱硫系统具体改造方案12 6.1系统概述12 6.2烟气系统改造12 6.3吸收循环系统改造13 6.4脱硫剂储存、制备、输送系统17 6.5脱硫渣氧化、处理系统17 6.6工艺水系统17 6.7电器控制系统18 七、运行成本分析20

7.1 原料成本20 7.2人工费20 7.3 水耗20 7.4电耗20 7.5脱硫系统运行成本20 八、工程量清单21 8.1 主要工艺设备一览表21 8.2 主要构(建)造物一览表22 九、主要工艺设备制造、安装技术要求及相关说明22 十、运输保证措施23 10.1随箱资料的主要内容23 10.2包装24 十一、技术服务与联络24 一、企业简介 1.1公司介绍 在公司日益发展的今天,我们在烟尘、废气、废水治理领域已有很大成绩,已经成为了大庆油田、东北特变电、长春客车、山东万达集团、沈飞集团、金杯汽车等知名企业的环保设备及工程供应商。 公司正在不断探索,我们将不断提升自身业务素质、提供创新能力、壮大技术团队,进行更加系统化、标准化、规范化得管理,志愿成为世界级大气治理专家,努力为建设“美丽中国”而努力贡

★★氧化镁湿法烟气脱硫废水处理技术

氧化镁湿法烟气脱硫废水处理技术 发布者: azurelau | 发布时间: 2012-12-20 17:10| 查看数: 465| 评论数: 3|帖子模式 1 镁法脱硫技术的发展 氧化镁法在湿法烟气脱硫技术中是仅次于钙法的又一主要脱硫技术。据介绍,氧化镁再生法的脱硫工艺最早由美国开米科公司(Chemico—Basic)在20世纪60年代开发成功,70年代后费城电力公司(PECO)与United&Constructor合作研究氧化镁再生法脱硫工艺,经过几千小时的试运行之后,在三台机组(其中两台分别为150MW和320MW)进行了全规模的FGD系统和两个氧化镁再生系统建设,上述系统于1982年建成并投入运行,1992年以后停运硫酸制造厂,直接将反应产物硫酸镁销售。1980年美国DUCON公司在PHILADELPHA ELECTRIC EDDYSTONE STATION成功建成实施氧化镁湿法脱硫系统,运行至今,效果良好。随后韩国和台湾地区也发展了自己的湿式镁法脱硫技术,目前在台湾95%的电站采用氧化镁法脱硫。 近几年国内的氧化镁湿法脱硫发展较快,2001年,清华大学环境系承担了国家“863”计划中《大中型锅炉镁法脱硫工艺工业化》的课题,对镁法脱硫的工艺参数、吸收塔优化设计和副产品回收利用等进行了深入的研究,并在4t/h、12t/h锅炉上进行了中试,在35t/h锅炉上进行了工程应用。目前,大机组镁法烟气脱硫已经有滨州化工集团发电厂、太钢发电厂、华能辛店电厂、中石化仪征化纤热电厂、魏桥铝电发电厂、鞍山北美热电厂、鲁北化工发电厂、台塑关系企业(宁波、昆山、南通)热电厂、五矿营口中板烧结机厂等电厂和烧结机厂在建或投入运行。 湿式镁法脱硫工艺又可分为氧化镁/亚硫酸镁法、氧化镁/硫酸镁抛弃法、氧化镁/硫酸镁回收法等。本文主要介绍应用规模较大、前景广阔的氧化镁/亚硫酸镁工艺中的废水处理工艺。 2 脱硫废水处理技术概况 湿法烟气脱硫工艺中存在废水处理问题,虽然有很多电厂的脱硫系统都配有废水处理系统,但国内目前对脱硫废水的处理工艺研究较少,其中关注最多的是石灰石/石膏法产生的脱硫废水,对于镁法脱硫产生的废水的研究就更少了。镁法脱硫废水处理现在多是引用和借鉴石灰石/石膏法脱硫废水处理经验。为了维持脱硫装置浆液循环系统物质的平衡,防止烟气中可溶物质超过规定值和保证副产物品质,必须从循环系统中排放一定量的废水。因此,没有预处理塔的镁法脱硫和石灰石/石膏法脱硫过程产生的废水均来源于吸收塔的排放水。 3 镁法脱硫废水水量和水质 3.1 脱硫废水水量 脱硫废水的水量与烟气中的HCl和HF、吸收塔内浆液中的Cl-和SO4 2-浓度、脱硫用水的水质等有关。当进入吸收塔内的烟气量一定时,废水排放量由以下条件确定: (1)脱硫废水的水量取决于烟气中的HCl(H F)浓度,而烟气中的HCl(HF)主要来自于机组燃烧的煤。煤中Cl(F)的含量越高,烟气中的HCl(HF)浓度就越高,废水排放量也就越大。 (2)脱硫废水的水量关键取决于吸收塔内Cl-的控制浓度。浆液中的Cl-浓度太高,亚硫酸镁品质下降且脱硫效率降低,对设备的抗腐蚀要求提高;对浆液中的Cl-浓度要求过低,脱硫废水的水量增大,废水处理的成本提高。根据经验,脱硫废水中的Cl-浓度控制在10~20g/L为宜。 (3)脱硫废水的水量还取决于吸收塔内SO4 2-的控制浓度。浆液中SO4 2-浓度太高,会造成浆液粘性增加,影响亚硫酸镁的结晶,脱硫效率降低;浆液中SO4 2-的控制浓度过低,SO3 2-氧化成SO4 2-的正反应加速,亚硫酸镁的产量降低。

旋风式除尘器使用说明书

旋风除尘器 使 用 说 明 书

目录 目录 (1) 一、概述 (2) 二、构造和原理 (3) 三、分类说明 (4) 四、设备特点 (5) 五、旋风除尘器的维护方法 (6) 六、排尘口堵塞及预防措施 (7) 七、启动前的准备工作 (8) 八、检修注意事项 (9)

一、概述 旋风除尘器广泛地应用于各个行业除尘系统中,本设计针对旋风除尘器的结构及工作原理,分析影响旋风除尘器压力损失的因素,介绍了旋风除尘器内部流场和除尘机理。针对旋风除尘器除尘效率问题进行了分析,总结了现有改进方案,指出存在的不足,并结合前人的改进思路提出了新的改进方案,以提高旋风除尘器的分离效率,为进一步挖掘旋风除尘器的潜在性能开辟新的思路。 二、旋风除尘器的结构及原理 1旋风除尘器的结构 旋风除尘器的结构如图2-1所示,当含尘气体由进气管进入旋风除尘器时,气流将由直线运动转变为圆周运动,旋转气流的绝大部分延器壁呈螺旋形向下,朝椎体流动。通常称为外旋气流,含尘气体在旋转过程中产生离心力,将重度大于气体的尘粒甩向器壁。尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和向下的重力延壁面下落,进入排灰管。旋转下降的外旋气流在到达椎体时,因椎体形状的收缩而向除尘器中心靠拢。根据“旋转矩”不变原理,其切向速度不断增加。当气流到达椎体下端某一位置时,即以同样的旋转方向从旋风除尘器中部,由下反转而上,继续做螺旋运动,即内旋气流。最后净化气体经排气管排除旋风除尘器外,一部分未被捕集的尘粒也由此遗失。

1—排气管2—顶盖3—排灰管 4—圆锥体5—圆筒体6—进气管 图2—1 旋风除尘器 2.2 旋风除尘器的性能及其影响因素 2.2.1旋风除尘器的技术性能 (1)处理气体流量Q 处理气体流量Q是通过除尘设备的含尘气体流量,除尘器流量为给定值,一般以体积流量表示。高温气体和不是一个大气压情况时必须把流量换算到标准状态,其体积m3/h或m3/min表示。 (2)压力损失 旋风除尘器的压力损失△p是指含尘气体通过除尘器的阻力,是进出口静压之差,是除尘器的重要性能之一。其值当然越小越好,因风机的功率几乎与它成正比。除尘器的压力损失和管道、风罩等压力损失以及除尘器的气体流量为选择风机的依据。 压力损失包含以下几个方面: ①进气管内摩擦损失; ②气体进入旋风除尘器内,因膨胀或压缩而造成的能量损失; ③与容器壁摩擦所造成能量损失; ④气体因旋转而产生的能量消耗; ⑤排气管内摩擦损失,以及由旋转气体转为直线气体造成的能量损失; ⑥排气管内气体旋转时的动能转换为静压能所造成的损失等。 (3)除尘效率 一般指额定负压的总效率和分级效率,但由于工业设备常常是在

氧化镁法脱硫方案

供热有限公司40t/h锅炉脱硫工程项目 技术文件 (MgO) 有限公司 2016年4月12日

目录 一、企业简介............................. 错误!未定义书签。 公司介绍........................................ 错误!未定义书签。 项目概况....................................... 错误!未定义书签。 设计原则....................................... 错误!未定义书签。 设计指标....................................... 错误!未定义书签。 设计依据....................................... 错误!未定义书签。 二、现有脱硫系统的工艺流程............... 错误!未定义书签。 氧化镁法工艺原理............................... 错误!未定义书签。 镁法脱硫的工艺特点.............................. 错误!未定义书签。 系统工艺流程.................................... 错误!未定义书签。 三、现有锅炉系统分析..................... 错误!未定义书签。 四、脱硫系统改造方案总体设计............. 错误!未定义书签。 系统总体技术要求................................ 错误!未定义书签。 烟气系统....................................... 错误!未定义书签。 吸收系统....................................... 错误!未定义书签。 脱硫液循环系统................................. 错误!未定义书签。 脱硫剂制备系统................................. 错误!未定义书签。 脱硫渣处理系统................................. 错误!未定义书签。 五、脱硫系统主要技术指标................ 错误!未定义书签。 六、脱硫系统具体改造方案................. 错误!未定义书签。 系统概述........................................ 错误!未定义书签。 烟气系统改造.................................... 错误!未定义书签。 吸收循环系统改造................................ 错误!未定义书签。 脱硫剂储存、制备、输送系统...................... 错误!未定义书签。 脱硫渣氧化、处理系统............................ 错误!未定义书签。 工艺水系统...................................... 错误!未定义书签。

旋风除尘器设计h

韶关学院 《大气污染控制工程》课程设计任务书 化学与环境工程学院 2011级环境工程专业 题目旋风除尘器系统的设计 起止日期:2014年5月21日至2014年5月28日学生姓名:学号: 指导教师:梁凯 教研室主任:年月日审查 系主任:年月日批准

设计题目(题目来自网络) 设计要求:根据设计参数设计出使用的旋风除尘器。

目录 1、前言 (5) 1.1、工作原理 (5) 1.2、影响旋风器性能的因素 (6) 2、旋风除尘器的特点 (7) 3、旋风除尘器型号选择 (7) 4、选择XLP/B型旋风除尘器的理由 (7) 5、工艺设计计算 (7) 5.1、除尘效率 (7) 5.2、压力损失 (7) 5.3、其他部件的尺寸 (7) 6、除尘效率计算及校核 (7) 6.1、除尘效率计算 (7) 6.2、除尘效率校核 (7) 7、课程设计心得 (10)

1、前言 旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。工业上已有100多年的历史。 特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。 优点:效率80%左右,捕集<5μm颗粒的效率不高,一般作预除尘用。 旋风除尘器的结构形式按进气方式可分为直入式、蜗壳式和轴向进入式;按气流组织分类有回流式、直流式、平流式和旋流式多种 1.1、工作原理 旋风除尘器是利用旋转气流所产生的离心力将尘粒从合尘气流中分离出来的除尘装置。 旋风除尘器内气流与尘粒的运动概况: 旋转气流的绝大部分沿器壁自圆简体,呈螺旋状由上向下向圆锥体底部运动,形成下降的外旋含尘气流,在强烈旋转过程中所产生的离心力将密度远远大于气体的尘粒甩向器壁,尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和自身的重力沿壁面下落进入集灰斗。旋转下降的气流在到达圆锥体底部后.沿除尘器的轴心部位转而向上.形成上升的内旋气流,并由除尘器的排气管排出。 自进气口流人的另一小部分气流,则向旋风除尘器顶盖处流动,然后沿排气管外侧向下流动,当达到排气管下端时,即反转向上随上升的中心气流一同从诽气管排出,分散在其中的尘粒也随同被带走。 图1

简析氧化镁脱硫技术应用

区域供热2010.4期 1概述 廊坊,这座京津之间美丽的城市掩映在幽雅怡人、景致秀美的绿草翠树中,作为一名廊坊人我深知环境保护的重要性。减少SO2的排放就是我们热力人的职责。2009年我公司为了响应国家节能减排的号召,增加了氧化镁脱硫设备,下面我简单介绍一下: 氧化镁法烟气脱硫工艺具有投资少、吸收剂用量少、占地面积相对较小、脱硫效率高等特点,脱硫效率可达95%以上。氧化镁法烟气脱硫工艺按最终反应产物可分为两种:其一产物为硫酸镁:原理是氧化镁进行熟化反应生成氢氧化镁,制成一定浓度的氢氧化镁吸收浆液。在吸收塔内氢氧化镁与烟气中的二氧化硫反应生成亚硫酸镁。亚硫酸镁经强制氧化生成硫酸镁,分离干燥后生成固体硫酸镁。另一种工艺为氧化镁再生法,即在吸收塔内氢氧化镁与烟气中的二氧化硫反应生成亚硫酸镁的过程中抑制亚硫酸镁氧化,不使亚硫酸镁氧化生成硫酸镁。亚硫酸镁经分离、干燥、焙烧,最后还原成氧化镁和一定浓度的二氧化硫富气,还原后氧化镁返回系统重复利用,二氧化硫富气被用来制造硫酸。焙烧亚硫酸镁需要对温度进行控制。工艺二系统相当复杂,投资费用高。目前的镁法脱硫多采用生成硫酸镁为最终产物。 氧化镁法脱硫工艺应用业绩相对较多。据介绍,氧化镁再生法的脱硫工艺最早由美国开米科基础公司(Chemico-Basic)上世纪60年代开发成功,70年代后费城电力公司(PECO)与United&Constructor合作研究氧化镁再生法脱硫工艺,经过几千小时的试运行之后,在三台机组上(其中两个分别为150MW和320MW)投入了全规模的FGD系统和两个氧化镁再生系统,上述系统于1982年建成并投入运行,1992年以后停运硫酸制造厂,直接将反应产物硫酸镁销售。 日本也有氧化镁法脱硫工艺,但由于日本的氧化镁主要靠进口,受价格因素制约较大,在一定程度上影响了该工艺的发展。 2001年,清华大学环境系承担国家“863”计划中大中型锅炉镁法脱硫工艺工业化的课题,对镁法脱硫工艺操作参数、吸收塔优化设计和副产品回收利用等进行了全面深入研究,并在4t/h、12t/h锅炉上进行了中试研究,在35t/h锅炉上有了工程应用。 2工艺流程 2.1氧化镁的熟化反应 简析氧化镁脱硫技术应用 廊坊开发区热力供应中心韩良蔡旭光 唐山市热力总公司于洋 【摘要】建设“生态环保之城”是廊坊人的目标,减少对廊坊环境的污染是廊坊人的义务,减少SO2的排放就是我们热力人的职责。 【关键词】环境脱硫氧化镁最优脱硫方法 40 --

氧化镁脱硫技术方案

2×75t/h、130t/h锅炉烟气脱硫工程技术建议书 ××××××××有限公司 2011年11月19日

目录 1.工程概述 (4) 2.工程设计 (4) 2.1总体设计原则 (4) 2.2设计依据 (5) 2.4设计参数及性能指标 (6) 2.5氧化镁法湿式烟气脱硫工艺 (9) 2.5.1工艺原理 (9) 2.5.2脱硫工艺特点 (10) 2.5.2.1本脱硫系统的特点 (10) 2.5.2.2关于脱硫系统的认识 (11) 2.6项目设计 (12) 2.6.1设计范围及原则 (12) 2.6.1.1设计范围 (12) 2.6.1.2设备选用及设计原则 (12) 2.6.2 工艺流程 (14) 2.6.3 SO2吸收系统 (14) 2.6.3.1旋流板塔脱硫装置及构成 (15) 2.6.3.2旋流板塔脱硫装置的主要参数 (16) 2.6.3.3代表性技术 (19)

2.6.3.4全面深入的脱硫塔技术 (19) 2.6.3.5结构特点 (20) 2.6.3.6技术特点 (21) 2.6.4 烟道系统 (22) 2.6.5循环液供应系统 (24) 2.6.5.1脱硫循环泵 (25) 2.6.5.2氧化风机 (26) 2.6.6泥渣处理系统 (26) 2.6.6.1排泥泵 (27) 2.6.6.2水力旋流器 (27) 2.6.6.3真空皮带脱水机 (28) 2.6.7 脱硫剂制备及供应系统 (28) 2.6.8 工艺水系统 (29) 2.6.9 电气设计 (30) 2.6.9.1设计依据 (30) 2.6.9.2电气控制 (30) 2.6.9.3用电设备负荷 (33) 2.6.10 运行费用估算 (35) 2.7安全运行指标 (37) 2.7.1 烟气脱硫除尘系统的主要安全问题 (37) 2.7.2 安全措施 (37) 2.7.3 工艺运行监视及控制 (39)

氧化镁法脱硫

双碱法和氧化镁法优缺点对比 1.1 双碱法脱硫工艺化学反应原理:基本化学原理可分为脱硫过程和再生过程两部分。钠- 钙双碱法[Na/Ca]采用纯碱启动,钠碱吸收S02石灰再生的方法。其基本化学原理可分脱硫过程和再生过程。脱硫过程: Na2CO3+SO2Na2SO3+CO2(1)2NaOH+S a2SO3+H2O(2)Na2CO3+SO2 +H2O>NaHSO3(3) (1 )式为吸收启动反应式;(2)式为主要反应式, pH>9 (碱性较高时)(3)式为当碱性降低到中性甚至酸性时(5v pH V 9 ) 再生过程: 2NaHSC+Ca(OH)2^ Na2S03++CaSO涉2H2O(5)Na2SO3+Ca(OH^2Na OH+CaSO3(6)在石灰浆液(石灰达到达饱和状况)中,NaHSC很快与 Ca(CH)2反应从而释放出]Na], :SC3与[Ca]反应,反应生成的CaSC3以半水化合物形式沉淀下来从而使[Na]离子得到再生。Na2CC3只是一种启动碱,起动后实际上消耗的是石灰,理论上不消耗纯碱(只是清渣时会带走一些,因而有少量损耗)。再生的NaCH和 Na2SC3等脱硫剂循环使用。技术特点钠-钙双碱法【Na2SC3-Ca(CH)】 采用钠碱启动、钠碱吸收SC2钙碱再生的方法。该工艺具有以下优点: 1 投资省、脱硫效率高。与传统的双碱法脱硫相比较,钠碱吸收剂较钙碱的反应活性高、吸收速度快,可大大降低脱硫吸收的液气比, 从而降低吸收液循环泵的功率和投资,而脱硫效率达80%以上,除尘脱硫后的烟气确保完全满足环保排放要求;2该工艺在多个燃煤锅炉的除尘脱硫项目中运行效果良好,技术成熟,运行可靠性高,烟气除尘脱硫装置投入率为95%以上,系统主要设备很少发生故障,因此不

高效旋风除尘器设计毕业设计设计说明书

唐山学院毕业设计 设计题目:高效旋风除尘器设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

再生法氧化镁脱硫分析

1.概述 氧化镁法烟气脱硫工艺具有投资少、吸收剂用量少、占地面积相对较小、脱硫效率高 等特点,脱硫效率可达95%以上。氧化镁法烟气脱硫工艺按最终反应产物可分为两种: 其一产物为硫酸镁:原理是氧化镁进行熟化反应生成氢氧化镁,制成一定浓度的氢氧化镁吸收浆 液。在吸收塔内氢氧化镁与烟气中的二氧化硫反应生成亚硫酸镁。亚硫酸镁经强制氧化生成 硫酸镁,分离干燥后生成固体硫酸镁。另一种工艺为氧化镁再生法, 即在吸收塔内氢氧化镁 与烟气中的二氧化硫反应生成亚硫酸镁的过程中抑制亚硫酸镁氧化, 不使亚硫酸镁氧化生成 硫酸镁。亚硫酸镁经分离、干燥、焙烧,最后还原成氧化镁和一定浓度的二氧化硫富气,还 原后氧化镁返回系统重复利用,二氧化硫富气被用来制造硫酸。焙烧亚硫酸镁需要对温度进 行控制。工艺二系统相当复杂,投资费用高。目前的镁法脱硫多采用生成硫酸镁为最终产物。 氧化镁法脱硫工艺应用业绩相对较少。据介绍,氧化镁再生法的脱硫工艺最早由美国 开米科基础公司(Chemico-Basic)上世纪60年代开发成功,70年代后费城电力公司(PECO) 与United & Constructor合作研究氧化镁再生法脱硫工艺,经过几千小时的试运行之后,在 三台机组上(其中两个分别为150MW和320MW )投入了全规模的FGD系统和两个氧化镁 再生系统,上述系统于1982年建成并投入运行,1992年以后停运硫酸制造厂,直接将反应 产物硫酸镁销售。 日本也有氧化镁法脱硫工艺,但由于日本的氧化镁主要靠进口,受价格因素制约较大, 在一定程度上影响了该工艺的发展。 2001年,清华大学环境系承担国家“ 863计划中大中型锅炉镁法脱硫工艺工业化的课 题,对镁法脱硫工艺操作参数、吸收塔优化设计和副产品回收利用等进行了全面深入研究, 并在4t/h、12t/h锅炉上进行了中试研究, 在35t/h锅炉上有了工程应用。 2.工艺流程 氧化镁的熟化反应 天然的菱镁矿主要以碳酸镁形式存在。氧化镁是由碳酸镁焙烧而成,再磨制成粉。熟 化反应是将氧化镁加水并加热进行反应, 使其生成氢氧化镁。这一过程比石灰的熟化反应复 杂一些,需要用蒸汽辅助加热以加快反应速度,熟化时间一般需要2~3小时。反应方程式如 下: MgO+H2O Mg(OH)2 二氧化硫吸收反应 制成一定浓度的氢氧化镁浆液通过循环泵打入吸收塔喷淋层与烟气接触,吸收烟气中的二氧化硫。主要反应方程式如下: Mg(OH)2+SO2 MgSO3+H2O MgSO3+H2O+SO2 Mg(HSO3)2 Mg(HSO3)2+ Mg(OH)2+4 H2O 2MgSO33H2O

相关文档
最新文档