kalman filter 卡尔曼滤波的例子

kalman filter 卡尔曼滤波的例子
kalman filter 卡尔曼滤波的例子

kalman filter 卡尔曼滤波的例子

2008-11-01 02:02

因为在研究中使用了kalman 滤波,这是一个挺难理解的控制理论,对于kalman 的初学者来讲,像我这样没什么数学功底的人,看教科书真是很累,说实在的,我觉得老外的基础理论的书都很评议近人,不像国内那些教授搞得那么悬虚,

初学者可以参考

https://www.360docs.net/doc/423719589.html,/index.jsp 研学论坛有几篇通俗易懂的中文解释

https://www.360docs.net/doc/423719589.html,/~welch/kalman/ 这里是老外综合的kalman基地,很不错的。

代码示例:

============================kalman.h================================

// kalman.h: interface for the kalman class.

//

///////////////////////////////////////////////////////////////////// /

#if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCL UDED_)

#define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_

#if _MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

#include

#include "cv.h"

class kalman

{

public:

void init_kalman(int x,int xv,int y,int yv);

CvKalman* cvkalman;

CvMat* state;

CvMat* process_noise;

CvMat* measurement;

const CvMat* prediction;

CvPoint2D32f get_predict(float x, float y);

kalman(int x=0,int xv=0,int y=0,int yv=0);

//virtual ~kalman();

};

#endif

// !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLU DED_)

============================kalman.cpp=============================== =

#include "kalman.h"

#include

/* tester de printer toutes les valeurs des vecteurs...*/

/* tester de changer les matrices du noises */

/* replace state by cvkalman->state_post ??? */

CvRandState rng;

const double T = 0.1;

kalman::kalman(int x,int xv,int y,int yv)

{

cvkalman = cvCreateKalman( 4, 4, 0 );

state = cvCreateMat( 4, 1, CV_32FC1 );

process_noise = cvCreateMat( 4, 1, CV_32FC1 );

measurement = cvCreateMat( 4, 1, CV_32FC1 );

int code = -1;

/* create matrix data */

const float A[] = {

1, T, 0, 0,

0, 1, 0, 0,

0, 0, 1, T,

0, 0, 0, 1

};

const float H[] = {

1, 0, 0, 0,

0, 0, 0, 0,

0, 0, 1, 0,

0, 0, 0, 0

};

const float P[] = {

pow(320,2), pow(320,2)/T, 0, 0,

pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0,

0, 0, pow(240,2), pow(240,2)/T,

0, 0, pow(240,2)/T, pow(240,2)/pow(T,2)

};

const float Q[] = {

pow(T,3)/3, pow(T,2)/2, 0, 0,

pow(T,2)/2, T, 0, 0,

0, 0, pow(T,3)/3, pow(T,2)/2,

0, 0, pow(T,2)/2, T

};

const float R[] = {

1, 0, 0, 0,

0, 0, 0, 0,

0, 0, 1, 0,

0, 0, 0, 0

};

cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );

cvZero( measurement );

cvRandSetRange( &rng, 0, 0.1, 0 );

rng.disttype = CV_RAND_NORMAL;

cvRand( &rng, state );

memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A));

memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H));

memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q));

memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P));

memcpy( cvkalman->measurement_noise_cov->data.fl, R,

sizeof(R));

//cvSetIdentity( cvkalman->process_noise_cov,

cvRealScalar(1e-5) );

//cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1)); //cvSetIdentity( cvkalman->measurement_noise_cov,

cvRealScalar(1e-1) );

/* choose initial state */

state->data.fl[0]=x;

state->data.fl[1]=xv;

state->data.fl[2]=y;

state->data.fl[3]=yv;

cvkalman->state_post->data.fl[0]=x;

cvkalman->state_post->data.fl[1]=xv;

cvkalman->state_post->data.fl[2]=y;

cvkalman->state_post->data.fl[3]=yv;

cvRandSetRange( &rng, 0,

sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 );

cvRand( &rng, process_noise );

}

CvPoint2D32f kalman::get_predict(float x, float y){

/* update state with current position */

state->data.fl[0]=x;

state->data.fl[2]=y;

/* predict point position */

/* x'k=A鈥 k+B鈥 k

P'k=A鈥 k-1*AT + Q */

cvRandSetRange( &rng, 0,

sqrt(cvkalman->measurement_noise_cov->data.fl[0]), 0 );

cvRand( &rng, measurement );

/* xk=A?xk-1+B?uk+wk */

cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman->state_post );

/* zk=H?xk+vk */

cvMatMulAdd( cvkalman->measurement_matrix,

cvkalman->state_post, measurement, measurement );

/* adjust Kalman filter state */

/* Kk=P'k鈥 T鈥?H鈥 'k鈥 T+R)-1

xk=x'k+Kk鈥?zk-H鈥 'k)

Pk=(I-Kk鈥 )鈥 'k */

cvKalmanCorrect( cvkalman, measurement );

float measured_value_x = measurement->data.fl[0];

float measured_value_y = measurement->data.fl[2];

const CvMat* prediction = cvKalmanPredict( cvkalman, 0 );

float predict_value_x = prediction->data.fl[0];

float predict_value_y = prediction->data.fl[2];

return(cvPoint2D32f(predict_value_x,predict_value_y)); }

void kalman::init_kalman(int x,int xv,int y,int yv)

{

state->data.fl[0]=x;

state->data.fl[1]=xv;

state->data.fl[2]=y;

state->data.fl[3]=yv;

cvkalman->state_post->data.fl[0]=x;

cvkalman->state_post->data.fl[1]=xv;

cvkalman->state_post->data.fl[2]=y;

cvkalman->state_post->data.fl[3]=yv;

}

卡尔曼滤波算法与matlab实现

一个应用实例详解卡尔曼滤波及其算法实现 标签:算法filtermatlabalgorithm优化工作 2012-05-14 10:48 75511人阅读评论(25) 收藏举报分类: 数据结构及其算法(4) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。 我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。 好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。 假如我们要估算k时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。 由于我们用于估算k时刻的实际温度有两个温度值,分别是23 度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance(协方差)来判断。因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23)=24.56度。 可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。 现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56 度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度

卡尔曼滤波算法总结

Kalman_Filter(float Gyro,float Accel) { Angle+=(Gyro - Q_bias) * dt; Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; Pdot[1]= - PP[1][1]; Pdot[2]= - PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; PP[0][1] += Pdot[1] * dt; PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E; K_1 = PCt_1 / E; t_0 = PCt_0; t_1 = C_0 * PP[0][1]; PP[0][0] -= K_0 * t_0; PP[0][1] -= K_0 * t_1; PP[1][0] -= K_1 * t_0; PP[1][1] -= K_1 * t_1; Angle += K_0 * Angle_err; Q_bias += K_1 * Angle_err; Gyro_x = Gyro - Q_bias; } 首先是卡尔曼滤波的5个方程: -=--+(1)先验估计 X k k AX k k Bu k (|1)(1|1)() -=--+(2)协方差矩阵的预测(|1)(1|1)' P k k AP k k A Q

扩展卡尔曼滤波matlab程序

文件一 % THIS PROGRAM IS FOR IMPLEMENTATION OF DISCRETE TIME PROCESS EXTENDED KALMAN FILTER % FOR GAUSSIAN AND LINEAR STOCHASTIC DIFFERENCE EQUATION. % By (R.C.R.C.R),SPLABS,MPL. % (17 JULY 2005). % Help by Aarthi Nadarajan is acknowledged. % (drawback of EKF is when nonlinearity is high, we can extend the % approximation taking additional terms in Taylor's series). clc; close all; clear all; Xint_v = [1; 0; 0; 0; 0]; wk = [1 0 0 0 0]; vk = [1 0 0 0 0]; for ii = 1:1:length(Xint_v) Ap(ii) = Xint_v(ii)*2; W(ii) = 0; H(ii) = ‐sin(Xint_v(ii)); V(ii) = 0; Wk(ii) = 0; end Uk = randn(1,200); Qu = cov(Uk); Vk = randn(1,200); Qv = cov(Vk); C = [1 0 0 0 0]; n = 100; [YY XX] = EKLMNFTR1(Ap,Xint_v,Uk,Qu,Vk,Qv,C,n,Wk,W,V); for it = 1:1:length(XX) MSE(it) = YY(it) ‐ XX(it); end tt = 1:1:length(XX); figure(1); subplot(211); plot(XX); title('ORIGINAL SIGNAL'); subplot(212); plot(YY); title('ESTIMATED SIGNAL'); figure(2); plot(tt,XX,tt,YY); title('Combined plot'); legend('original','estimated'); figure(3); plot(MSE.^2); title('Mean square error'); 子文件::function [YY,XX] = EKLMNFTR1(Ap,Xint_v,Uk,Qu,Vk,Qv,C,n,Wk,W,V); Ap(2,:) = 0; for ii = 1:1:length(Ap)‐1 Ap(ii+1,ii) = 1;

卡尔曼滤波算法(C--C++两种实现代码)

卡尔曼滤波算法实现代码 C++实现代码如下: ============================kalman.h================= =============== // kalman.h: interface for the kalman class. // ////////////////////////////////////////////////////////////////////// #if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__IN CLUDED_) #define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLU DED_ #if _MSC_VER > 1000 #pragma once #endif// _MSC_VER > 1000 #include #include "cv.h" class kalman { public: void init_kalman(int x,int xv,int y,int yv); CvKalman* cvkalman; CvMat* state; CvMat* process_noise; CvMat* measurement; const CvMat* prediction; CvPoint2D32f get_predict(float x, float y);

kalman(int x=0,int xv=0,int y=0,int yv=0); //virtual ~kalman(); }; #endif// !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C 0__INCLUDED_) ============================kalman.cpp=============== ================= #include "kalman.h" #include /* tester de printer toutes les valeurs des vecteurs*/ /* tester de changer les matrices du noises */ /* replace state by cvkalman->state_post ??? */ CvRandState rng; const double T = 0.1; kalman::kalman(int x,int xv,int y,int yv) { cvkalman = cvCreateKalman( 4, 4, 0 ); state = cvCreateMat( 4, 1, CV_32FC1 ); process_noise = cvCreateMat( 4, 1, CV_32FC1 ); measurement = cvCreateMat( 4, 1, CV_32FC1 ); int code = -1;

卡尔曼滤波入门简介及其算法MATLAB实现代码

卡尔曼滤波入门: 卡尔曼滤波是用来进行数据滤波用的,就是把含噪声的数据进行处理之后得出相对真值。卡尔曼滤波也可进行系统辨识。 卡尔曼滤波是一种基于统计学理论的算法,可以用来对含噪声数据进行在线处理,对噪声有特殊要求,也可以通过状态变量的增广形式实现系统辨识。 用上一个状态和当前状态的测量值来估计当前状态,这是因为上一个状态估计此时状态时会有误差,而测量的当前状态时也有一个测量误差,所以要根据这两个误差重新估计一个最接近真实状态的值。 信号处理的实际问题,常常是要解决在噪声中提取信号的问题,因此,我们需要寻找一种所谓有最佳线性过滤特性的滤波器。这种滤波器当信号与噪声同时输入时,在输出端能将信号尽可能精确地重现出来,而噪声却受到最大抑制。 维纳(Wiener)滤波与卡尔曼(Kalman)滤波就是用来解决这样一类从噪声中提取信号问题的一种过滤(或滤波)方法。 (1)过滤或滤波 - 从当前的和过去的观察值x(n),x(n-1),x(n-2),…估计当前的信号值称为过滤或滤波; (2)预测或外推 - 从过去的观察值,估计当前的或将来的信号值称为预测或外推; (3)平滑或内插 - 从过去的观察值,估计过去的信号值称为平滑或内插; 因此,维纳过滤与卡尔曼过滤又常常被称为最佳线性过滤与预测或线性最优估计。这里所谓“最佳”与“最优”是以最小均方误差为准则的。 维纳过滤与卡尔曼过滤都是解决最佳线性过滤和预测问题,并且都是以均方误差最小为准则的。因此在平稳条件下,它们所得到的稳态结果是一致的。然而,它们解决的方法有很大区别。 维纳过滤是根据全部过去的和当前的观察数据来估计信号的当前值,它的解是以均方误差最小条件下所得到的系统的传递函数H(z)或单位样本响应h(n)的形式给出的,因此更常称这种系统为最佳线性过滤器或滤波器。 而卡尔曼过滤是用前一个估计值和最近一个观察数据(它不需要全部过去的观察数据)来估计信号的当前值,它是用状态方程和递推的方法进行估计的,它的解是以估计值(常常是状态变量值)形式给出的。因此更常称这种系统为线性最优估计器或滤波器。 维纳滤波器只适用于平稳随机过程,而卡尔曼滤波器却没有这个限制。维纳过滤中信号和噪声是用相关函数表示的,因此设计维纳滤波器要求已知信号和噪声的相关函数。 卡尔曼过滤中信号和噪声是状态方程和量测方程表示的,因此设计卡尔曼滤波器要求已知状态方程和量测方程(当然,相关函数与状态方程和量测方程之间会存在一定的关系。卡尔曼过滤方法看来似乎比维纳过滤方法优越,它用递推法计算,不需要知道全部过去的数据,从而运用计算机计算方便,而且它可用于平稳和不平稳的随机过程(信号),非时变和时变的系统。 但从发展历史上来看维纳过滤的思想是40年代初提出来的,1949年正式以书的形式出版。卡尔曼过滤到60年代初才提出来,它是在维纳过滤的基础上发展起来的,虽然如上所述它比维纳过滤方法有不少优越的地方,但是最佳线性过滤问题是由维纳过滤首先解决的,维纳过滤的物理概念比较清楚,也可以认为卡尔曼滤波仅仅是对最佳线性过滤问题提出的一种新的算法。 卡尔曼滤波在数学上是一种统计估算方法,通过处理一系列带有误差的实际量测数据而得到的物理参数的最佳估算。例如在气象应用上,根据滤波的基本思想,利用前一时刻预报误差的反馈信息及时修正预报方程,以提高下一时刻预报精度。作温度预报一般只需要连续两个月的资料即可建立方程和递推关系。

卡尔曼滤波简介及其算法实现代码

卡尔曼滤波简介及其算法实现代码 卡尔曼滤波算法实现代码(C,C++分别实现) 卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: https://www.360docs.net/doc/423719589.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就

卡尔曼滤波的基本原理及应用

卡尔曼滤波的基本原理及应用卡尔曼滤波在信号处理与系统控制领域应用广泛,目前,正越来越广泛地应用于计算机应用的各个领域。为了更好地理解卡尔曼滤波的原理与进行滤波算法的设计工作,主要从两方面对卡尔曼滤波进行阐述:基本卡尔曼滤波系统模型、滤波模型的建立以及非线性卡尔曼滤波的线性化。最后,对卡尔曼滤波的应用做了简单介绍。 卡尔曼滤波属于一种软件滤波方法,其基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。 最初的卡尔曼滤波算法被称为基本卡尔曼滤波算法,适用于解决随机线性离散系统的状态或参数估计问题。卡尔曼滤波器包括两个主要过程:预估与校正。预估过程主要是利用时间更新方程建立对当前状态的先验估计,及时向前推算当前状态变量和误差协方差估计的值,以便为下一个时间状态构造先验估计值;校正过程负责反馈,利用测量更新方程在预估过程的先验估计值及当前测量变量的基础上建立起对当前状态的改进的后验估计。这样的一个过程,我们称之为预估-校正过程,对应的这种估计算法称为预估-校正算法。以下给出离散卡尔曼滤波的时间更新方程和状态更新方程。 时间更新方程: 状态更新方程: 在上面式中,各量说明如下: A:作用在X k-1上的n×n 状态变换矩阵 B:作用在控制向量U k-1上的n×1 输入控制矩阵 H:m×n 观测模型矩阵,它把真实状态空间映射成观测空间 P k-:为n×n 先验估计误差协方差矩阵 P k:为n×n 后验估计误差协方差矩阵 Q:n×n 过程噪声协方差矩阵 R:m×m 过程噪声协方差矩阵 I:n×n 阶单位矩阵K k:n×m 阶矩阵,称为卡尔曼增益或混合因数 随着卡尔曼滤波理论的发展,一些实用卡尔曼滤波技术被提出来,如自适应滤波,次优滤波以及滤波发散抑制技术等逐渐得到广泛应用。其它的滤波理论也迅速发展,如线性离散系统的分解滤波(信息平方根滤波,序列平方根滤波,UD 分解滤波),鲁棒滤波(H∞波)。 非线性样条自适应滤波:这是一类新的非线性自适应滤波器,它由一个线性组合器后跟挠性无记忆功能的。涉及的自适应处理的非线性函数是基于可在学习

Kalman滤波算法

Kalman 滤波算法 姓名:刘金强 专业:控制理论与控制工程 学号:2007255 ◆实验目的: (1)、掌握klman 滤波实现的原理和方法 (2)、掌握状态向量预测公式的实现过程 (3)、了解Riccati 差分方程实现的过程和新息的基本性质和过程的计算 ◆实验要求: 问题: F=[a1,a2,a3],其中a1=[1.0 0 0]的转置,a2=[0.3 1.0 0]的转置,a3=[0.1 0.2 0.4]的转置,x(0)=[3,-1,2]的转置;C=[b1,b2,b3],其中b1=[0.3 0.5]的转置,b2=[1,0.4]的转置,b3=[0.8 -0.7]的转置;V1(n)=[0 0 n1(n)sin(0.1n)]的转置,V2(n)=[n2(n) n3(n)];n1(n)为均值为零,方差为1的均匀分布白噪声;n2(n),n3(n)为均值为0,方差为0.1的均匀分布白噪声,n1(n),n2(n),n3(n)相互独立,试用卡尔曼滤波器算法估计x^(n). ◆实验原理: 初始条件: 1?(1)x =E{x(1)} K(1,0)=E{[x(1)- (1)x ][x(1)- (1)H x ]},其中(1)x =E{x(1)} 输入观测向量过程: 观测向量序列={y(1),…………y(n)} 已知参数: 状态转移矩阵F(n+1,n) 观测矩阵C(n) 过程噪声向量的相关矩阵1()Q n 观测噪声向量的相关矩阵2()Q n 计算:n=1,2,3,………………. G(n)=F(n+1,n)K(n,n+1) ()H C n 12[()(,1)()()]H C n K n n C n Q n --+ Kalman 滤波器是一种线性的离散时间有限维系统。Kalman 滤波器的估计性能是:它使滤波后的状态估计误差的相关矩阵P(n)的迹最小化。这意味着,kalman 滤波器是状态向量x(n)的线性最小方差估计。 ◆实验结果: ◆程序代码: (1)主程序

卡尔曼滤波器介绍 --- 最容易理解

10.6 卡尔曼滤波器简介 本节讨论如何从带噪声的测量数据把有用信号提取出来的问题。通常,信号的频谱处于有限的频率范围内,而噪声的频谱则散布在很广的频率范围内。如前所述,为了消除噪声,可以把 FIR滤波器或IIR滤波器设计成合适的频带滤波器,进行频域滤波。但在许多应用场合,需要进行时域滤波,从带噪声的信号中提取有用信号。虽然这样的过程其实也算是对信号的滤波,但所依据的理论,即针对随机信号的估计理论,是自成体系的。人们对随机信号干扰下的有用信号不能“确知”,只能“估计”。为了“估计”,要事先确定某种准则以评定估计的好坏程度。最小均方误差是一种常用的比较简单的经典准则。典型的线性估计器是离散时间维纳滤波器与卡尔曼滤波器。 对于平稳时间序列的最小均方误差估计的第一个明确解是维纳在1942年2月首先给出的。当时美国的一个战争研究团体发表了一个秘密文件,其中就包括维纳关于滤波问题的研究工作。这项研究是用于防空火力控制系统的。维纳滤波器是基于最小均方误差准则的估计器。为了寻求维纳滤波器的冲激响应,需要求解著名的维纳-霍夫方程。这种滤波理论所追求的是使均方误差最小的系统最佳冲激响应的明确表达式。这与卡尔曼滤波(Kalman filtering)是很不相同的。卡尔曼滤波所追求的则是使均方误差最小的递推算法。 在维纳进行滤波理论研究并导出维纳-霍夫方程的十年以前,在1931年,维纳和霍夫在数学上就已经得到了这个方程的解。 对于维纳-霍夫方程的研究,20世纪五十年代涌现了大量文章,特别是将维纳滤波推广到非平稳过程的文章甚多,但实用结果却很少。这时正处于卡尔曼滤波问世的前夜。 维纳滤波的困难问题,首先在上世纪五十年代中期确定卫星轨道的问题上遇到了。1958年斯韦尔林(Swerling)首先提出了处理这个问题的递推算法,并且立刻被承认和应用。1960年卡尔曼进行了比斯韦尔林更有意义的工作。他严格地把状态变量的概念引入到最小均方误差估计中来,建立了卡尔曼滤波理论。空间时代的到来推动了这种滤波理论的发展。 维纳滤波与卡尔曼滤波所研究的都是基于最小均方误差准则的估计问题。 维纳滤波理论的不足之处是明显的。在运用的过程中,它必须把用到的全部数据存储起来,而且每一时刻都要通过对这些数据的运算才能得到所需要的各种量的估值。按照这种滤波方法设置的专用计算机的存储量与计算量必然很大,很难进行实时处理。虽经许多科技工作者的努力,在解决非平稳过程的滤波问题时,给出能用的方法为数甚少。到五十年代中期,随着空间技术的发展,这种方法越来越不能满足实际应用的需要,面临了新的挑战。尽管如此,维纳滤波理论在滤波理论中的开拓工作是不容置疑的,维纳在方法论上的创见,仍然影响着后人。 五十年代中期,空间技术飞速发展,要求对卫星轨道进行精确的测量。为此,人们将滤波问题以微分方程表示,提出了一系列适应空间技术应用的精练算法。1960年

几种卡尔曼滤波算法理论

自适应卡尔曼滤波 卡尔曼滤波发散的原因 如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。 引起滤波器发散的主要原因有两点: (1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。 (2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。这种由于计算舍入误差所引起的发散称为计算发散。 针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。 自适应滤波 在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。如果所建立的模型与实际模型不符可能回引起滤波发散。自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。 在这里只讨论系统模型参数已知,而噪声统计参数Q和R未知情况下的自适应滤波。由于Q和R等参数最终是通过增益矩阵K影响滤波值的,因此进行自适应滤波时,也可以不去估计Q和R等参数而直接根据量测数据调整K就可以了。

卡尔曼滤波简介和实例讲解.

卡尔曼,美国数学家和电气工程师。1930年5月 19日生于匈牙利首都布达佩斯。1953年在美国麻省理工学院毕业获理学士学位,1954年获理学硕士学位,1957年在哥伦比亚大学获科学博士学位。1957~1958年在国际商业机器公司(IBM)研究大系统计算机控制的数学问题。1958~1964年在巴尔的摩高级研究院研究控制和数学问题。1964~1971年到斯坦福大学任教授。1971年任佛罗里达大学数学系统理论研究中心主任,并兼任苏黎世的瑞士联邦高等工业学校教授。1960年卡尔曼因提出著名的卡尔曼滤波器而闻名于世。卡尔曼滤波器在随机序列估计、空间技术、工程系统辨识和经济系统建模等方面有许多重要应用。1960年卡尔曼还提出能控性的概念。能控性是控制系统的研究和实现的基本概念,在最优控制理论、稳定性理论和网络理论中起着重要作用。卡尔曼还利用对偶原理导出能观测性概念,并在数学上证明了卡尔曼滤波理论与最优控制理论对偶。为此获电气与电子工程师学会(IEEE)的最高奖──荣誉奖章。卡尔曼著有《数学系统概论》(1968)等书。 什么是卡尔曼滤波 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼

滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 卡尔曼滤波的实质是由量测值重构系统的状态向量。它以“预测—实测—修正”的顺序递推,根据系统的量测值来消除随机干扰,再现系统的状态,或根据系统的量测值从被污染的系统中恢复系统的本来面目。 释文:卡尔曼滤波器是一种由卡尔曼(Kalman)提出的用于时变线性系统的递归滤波器。这个系统可用包含正交状态变量的微分方程模型来描述,这种滤波器是将过去的测量估计误差合并到新的测量误差中来估计将来的误差。 卡尔曼滤波的应用 斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器.卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器. 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表.

卡尔曼滤波两例题含matlab程序汇总

设高度的测量误差是均值为0、方差为1的高斯白噪声随机序列,该物体的初始高度0h 和速度0V 也是高斯分布的随机变量,且0000019001000,var 10/02Eh h m P EV m s V ???????? ===? ??????? ???? ????。试求该物体高度和速度随时间变化的最优估计。(2/80.9s m g =) 解: 1. 令()()()h k X k v k ?? =? ??? t=1 R (k )=1 Q(k)=0 根据离散时间卡尔曼滤波公式,则有: (1)(1,)()()X k k k X k U k φ+=++ (1)(1)(1)(1)Y k H k X k V k +=++++ (1,)k k φ+= 11t -?? ??? ? ()U k = 20.5gt gt ??-???? (1)H k +=[]10 滤波初值:^ 1900(0|0)(0)10X EX ?? ==???? 0100(0|0)var[(0)]2P X P ?? ===? ??? 一步预测:^^ (1|)(1,)(|)()X k k k k X k k U k φ+=++ (1|)(1,)(|)(1,)T P k k k k P k k k k φφ+=++ 滤波增益:1 (1)(1|)(1)[(1)(1|)(1)(1)]T T K k P k k H k H k P k k H k R k -+=+++++++ 滤波计算:^ ^ ^ (1|1)(1|)(1)[(1)(1)(1|)]X k k X k k K k Y k H k X k k ++=++++-++ (1|1)[(1)(1)](1|)P k k I K k H k P k k ++=-+++ 2. 实验结果

线性离散卡尔曼滤波器

线性离散卡尔曼滤波公式 两种数学推导方法的比较 1. 引言 卡尔曼滤波属于一种软件滤波方法,其基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。从研究的历史来看,卡尔曼是首先研究的离散形式的卡尔曼滤波问题,所以最初的卡尔曼滤波算法被称为基本卡尔曼滤波算法,适用于解决随机线性离散系统的状态或参数估计问题。下面分别对比了离散线性卡尔曼滤波器的相关公式推导的两种方法。 2. 离散线性卡尔曼滤波器的直观数学推导 下面从直观角度来推导线性离散系统的卡尔曼滤波器,这是书中的推导方法。首先假设线性离散系统模型如下 ,11,11 k k k k k k k k k k k x w z H x v x ----=Φ+Γ=+ 其中,1k w -为过程噪声,k v 为观测噪声,k z 为第k 次的测量值,/?k k x 是k x 的最优线性估计,/1?k k x -是k x 的一步预报估计。过程噪声1k w -和观测噪声k v 的统计特性为: 1[]0,(,)[]0,(,)(,)0 k ww k kj k vv k kj wv E w R k j Q E v R k j R R k j δδ-===== 初始状态0x 的统计特性为: 0000?[],()E x x Var x P == 并假定0x 与k w 和k v 均无关,则有: 00(0,)(,)0(0,)(,)0 T xw k T xv k R k E x w R k E x v ==== 据以上假设及条件,可得如下直观形式 /1,11/1/1/1//1/1??????k k k k k k k k k k k k k k k k k k x x z H x x x K z --------=Φ==+

基于扩展卡尔曼滤波算法的matlab程序

扩展卡尔曼滤波原理: 在原有卡尔曼滤波的基础上,为了解决多目标值的跟踪与估计,形成了扩展卡尔曼滤波。起matlab主要程序如下: clear all v=150; %%目标速度 v_sensor=0;%%传感器速度 t=1; %%扫描周期 xradarpositon=0; %%传感器坐标 yradarpositon=0; %% ppred=zeros(4,4); Pzz=zeros(2,2); Pxx=zeros(4,2); xpred=zeros(4,1); ypred=zeros(2,1); sumx=0; sumy=0; sumxukf=0; sumyukf=0; sumxekf=0; sumyekf=0; %%%统计的初值 %滤波算法描述: L=4; alpha=1; kalpha=0; belta=2; ramda=3-L; azimutherror=0.015; %%方位均方误差 rangeerror=100; %%距离均方误差 processnoise=1; %%过程噪声均方差 tao=[t^3/3 t^2/2 0 0; t^2/2 t 0 0; 0 0 t^3/3 t^2/2; 0 0 t^2/2 t]; %% the input matrix of process G=[t^2/2 0 t 0 0 t^2/2 0 t ]; a=35*pi/180; a_v=5/100;

a_sensor=45*pi/180; x(1)=8000; %%初始位置 y(1)=12000; for i=1:200 x(i+1)=x(i)+v*cos(a)*t; y(i+1)=y(i)+v*sin(a)*t; end for i=1:200 xradarpositon=0; yradarpositon=0; Zmeasure(1,i)=atan((y(i)-yradarpositon)/(x(i)-xradarpositon))+random('Normal',0,azimutherror,1,1); Zmeasure(2,i)=sqrt((y(i)-yradarpositon)^2+(x(i)-xradarpositon)^2)+random('Normal',0,rangeerror,1,1); xx(i)=Zmeasure(2,i)*cos(Zmeasure(1,i));%%观测值 yy(i)=Zmeasure(2,i)*sin(Zmeasure(1,i)); measureerror=[azimutherror^2 0;0 rangeerror^2]; processerror=tao*processnoise; vNoise = size(processerror,1); wNoise = size(measureerror,1); A=[1 t 0 0; 0 1 0 0; 0 0 1 t; 0 0 0 1]; Anoise=size(A,1); for j=1:2*L+1 Wm(j)=1/(2*(L+ramda)); Wc(j)=1/(2*(L+ramda)); end Wm(1)=ramda/(L+ramda); Wc(1)=ramda/(L+ramda);%+1-alpha^2+belta; %%%权值 if i==1 xerror=rangeerror^2*cos(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*sin(Zmeasure(1,i))^2; yerror=rangeerror^2*sin(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*cos(Zmeasure(1,i))^2; xyerror=(rangeerror^2-Zmeasure(2,i)^2*azimutherror^2)*sin(Zmeasure(1,i))*cos(Zmeasure(1,i));

卡尔曼滤波器介绍外文翻译

毕业设计(论文)外文资料翻译 系 : 电气工程学院 专 业: 电子信息科学与技术 姓 名: 周景龙 学 号: 0601030115 外文出处: Department of Computer Science University of North Carolina at Chapel Hill Chapel Hill,NC27599-3175 附 件:1.外文资料翻译译文;2.外文原文。 (用外文写)

卡尔曼滤波器介绍 摘要 在1960年,卡尔曼出版了他最著名的论文,描述了一个对离散数据线性滤波问题的递归解决方法。从那以后,由于数字计算的进步,卡尔曼滤波器已经成为广泛研究和应用的主题,特别在自动化或协助导航领域。 卡尔曼滤波器是一系列方程式,提供了有效的计算(递归)方法去估计过程的状态,是一种以平方误差的均值达到最小的方式。滤波器在很多方面都很强大:它支持过去,现在,甚至将来状态的估计,而且当系统的确切性质未知时也可以做。 这篇论文的目的是对离散卡尔曼滤波器提供一个实际介绍。这次介绍包括对基本离散卡尔曼滤波器推导的描述和一些讨论,扩展卡尔曼滤波器的描述和一些讨论和一个相对简单的(切实的)实际例子。 离散卡尔曼滤波器 在1960年,卡尔曼出版了他最著名的论文,描述了一个对离散数据线性滤波问题的递归解决方法[Kalman60]。从那以后,由于数字计算的进步,卡尔曼滤波器已经成为广泛研究和应用的主题,特别在自动化或协助导航领域。第一章讲述了对卡尔曼滤波器非常“友好的”介绍[Maybeck79],而一个完整的介绍可以在[Sorenson70]找到,也包含了一些有趣的历史叙事。更加广泛的参考包括Gelb74;Grewal93;Maybeck79;Lewis86;Brown92;Jacobs93]. 被估计的过程 卡尔曼滤波器卡用于估计离散时间控制过程的状态变量 n x ∈?。这个离散 时间过程由以下离散随机差分方程描述: 111k k k k x Ax bu w ---=++ (1.1) 测量值m z ∈?,k k k z Hx v =+ (1.2) 随机变量k w 和k v 分别表示过程和测量噪声。他们之间假设是独立的,正态分布的高斯白噪: ()~(0)p w N Q , (1.3) ()~(0)p v N R , (1.4) 在实际系统中,过程噪声协方差矩阵Q 和观测噪声协方差矩阵R 可能会随每次迭代计算而变化。但在这儿我们假设它们是常数。 当控制函数1k u - 或过程噪声1k w -为零时,差分方程1.1中的n n ? 阶增益矩阵A 将过去k-1 时刻状态和现在的k 时刻状态联系起来。实际中A 可能随时间变化,但

卡尔曼(kalman)滤波算法特点及其应用

Kalman滤波算法的特点: (1)由于Kalman滤波算法将被估计的信号看作在白噪声作用下一个随机线性系统的输出,并且其输入/输出关系是由状态方程和输出方程在时间域内给出的,因此这种滤波方法不仅适用于平稳随机过程的滤波,而且特别适用于非平稳或平稳马尔可夫序列或高斯-马尔可夫序列的滤波,所以其应用范围是十分广泛的。 (2)Kalman滤波算法是一种时间域滤波方法,采用状态空间描述系统。系统的过程噪声和量测噪声并不是需要滤除的对象,它们的统计特征正是估计过程中需要利用的信息,而被估计量和观测量在不同时刻的一、二阶矩却是不必要知道的。 (3)由于Kalman滤波的基本方程是时间域内的递推形式,其计算过程是一个不断地“预测-修正”的过程,在求解时不要求存储大量数据,并且一旦观测到了新的数据,随即可以算的新的滤波值,因此这种滤波方法非常适合于实时处理、计算机实现。 (4)由于滤波器的增益矩阵与观测无关,因此它可预先离线算出,从而可以减少实时在线计算量。在求滤波器增益矩阵时,要求一个矩阵的逆,它的阶数只取决于观测方程的维数,而该维数通常很小,这样,求逆运算是比较方便的。另外,在求解滤波器增益的过程中,随时可以算出滤波器的精度指标P,其对角线上的元素就是滤波误差向量各分量的方差。 Kalman滤波的应用领域 一般地,只要跟时间序列和高斯白噪声有关或者能建立类似的模型的系统,都可以利用Kalman滤波来处理噪声问题,都可以用其来预测、滤波。Kalman滤波主要应用领域有以下几个方面。 (1)导航制导、目标定位和跟踪领域。 (2)通信与信号处理、数字图像处理、语音信号处理。 (3)天气预报、地震预报。 (4)地质勘探、矿物开采。 (5)故障诊断、检测。 (6)证券股票市场预测。 具体事例: (1)Kalman滤波在温度测量中的应用; (2)Kalman滤波在自由落体运动目标跟踪中的应用; (3)Kalman滤波在船舶GPS导航定位系统中的应用; (4)Kalman滤波在石油地震勘探中的应用; (5)Kalman滤波在视频图像目标跟踪中的应用;

matlab对卡尔曼滤波的仿真实现

MATLAB 对卡尔曼滤波器的仿真实现 刘丹,朱毅,刘冰 武汉理工大学信息工程学院,武汉(430070) E-mail :liudan_ina@https://www.360docs.net/doc/423719589.html, 摘 要:本文以卡尔曼滤波器原理为理论基础,用MATLAB 进行卡尔曼滤波器仿真、对比卡尔曼滤波器的预测效果,对影响滤波其效果的各方面原因进行讨论和比较,按照理论模型进行仿真编程,清晰地表述了编程过程。 关键词:数字信号处理;卡尔曼滤波器;MATLAB ;仿真过程 中图分类号: TN912.3 1. 引言 随着信息时代和数字世界的到来,数字信号处理已成为当今一门极其重要的学科和技术领域。数字信号处理已在通信、语音、图像、自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用。在数字信号处理中,数字滤波占有极其重要的地位,目前对数字滤波器的设计有多种方法,其中著名的MATLAB 软件包在多个研究领域都有着广泛的应用,它的频谱分析[1]和滤波器的分析设计功能很强,从而使数字信号处理变得十分简单、直观。本文分析了数字滤波器的设计方法,举出了基于MATLAB 软件的信号处理工具在数字滤波器设计中的应用。 2. 卡尔曼滤波基本原理 卡尔曼滤波过程实际上是获取维纳解的递推运算过程[2]。从维纳解导出的卡尔曼滤波器实际上是卡尔曼滤波过程结束后达到稳态的情况,这时Kalman Filtering 的结果与Wiener Solution 是相同的[3]。具体推导如下: )()1|1(?)|(?n Gy n n x f n n x +??= )|(?)()(n n x n x n e ?= 已知由此求c a cG a f F G n e E n ,)1(( ..min )]([)(2?=??→?==ε 由 f G f G ,0??????????=??εε ⑴ )]1|1(?)()[()1|1(?)|(????+??=n n x ac n y n G n n x a n n x 可以是时变的,非平稳的随机信号 ⑵ Q n a n P +?=)1()(2 ε均为正数。 ⑶ ) () ()(2n P C R n CP n G += ⑷ )()](1[)()(n P n CG n G C P n ??== ε )(n G 是个随时间变化的量,每次输入输出,)(n G 就调整一次,并逐渐逼近Kalman Filter 的增益G ,而)1()(?

相关文档
最新文档