竞争型连锁经营网点选址模型与遗传算法解

竞争型连锁经营网点选址模型与遗传算法解
竞争型连锁经营网点选址模型与遗传算法解

遗传算法与优化问题(重要,有代码)

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: 序号遗传学概念遗传算法概念数学概念 1 个体要处理的基本对象、结构也就是可行解 2 群体个体的集合被选定的一组可行解 3 染色体个体的表现形式可行解的编码 4 基因染色体中的元素编码中的元素 5 基因位某一基因在染色体中的位置元素在编码中的位置 6 适应值个体对于环境的适应程度, 或在环境压力下的生存能力可行解所对应的适应函数值 7 种群被选定的一组染色体或个体根据入选概率定出的一组 可行解 8 选择从群体中选择优胜的个体, 淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解 9 交叉一组染色体上对应基因段的 交换根据交叉原则产生的一组新解 10 交叉概率染色体对应基因段交换的概 率(可能性大小)闭区间[0,1]上的一个值,一般为0.65~0.90 11 变异染色体水平上基因变化编码的某些元素被改变

4遗传算法与函数优化

第四章遗传算法与函数优化 4.1 研究函数优化的必要性: 首先,对很多实际问题进行数学建模后,可将其抽象为一个数值函数的优化问题。由于问题种类的繁多,影响因素的复杂,这些数学函数会呈现出不同的数学特征。除了在函数是连续、可求导、低阶的简单情况下可解析地求出其最优解外,大部分情况下需要通过数值计算的方法来进行近似优化计算。 其次,如何评价一个遗传算法的性能优劣程度一直是一个比较难的问题。这主要是因为现实问题种类繁多,影响因素复杂,若对各种情况都加以考虑进行试算,其计算工作量势必太大。由于纯数值函数优化问题不包含有某一具体应用领域中的专门知识,它们便于不同应用领域中的研究人员能够进行相互理解和相互交流,并且能够较好地反映算法本身所具有的本质特征和实际应用能力。所以人们专门设计了一些具有复杂数学特征的纯数学函数,通过遗传算法对这些函数的优化计算情况来测试各种遗传算法的性能。 4.2 评价遗传算法性能的常用测试函数 在设计用于评价遗传算法性能的测试函数时,必须考虑实际应用问题的数学模型中所可能呈现出的各种数学特性,以及可能遇到的各种情况和影响因素。这里所说的数学特性主要包括: ●连续函数或离散函数; ●凹函数或凸函数; ●二次函数或非二次函数; ●低维函数或高维函数; ●确定性函数或随机性函数; ●单峰值函数或多峰值函数,等等。 下面是一些在评价遗传算法性能时经常用到的测试函数: (1)De Jong函数F1: 这是一个简单的平方和函数,只有一个极小点f1(0, 0, 0)=0。

(2)De Jong 函数F2: 这是一个二维函数,它具有一个全局极小点f 2(1,1) = 0。该函数虽然是单峰值的函数,但它却是病态的,难以进行全局极小化。 (3)De Jong 函数F3: 这是一个不连续函数,对于]0.5,12.5[--∈i x 区域内的每一个点,它都取全局极小值 30),,,,(543213-=x x x x x f 。

基于遗传算法的改进多重心选址方法

基于遗传算法的改进多重心选址方法 基于遗传算法的改进多重心选址方法 摘要:近年来,由于传统重心法存在对现实问题过于简化的不足而逐渐被其它新方法所替代。首先分析了重心法的优点和缺点,提出了一种基于遗传算法的多重心选址方法。结合具体算例与相关研究成果进行了比较,新方法消除了聚类方法“孤立点”问题,选址结果优化程度显著提高。 关键词:物流工程;改进措施;遗传算法;多重心法;选址决策 中图分类号:F2 文献标识码:A 文章编号:1672.3198(2013)04.0032.02 1引言 在物流管理领域,物流/配送中心选址决策、运输决策和库存决策被称为物流管理的三大核心业务。其中选址决策长期以来是学术界研究的重点。在众多选址决策方法中,重心法操作最简便,不失为一种理想的工具,这也是长期以来重心法虽然被学术界批评但在实践中却没有被替代、舍弃的根本原因。但不可否认,重心法无论从理论还是从实践中都被证明存在对问题空间过度简化的缺陷,如:(1)未考虑固定成本与管理成本因素,包括建设成本、固定管理成本和可变管理成本;(2)未考虑候选地址的地租、规模等因素;(3)应用于多中心选址时,没有准确的区域划分标准等。如果针对这些问题加以完善,重心法的求解结果质量会更高,实用性会更强。 针对存在的诸多问题,学术界对重心法进行了改进和完善。如在传统重心法模型基础上,加入了物流/配送中心的固定费用(建设成本)和管理费用(可变成本),使决策模型更加附合实际。这种改进极具价值。在多物流/配送中心选址方面,关于重心法的研究成果多集中在聚类方法的应用上。 现有改进措施仍然存在进一步完善的空间。首先,在选址决策中,

基于遗传算法的股票市场选择模型

基于遗传算法的股票市场选择模型 摘要:为提高投资者在股票市场的收益,解决在证券投资中股票选择这一重要问题,提出一种基于遗传算法的股票选择模型。算法以上市公司的财务指标为样本特征,为克服K-means算法的不稳定性,采用基于遗传算法的K-means算法对同一板块股票进行聚类分析,剔除财务指标较差的一类中的股票。对筛选条件编码,为解决传统遗传算法处理复杂问题时存在的过早收敛现象,提出改进的遗传算子,利用改进的遗传算法寻找使股票市场投资收益最大化的选股模型参数。实验结果表明,该算法在股票选择上具有较好的效果,可供市场投资者借鉴。 关键词:股票选择;遗传算法;聚类分析;投资决策;组合优化 1引言 当今社会人们的理财投资意识日益增强,且越来越多的投资者将眼光投向了股票市场。虽然股票可以给投资者带来可观的收益,但投资者要想获得很好的投资回报,就得利用合理科学的投资策略来选择股票进行投资[1]。 股票选择从基本面而言,就是对上市公司的内在价值进行评估[2]。股票市场具有的长期记忆性使得可以通过数据分析找出股票价格或收益率的长期相关性,同时股票市场具有非线性[3],应用智能算法可以提高分析的精确度和鲁棒性。现有的很多关于股市的研究主要是应用优化算法对股价和股市态势做出预测。如文献[4] 提出一种基于遗传算法的粗糙集属性约简方法和神经网络相结合的模型来预测股价。文献[5]提出基于离群特征模式的支持向量机模型来预测股价波动。这些研究限于对单个股票或大盘价格的预测,对投资者的投资决策缺乏全面指导性。对于股票选择,最传统的基于基本面分析的股票选择方法有欧奈尔基本面CAN SLIM法则、朱雀丁远指数中性策略等经典模型[6]。这些模型大多是研究者通过对历史数据的分析和个人经验提出的,虽然具有一定的效果,但是股票筛选精度一般,灵活性较差。文献[7]定义了股票稳定性值,结合遗传算法和贪婪算法提出股票选择规划方法。此方法很好地规

遗传算法优化的BP神经网络建模[精选.]

遗传算法优化的BP神经网络建模 十一月匆匆过去,每天依然在忙碌着与文档相关的东西,在寒假前一个多月里,努力做好手头上的事的前提下多学习专业知识,依然是坚持学习与素质提高并重,依然是坚持锻炼身体,为明年找工作打下基础。 遗传算法优化的BP神经网络建模借鉴别人的程序做出的仿真,最近才有时间整理。 目标: 对y=x1^2+x2^2非线性系统进行建模,用1500组数据对网络进行构建网络,500组数据测试网络。由于BP神经网络初始神经元之间的权值和阈值一般随机选择,因此容易陷入局部最小值。本方法使用遗传算法优化初始神经元之间的权值和阈值,并对比使用遗传算法前后的效果。 步骤: 未经遗传算法优化的BP神经网络建模 1、随机生成2000组两维随机数(x1,x2),并计算对应的输出y=x1^2+x2^2,前1500组数据作为训练数据input_train,后500组数据作为测试数据input_test。并将数据存储在data中待遗传算法中使用相同的数据。 2、数据预处理:归一化处理。 3、构建BP神经网络的隐层数,次数,步长,目标。 4、使用训练数据input_train训练BP神经网络net。 5、用测试数据input_test测试神经网络,并将预测的数据反归一化处理。 6、分析预测数据与期望数据之间的误差。 遗传算法优化的BP神经网络建模 1、读取前面步骤中保存的数据data; 2、对数据进行归一化处理; 3、设置隐层数目; 4、初始化进化次数,种群规模,交叉概率,变异概率 5、对种群进行实数编码,并将预测数据与期望数据之间的误差作为适应度函数; 6、循环进行选择、交叉、变异、计算适应度操作,直到达到进化次数,得到最优的初始权值和阈值; 7、将得到最佳初始权值和阈值来构建BP神经网络; 8、使用训练数据input_train训练BP神经网络net; 9、用测试数据input_test测试神经网络,并将预测的数据反归一化处理; 10、分析预测数据与期望数据之间的误差。 算法流程图如下:

典型优化问题的遗传算法求解— 选址分配问题

典型问题 选址-分配问题 (Location Allocation Problem) 东北大学系统工程研究所 2014.09

选址-分配问题 ● 选址-分配(location-allocation) 问题 也称作多韦伯(multi-Weber ) 问题或P 中位(P-median )问题。 ● 单韦伯(single Weber)问题 在欧几里德空间上典型的单韦伯(single Weber) 问题是寻找一个位置,使从代表顾客位置的一些固定点到它的距离和最小。 ● 问题描述: 有m 个“设施”需要选址,n 个已知位置的“顾客”分配给不同的设施,每个顾客的需求为b j ,j =1,2,…,n ;每个设施具有的能力为a i ,i =1,2,…,m 我们需要找到 设施的位置(选址) 顾客对设施的分配 使顾客和服务他们的设施间的距离总和最小。

图形描述 m : 设施总数n : 顾客总数 F i : 第i 个设施,i =1,2,…,m C j : 第j 个顾客,j =1,2,…,n a i : 第i 个设施的能力b j : 第j 个顾客的需求 F i =(x i , y i ):设备i 的未知位置,决策变量C j =(u j , v j ):顾客j 的已知位置 C 3 C 1C n C 2 F 1F m (x 1, y 1) (u 1, v 1)b 1 a 1 (x m , y m ) (u n , v n )b n a m …

数学模型 n j m i z n j z z g m i a z b z g z C F t z F f ij m i ij j m i ij n j j i ij m i n j j i ,,2,1,,,2,11, or 0 ,,2,1,1)(,,2,1,)( t.s. ),(),( min 1 1 11 =======≤=?=∑∑∑∑=+== = C j F i (x i , y i ) b j a i (u j , v j ) …… 2 2) ()(),(j i j i j i v y u x C F t -+-=? 变量: z ij : 0-1 决策变量 z ij =1,顾客j 由设施i 服务;否则z ij =0F i = (x i , y i ) :设施i 的未知位置,决策变量 ? 参数: t (F i ,C j ): 由设施 i 到顾客j 的欧几里得距离。 保证不超过每个 设施的服务能力 保证每个顾客只由一个设施服务

基于遗传算法的应急物资供应点定位―分配问题研究综述

基于遗传算法的应急物资供应点定位―分配问题研究综述 摘要:本文总结、分析了近年来国内研究中基于遗传算法求解的应急物资供应点定位-分配相关问题的文献,主要包括应急定位问题、应急物资分配问题、应急定位-分配集成问题的研究综述,最后总结得出研究现状和未来研究的发展趋势。 关键词:遗传算法;应急物流;定位-分配问题 一、引言震后应急物流是保障生命安全、减少财产损失的重要环节。以往的震后应急管理实践过程中出现了很多诸如应急物资供应点的定位不合理、应急物资分配不公平等一系列降低应急物流运作效率的问题,这就对我国的应急物流组织体系的构建和完善提出了迫切要求,因此,研究震后应急物资供应点的定位-分配问题,具有十分重大的现实意义。而针对应急物资供应点定位- 分配问题的研究一般都属于NP-hard 问题,往往是基于遗传算法进行求解的,下面分别对基于遗传算法的应急物资供应点定位-分配问题包含的三个方面进行研究综述。 基于遗传算法的应急物资供应点定位-分配问题研

一)基于遗传算法的应急定位问题。刘红娟等(2010)[1]考虑设施点间距离、流量与安全性等道路特性,将其转换为道路的综合权值,建立了应急物流多设施选址模型,并采用遗传算法求解,最后用实例对模型进行了验证分析。李周清等(2011)[2]考虑震后物资调度的中转设施定位,以时间和成本最优为目标,建立了中转网点的定位模型,并用遗传算法求解。于鹏等(2012)[3]考虑设备应急抢修的时限要求和整个应急抢修系统的服务质量要求,采用0-1 整数规划模型描述应急抢修点选址定位问题,针对该问题设计了一种混合遗传算法,并通过算例计算结果表明,该算法求得的结果要优于基于罚函数和采用简单修复算法的遗传算法。张刚红(2013)[4]考虑大规模应急设施的选址定位成为应急管理系统的关键,构建应急设施选址问题的集合覆盖模型,提出一种改进的并行遗传算法,并在Hadoop 平台上编程实现。付德强等(2014)[5]研究了应急物资储备库的多目标选址决策模型,并设计了相应的多目标非支配排序遗传算法。 (二)基于遗传算法的应急物资分配问题。重大地震灾害发生以后,对应急物资进行科学合理的分配是震后应急物资保障系统的关键。 于振涛(2011)[6]研究应急物流系统中多级设施和多式联运救灾情况下的应急物资分配与调运问题,建立一个具有主从递阶关系结构的双层优化模型,并根据所建立的模型提出了一种改进的遗传算法。王增(2011)[7] 考虑连续软时间窗限制,构建人员

基于遗传算法的参数优化估算模型

基于遗传算法的参数优化估算模型 【摘要】支持向量机中参数的设置是模型是否精确和稳定的关键。固定的参数设置往往不能满足优化模型的要求,同时使得学习算法过于死板,不能体现出来算法的智能化优点,因此利用遗传算法(Genetic Algorithm,简称GA)对估算模型的参数进行优化,使得估算模型灵活、智能,更加符合实际工程建模的需求。 【关键词】遗传算法;参数优化;估算模型 1.引言 随着支持向量机估算模型在工程应用的不断深入。研究发现,支持向量机算法(包括LS-SVM算法)存在着一些本身不可避免的缺陷,最为突出的是参数的选取和优化问题,以往在参数选取方面,一般依靠专家系统或者设定初始值盲目搜寻等等,在实际应用必然会影响模型的精准度,造成一定影响。如何选取合理的参数成为支持向量机算法应用过程中应用中关注的问题,同时也是目前应用研究的重点。而常用的交叉验证试算的方法,不仅耗时,且搜索目的不清,使得资源浪费,耗时耗力。不能有效的对参数进行优化。 针对参选取的问题,本文使用GA算法对模型中的参数设置进行优化。 2.遗传算法 2.1 遗传算法的实施过程 遗传算法的实施过程中包括了编码、产生群体、计算适应度、复制、交换、变异等操作。图1详细的描述了遗传算法的流程。 其中,变量GEN是当前进化代数;N是群体规模;M是算法执行的最大次数。 遗传算法在参数寻优过程中,基于生物遗传学的基本原理,模拟自然界生物种群的“物竞天则,适者生存”的自然规律。把自变量看作生物体,把它转化成由基因构成的染色体(个体),把寻优的目标函数定义为适应度,未知函数视为生存环境,通过基因操作(如复制、交换和变异等),最终求出全局最优解。 2.2 GA算法的基本步骤 遗传算法操作的实施过程就是对群体的个体按照自然进化原则(适应度评估)施加一定的操作,从而实现模型中数据的优胜劣汰,使得进化过程趋于完美。从优化搜索角度出发,遗传算法可使问题的解,一代一代地进行优化,并逼近最优解。 通常采用的遗传算法的工作流程和结果形式有Goldberg提出的,常用的GA 算法基本步骤如下: ①选择编码策略,把参数集合X和域转换为位串结构空间S。常用的编码方法有二进制编码和浮点数编码。 ②定义合适的适应度函数,保证适应度函数非负。 ③确定遗传策略,包括选择群体大小,选择、交叉、变异方法,以及确定交叉概率、变异概率等其它参数。 ④随机初始化生成群体N,常用的群体规模:N=20~200。 ⑤计算群体中个体位串解码后的适应值。 ⑥按照遗传策略,运用选择、交叉和变异算子作用于群体,形成下一代群体。 ⑦判断群体性能是否满足某一个指标,或者以完成预订迭代次数,若满足则

遗传算法的优化计算——建模自变量降维

%% 清空环境变量 clear all clc warning off %% 声明全局变量 global P_train T_train P_test T_test mint maxt S s1 S=30; s1=50; %% 导入数据 load data.mat a=randperm(569); Train=data(a(1:500),:); Test=data(a(501:end),:); % 训练数据 P_train=Train(:,3:end)'; T_train=Train(:,2)'; % 测试数据 P_test=Test(:,3:end)'; T_test=Test(:,2)'; % 显示实验条件 total_B=length(find(data(:,2)==1)); total_M=length(find(data(:,2)==2)); count_B=length(find(T_train==1)); count_M=length(find(T_train==2)); number_B=length(find(T_test==1)); number_M=length(find(T_test==2)); disp('实验条件为:'); disp(['病例总数:' num2str(569)... ' 良性:' num2str(total_B)... ' 恶性:' num2str(total_M)]); disp(['训练集病例总数:' num2str(500)... ' 良性:' num2str(count_B)... ' 恶性:' num2str(count_M)]); disp(['测试集病例总数:' num2str(69)... ' 良性:' num2str(number_B)... ' 恶性:' num2str(number_M)]); %% 数据归一化 [P_train,minp,maxp,T_train,mint,maxt]=premnmx(P_train,T_train); P_test=tramnmx(P_test,minp,maxp); %% 创建单BP网络 t=cputime; net_bp=newff(minmax(P_train),[s1,1],{'tansig','purelin'},'trainlm'); % 设置训练参数 net_bp.trainParam.epochs=1000;

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

遗传算法入门(上)代码中的进化学说与遗传学说 写在之前 算法所属领域 遗传算法的思想解析 为什么要用遗传算法? 科研现状 应用现状 遗传算法入门系列文章: (中篇)遗传算法入门(中)实例,求解一元函数最值(MATLAB版)(下篇)遗传算法入门(下)实例,求解TSP问题(C++版) 写在之前 说明:本想着用大量篇幅写一篇“关于遗传算法的基本原理”作为本系列入门的第一篇,但是在找寻资料的过程中,看到网络上有大量的关于遗传算法的介绍,觉得写的都挺好,所以本文我就简单写点自己的理解。 推荐几篇关于遗传算法的介绍性文章: 遗传算法详解(GA)(个人觉得很形象,很适合初学者) 算法所属领域 ? 相信每个人学习一门知识之前,都会想知道这门知识属于哪一门学科范畴,属于哪一类技术领域? ? 首先对于这种问题,GA是没有绝对的归属的。算法的定义是解决问题的一种思想和指导理论。而遗传算法也是解决某一问题的一种思想,用

某一编程语言实现这种思想的程序具有很多特点,其中一个便是智能性和进化性,即,不需要大量的人为干涉,程序本身能够根据一定的条件自我筛选,最终得出令人满意的结果。所以按照这种特性,把它列为人工智能领域下的学习门类毫无疑问是可以的。遗传算法的思想是借鉴了达尔文的进化学说和孟德尔的遗传学说,把遗传算法说成是一门十足的仿生学一点都不过分。然而从应用的角度出发,遗传算法是求最优解问题的好方法,如信号处理中的优化、数学求解问题、工业控制参数最优解、神经网络中的激活函数、图像处理等等,所以把遗传算法说成优化范畴貌似也说的过去。为了方便理解,我们可以暂时将其定位为人工智能–智能优化,这也是很多书中描述遗传算法的惯用词汇。 遗传算法的思想解析 遗传算法(gentic algorithms简称GA)是模拟生物遗传和进化的全局优化搜索算法 ? 我们知道,在人类的演化中,达尔文的进化学说与孟德尔的遗传学说起着至关重要的理论指导。每个人作为一个个体组成一个人类种群,正是经历着物竞天择,才会让整个群体慢慢变的更好,即更加适应周围的环境。而每一代正是靠着基因交叉与变异才能繁衍出更加适应大自然规律的下一代个体。总之,在漫长的迭代进化中,一个不适应环境的群体,在物竞天择和交叉变异中慢慢变的适应了环境。 ? GA的思想完全模拟了生物的进化和遗传方式。我们在求解一个问题的最优解时,先人为的产生很多任意的解,组成一个解集(一个解是一个个体,一个解集是一个种群),这些解有好有坏。我们的最终目的是让这

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

详解MATLAB在最优化计算中的应用(pdf版)第1章 MATLAB语言基础1 1.1 MATLAB简介1 1.1.1 MATLAB的产生与发展1 1.1.2 MATLAB语言的优势1 1.2 MATLAB入门2 1.2.1 MATLAB工作环境2 1.2.2 MATLAB中的数据类型8 1.2.3 MATLAB语言中的常量与变量11 1.2.4 MATLAB中的矩阵13 1.2.5 符号运算20 1.2.6 关系与逻辑运算22 1.3 MATLAB中的矩阵运算22 1.3.1 矩阵的代数运算22 1.3.2 矩阵的关系与逻辑运算25 1.3.3 矩阵分析25 1.4 MATLAB中的图形功能28 1.4.1 二维图形29 1.4.2 三维图形33 1.5 MATLAB工具箱的使用35 1.5.1 MATLAB工具箱的特点35

1.5.2 MATLAB工具箱的使用方法35 1.6 本章小结37 第2章 MATLAB程序设计38 2.1 MATLAB程序设计方法38 2.1.1 MATLAB中的控制结构38 2.1.2 MATLAB中的M脚本文件和M函数文件46 2.1.3 MATLAB程序的调试53 2.2 MATLAB扩展编程55 2.2.1 调用MATLAB引擎56 2.3 本章小结73 第3章最优化计算问题概论74 3.1 引言74 3.1.1 最优化问题的提出74 3.1.2 最优化理论和方法的产生与发展75 3.2 最优化问题的典型实例76 3.2.1 资-源利用问题76 3.2.2 分派问题77 3.2.3 投资决策问题79 3.2.4 多目标规划问题80 3.3 最优化问题的数学描述81 3.3.1 最优化问题三要素81 3.3.2 最优化问题分类82

并行遗传算法

1、遗传算法(GA)概述 GA是一类基于自然选择和遗传学原理的有效搜索方法,它从一个种群开始,利用选择、交叉、变异等遗传算子对种群进行不断进化,最后得到全局最优解。生物遗传物质的主要载体是染色体,在GA中同样将问题的求解表示成“染色体Chromosome”,通常是二进制字符串表示,其本身不一定是解。首先,随机产生一定数据的初始染色体,这些随机产生的染色体组成一个种群(Population),种群中染色体的数目称为种群的大小或者种群规模。第二:用适值度函数来评价每一个染色体的优劣,即染色体对环境的适应程度,用来作为以后遗传操作的依据。第三:进行选择(Selection),选择过程的目的是为了从当前种群中选出优良的染色体,通过选择过程,产生一个新的种群。第四:对这个新的种群进行交叉操作,变异操作。交叉、变异操作的目的是挖掘种群中个体的多样性,避免有可能陷入局部解。经过上述运算产生的染色体称为后代。最后,对新的种群(即后代)重复进行选择、交叉和变异操作,经过给定次数的迭代处理以后,把最好的染色体作为优化问题的最优解。 GA通常包含5个基本要素:1、参数编码:GA是采用问题参数的编码集进行工作的,而不是采用问题参数本身,通常选择二进制编码。2、初始种群设定:GA随机产生一个由N个染色体组成的初始种群(Population),也可根据一定的限制条件来产生。种群规模是指种群中所含染色体的数目。3、适值度函数的设定:适值度函数是用来区分种群中个体好坏的标准,是进行选择的唯一依据。目前主要通过目标函数映射成适值度函数。4、遗传操作设计:遗传算子是模拟生物基因遗传的操作,遗传操作的任务是对种群的个体按照它们对环境的适应的程度施加一定的算子,从而实现优胜劣汰的进化过程。遗传基本算子包括:选择算子,交叉算子,变异算子和其他高级遗传算子。5、控制参数设定:在GA的应用中,要首先给定一组控制参数:种群规模,杂交率,变异率,进化代数等。 GA的优点是擅长全局搜索,一般来说,对于中小规模的应用问题,能够在许可的范围内获得满意解,对于大规模或超大规模的多变量求解任务则性能较差。另外,GA本身不要求对优化问题的性质做一些深入的数学分析,从而对那些不太熟悉数学理论和算法的使用者来说,无疑是方便的。 2、遗传算法的运行机理: 对GA运行机理的解释有两类: 一是传统的模式理论;二是1990 年以后发展起来的有限状态马尔可夫链模型。 (1)模式理论:由Holland创建,主要包括模式定理,隐并行性原理和积木块假说三部分。模式是可行域中某些特定位取固定值的所有编码的集合。模式理论认为遗传算法实质上是模式的运算,编码的字母表越短,算法处理一代种群时隐含处理的模式就越多。当算法采用二进制编码时,效率最高,处理规模为N的一代种群时,可同时处理O(N3)个模式。遗传算法这种以计算少量编码适应度而处理大量模式的性质称为隐并行性。模式理论还指出,目标函数通常满足积木块假说,即阶数高,长度长,平均适应度高的模式可以由阶数低,长度短,平均适应度高的模式(积木块)在遗传算子的作用下,接合而生成。而不满足积木块假说的优化问题被称为骗问题(deceptive problem)。模式理论为遗传算法构造了一条通过在种群中不断积累、拼接积木块以达到全局最优解的寻优之路。但近十多年的研究,特别是实数编码遗传算法的广泛应用表明,上述理论与事实不符。 (2)有限状态马尔可夫链模型:由于模式理论的种种缺陷,研究者开始尝试利用有限状态马尔可夫链模型研究遗传算法的运行过程。对于遗传算法可以解决的优化问题,问题的可行域都是由有限个点组成的,即便是参数可以连续取值的问题,实际上搜索空间也是以要求精度为单位的离散空间,因此遗传算法的实际运行过程可以用有限状态马尔可夫链的状态转移过程建模和描述。对于有m 个可行解的目标函数和种群规模为N的遗传算法,N 个个体共有种组合,相应的马尔可夫模型也有个状态。实际优化问题的可行解数量m 和种群规模

数学建模遗传算法与优化问题

数学建模遗传算法与优 化问题 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显着特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念.

首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: 遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation). 遗传算法基本步骤主要是:先把问题的解表示成“染色体”,在算法中也就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就是假设的可行解.然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉、变异过程产生

基于遗传算法的主动轮廓模型

第8卷(A 版) 第1期2003年1月 中国图象图形学报 Jour nal of Image and Graphics V ol.8(A ),N o.1 Jan.2003 收稿日期:2001-04-23;改回日期:2002-04-19 基于遗传算法的主动轮廓模型 刘志俭 (国防科技大学自动控制系,长沙 410073) 摘 要 由K ass 等人提出的主动轮廓模型,本质上是一条能量最小化的轮廓曲线.它作为一种全新的采用自上而下机制的图象目标提取方法,由于它有效地利用了高级信息,从而提高了目标提取的速度和准确性,已经在数字图象处理和计算机视觉领域得到了广泛的应用.原始的主动轮廓模型算法可以分为构造能量函数、推导欧拉方程、离散化和迭代求解4步.但该算法存在许多问题,为此在分析原始主动轮廓模型算法和一些改进算法的基础上,提出了一种基于遗传算法的主动轮廓模型算法,并给出实验结果.实验结果证明,基于遗传算法的主动轮廓模型不仅成功地解决了原方法收敛易陷入局部最小值的问题,也提高了目标提取的成功率.关键词 主动轮廓模型 遗传算法 目标提取 中图法分类号:T P 391.41 文献标识码:A 文章编号:1006-8961(2003)01-0041-06 Active Contour Model Based on Genetic Algorithm LIU Zhi-jian (De p artment of A utomatic Control ,N ational Univ ersity o f De f ence T echnology ,Chang sha 410073) Abstract A ctiv e Co nto ur M odel intr oduced by K ass et al is a ener gy -minim izing cur ve in essentia l .It is a new method o f imag e object ex tr act ion ba sed o n to p-do w n mechanism ,which makes use o f hig h lev el infor mation t o impr ove t he speed a nd v eracity of object ex traction.It has been used mor e and mo re w idely in applicatio ns of imag e analy sis and computer v isio n .T he or ig inal alg or ithm o f activ e co ntour model inv olves fo ur steps :setting up a var iat ional int egr al on the continuo us,deriv ing a pair of Euler equat ions,discr etizing t hem ,a nd so lv ing the discr ete equat ions.T his algo rit hm suffer s a number of pro blems.In this pa per ,w e w ill firstly discuss the o riginal algo rithm and so me impr ov ed alg or it hms of active co nt our model ,then pr opose a alg or it hm based o n the g enetic algo rithm and pr esent the ex periment r esult.T he r esult pr ov es that genetic alg or ithm set tles the pro blem of or ig inal model t hat run into the lo cal least value end enhance the success ra tio of the o bject ext raction.Keywords A ctiv e contour model ,G enetic alg or ithm ,Object extr actio n 0 引 言 主动轮廓模型[1](又称为蛇)是由Kass 等人提出的一种全新图象目标提取方法.由于其本质上是 一条能量最小化的轮廓曲线,因此它的能量函数可以通过一个积分方程来定义,而且它不同于经典的M ar r 视觉计算理论所描述的自下而上的处理过程,而是一种自上而下的充分利用高级信息的处理过程.用该方法进行目标提取时,首先将一个初始化的主动轮廓放置在图象中感兴趣目标的周围,然后在 图象作用力、轮廓曲线内部作用力以及外部约束的 联合作用下,将该轮廓最终收敛到目标.使用这种模型进行目标提取有诸多好处:1由于融合了高级信息,即可在提取过程的开始就将注意力放在所希望提取的目标上,因此可大量地减少计算量;o由于使用这种模型可以消除所希望提取的目标上因纹理或噪声而造成的不连续,因此能得到完整的目标轮廓,而不会将目标分为几个小的区域;?与传统的模板方法不同,这种模型不受目标形状的约束,就可以提取任意形状的目标,并且能够及时适应目标形状发生的变化,在目标追踪中有着极大的应用价值.但是

数学建模策略方法之遗传算法的最通俗解释内附图文解释

遗传算法的通俗解释之1 ——来自网络,感谢一切为之付出的人们 为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各个主要执行步骤。 例:求下述二元函数的最大值: (1) 个体编码 遗传算法的运算对象是表示个体的符号串,所以必须把变量x1, x2 编码为一种符号串。本题中,用无符号二进制整数来表示。 因x1, x2 为0 ~ 7之间的整数,所以分别用3位无符号二进制整数来表示,将它 们连接在一起所组成的6位无符号二进制数就形成了个体的基因型,表示一个可 行解。 例如,基因型X=101110 所对应的表现型是:x=[ 5,6 ]。 个体的表现型x和基因型X之间可通过编码和解码程序相互转换。 (2) 初始群体的产生 遗传算法是对群体进行的进化操作,需要给其淮备一些表示起始搜索点的初始群体数据。 本例中,群体规模的大小取为4,即群体由4个个体组成,每个个体可通过随机方法产生。 如:011101,101011,011100,111001 (3) 适应度汁算 遗传算法中以个体适应度的大小来评定各个个体的优劣程度,从而决定其遗传 机会的大小。 本例中,目标函数总取非负值,并且是以求函数最大值为优化目标,故可直接 利用目标函数值作为个体的适应度。

(4) 选择运算 选择运算(或称为复制运算)把当前群体中适应度较高的个体按某种规则或模型遗传到下一代群体中。一般要求适应度较高的个体将有更多的机会遗传到下一代群体中。 本例中,我们采用与适应度成正比的概率来确定各个个体复制到下一代群体中的数量。其具体操作过程是: ?先计算出群体中所有个体的适应度的总和∑fi( i=1.2,…,M ); ?其次计算出每个个体的相对适应度的大小fi /∑fi,它即为每个个体被遗传到下一代群体中的概率, ?每个概率值组成一个区域,全部概率值之和为1; ?最后再产生一个0到1之间的随机数,依据该随机数出现在上述哪一个概率区域内来确定各个个体被选中的次数。 (5) 交叉运算 交叉运算是遗传算法中产生新个体的主要操作过程,它以某一概率相互交换某两个个体之间的部分染色体。 本例采用单点交叉的方法,其具体操作过程是: ? 先对群体进行随机配对; ? 其次随机设置交叉点位置; ? 最后再相互交换配对染色体之间的部分基因。

遗传算法

基本原理: 遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概 率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。 Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 运用遗传算法工具箱: 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS就是大家所看到的Matlab 中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。 以GATBX为例,运用GATBX时,要将GATBX解压到Matlab下的toolbox文件夹里,同时,set path将GATBX文件夹加入到路径当中。 例子: 这块内容主要包括两方面工作:1、将模型用程序写出来(.M文件),即目标函数,若目标函数非负,即可直接将目标函数作为适应度函数。2、设置遗传算法的运行参数。包括:种群规模、变量个数、区域描述器、交叉概率、变异概率以及遗传运算的终止进化代数等等。 求解模型:f(x)=x*sin(10*pi*x)+2.0,x的范围在【-1,2】 根据上面的求解模型,可以写出模型的.M文件如下,即适应度函数 function z=shang(x) z=x.*sin(10*pi*x)+2.0; 然后写入遗传算法的参数: figure(1); fplot('variable.*sin(10*pi*variable)+2.0',[-1,2]); %画出函数曲线 NIND=40; %个体数目(Number of individuals) MAXGEN=25; %最大遗传代数(Maximum number of generations) PRECI=20; %变量的二进制位数(Precision of variables) GGAP=0.9; %代沟(Generation gap) trace=zeros(2, MAXGEN); %寻优结果的初始值 FieldD=[20;-1;2;1;0;1;1]; %区域描述器(Build field descriptor) Chrom=crtbp(NIND, PRECI); %初始种群 gen=0; %代计数器 variable=bs2rv(Chrom, FieldD); %计算初始种群的十进制转换

matlab---遗传算法工具箱函数及实例讲解

matlab遗传算法工具箱函数及实例讲解 最近研究了一下遗传算法,因为要用遗传算法来求解多元非线性模型。还好用遗传算法的工具箱予以实现了,期间也遇到了许多问题。首先,我们要熟悉遗传算法的基本原理与运算流程。 基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。 参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。 Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 其次,运用遗传算法工具箱。 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库 。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算

相关文档
最新文档