机械工程材料及应用教案王纪安

机械工程材料及应用教案王纪安
机械工程材料及应用教案王纪安

项目三手锯锯条的选材——碳素工具钢的应用

课题:3.1手锯锯条的服役条件分析 3.2材料的力学性能——硬度与韧性(2课时)【新课导入】:锯条是用什么材料做的?锯条需要具有什么样的力学性能?金属材料的软硬是我们经常关注的问题,请问常见的金属材料中哪些是比较软的?哪些是比较硬的?

在工业生产中,我们仅仅知道金属材料软和硬是远远不够的,还必须精确知道其硬度值的大小。本节课我们来深入学习硬度的有关知识。

中文里“韧”是什么意思?它是指柔软而结实,不易折断。在生产和生活中,许多机械零件往往要受到冲击载荷的作用,如冲床的冲头、凿岩石机风镐上的活塞、快速行驶的汽车相撞、高速飞行的子弹击中防弹衣的材料等。在金属材料受到冲击载荷作用时,也必须具有这种韧性。

教学目标:1.了解并分析手锯锯条的工作条件;

2.掌握三种硬度的测定方法的符号、原理和应用。

3.理解硬度概念,明确三种硬度测定方法;

4.理解韧性的意义,明确韧性测定方法,掌握韧性的衡量指标(Ak);

教学重点:三种硬度的测定方法的符号、原理和应用。

教学难点:三种硬度的测定方法的符号、原理和应用。

前测:什么是机械工程材料的硬度与塑性?测试硬度的方法有哪些?

教学过程:

【板书】

3.1手锯锯条的服役条件分析

3.1.1手锯锯条的工作条件

摩擦——高硬度;冲击力——韧性好;

3.1.2手锯锯条的失效分析

磨损、崩刃、断裂

3.2材料的力学性能——硬度与韧性

3.2.1硬度

硬度:金属材料抵抗其它更硬物体压入表面的能力。

【讲解】硬度是衡量金属材料软硬程度的一项重要的性能指标。各种不同的机械零件对硬度都有不同的要求,尤其是机械制造业所用的刀具、量具、模具等,都应具备足够的硬度,才能保证使用性能和寿命,因此硬度是金属材料重要的力学性能之一。

硬度试验设备简单,操作方便,能在零件上进行试验而不破坏。硬度值还可以间接地反映金属材料的强度和金属的化学成分、金相组织和热处理工艺上的差异,因而硬度试验在机械工程中得到普遍应用。

硬度试验方法很多,生产中常用的有布氏硬度、洛氏硬度和维氏硬度等试验方法。【板书】

硬度测定方法压头类型原理硬度值应用

HBS:淬硬钢球以球面压痕单位表面积HBS<450 测定较软的原材料、

120金刚石圆锥体以压痕深度(h)来20~80 适用于测定硬度极高的材

料和成品。如硬质合金。洛氏硬度HRB1.588 mm的钢球计量硬度值。HRB20~100 适用于测定硬度较低的材

料和成品。如黄铜轴套。 HRC1200金刚石圆锥体HRC20~70 适用于测定硬度较高的

材料和成品。如淬火钢。

相对面夹角为1360 以压痕单位表面积HV 10~1000 适用测定极软到极硬的各种维氏硬度的正四棱锥体金刚石上的压力计量硬度值。材料,主要用于测试很薄工

件及渗碳层等的硬度。

3.2.2冲击韧度

【板书】韧性:金属材料抵抗冲击载荷作用而不破坏的能力。

1.韧性测定

(1)冲击试样图1-19所示

V型缺口试样10×10×55

U型缺口试样10×10×55

(2)冲击试验大能量一次冲击(图1-20所示)

2.韧性指标

冲击功 Ak=G(H1—H2)

G──摆锤重量(N);

H1──冲击前摆锤举起的高度(m);

H2──冲断试样后,摆锤回升的高度(m);

Ak──冲击功(J)。

脆性材料Ak<8 J 如铸铁。

小结:

(1)Ak值的越大,表示材料的韧性越好;

【交流与讨论】是否所有受到冲击载荷作用的零件都要选用韧性大的材料制造?

【板书】(2)受到大能量,一次冲击载荷作用的零件,应选用韧性大的材料制造。如汽车保险杆、防弹材料;

受到小能量,多次冲击载荷作用的零件,应选用强度大塑性好的材料制造。如模锻锤锤杆。

【小结】学习内容

硬度测定方法:

布氏硬度

洛氏硬度

维氏硬度

韧性 Ak

Ak值的越大,表示材料的韧性越好

【作业】书面:习题

【交流与讨论】

1.某私营企业自制了一批水泥砖,需要检验这批水泥砖的硬度是否达到样品的硬度。这时有人说只要有一个小铁球就可以做这个试验。你认为可行吗?应怎样试验,能够测出水泥砖的硬度是否达标?

(1.让小铁球从相同高度自由下落,检查铁球落在每块水泥砖上的深度,深度浅的硬度大。

2.让水泥砖成 45 度角安放,小铁球从相同高度下落,看铁球滚动多远。硬度大,小铁球滚得远些。)

课题:3.3金属的结晶特点与铁碳相图

【导入新课】

从铁碳合金组织学习中我们知道,室温下的组织F、P、Ldˊ、Fe3C随着含碳量增加,它们的性能变化是规律的,塑性、韧性由好变差,硬度由大变小,其实这种变化规律我们是可以从材料专家绘制的铁碳合金相图反映出来的。

Fe-Fe3C相图不仅大大地推动了金相学的发展,而且在生产实践中具有重要的现实意义。它为研究钢铁的组织,合理选用钢铁材料,科学制订钢铁材料铸造、锻造和热处理等热加工工艺提供了重要的科学依据

【学习目标】

1.了解金属的结晶条件、过程及晶粒大小对其力学性能的影响

2. 了解纯铁的同素异构转变

3. 了解分析铁碳合金相图

4.了解铁碳合金相图的应用

教学重点:分析铁碳合金相图与铁碳合金相图应用

教学难点:分析铁碳合金相图与铁碳合金相图应用

前测:1、合金的基本组织有哪三种类型?

2、固溶体又有哪两种类型?固溶体的性能是怎样的?

3、什么叫合金、请说明下列合金的组成。

黄铜碳钢硬铝武德合金

(Cu-Zn Fe-C AI-Cu-Mg Pb-Sn-Bi-Cd )

4、合金至少有几种元素组成?一定是金属元素与金属元素组成的吗?

教学过程:

【板书】3.3.1金属结晶特点

金属的结晶液态─→固态

【讲解】金属材料由液态转变为固态时凝固的过程,即晶体结构形成的过程称为结晶。金属材料的冶炼和铸造都要经历由液态转变为固态的结晶过程。金属材料性能与结晶后组织密切相关,所以了解金属材料结晶过程的基本规律,对于掌握和控制金属材料的组织及性能具有十分重要的

【板书】一、金属结晶的条件(教师引导分析观察图3-6,概括出特点。)

纯金属是在恒定的温度下结晶的。

如:Fe 1538℃,Cu1083℃。

原因:结晶过程中释放出来的结晶热量,补尝了散失在空气中的热量。

【讲解】在实际生产中我们总会发现液态金属冷却到理论结晶温度(T0)以下才开始结晶,如图2-6所示。实际结晶温度(T1)低于结晶温度(T0)。(过冷现象)

【板书】过冷度:理论结晶温度和实际结晶温度之差

△T=T0—T1

【交流与讨论】

在寒冷季节里,北方人是怎样吃硬梆梆的冻柿子呢?他们吃法叫做“拨冰子”,其过程就是将冻柿子放入冷水中,待冻柿子外面结成大冰团时将其捞出,此时剥开冰团,里面的柿子已变得松软可口了。请你想一想,他们是利用什么原理把冻柿子里的冰拨出来的?

(利用水结冰放出的热量熔化冻柿。)

教师指导阅读“你知道吗?”

【板书】二、纯金属的结晶过程

【讲解】液态金属在达到结晶温度开始结晶时,首先从液态金属形成一些微小而稳定的小晶体,称为晶核,然后随着时间推移,晶核不断长大,与此同时,液体中不断形成新晶核,并不断长大,直到它们彼此相互接触,液态金属完全消失而转变为固态,如图2-7所示。【板书】(纯金属的结晶过程是)晶核形成与晶核长大。

三、晶粒大小对其力学性能的影响

(教师讲读“材料史话”)

【交流与讨论】

晶粒大小可以用单位体积内晶粒数目来表示,数目越多晶粒越小。为了方便测量,常用单位截面上晶粒的平均直径来表示。下表是晶粒大小对纯铁力学性能的影响:

分析上表晶粒大小对纯铁力学性能的影响,你得出的结论是:

【板书】晶粒越细,金属材料的力学性能越好。

细化晶粒的方法有:

1、增大过冷度适用于中小型铸件。

2、变质处理(孕育处理) 在液态金属结晶前,加入一些细小的变质剂。

3、振动处理

【交流与讨论】

细化晶粒是提高金属材料力学性能的重要手段之一,工业上把利用细化晶粒来强化金属材料的方法称为细晶强化。专家们认为:“细晶强化是一种最经济的强化金属材料的方法。”你怎样理解这一观点的?

(金属同样的结晶,细晶粒,力学性能就好,反之就差。)

【板书】四、临界温度:金属材料结构发生改变的温度。

如纯Fe的临界温度为1538℃,纯Cu的临界温度为1083℃。

教师指导阅读“你知道吗?”

【板书】3.3.2铁碳合金相图

一、铁碳合金的基本组元与基本相

1、纯铁的同素异构转变:金属在固态下随温度的改变,由一种晶格转变为另一种晶格的现象。

【讲解】同素就是同种元素;

由同素异构转变所得到的不同晶格类型的晶体称为同素异构体。

【板书】同素异构体的稳定性:

αβγδ

低温高温

纯铁的同素异构转变

(教师引导学生分析图3-8为纯铁的冷却曲线,师生共同概括出下式)

【交流与讨论】金属晶体结构改变,它的性能会不会改变?

【讲解】不仅纯铁能够发生同素异构转变,而且铁碳合金——钢、铸铁同样能发生同素异构转变。正因为如此,生产中才有可能对钢和铸铁进行各种热处理来改变其组织和性能。可见纯铁的同素异构转变现象具有极其重要的意义。

2、铁碳合金的基本相及其性能

钢和生铁都是铁碳合金,根据含碳量的不同,碳可以溶解在铁中形成固溶体,也可以反应形成金属化合物,或固溶体与金属化合物组成机械混合物。因此,在铁碳合金中出现以下几种

基本组织。

【板书】

组织名称符号含义含碳量性能

铁素体 F 碳溶解在α-Fe中的0.0008%塑性、韧性很好,强度、硬度间隙固溶体。(室温)低。(δ:30~50%,Ak:128~160J,

(指导观察图3-4、3-5)σb:180~280MPa,HBS:50~80)奥氏体 A 碳溶解在γ-Fe中的0.77%塑性、韧性好,强度、硬度不间隙固溶体。(727℃)高(伸长率δ:45%~60%σb:

(指导观察图3-6、3-7)400MPa,HBS:160~200)

渗碳体 Fe3C 铁与碳反应形成的金 6.69%硬度很高(相当于800HBS),塑属化合物。性、韧性几乎为零,脆性很大。珠光体 P 铁素体与渗碳体组成 0.77%强度较高,硬度适中,有一的机械混合物。(727℃以下)定的塑性。(σb:800MPa,HBS:(指导观察图3-8)160~280,δ:20%~25%)

莱氏体 Ld 由奥氏体和渗碳体组成。(727℃以上)硬度高(相当于700HBS),Ldˊ由珠光体和渗碳体组成。(727℃以下)塑性很差。

(指导观察图3-9)

注:在完成上述内容教学时,结合完成下列内容教学。

【交流与讨论】

下表为纯铁的力学性能,通过学习比较可以发现铁素体力学性能与纯铁基本相同,请问你是如何看待这一问题的?

【讲解】渗碳体有片状、球状(粒状)、网状等不同形态,其数量、形态与分布对铁碳合金的性能有很大的影响。渗碳体在适当的条件下,能分解为铁和石墨:

Fe3C─→3Fe+C(石墨)

【交流与讨论】

在铁素体、奥氏体、渗碳体、珠光体和莱氏体中:属于合金基本相的是____________________________,属于机械混合物的是____________________________,只能存在727℃以上组织是______________________。

【板书】二.铁碳合金相图分析

铁碳合金相图:表示在极缓慢加热(或冷却)情况下,不同成分的铁碳合金的状态或组织随温度变化的图形。

【讲解】铁碳合金中,铁和碳可以形成一系的化合物,如Fe3C、Fe2C、FeC等,如图3—10所示。

由于含碳量>6.69%的铁碳合金脆性很大,没有实用价值。因此,目前应用的铁碳合

金相图仅研究含碳量从0%~6.69%,也就是Fe-Fe3C相图。图3-11为简化后的Fe-Fe3C相图。图中纵坐标为温度,横坐标为含碳量的质量百分数,从左向右表明含碳量从零增加到6.69%。【板书】1、Fe-Fe3C相图

【板书】2、Fe-Fe3C相图特性点

特性点温度(℃)含碳量(%)含义

A 1538 0 纯铁的熔点

D 1227 6.69 渗碳体的熔点

C 1148 4.30 共晶点(教师板书出反应式)S 727 0.77 共析点(教师板书出反应式)E 1148 2.11 碳在γ-Fe中的最大溶解度

G 912 0 纯铁α-Fe?γ-Fe转变温度【板书】3、Fe-Fe3C相图特性线

ACD线——液相线。此线以上全部为液相。〔用L表示。铁碳合金冷却到此线开始结晶,在AC线以下从液相中结晶出奥氏体,在CD线以下结晶出一次渗碳体(Fe3C I)。〕

AECF线——固相线。液态合金冷却到此线全部结晶为固相。(此线以下全部为固相区)

GS线(A3)——冷却时奥氏体开始转变为铁素体的开始线,或加热时铁素体全部转变为奥氏体终了线。

ES线(Acm)——碳在γ-Fe中溶解度曲线。此线以下开始从奥氏体中析出二次渗碳体(Fe3C Ⅱ)。

ECF线——共晶线。〔含碳量在2.11-6.69%的合金冷却到此线时(1148℃)都发生共晶反应,同时结晶出奥氏体与渗碳体混合物——莱氏体。)〕

PSK线(A1)——共析线。〔含碳量在0.0218-6.69%的合金冷却到此线时(727℃)都反生共析反应,同时析出铁素体与渗碳体混合物——珠光体。〕

【练习】教师指导学生画出Fe-Fe3C相图(其尺寸与图3-11)并填写出各区域的组织。【板书】4、相区

四个单相区、

五个两相区

【板书】三、典型合金的结晶过程及组织

铁碳合金的分类

钢含碳量小于2.11%的铁碳合金。

分类含碳量室温组织

亚共析钢C<0.77% F+P

共析钢C= 0.77% P

过共析钢C>0.77% Fe3CⅡ+P

白口铸铁含碳量2.11%~6.69%的铁碳合金。

分类含碳量室温组织

亚共晶白口铸铁C<4.3% P+ Fe3CⅡ+L`d

共晶白口铸铁 C = 4.3% L`d

过共晶白口铸铁C>4.3% Fe3C I+L`d

分析六种典型铁碳合金的结晶过程和组织

四、含碳量对铁碳合金组织和性能的影响

1、含碳量对组织的影响

(教师引导学生分析图3-22)

亚共析钢共析钢过共析钢

F减少全部为P Fe3CⅡ增多

P增多P减少

2、含碳量对性能的影响

含碳量越高,钢的强度、硬度越高,塑性、韧性越低。但当钢的含碳量大于

0.9%时,因网状渗碳体的出现,使钢的强度有所降低。

为了保证工业上使用的钢具有足够的强度,并具有一定的塑性和韧性,钢中的含碳量一般不超过1.4%。

Fe-Fe3C相图不仅大大地推动了金相学的发展,而且在生产实践中具有重要的现实意义。它为研究钢铁的组织,合理选用钢铁材料,科学制订钢铁材料铸造、锻造和热处理等热加工工艺提供了重要的科学依据,本节课我们讨论Fe-Fe3C相图的应用。

【板书】五、Fe-Fe3C相图的应用

1、选材方面

(教师讲读教材内容,指导完成“交流与讨论”)

2、铸造方面

接近共晶成分的铸铁铸造性好,在铸造生产中获得广泛应用。

原因:接近共晶成分的铸铁不仅熔点低,而且凝固区间小,且流动性好,收缩性小。

3、锻造方面

钢材锻造、轧制的温度范围通常选择在Fe—Fe3C相图中奥氏体区。

原因:钢处于奥氏体状态时,强度较低,塑性较好,便于塑性变形。

4、热处理方面

【讲解】Fe-Fe3C相图诞生100多年来,它为钢铁金相组织的研究,钢铁材料的合理选用,科学制订钢铁材料铸造、锻造和热处理等热加工工艺提供了重要的科学依据,发挥了巨大的指导作用。然而,我们也应认识它的缺陷和不足。实际生产中使用的钢铁材料,除铁和碳两种元素外,还有其他杂质元素(主要是硅、锰、硫、磷)或合金元素,而Fe-Fe3C相图仅研究铁、碳两种元素的相互作用和影响,没有考虑其他杂质元素或合金元素对铁碳合金的影响。

我们还知道,Fe—Fe3C相图是钢在极缓慢加热(或冷却)时测定绘制的,因而,在实际生产加热时,由于加热速度较快,钢的组织转变总会发生滞后现象,实际加热转变温度总要高于Fe—Fe3C相图的A1、A3、Acm。例如,依据Fe—Fe3C相图,含碳量为0.45%钢由铁素体转变为奥氏体的转变终了温度为766℃,而含碳量为0.45%钢在实际加热时铁素体转变为奥氏体的终了温度为780℃。为了将Fe—Fe3C相图的加热临界温度A1、A3、Acm和实际生产加热临界温度加以区别,通常把实际加热的各临界温度分别用Ac1、A c3、A c cm表示,

【板书】实际加热的各临界温度

相图加热临界温度 A1 A3 Acm

实际加热临界温度 Ac1 A c3 A c cm

Ac1实际加热时,珠光体转变为奥氏体的终了温度;

A c3 实际加热时,铁素体转变为奥氏体的终了温度;

A c cm 实际加热时,Fe3CⅡ溶入奥氏体的终了温度。

【讲解】必须指出的是,在实际生产冷却时,由于冷却速度较快,钢的组织转变临界温度也会发生滞后现象,在此我们不作讨论。

【小结】

一、纯金属结晶特点

纯金属是在恒定的温度下结晶的。

二、纯金属的结晶过程

晶核形成与晶核长大

三、晶粒大小对其力学性能的影响

晶粒越细,金属材料的力学性能越好。

细化晶粒的方法。

F P Ldˊ Fe3C

含碳量小————————————————→大

塑性、韧性好————————————————→差

硬度小————————————————→大

四、Fe-Fe3C相图的分析特性点、相图特性线;

五、含碳量对钢组织和性能的影响

六、Fe-Fe3C相图的应用;

【作业】习题思考

课题:3.4金属材料的热处理3.5碳素工具钢及手锯锯条的选材(2课时)

【新课导入】钳工锉削用的锉刀是采用什么材料制造的?锉刀的性能是怎样的?〔T13或T12,具有高硬度(62~65HRC)和耐磨性。〕锉刀的高硬度和耐磨性是T13本身具有的吗?不是的。它是通热处理处理出来的。从第五章开始我们将学习讨论热处理的知识。

教学目标:1、掌握热处理含义,明确普通热处理和表面热处理的种类。

2、能熟练应用Ac1、Ac

3、A C cm,明确钢加热时的组织转变及其影响因素。

3、明确等温冷却、连续冷却、过冷奥氏体;

4、理解过冷奥氏体等温图,掌握过冷奥氏体等温冷却的组织和性能。

5、掌握过冷奥氏体典型连续的产物,马氏体及马氏体转变特点。

教学重点:热处理含义, Ac1、Ac3、A C cm应用

教学难点:热处理含义, Ac1、Ac3、A C cm应用

教学过程:

【板书】热处理:将固态钢进行加热、保温和冷却,以获得所需要的组织结构与性能的工艺。

普通热处理──退火、正火、淬火、回火;

表面热处理──表面淬火、化学热处理。

注意(1)任何热处理工艺都包括加热、保温和冷却三个阶段;(如图5-1)(2)保温的目的是使工件热透,组织转变均匀。

【讲解】热处理是机械制造工艺中一个不可缺少的组成部分,它能改善零件的加工性能,提高材料使用性能,充分发挥钢材的潜力,延长零件的使用寿命。据统计,机床制造中约有60%~70%的零件,汽车、拖拉机制造中约有70%~80%的零件都要进行热处理,各种工具和轴承几乎全部要进行热处理。可见,热处理在机械制造中占有非常重要的地位。

(教师介绍“热处理史话”)

【板书】(1)钢在加热的组织转变

一、加热目的:获得奥氏体(或部分奥氏体)。

【复习】请说出Ac1、Ac3、A C cm的意义?并将Ac1、Ac3、A C c分别标注到钢部分相图中去。

【交流与讨论】

一. 45钢Ac1:724℃,Ac3:780℃。T10钢Ac1:730℃,A C cm: 800℃。请问45钢、T10钢在下表不同温度时的组织是什么?

二.亚共析钢完全奥氏体化,应加热到______以上;

共析钢完全奥氏体化,应加热到________以上;

过共析钢完全奥氏体化,应加热到______以上。

【讲解】奥氏体虽然是钢在高温状态下的组织,但它的晶粒大小、均匀程度,对钢冷却后的组织和性能有重影响。因此,了解钢在加热时组织结构的变化规律,是对钢进行正确热处理的先决条件。

【板书】二、奥氏体的形成过程教师讲读教材相关内容)

共析钢

1.奥氏体晶核的形成;2.奥氏体晶核的长大;3.残余渗碳体的溶解;4.奥氏体的均匀化。

三、奥氏体晶粒长大及影响因素

1、晶粒长大过程2、影响晶粒长大因素

小结:热处理加热时,要合理选择并严格控制加热温度和保温时间,合理选用钢材。【板书】(2)钢在冷却的组织转变

热处理的冷却方式

1、等温冷却2、连续冷却

一、过冷奥氏体等温转变

(教师讲解除清楚过冷奥氏体。)

1.过冷奥氏体等温转变图(C曲线)

(教师边图示边讲解分析以下内容)

共析钢过冷奥氏体等温转变图:

aa‵曲线为过冷奥氏体转变开始线;

bb‵曲线为过冷奥氏体转变终了线。

Ms线:过冷奥氏体发生马氏体转变的开始温度线;

M f线:过冷奥氏体发生马氏体转变的终了温度线。

2.过冷奥氏体等温转变产物的组织和性能

(1)珠光体转变在A1~550℃温度范围

组织名称符号温度范围组织特征硬度(HRC)

珠光体P A1~650℃粗片状<25

索氏体S 650℃~600℃细片状25~35

托氏体T 600℃~550℃极细片状35~40

(2)贝氏体转变在550℃~Ms温度范围。

组织名称符号温度范围组织特征硬度(HRC)

上贝氏体B上550℃~350℃羽毛状40~45

下贝氏体B下350℃~Ms黑色针叶状45~55

二、过冷奥氏体连续转变

【讲解】把钢加热到奥氏体状态后,使奥氏体在温度连续下降的过程中发生的转变称为过冷奥氏体连续冷却转变。因过冷奥氏体连续冷却转变曲线测定困难,故目前生产中通常应用过冷奥氏体等温转变图近似地来分析奥氏体连续冷却时的转变。例如我们要确定一种钢在某种连续冷却速度下所得到的组织,可将该连续冷却速度线画在此钢的等温转变图上,根据它与C曲线相交的位置,便可大致地估计出它可能得到组织。

【板书】1.典型连续冷转变(教师边图示边讲解分析以下内容)

连续冷却名称平均冷却速度转变产物

随炉冷却(V1)10℃/分珠光体

空气冷却(V2)10℃/秒索氏体

油中冷却(V3)150℃/秒托氏体+马氏体

水中冷却(V4)600℃/秒马氏体

临界冷却速度(V临):奥氏体向马氏体转变的最小冷却速度。

影响临界冷却速度的主要因素:钢的化学成分。

例如,碳钢的V临大,合金钢的V临小,

2.马氏体转变

【讲解】当冷却速度大于V临时,奥氏体很快地过冷到图5-8“c曲线”中Ms温度以下发生马氏体转变,这时γ-Fe晶格迅速向α-Fe晶格转变。但由于温度较低,钢中碳原子来不及扩散,被迫全部留在α-Fe晶格,此时碳大大超过了在α-Fe中的正常溶解度。

【板书】马氏体(M):碳溶于α-Fe的过饱和固溶体。(教师介绍材料史话)马氏体转变的特点:

(1)马氏体转变在连续转变中完成(Ms~M f);

(2)非扩散型转变,转变速度快极;

(3)马氏体转变体积发生膨胀,并产生很大的内应力;

(4)转变不彻底,存在残余奥氏体。

【板书】(3)钢的普通热处理

一、退火将钢加热到适当温度,保温一定时间,然后随炉缓慢冷却的热处理工艺。

1、退火的目的

①降低硬度,提高塑性,以利于切削加工及冷变形加工;

②细化晶粒,均匀钢的组织及成分;

③消除钢中的残余内应力,以防止工件变形或开裂。

2、常用退火

常用退火 完全退火 球化退火 去应力退火(热史话) 加热到A c 3+(30~50)℃ 加热到A c 1+(20~30)℃ 加热到略低于A 1温度 工艺 保温(一般3分/毫米) 保温 保温

随炉冷却 随炉缓慢冷却(小于50℃/h ) 随炉缓慢冷却 组织 铁素体+珠光体 球状珠光体 无组织变化

应用 用于亚共析钢的锻件、 用于过共析钢,如碳素工具 用于锻造、铸造、焊接、

铸件、焊接件的退火。 钢、合金工具钢和轴承钢。 深度冷加工变形及切削

加工后的工件应去应力。

实例 用38CrMoAI …… 用T13钢制造锉刀…… 用65Mn 钢制造……

【交流与讨论】过共析钢毛坏退火能否加热到A C cm 以上?

【板书】二、正火

1、正火工艺:将钢加热到A c 3或A c cm 以上30~50℃,经保温一段时间,随后在空气

中冷却的热处理工艺。(教师板演图示加热临界温度,并强调以下两点)

(1)加热:亚共析钢 A c 3+(30~50)℃

过共析钢 A c cm +(30~50)℃

(2)正火冷却速度比退火稍快,组织较细,强度、硬度较高。(观察表5-5)

2、正火与退火基本相同。(让学生复述)

3、应用

(1)、改善低碳钢、中碳钢的切削加工性。

(2)作为普通结构零件的最终热处理

(3)消除过共析钢中网状渗碳体,改善钢的力学性能

退火与正火的选择

【观察与思考】观察图

5-12从切削加工性考虑:低碳钢、中碳钢宜选用_____火;高碳钢宜选用______火。

1、从切削加工考虑低碳钢、中碳钢选用正火,高碳钢选用退火;

2、从使用性能考虑;

3、从最终热处理考虑;

4、从经济方面考虑,优先选用正火。 例 某工厂用 T13 钢制造丝锥锉刀,其工艺路线为:

下料→锻造→热处理1→切削加工→淬火. 低温回火→切削加工

试分析工艺路线中热处理1应选用什么?请说明热处理1的主要作用。

【板书】三、钢的淬火

淬火:将钢加热到A c3或A c1以上30~50℃,保温一定时间,然后快速冷却,以获得马氏体组织的热处理工艺。

的目:主要是获得马氏体组织,提高钢的硬度和耐磨性。

(指出:淬火是强化钢材最显著、最重要的方法。并指导阅读“你知道吗”)

淬火加热温度的选择

(指导阅读教材相关内容。)

亚共析钢A c3+(30~50)℃

过共析钢A c1+(30~50)℃(教师板书图示)

【交流与讨论】亚共析钢淬火加热温度过低或过高有什么样危害?

过共析钢淬火加热温度过高有什么样危害?

淬火冷却(V冷≥V临)

【热处理史话】随着淬火技术的发展,人们逐渐发现冷却剂对淬火质量的影响。三国蜀人蒲元曾在陕西斜谷为诸葛亮打制3000把刀,相传是派人到800多公里外的成

都取水淬火的,这说明中国在古代就注意到不同水质的冷却能力了。

【板书】淬火理想的冷却速度

【讲解】淬火时为了得到马氏体,工件在淬火介质中的冷却速度必须大于或等于临界冷却速度,但不是冷却速度越大越好,若淬火冷却速度过大,产生的收缩应力大大超过马氏体膨胀应力,工件易出现变形或开裂。因此,在保证淬硬的前提下,应尽量选择缓和的冷却介质,以减少淬火应力,防止工件变形和开裂。分共析钢的过冷奥氏体等温转变图可以看出,为了获得马氏体组织,并不需要整个冷却过程中都有要快冷,关键应在等温转变图“鼻尖”附近快冷。图5-14所示为理想的冷却速度(即慢──快──慢)。

【板书】慢──快──慢

常用的淬火冷却介质

(1)水

【讲解】由表5-6可知,水的冷却特性很不理想。因为在需要快冷的650~500℃范围它的冷却速度却很小,而在300~200℃需要慢冷时,它的冷却速度反而增大,使工件容易发生变形,甚至开裂;其次,水温的变化对其冷却能力影响很大。水温越高,冷却能力越小。生产中常通过搅拌冷却水或让冷却水循环,以提高650~500℃范围内的冷却能力。另外,淬火冷却水中若混有油、肥皂等杂质时,会显著降低其冷却能力,这在使用时必须注意。

然而,由于水价廉易得,使用安全,无燃烧、腐蚀等危害,水仍然是应用最广泛的淬火冷却介质。碳钢零件通常采用水淬火。

【板书】(1)水主要用于用于形状简单的碳钢工件淬火。

(2)盐或碱的水溶液

【讲解】为了提高水的冷却能力,可加入少量(10~15%)的盐或碱。常用的是食盐水溶液和氢氧化钠水溶液。

由表5-6可知食盐水溶液和氢氧化钠水溶液的优点在于650~500℃范围内冷却速度快,缺点是300~200℃的冷却速度仍然很快,容易引起变形开裂,并且对工件有腐蚀作用,淬火后工件必须清洗。(指导阅读教材为什么)

【板书】(2)盐或碱的水溶液主要用于重要碳钢零件的淬火。

(3)矿物油

【讲解】矿物油也是一种应用广泛的淬火冷却介质,目前生产中用作淬火冷却介质的矿物油有机油、柴油、变压器油等。由表5-6可知油的在300~200℃的温度范围内冷却速度比较慢,这对于减少淬火工件的变形与开裂是很有利的,但它在650~500℃内冷却速度太慢,故不能能用于碳钢,而只能用于临界冷却速度小的合金钢淬火,但油价格较高,易燃,不易清洗。【板书】(3)矿物油用于临界冷却速度小的合金钢淬火。

【板书】淬火方法(教师采用边图示、边分析、边讲解完成以下内容)

淬火方法单液淬火法双液淬火法分级淬火法等温淬火法

实例碳钢在水中淬火。水淬油冷(保温:使工件(保温:使工件内外温合金钢在油中淬火。内温度一致)度一致,使A冷→B下)淬火组织马氏体马氏体马氏体下贝氏体

优点易实现机械化、自取长补短,有效减小工件力学性能好,基本避动化,应用广泛。淬火应力减小。变形或开裂。免工件的淬火开裂。

缺点易产生硬度不足或操作困难。只适用尺寸较淬火时间长,零件的直硬度不均匀现象。小的零件。径或厚度不能过大,

应用适用于形状简单,变用于碳素工具用于形状复杂的用于形状复杂,强度和形要求不高的工件。钢制造易开裂碳钢或合金钢小韧性要求高的各种小型

的工件。型零件。模具、成形刀具。

淬硬性与淬透性

1、淬硬性指钢经淬火后能达到的最高硬度。

淬硬性主要取决于钢中的碳含量,含碳量越高,钢淬火后的硬度越高。

淬火材料淬火硬度

45钢 55HRC

T13钢 65HRC

2、淬透性指在规定条件下,钢淬火后获得淬硬层深度的能力。

碳钢合金钢

牌号 45 60 40Cr

水冷淬透层(mm.) 18 25 36

(1)影响淬透性的主要因素:钢的临界冷却速度(V临)

临界冷却速度越小,钢淬透性越好。

合金钢易淬透,而碳钢难淬透。

(2)淬透性好的钢的优点 a能使大截面零件淬透,获得理想的力学性能;

b可用冷却能力弱的介质淬火,减少零件的变形与开裂。

【交流与讨论】淬火是强化钢材最显著、最重要的方法,请问工件淬火后,能否直接使用?

为什么?

【板书】淬火工件

组织:马氏体+A残,不稳定。

性能:硬度高,强度大,脆性大,内应大。

结论:不能直接使用。淬火后紧接着进行回火。

【板书】第五节钢的回火

回火将淬火钢加热到A c1以下某一温度,保温一定时间,然后冷却到室温的热处理工艺。

【交流与讨论】回火的组织与冷却方式无关,只温度有关。请思考采用何种冷却方式最经济?

一、回火目的(教师边讲边分析)

1.减少或消除淬火应力;

2.获得所需要的力学性能;

3.稳定组织,稳定尺寸。

二、淬火钢在回火时组织和性能变化

1、组织的变化

(1) 80℃~200℃马氏体分解→回火马氏体

200℃~300℃残余奥氏体也开始分解(特殊细小的Fe2。4C)(2)300℃~400℃Fe2。4C→Fe3C

(3)400℃~500℃回火托氏体

(细小的Fe3C)

(4)500℃~650℃回火索氏体

(球状Fe3C + F)

2、性能的变化

【交流与讨论】45钢力学性能与回火温度的关系如图5-16所示,请分析随着回火温度的升高,强度、硬度、塑性和韧性是如何变化的?并由此完成以下结论的填充。

结论:随着回火温度的升高,钢的强度、硬度_________,塑性、韧性_________。

(推而广之,其他淬火钢回火)

【板书】随着回火温度的升高,钢的强度、硬度降低,塑性、韧性提高。

三、回火的分类和应用(教师边讲边分析)

分类低温回火中温回火高温回火

温度 150℃~250℃250℃~500℃500℃~650℃

组织回火马氏体回火托氏体回火索氏体

性能高的硬度和耐磨性,有具有高的弹性强度、屈服点具有良好的综合力学性一定的韧,内应力降低。和适当的韧性,内应力基本能,内应力全部消除。

消除。

应用主要用于高硬度工具和主要用于弹性零件和热模具广泛用于受力构件的热耐磨件的回火。如刀具、的回火。处理。如主轴、曲轴、连

冷模具、量具、滚动轴杆、螺栓、齿轮等。

承、渗碳件等。

【板书】综合力学性能:强度、硬度、塑性和韧性良好配合的性能。

调质处理:淬火与高温回火相结合的热处理。

调质处理与正火相比,不仅强度较高,而且塑性、韧性远高于正火钢。(见表5-8)原因调质处理正火

组织回火索氏体索氏体

Fe3C形态球粒状薄片状

3.5碳素工具钢及手锯锯条的选材

3.5.1碳素工具钢的牌号、成分、硬度和用途

3.5.2碳素工具钢的热处理

1碳素工具钢的退火

2碳素工具钢的淬火和回火

3手锯锯条的热处理

手锯锯条的常用材料T10、T12钢,热处理见表3-6

【小结】学习内容

普通热处理的类型:正火、退火、淬火、回火

一、正火、退火、淬火、回火的目的和工艺

二、淬火钢在回火时组织和性能变化

三、普通热处理的分类和应用

【作业】课后习题

机械工程材料试题

1、 B . 、单项选择题(本大题共10小题,每小题2分,共20分) 长轴类零件在热处理后进行冷校直,可能会造成力学性能指标降低,主要是 1 C. : D . H 在零件图样上出现如下几种硬技术条件的标注,其中正确的是( B )。 B )。 A . b : A . HB159 B. 180 ?210H B C. 800HV D . 10?17HR C 3、间隙固溶体与间隙化合物的( A .结构相同,性能不同 C .结构与性能都相同 固溶体的性能特点是( 塑性韧性高、强度硬度较低 综合力学性能高 4、 A . D . )。 D )。 .结构不同,性能相同 结构与性能都不同 .塑性韧性低、强度硬度高 .综合力学性能低 5、在发生)(:::L 的共晶反应时,三相的相对成分 (B )。A . 相同 B .确定 C .不定D . 发 生变化 6、马氏体的硬度取决于( C ) A .奥氏体的冷却速度 B . 奥氏体的转变温度 C. .奥氏体的碳含 量D .奥氏体的晶粒 7、对形状复杂,截面变化大的钢件进行淬火时, 应选用( A ) A .高淬透性钢 B 中淬透性钢 C. 低 淬透性钢D.碳素钢 8、对形状复杂,截面变化大的零件进行淬火时, 应采用( C ) 。A .水中淬火 B . 油中淬火C . 盐 浴中淬火D .空冷 9、GCr15钢中Cr 的平均含量为( B )。 A . 15% B . 1.5% C . .0.15% D .没有表示出来 10、高速钢二次硬化属于( D )。 A . 固溶强化 B . 细晶强化 C . 位错强化 D . 第二相强化 二、多项选择题(本大题共5小题,每小题4分, 共20分) C. D 1、 A . C. 2、 奥氏体是(BD )。 碳在F e ::中的间隙固溶体 碳在F e ::中的有限固溶体 下列能进行锻造的铁碳合金是 B .碳在 D.碳在 (AB Fe :冲的间隙固溶体 Fe :冲的有限固溶体 A.亚共析钢 B .共析钢 )。 .共晶白口铸铁 D .亚 共晶白口铸铁 影响碳钢淬火后残余奥氏体量的主要因素是( 钢材本身的碳含量 B .钢中奥氏体的碳含量 3、 A . 4、 BD )。 C .钢中碳化物的含量 D. A . C. 5、 汽车、拖拉机的齿轮要求表面高耐磨性,中心有良好的强韧性,应选用( 20号钢渗碳淬火后低温回火 B . 40Cr 淬火后高温回火 20CrMnTi 渗碳后淬火低温回火 D . ZGMn1水韧处理 下列钢种中,以球化退火作为预备热处理的钢种是( BD )。A . 钢的淬火加热温度 AC )。 40Cr B . T12 C . 16Mn GCr15 、填空题(本大题共15空,每空2分,共30分) 1、 合金的相结构有 固溶体和金属化合物两大类,其中前者具有较好的 后者具有较高的硬度,适宜作强化相。 2、 用光学显微镜观察,上贝氏体的组织特征呈 3、 化学热处理的基本过程包括 分解 4、 促进石墨化的元素有 —碳—、—硅 1、 共晶转变和共析转变的产物都属于 2、 塑性变形后的金属经加热将发生回复、 3、 共析钢的含碳量为 0.7 7 %。 塑性性能,适宜作基本相; 羽毛状,而下贝氏体则呈 吸附 和 扩散 ,阻碍石墨化的元素, _ 两相混合物。 再结晶 针 状。 三个阶段。 _硫_、锰 。 、晶粒长大的变 化。

机械工程材料范文

核壳微粒型磁性液体的制备及其流变性能 顾瑞1,龚兴龙1,江万权2,郝凌云3,张忠4 (1.中国科学技术大学近代力学系,中国科学院材料力学行为和设计重点实验室,安徽合肥 230027;2. 中国科学技术大学化学系,安徽合肥 230026;3.阜阳师范学院,安徽阜阳 236032;4.国家纳米科学中心,北京 100080) 摘要:使用单分散Fe/SiO2椭球型微纳复合胶粒作为磁性微粒,将其用吐温20做表面修饰并分散于油性基液中制备得到磁性液体;使用流变仪对这种新型磁流体的流变性能进行了研究。结果表明,这种磁流体在承受垂直磁场方向的小剪切载荷时,其粘度会随磁感应强度的增加而变大;而当剪切率大于25s-1,其粘度又将减小并趋近于一个恒定值约0.5Pa·s;另外,其在承受小幅振荡剪切载荷时会表现出与典型磁流体不同的粘弹性特征。 关键词:磁性液体;核壳颗粒;流变性能 中图分类号: 文章编号: Preparation and Mechanical Characterization of Magnetic Fluid with Core-Shell Particles ,ZHANG Zhong GU Rui 112 ,GONG Xing-long ,JIANG Wan-quan , HAO Ling-yun 34 (1. CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China;2. Department of Chemistry, University of Science and Technology of China, Hefei 230026, China; 3. Fuyang Normal College, Fuyang 236032, China; 4. National Center for Nanoscience and Technology, Beijing 100080, China) Abstract: Magnetic fluids were prepared by using monodispersed iron/silica (Fe/SiO2) ellipsoidal composite nanospheres as the magnetic materials,which were modified by Tween-20 and dispersed in an oily medium. The rheological properties of the magnetic fluids were studied in detail by rheometer. The Experimental investigation showed that increasing the magnetic field strength yielded an increase of the viscosity, while increasing shear rate leaded to a decrease of the viscosity and the value became a constant about 0.5 Pa·s when shear rate was larger than 25s-1; it was also indicated that the viscoelastic behavior of the magnetic fluids was different with that of the normal ones. Key words: Magnetic fluid; Core-shell particle; Rheological property 0 引言 磁性液体(又称磁流体),是一种胶体溶液,它兼具液体的流动性和固体的磁性,拥有十分独特的物理性能,且在重力场和磁场下不易沉淀和凝聚,因而在航空﹑电子﹑机械﹑冶金﹑石油化工 ﹑仪表等领域中得了广泛的应用。同他胶体体系一样,磁性液体在热力学上是不稳定体系,并具有凝结不稳定性和动力学不稳定性[1]。为使磁性颗粒能长期稳定地处于胶体状态,研究者对磁性颗粒、表面活性剂和基液作了很多研究,研究表明超微磁性颗粒的稳定性是磁流体研究的关键[2]。磁性微粒既需要有较高的 饱和磁化强度,又要有很强的抗氧化能力,因而可供选择的种类非常有限[3]。而Fe O作为传统磁流体的 34————————————————————— 收稿日期:2007-08-30 修订日期:2008-2-29 基金项目:国家重点基础研究发展计划资助项目(2007CB936803);中国科学院“百人计划”项目。

机械工程材料及应用教案王纪安1-2

《机械工程材料应用》教案 项目一工程材料与机械制造过程 课题:材料的发展过程分类及发展趋势(4课时) 导入:教师以教材“问题”进行课程的始学教育,举出身边某制品或零件,说出是什么材料制造的,为何选用这种材料 教学目标:1.了解机械工程材料及其分类; 2. 了解机械工程材料的发展过程; 3. 了解机械制造过程; 4. 了解机械工程材料在机械制造过程中的地位和作用 前测:什么是机械工程材料你所知道的机械制造过程有哪些 教学过程: 【板书】一.材料的简要发展过程 材料是人类文明和技术进步的重要标志。 石器时代→青铜器时代→铁器时代→钢铁时代→新材料时代 1、司母戊大鼎发掘历史; 2、新型材料(航空航天材料)。 【讲解】在浩瀚的材料世界里,金属材料是一个最大的王国。最早,我们人类使用的金属材料主要是天然产品。(穿插讲解材料史话)经历了石器时代、青铜器时代和铁器时代的漫长历史过程后,在冶金技术的推动下,我们又从钢铁时代迈进了新材料时代。在人类文明历程中,金属材料对推动社会的发展,促进文明的进步,丰富文化的内容,改变人们的生活方式发挥了巨大作用。当今世界,金属材料已成为工农业生产、人民生活、科学技术和国防发展的重要物质基础。离开了金属材料的“钢筋铁骨”,桥梁将断,舰艇将毁,大厦将倾,工厂将停…… 二、了解机械工程材料的分类及发展过程 1 、定义机械工程材料主要指用于机械工程、电器工程、建筑工程、化工工程、航空航天工程等领域的材料。 2、分类(按化学成分分类) 金属材料 (综合性能好,用量最大、应用范围最广) 【设问】同学们在平时的生活中看到过哪些金属(纯金属) 【板书】1.金属:如铁、铜、铝、金、银等,共有90种。常温下为固体(除汞外)。 【设问】金属与非金属比较有哪些特性 【板书】2.金属特性: 具有金属光泽;(铁、铝等大多数金属为银白色,铜为紫红色,金为黄色)

机械工程材料试题及答案三

机械工程材料试题三 一、名词解释(共15分,每小题3分) 1. 奥氏体(A) 2.回复 3.固溶体 4.自然时效 5.加工硬化 二、填空题(共20分,每空1 分) 1.石墨为片状的灰口铸铁称为________铸铁,石墨为团絮状的灰口铸铁称为________铸铁,石墨为球状的灰口铸铁称为________铸铁。其中________铸铁的韧性最高,因而可以锻造。 2. 陶瓷材料中的气相是指________,在________程中形成的,它 ________了陶瓷的强度。 3.根据采用的渗碳剂的不同,将渗碳分为__________、__________和__________三种。 4.工程中常用的特殊性能钢有_________、_________、_________等。 5.金属的断裂形式有__________和__________两种。 6.金属元素在钢中形成的碳化物可分为_________、_________两类。 7.常见的金属晶体结构有____________、____________和____________三种。 三、选择题(共25分,每小题1分) 1.40钢钢锭在1000℃左右轧制,有时会发生开裂,最可能的原因是( ) A.温度过低; B.温度过高; C.钢锭含磷量过高; D.钢锭含硫量过高 2.下列碳钢中,淬透性最高的是( ) A.20钢; B.40钢; C.T8钢; D.T12钢 3.Ni在1Cr18Ni9Ti钢中的主要作用是( ) A.提高淬透性; B.固溶强化; C.扩大Fe-Fe3C相图中的γ相区; D.细化晶粒; 4.W18Cr4V钢锻造后,在机械加工之前应进行( ) A.完全退火; B.球化退火; C.去应力退火; D.再结晶退火 5.下列材料中,最适合制造机床床身的是( ) A.40钢; B.T12钢; C.HT300; D.KTH300-06 6.下列材料中,最适合制造气轮机叶片的是 A.1Cr13钢; B.1Cr17钢; C.3Cr13钢; D.4Cr13钢 7.下列材料中,最适合制造飞机蒙皮的是( ) A.ZAlSi12; B.2A50(旧牌号LD5); C.ZAlMg10; D.2A12(旧牌号LY12) 8.下列材料中,最适合制造盛放氢氟酸容器的是( ) A.1Cr17; B.1Cr18Ni9Ti; C.聚四氟乙烯; D.SiO2 9.下列材料中,最适合制造汽车板弹簧的是( ) A.60Si2Mn; B.5CrNiMo; C.Cr12MoV; D.GCr15 10.下列材料中,最适合制造汽车火花塞绝缘体的是( ) A.Al2O3; B.聚苯乙烯; C.聚丙烯; D.饱和聚酯 11.铜只有通过冷加工并经随后加热才能使晶粒细化,而铁则不需冷加工,只 需加热到一定温度即使晶粒细化,其原因是( ) A.铁总是存在加工硬化,而铜没有; B.铜有加工硬化现象,而铁没有; C.铁在固态下有同素异构转变;而铜没有 D.铁和铜的再结晶温度不同 12.常用不锈钢有铁素体不锈钢、奥氏体不锈钢、马氏体不锈钢和( ) A.铁素体-奥氏体不锈钢; B.马氏体-奥氏体不锈钢; C.莱氏体不锈钢; D.贝氏体不锈钢 13.以下哪种铸铁的断口呈灰黑色?( ) A.马口铁; B.白口铸铁; C.麻口铸铁; D.灰铸铁

第十一章 机械工程材料的选择及应用

第十一章机械工程材料的选择及应用 掌握各种工程材料的特性,正确地选择和使用材料,并能初步分析机器及零件使用过程中出现的各种材料问题,是对从事机械设计与制造的工程技术人员的基本要求,因为机器零件的设计不单是结构设计,还应该包括材料与工艺的设计。 许多机械工程师把选材看成一种简单而不太重要的任务。当碰到零件的选材问题时,他们一般都是参考相同零件或类似零件的用材方案,选择一种传统上使用的材料(这种方法称为经验选材法);当无先例可循,同时对材料的性能(如耐腐蚀性能等)又无特殊要求时,他们仅仅根据简单的计算和手册提供的数据,信手选定一种较万能的材料,例如45钢。这种简单化的处理方法已日益暴露出种种缺点,并证明是许多重大质量事故的根源。所以,选材正在逐渐变成一种严格地建立在试验与分析基础上的科学方法。掌握这种选材方法的要领,了解正确选材的过程,显然具有很大的实际价值。 在机械制造业中,新设计的机械产品中的每一个机械零件或工程构件、工艺装备和非标准设备,机械产品的改型,机械产品中某些零件需要更换材料,进口设备中某些零配件需用国产零配件代用等,都会遇到材料的选用。一般机械零件,在设计和选材时,大多以使用性能指标作为主要依据。而对机械零件起主导作用的机械性能指标,则是根据零件的工作条件和失效形式提出的。 §11.1 零件的失效形式与提高材料性能的途径 一、零件的失效与失效分析 零件在工作过程中最终都要发生失效。所谓失效是指:(1)零件完全破坏,不能继续工作;(2)严重损伤,继续工作很不安全;(3)虽能安全工作,但已不能满意地起到预定的作用。只要发生上述三种情况中的任何一种,都认为零件已经失效。失效分析的目的就是要找出零件损伤的原因,并提出相应的改进措施。现代工业中零件的工作条件日益苛刻,零件的损坏往往会带来严重的后果,因此对零件的可靠性提出了越来越高的要求。另外,从经济性考虑,也要求不断提高零件的寿命。这些都使得失效分析变得越来越重要。失效分析的结果对于零件的设计、选材、加工以至使用,都有很大的指导意义。 1、零件失效的原因 零件的失效可以由多种原因引起,大体上可分为设计、材料、加工和安装使用四个方面,图11-1是导致零

机械工程材料复习

机械工程材料复习 第一部分基本知识 一、概述 1.目的 掌握常用工程材料的种类、成分、组织、性能和改性方法的基本知识(性能和改性方法是重点)。 具备根据零件的服役条件合理选择和使用材料;具备正确制定热处理工艺方法和妥善安排工艺路线的能力。 2复习方法 以“材料的化学成分-加工工艺-组织、结构-性能-应用”之间的关系为主线,掌握材料性能和改性的方法,指导复习。 二、材料结构与性能: 1?材料的性能: ①使用性能:机械性能(刚度、弹性、强度、塑性、硬度、冲击韧性、疲劳强度、断裂韧性); ②工艺性能:热处理性能、铸造性能、锻造性能、机械加工性能等。 2.材料的晶体结构的性能:纯金属、实际金属、合金的结构(第二章);纯金属:体心立方(-F e )、面心立方(-F e ),各向异性、强度、硬度低;塑性、韧性高实际金属:晶体缺陷(点:间隙、空位、置换;线:位错;面:晶界、压晶界)-各向同性;强度、硬度增高;塑性、韧性降低。 合金:多组元、固溶体与化合物。力学性能优于纯金属。单相合金组织:合金在

固态下由一个固相组成;纯铁由单相铁素体组成 多相合金组织:由两个以上固相组成的合金。 多相合金组织性能:较单相组织合金有更高的综合机械性能,工程实际中多采用多相组织的合金。 3.材料的组织结构与性能 ⑴。结晶组织与性能:F、P、A、Fe3G Ld; 1)平衡结晶组织 平衡组织:在平衡凝固下,通过液体内部的扩散、固体内部的扩散以及液固二相之间的扩散使使各个晶粒内部的成分均匀,并一直保留到室温。 2)成分、组织对性能的影响 ①硬度(HBS):随C%!,硬度呈直线增加,HBS值主要取决于组成相F63C的相对量。 ②抗拉强度(b) : C%v 0.9%范围内,先增加,C%> 0.9?1.0 %后,b值显着下降。 ③钢的塑性()、韧性(a k):随着C%!,呈非直线形下降。 3)硬而脆的化合物对性能的影响: 第二相强化: 硬而脆的化合物, 若化合物呈网状分布: 则使强度、塑性下降; 若化合物呈球状、粒状(球墨铸铁):降低应力集中程度及对固溶体基体的割裂作用,使韧性及切削加工性提高; 呈弥散分布于基体上: 则阻碍位错的移动及阻碍晶粒加热时的长大,使强度、

机械工程材料实验与实践教学

《机械工程材料》实验与实践教学 实验一铁碳合金平衡组织分析 一、实验目的 1. 熟练运用铁碳合金相图,提高分析铁碳合金平衡凝固过程及组织变化的能力。 2. 掌握碳钢和白口铸铁的显微组织特征。 二、原理概述 铁碳合金相图是研究碳钢组织、确定其热加工工艺的重要依据。按组织标注的铁碳相图见图。铁碳合金在室温的平衡组织均由铁素体(F)和渗碳体(Fe3C)两相按不同数量、大小、形态和分布所组成。高温下还有奥氏体(A)和δ固溶体相。 利用铁碳合金相图分析铁碳合金的组织时,需了解相图中各相的本质及其形成过程,明确图中各线的意义,三条水平线上的反应及反应产物的本质和形态,并能做出不同合金的冷却曲线,从而得知其凝固过程中组织的变化及最后的室温组织。 根据含碳量的不同,铁碳合金可分为工业纯铁、碳钢及白口铸铁三大类,现分别说明其组织形成过程及特征。 1. 工业纯铁 碳的质量分数小于0.0218%的铁碳合金称为工业纯铁。见图1-1。当其冷到碳在α-Fe中的固溶度线PQ以下时,将沿铁素体晶界析出少量三次渗碳体,铁素体的硬度在80HB左右,而渗碳的硬度高达800HB,因工业纯铁中的渗碳体量很少,故硬度、强度不高而塑性、韧性较好。

图1-1 工业纯铁组织 2. 碳钢 碳的质量分数C w 在(0.0218~2.11)%之间的铁碳合金称为碳钢,根据合金在相图中的位置可分为亚共析、共析和过共析钢。 (1)共析钢 成分为%77.0=C w ,在727℃以上的组织为奥氏体,冷至727℃时发生共析反应: {}{}C Fe F A C C 3%0218.0%77.0+→ 将铁素体与渗碳体的机械混合物称珠光体(P )。室温下珠光体中渗碳体的质量分数约为12%,慢冷所得的珠光体呈层片状。 图1-2 珠光体电镜组织 图1-3 珠光体光镜组 织 采用电子显微镜高倍放大能看出Fe 3C 薄层的厚度,图1-2中窄条为Fe 3C ,

机械工程材料专升本试题(答案)

二、填空题(共20分,每空1 分) 1.石墨为片状的灰口铸铁称为普通灰口铸铁,石墨为团絮状的灰口铸铁称为可锻铸铁,石墨为球状的灰口铸铁称为球墨铸铁。其中球墨铸铁的韧性最高,因而可以锻造。 2. 陶瓷材料中的气相是指气孔,在烧结程中形成的,它降低了陶瓷的强度。 3.根据采用的渗碳剂的不同,将渗碳分为___固体渗碳气体渗碳_______、___三种。 4.工程中常用的特殊性能钢有___不锈钢耐热钢耐磨刚______、__________等。 6.金属元素在钢中形成的碳化物可分为__合金渗碳体特殊碳化物_______、______两类。 1.40钢钢锭在1000℃左右轧制,有时会发生开裂,最可能的原因是( d ) A.温度过低; B.温度过高; C.钢锭含磷量过高; D.钢锭含硫量过高 2.下列碳钢中,淬透性最高的是( c ) A.20钢; B.40钢; C.T8钢; D.T12钢 3.Ni在1Cr18Ni9Ti钢中的主要作用是( C ) A.提高淬透性; B.固溶强化; C.扩大Fe-Fe3C相图中的γ相区; D.细化晶粒; 4.W18Cr4V钢锻造后,在机械加工之前应进行( ) A.完全退火; B.球化退火; C.去应力退火; D.再结晶退火 6.下列材料中,最适合制造气轮机叶片的是A A.1Cr13钢; B.1Cr17钢; C.3Cr13钢; D.4Cr13钢 7.下列材料中,最适合制造飞机蒙皮的是( D ) A.ZAlSi12; B.2A50(旧牌号LD5); C.ZAlMg10; D.2A12(旧牌号LY12) 8.下列材料中,最适合制造盛放氢氟酸容器的是(C )A.1Cr17; B.1Cr18Ni9Ti;C.聚四氟乙烯; D.SiO2 9.下列材料中,最适合制造汽车板弹簧的是( )A.60Si2Mn; B.5CrNiMo; C.Cr12MoV; D.GCr15 10.下列材料中,最适合制造汽车火花塞绝缘体的是( A )A.Al2O3; B.聚苯乙烯; C.聚丙烯; D.饱和聚酯 11.铜只有通过冷加工并经随后加热才能使晶粒细化,而铁则不需冷加工,只需加热到一定温度即使晶粒细化,其原因是( C )A.铁总是存在加工硬化,而铜没有; B.铜有加工硬化现象,而铁没有; C.铁在固态下有同素异构转变;而铜没有D.铁和铜的再结晶温度不同15.马氏体组织有两种形态( B )。A.板条、树状 B.板条、针状C.树状、针状; D.索状、树状四、判断题(共10 分,每小题1 分) 3.钢的淬透性越高,产生焊接裂纹的倾向越大。( R ) 4.铝合金也可以象钢那样通过淬火明显提高其硬度。( W ) 6.可锻铸铁中的团絮状石墨是浇注球墨铸铁时石墨球化不良的结果。( W ) 7.一定加热温度下,奥氏体晶粒长大倾向小的钢称为本质细晶粒钢。( R ) 9.铝极易氧化,故铝制品的抗氧化失效能力极差。( W ) 10.弹簧钢淬火后采用中温回火是想提高钢的弹性模量。( W ) 2、答:回火的目的是:(1)降低零件脆性,消除或降低内应力;(2)获得所要求的力学性能;(3)稳定尺寸;(4)改善加工性。

《机械工程材料》实验指导书-江洁实验一硬度试验

机械工程材料 实 验 指 导 书 红河学院机械系

实验一硬度实验 【实验目的】 1.进一步加深对硬度概念的理解。 2.了解布氏、洛氏硬度计的构造和作用原理。 3.熟悉布氏硬度、洛氏硬度的测定方法和操作步骤。 【实验设备及材料】 布氏硬度计、洛氏硬度计、读数显微镜、试样(钢、铸铁或有色金属)一组。 【实验原理】 硬度计的原理是:将一定直径球体压入试样表面,保持一定的时间后卸除试验力,测量试样表面的压痕直径,用试验力压出一压痕表面面积计算硬度。 1.布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2) ,布氏硬度计适用于铸铁等晶粒粗大的金属材料的测定。 2.洛氏硬度(HR)当HB大于450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计。它是用一个顶角120°的金刚石圆锥体或直径为1.59、 3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的硬度标尺HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。HRB:是采用100kg 载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 一、布氏硬度实验 【布氏硬度计】 THBS-3000DA采用电子自动加荷,计算机软件编程,高倍率光学测量,采用自动数字式编码器直接测量,测试结果LCD显示。 图1 THBS-3000DA型布氏硬度试验机 【试样的技术条件】

机械工程材料的应用及发展前景的展望

机械工程材料的应用及发展前景的展望 发表时间:2016-09-07T15:39:20.750Z 来源:《建筑建材装饰》2015年9月下作者:韩颖颖 [导读] 从而促进机械工程的取得更大的成绩,为我国工业的发展打下坚实的基础。 (天津市工大镀锌设备有限公司,天津300000) 摘要:机械工程材料是机械工程设计与质量的重要前提。因此必须做好机械工程材料的选用工作,并重视机械工程材料的研发,从而促进机械工程的取得更大的成绩,为我国工业的发展打下坚实的基础。 关键词:机械工程;材料应用;发展前景 前言 机械工程材料影响着机械的设计、制造、仿制、维修等方面,可见其是机械工程中不可或缺的重要组成部分,也是节约机械所用成本的关键所在,因此如何在保证既经济又有质量保证的前提下处理好多种工程材料的选择与应用是一个值得探讨的问题。 1机械工程材料选择选择应用的现状分析 1.1从构件失效抗力角度分析 材料失效抗力主要指构建自身是否具备抗磨损、抗变形等能力,通过对构件参量进行表征以避免构件材料在使用前便出现失效的状况。以往失效抗力在研究过程中既需考虑到材料力学性能,也需构建相应的模型确定其在实际工况中的特性。如许多学者关于热作模具钢的失效分析过程中,通过测试材料寿命并分析模具寿命,得出模具设计选材的标准,其具体选材步骤主要体现在:(1)对用于零件成形的机械材料进行确定并结合模具使用条件,以此判断选择哪种模具以及具体抗力要求;(2)通过对模具时效形式的分析对抗力指标进行确定,选择满足指标标准的钢种;(3)对满足抗力指标要求且符合模具类型的钢种确定的基础上,判断是否与首相抗力指标以及其他指标相吻合;(4)进行选材过程中还需考虑到材料的来源、经济性以及是否便于生产管理等因素。这种选材方式的研究很大程度上为热模具的选材奠定理论基础。 1.2从经济适用性角度考虑 在机械工程对于材料的选择应用首先需要关注的就是材料的适用性和经济性。比如,在机械铸造工艺中需要保正材料具备良好的吸气性、收缩性、偏折性和流动性;而在锻造工艺中则要求材料必须具备较好的冲压性、可锻性、冷镦性和断后冷却性;焊接工艺对材料的适用性和敏感性要求较高。机械加工材料的不同特性为机械工程工艺提供了不同的材料选择,在保证满足工艺需求的前提下,把握好工艺需求材料的各种特性,合理化选择材料才是机械工程发展的正确方向。在注重了机械工程材料的适用性后,还需要根据工程预算合理考虑设计材料的经济性。既要做到选材的质量要求达标,也要保证经济实惠的材料价格选择。而对于可循环利用的机械材料,在整个机械工程中应当循环利用,降低资源消耗,减少机械工程成本,提高整体的经济效益。 1.3从环保、节能角度考虑 国家制定的可持续发展战略就是要求生态、环保、节能,任何企业都必须认真贯彻党的战略方案。一般来说,在机械工程的使用材料中,很多原材料都是不可再生能源,如果过度消耗,最终势必会给机械工程行业带来极大的隐患。因此,我们在材料选择与应用工作中要做到环保和节能,尽可能的使得环保要求和使用需求都能满足。 2机械工程材料的应用 2.1钢铁材料及其应用 当前工业仍然是我国经济发展的主体行业,而钢铁材料也一直是使用较多的重要的机械材料。钢铁工业发展呈现产品结构在变化、增长,产业集中度进一步提高等趋势主要应用领域:为电力系统、汽车工业、铁路与桥梁、船舶与海上钻井平台、兵器工业、石油开采机械及输油管道、化工压力容器、建筑钢筋和构架等。 2.2镁、镁合金及其应用 镁具有优良的物理性能和机械加工性能,此外其还具有丰富的蕴藏量,因而被业内公认为最有前途的轻量化材料,其也是21世纪的绿色金属材料。汽车、摩托车等交通类产品用镁合金,镁作为实际应用中最轻的金属结构材料在汽车的减重和性能改善中的重要作用受到人们的重视,世界各大汽车公司已经将镁合金制造零件作为重要发展方向。另外,镁合金应用发展最快的是电子信息和仪器仪表行业,在薄壁、微型、抗摔撞的要求之下,加上电磁屏蔽、散热和环保方面的考虑,镁合金成了厂家的最佳选择,镁合金外壳可使产品更豪华、美观。近几年电子信息行业镁合金的消耗量急剧增加,成为拉动全球镁消耗量增加的另一重要因素。 2.3铝、铝合金及其应用 密度小、导热性好、易于成形、价格低廉等都是铝合金的优点,因而其被广泛的应用于航空航天、交通运输、轻工建材等部门。例如,在航空航天领域,铝锂合金具有低密度、高比强度、高比刚度、优良的低温性能、良好的耐腐蚀性能和卓越的超塑成型性能,被认为是航空航天工业中的理想结构材料。在航天领域,铝锂合金己在许多航天构件上取代了常规高强铝含金,铝锂合金作为储箱、仪器舱等结构材料具有较大优势国外预测,含抗铝一镁合金及其它系列的铝合金有可能成为下一代飞机的重要结构材料。TiAi基合金的板材除了有望直接用作结构材料外,还可以用作超塑性成型的预成型材料,并用于制作近净成型航空、航天发动机的零部件及超高速飞行器的翼、壳体等又如,在汽车领域,汽车用铝合金材料的3/-4为铸造铝合金,主要是发动机部件,传动系部件,底盘行走系零部件变形铝合金主要用于热交换器系统,车身系部件铝基复合材料在某些范围内替代铝合金、钢和陶瓷等传统的汽车材料,用于汽车关键零件,特别是高速运动零件,对减少质量、减少运动惯性、降低油耗、改善排放和提高汽车综合性能等具有非常积极的作用,在汽车领域有着良好的应用前景。 2.4稀有金属材料及其应用 现代机械工程中稀有金属也有着广泛的用途。例如,在电子工业领域,高纯度稀有金属锗是最王要的半导体材料之一,此外铌、钨、铝、钛等也都是电了工业的重要材料;稀有金属钽用以制造比容大、性能稳定的优质电容器,成为航空及航天设备中的重要电子元件。又如,在钢铁工业领域,稀土金属及稀有高熔点金属都是冶炼优质钢的重要添加剂,少量稀土或钒加入到钢中,能大大提高强度和耐

机械工程材料及应用教案王纪安1-2知识分享

机械工程材料及应用教案王纪安1-2

《机械工程材料应用》教案 项目一工程材料与机械制造过程 课题:材料的发展过程分类及发展趋势(4课时) 导入:教师以教材“问题”进行课程的始学教育,举出身边某制品或零件,说出是什么材料制造的,为何选用这种材料? 教学目标:1.了解机械工程材料及其分类; 2. 了解机械工程材料的发展过程; 3. 了解机械制造过程; 4. 了解机械工程材料在机械制造过程中的地位和作用 前测:什么是机械工程材料?你所知道的机械制造过程有哪些? 教学过程: 【板书】一.材料的简要发展过程 材料是人类文明和技术进步的重要标志。 石器时代→青铜器时代→铁器时代→钢铁时代→新材料时代 1、司母戊大鼎发掘历史; 2、新型材料(航空航天材料)。 【讲解】在浩瀚的材料世界里,金属材料是一个最大的王国。最早,我们人类使用的金属材料主要是天然产品。(穿插讲解材料史话)经历了石器时代、青铜器时代和铁器时代的漫长历史过程后,在冶金技术的推动下,我们又从钢铁时代迈进了新材料时代。在人类文明历程中,金属材料对推动社会的发展,促进文明的进步,丰富文化的内容,改变人们的生活方式发挥了巨大作用。当今世界,金属材料已成为工农业生产、人民生活、科学技术和国防发展的重要物质基础。离开了金属材料的“钢筋铁骨”,桥梁将断,舰艇将毁,大厦将倾,工厂将停…… 二、了解机械工程材料的分类及发展过程 1 、定义机械工程材料主要指用于机械工程、电器工程、建筑工程、化工工程、航空航天工程等领域的材料。 2、分类(按化学成分分类) 金属材料 (综合性能好,用量最大、应用范围最广) 【设问】同学们在平时的生活中看到过哪些金属(纯金属)? 【板书】1.金属:如铁、铜、铝、金、银等,共有90种。常温下为固体(除汞外)。 【设问】金属与非金属比较有哪些特性? 【板书】2.金属特性: 具有金属光泽;(铁、铝等大多数金属为银白色,铜为紫红色,金为黄色) 有良好的导电性和导热性;(铜、铝是优良的导电体) 有一定的强度和塑性。

机械工程材料期末考试

机械工程材料期末考试 一.填空题(共30分,每空1分) 1.液态金属结晶的基本过程是形核与晶核长大。 2.铁素体(F)是碳溶于α-Fe 所形成的间隙固溶体,其晶格类型是:体心立方。 3. 检测淬火钢件的硬度一般用洛氏(HRC)硬度;而检测退火和正火钢件的硬度常用布氏(HRB)硬度。4.GCr15钢是滚动轴承钢,其Cr的质量分数是1.5% 。5.16Mn钢是合金结构钢,其碳的质量分数是0.16% 。6.QT600-03中的“03”的含义是:最低伸长率为3% 。7. 钢与铸铁含碳量的分界点是:2.11% 。 8.贝氏体的显微组织形态主要有B上和B下两种,其中B下的综合性能好。9.钢的淬火加热温度越高,淬火后马氏体中含碳量越高,马氏体晶粒越粗大,残余奥氏体的量越越多。 10.钢加热时A的形成是由A晶核的形成、A晶核向F和Fe3C 两侧长大、残余Fe3C的溶解、A的均匀化等四个基本过程所组成的。11.一般表面淬火应选中碳成分钢,调质件应选用中碳成分钢。13.碳钢常用的淬火介质是水,而合金钢是油。 14.T10钢(Ac1≈727℃,Accm≈800℃)退火试样经700 ℃、780 ℃、860 ℃加热保温,并在水中冷却得到的组织分别是:P+Fe3C ,Fe3C+M+Ar ,M+Ar 。 15.渗碳钢在渗碳后缓慢冷却,由表面向心部的组织分布依次为:P+Fe3CⅡ (网状),P ,P+F 。得分 二.判断题(共10分,每小题1分)(正确√ 错误×,答案填入表格)1.在其他条件相同时,砂型铸造比金属型铸造的铸件晶粒更细。× 2.固溶强化是指因形成固溶体而引起的合金强度、硬度升高的现象。√ 3.珠光体、索氏体、屈氏体都是铁素体和渗碳体组成的机械混合物。√ 4.碳的质量分数对碳钢力学性能的影响

机械工程材料习题答案

机械工程材料习题答案 第二章作业 2-1常见的金属晶体结构有哪几种?它们的原子排列和晶格常数有什么特点?-Fe、-Fe、Al、Cu、Ni、Cr、V、Mg、Zn各属何种结构? 答:常见晶体结构有3种: ⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn 2---7为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性? 答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。 第三章作业 3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。 答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒

小 第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好?试用多晶体塑性变形的特点予以解释。 答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是: (1)强度高:Hall-Petch公式。晶界越多,越难滑移。 (2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。 (3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂7~15天,然后 再精加工。试解释这样做的目的及其原因? 答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)? 答:W、Sn的最低再结晶温度分别为: TR(W) =(0.4~0.5)×(3410+273)-273 =(1200~1568)(℃)>1000℃TR(Sn) =(0.4~0.5)×(232+273)-273 =(-71~-20)(℃) <25℃ 所以W在1000℃时为冷加工,Sn在室温下为热加工

机械工程材料基本知识

机械工程材料基本知识 1.1 金属材料的力学性能 任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。如 起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭 力的作用等等。这就要求金属材料必须具有一种承受机械荷而不超过许可变 形或不破坏的能力。这种能力就是材料的力学性能。金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。 1.1.1 强度 强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。强度指标一般用单位面积所承受的载荷即力表示,符号为σ,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外 力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值, 用σ表示。抗拉强度是指金属材料在拉力的作用下,s被拉断前所能承受的 最大应力值,用σ表示。 b对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件 强度设计的依据;对于因断裂而失效的零件,而用抗拉强度作为其强度设计的依据。 1.1.2 塑性 塑性是指金属材料在外力作用下产生塑性变形而不断裂的能力。 工程中常用的塑性指标有伸长率和断面收缩率。伸长率指试样拉断后的伸长 量与原来长度之比的百分率,用符号δ表示。断面收缩率指试样拉断后,断面缩小的面积与原来截面积之比,用 表示。 伸长率和断面收缩率越大,其塑性越好;反之,塑性越差。良好的塑性是金 属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然 脆断的必要条件。 1.1.3 硬度

(完整word版)金属材料教案.

机械工程学院课程教案 课程名称金属材料与热处理课程编码教材《工程材料与热加工》大连理工大学出版社 第7 章低合金钢与合金钢学时 2 教学目的: 1 掌握钢的分类与牌号、性能特点及应用 2掌握常用非合金钢的种类、牌号、性能特点及应用; 3 能够识别我非国合金工具钢及常用特殊性能钢的牌号 教学重点: 1. 钢的分类及钢铁合金的分类与牌号、性能特点及应用; 2.非合金钢的种类、牌号、性能特点及应用; 3. 掌握铸造碳钢种类、牌号、性能特点及应用; 教学难点: 1. 钢的分类及钢铁合金的分类与牌号、性能特点及应用; 2.非合金钢的种类、牌号、性能特点及应用; 3. 掌握铸造碳钢种类、牌号、性能特点及应用; 授课形式:讲练结合,传授法

教学内容 第五章钢铁材料 5.1.1 钢的分类及合金牌号统一数字代号体系 5.1.2 钢铁及合金牌号统一数字代号体系 5.2 非合金钢 5.2.1 常存杂质元素的影响及非合金钢的分类 1.常存杂质元素的影响 2.非合金钢的分类 提问或作业

机械工程学院课程教案 课程名称金属材料与热处理课程编码教材《工程材料与热加工》大连理工大学出版社 第 5 章第3、4 节学时 2 教学目的: 1.掌握低合金钢的化学成分、性能与热处理牌号及用途 2.掌握合金钢化学成分、性能与热处理牌号及用途 3.掌握合金工具钢和高速工具钢的化学成分、性能与热处理牌号及用途 教学重点: 1.低合金钢、合金钢、工具钢和高速工具钢的化学成分 2.低合金钢、合金钢、工具钢和高速工具钢性能与热处理牌号及用途 教学难点: 低合金钢、合金钢、工具钢和高速工具钢的牌号及工艺曲线图 授课形式: 讲练结合,传授法

机械工程材料考试复习

1机械零件在工作条件下可能承受哪些负荷?这些负荷对零件产生什么作用? 机械工程材料在工作中,会受到力学负荷、热负荷、环境介质的作用。力学负荷可分为静载荷和动载荷两类。热负荷主要指材料的热疲劳现象和高温氧化等。环境负荷主要包括金属的腐蚀和金属的摩擦磨损和老化作用等. 2金属材料有哪些加工工艺?加工工艺性能是指制造工艺过程中材料适应加工的性能,反映了材料加工的难易程度。包括铸造性能、锻造性能、焊接性能、热处理性能和切削加工性能等。 3常见的金属晶格有:体心立方晶格, 面心立方晶格, 密排六方晶格 4晶体缺陷有哪些?他们的几何特征是: 由于结晶条件等原因,会使晶体内部出现某些原子排列不规则的区域,这种区域被称为晶体缺陷。根据晶体缺陷的几何特点,可将其分为以下三种类型:(1)点缺陷:点缺陷是指长、宽、高尺寸都很小的缺陷。最常见的点缺陷是晶格空位和间隙原子和置换原子。(2)线缺陷:线缺陷是指在一个方向上的尺寸很大,另两个方向上尺寸很小的一种缺陷,主要是各种类型的位错。(3)面缺陷:面缺陷是指在两个方向上的尺寸很大,第三个方向上的尺寸很小而呈面状的缺陷。面缺陷的主要形式是各种类型的晶界,它是多晶体中晶粒之间的界面。 5结晶时的过冷现象和过冷度:金属在平衡条件下所测得的结晶温度称为理论结晶温度 (T0)。但在实际生产中,液态金属结晶时,冷却速度都较大,金属总是在理论结晶温度以下某一温度开始进行结晶,这一温度称为实际结晶温度(Tn)。金属实际结晶温度低于理论结晶温度的现象称为过冷现象。理论结晶温度与实际结晶温度之差称为过冷度,用△T表示,即△T=T0-Tn。 6金属晶粒大小对机械性能有什么影响?如何控制结晶时晶粒的大小?金属结晶后的晶粒大小对金属的力学性能影响很大。一般情况下,晶粒愈细小,金属的强度和硬度愈高,塑性和韧性也愈好。因此,细化晶粒是使金属材料强韧化的有效途径。金属结晶时,一个晶核长成一个晶粒,在一定体积内所形成的晶核数目愈多,则结晶后的晶粒就愈细小。因此,工业生产中,为了获得细晶粒组织,常采用以下方法:1.增大过冷度,增加过冷度,使金属结晶时形成的晶核数目增多,则结晶后获得细晶粒组织。2.进行变质处理,变质处理是在浇注前向液态金属中人为地加入少量被称为变质剂的物质,以起到晶核的作用,使结晶时晶核数目增多,从而使晶粒细化。例如,向铸铁中加入硅铁或硅钙合金,向铝硅合金中加入钠或钠盐等都是变质处理的典型实例。3.采用振动处理,在金属结晶过程中,采用机械振动、超声波振动、电磁振动等方法,使正在长大的晶体折断、破碎,也能增加晶核数目,从而细化晶粒。 7冷拉钢丝绳是利用加工硬化效应提高其强度的,在这种状态下的钢丝中晶体缺陷密度增大,强度增加,处于加工硬化状态。在1000℃时保温,钢丝将发生回复、再结晶和晶粒长大过程,组织和结构恢复到软化状态。在这一系列变化中,冷拉钢丝的加工硬化效果将消失,强度下降,在再次起吊时,钢丝将被拉长,发生塑性变形,横截面积减小,强度将比保温前低,所以发生断裂。 8奥氏体的形成过程:分为新相的形核,长大过程。根据Fe-Fe3C,将共析钢加热到A1以上温度后,珠光体处于不稳定状态。首先,在铁素体碳体的交界处产生奥氏体晶核,这是由于Fe/Fe3C相界上原子排列不规则以及碳浓度不均匀,为优先形核提供了有利条件,既有利于铁的晶格有体心立方变为面心立方,有利于Fe3C的溶解及碳向新生相的扩散,其后就是奥氏体晶核长大的过程,也就是α-Fe→γ-Fe的连续转变和Fe3C向奥氏体的不断溶解。实验表明,在奥氏体长大的过程,也就是铁素体比参碳体先消失。因此,奥氏体形成之后还有残余参碳体不断溶入奥氏体,直到参碳体全部消失,继续加热时奥氏体中碳含量逐渐均匀化,最终得到细小均匀的奥氏体。 10钢常用的合金元素有锰Mn硅Si铬Gr镍Ni钨W钼Mo钒V钛Ti硼B这些元素既可以单独加入钢中,也可将两种,三种或更多元素同时加入钢中。合金元素在钢中的作用:

相关文档
最新文档