有限元上机操作范例-1

有限元上机操作范例(1)

题目:ANSYS平面问题范例

(1)启动ANSYS

设置工作文件夹

命名文件名

(2)标准图形用户界面

通用菜单主菜单

输入窗口

工具条

图形窗口

(3)定义单元类型

单击Add/Edit/Delete命令,打开单元类型对话框。单击Add,弹出对话框中选择Solid单元大类中的Quad 4node 42单元,单击OK。

单击单元类型对话框中的Option ,在Element behavior 中选择Plane stress w/thk (带有厚度的平面应力),单击OK 。单元添加完成后单击Close 关闭单元类型对话框。

(3)定义单元类型

打开实常数对话框。单击Add ,出现实常数单元类型对话框,选择Type 1 PLANE42,单击OK ,在实常数集对话框的Tinckness 中输入2,单击OK 。设置完成后关闭实常数对话框。

(4)定义实常数

打开定义材料模型属性窗口,依次单击Structural 、Linear 、Elastic 、Isotropic ,出现定义材料弹性模量和泊松比对话框,在EX 中输入2.06e5,在PRXY 中输入0.3,单击OK ,关闭材料模型属性窗口。

(5)定义材料属性

(依次点击

②创建R=2mm 的两圆面

(7)建立模型

③对所创建的四个面求和

选择四个面(7)建立模型

④创建R=0.8mm小圆面(7)建立模型

选择被减面

选择两小圆孔

⑤减去两小圆面,即

建圆孔

(7)建立模型

选择圆角的两条线

圆角半径

选择3条线

生成圆角面

选择两个面

①设置单元大小

输入0.2

选择面

(8)划分网格

②网格划分

选择面(8)划分网格

选择圆孔边线

选择所有

自由度

①施加约束条件(9)设置边界条件

有限元分析实验报告

武汉理工大学 学生实验报告书 实验课程名称机械中的有限单元分析 开课学院机电工程学院 指导老师姓名 学生姓名 学生专业班级机电研 1502班 2015—2016 学年第2学期

实验一方形截面悬臂梁的弯曲的应力与变形分析 钢制方形悬臂梁左端固联在墙壁,另一端悬空。工作时对梁右端施加垂直向下的30KN的载荷与60kN的载荷,分析两种集中力作用下该悬臂梁的应力与应变,其中梁的尺寸为10mmX10mmX100mm的方形梁。 1.1方形截面悬臂梁模型建立 建模环境:DesignModeler 15.0。 定义计算类型:选择为结构分析。 定义材料属性:弹性模量为2.1Gpa,泊松比为0.3。 建立悬臂式连接环模型。 (1)绘制方形截面草图:在DesignModeler中定义XY平面为视图平面,并正视改平面,点击sketching下的矩形图标,在视图中绘制10mmX10mm的矩形。(2)拉伸:沿着Z方向将上一步得到的矩阵拉伸100mm,即可得到梁的三维模型,建模完毕,模型如下图1.1所示。 图1.1 方形截面梁模型 1.2 定义单元类型: 选用6面体20节点186号结构单元。 网格划分:通过选定边界和整体结构,在边界单元划分数量不变的情况下,通过分别改变节点数和载荷大小,对同一结构进行分析,划分网格如下图1.2所示:

图1.2 网格划分 1.21 定义边界条件并求解 本次实验中,讲梁的左端固定,将载荷施加在右端,施以垂直向下的集中力,集中力的大小为30kN观察变形情况,再将力改为50kN,观察变形情况,给出应力应变云图,并分析。 (1)给左端施加固定约束; (2)给悬臂梁右端施加垂直向下的集中力; 1.22定义边界条件如图1.3所示: 图1.3 定义边界条件 1.23 应力分布如下图1.4所示: 定义完边界条件之后进行求解。

有限元上机实验指导书

弹性力学及有限元实验上机指导书 土木工程教学部 2015年6月 一、ANSYS软件安装及有限元建模方法演示1、实验目的 掌握Ansys商用有限元软件的安装及了解有限元建模方法2、实验任务 1)Ansys商用软件8.1安装过程详解。

2)采用有限元直接建模法创建杆系模型演示。 3)采用有限元间接建模法创实体模型演示。 模型一:平面桁架如下图所示,长度单位为m,求支座反力和各杆内力。弹性模量2.1e+11,泊松比0.3,杆件截面面积均为0.01m2。 1/6 1/3 1/2 图1 平面桁架模型 模型二:正方形带孔平板,边长1m,小孔直径0.1m,板厚0.05m。弹性模量2.1e+11,泊松比0.3。上下边受均匀压力1000N。 图2 带孔正方形平板 3、实验方法 实验方法同课堂操作演示。 命令流(模型一) /PREP7 ET,1,LINK1 R,1,0.01, , MP,EX,1,,2.1e+11

MP,PRXY,1,,0.3 n,1,0,0 n,2,1,0 n,3,1,0.5 n,4,2,0 n,5,2,0.833 n,6,3,0 n,7,3,1 n,8,4,0 n,9,4,0.833 n,10,5,0 n,11,5,0.5 n,12,6,0 e,1,2 e,1,3 e,2,3 e,2,4 e,3,5 e,4,5 e,3,4 e,4,6 e,5,7 e,6,7 e,4,7 e,6,8 e,7,9 e,8,9 e,7,8 e,8,10

e,9,11 e,10,11 e,8,11 e,10,12 e,11,12 save 命令流(模型二) 二、利用ANSYS创建杆系或实体结构有限元模型 1、实验目的 掌握有限元建模的基本方法并能创建简单的杆系结构和实体结构有限元模型。 2、实验任务 (1)采用直接建模法创建上节平面桁架结构模型。 (2)采用间接建模法创建上节带孔平板实体模型。 3、实验方法 实验方法同操作演示。 三、有限元求解及结果后处理演示 1、实验目的 掌握基本参数的设置、荷载施加方法及后处理操作。 2、实验任务 (1)读入数据文件(命令流)的形式生成杆系结构有限元模型 (2)实常数、材料参数、求解参数设置演示 (3)位移约束、集中荷载施加方法演示 (4)计算求解与后处理操作演示。 3、实验方法 实验方法同课堂操作演示 附:后处理GUI操作及命令流操作 A、通过后处理提取节点计算结果 三种后处理操作: 1、plot results

重庆大学有限元第二次作业(刘静老师)

【有限元分析技术】第二次作业 科 目: 有限元分析技术 教 师: 姓 名: 学 号: 班 级: 类 别: 学术型 上课时间: 2016 年 11 月至 2017 年 1 月 考 生 成 绩: 卷面成绩 平时成绩 课程综合成绩 阅卷评语: 阅卷教师 (签名) 大学研究生院

第一章 题目概况 1.1 原始数据 矩形板尺寸如下图,板厚为5mm ,弹性模量为522.010/E N mm =? ,泊松比为0.27μ= 图1.1 原始计算简图 1.2工况选择 (1)试按下表的载荷约束组合,任选2种进行计算,并分析其位移、应力分布的异同。 表1 两种不同工况的载荷及约束 序号 载荷 约束 备注 1 向下均布载荷P=5N/mm,作用于ab 边 c ,d 点固定 2 向下均布载荷P=5N/mm,作用于ab 边 a ,b 点固定 3 向下均布载荷P=5N/mm,作用于ab 边 a ,c 边固定 还可讨论a ,c 点固定 4 向下均布载荷P=5N/mm,作用于cd 边 c ,d 点简支 5 向下均布载荷P=5N/mm,作用于cd 边 a ,b 点简支 6 向下均布载荷P=5N/mm,作用于cd 边 a ,c 边固定 还可讨论a ,c 点固定 7 向下集中载荷F=1000N,作用于ab 边中点 c ,d 点简支 8 向下集中载荷F=1000N,作用于ab 边中点 a ,b 点简支 9 向下集中载荷F=1000N,作用于ab 边中点 a ,c 边固定 还可讨论a ,c 点固定 10 向下集中载荷F=1000N,作用于cd 边中点 c ,d 点简支 11 向下集中载荷F=1000N,作用于cd 边中点 a ,b 点简支 12 向下集中载荷F=1000N,作用于cd 边中点 a ,c 边固定 还可讨论a ,c 点固定 1.3 工况选择结果及分析任务 (1)工况选择结果 根据表1的工况,选取工况1,2,8进行对比分析,选取结果如表2所示,为了方便下文中分别将序号1、2、8的工况称为工况一、工况二、工况三。 表2 分析工况的载荷及约束 序号 载荷 约束 备注 1 向下均布载荷P=5N/mm,作用于ab 边 c ,d 点固定 工况一 2 向下均布载荷P=5N/mm,作用于ab 边 a ,b 点固定 工况二 8 向下集中载荷F=1000N,作用于ab 边中点 a , b 点简支 工况三

有限元分析大作业报告

有限元分析大作业报告 试题1: 一、问题描述及数学建模 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: (1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; (2)分别采用不同数量的三节点常应变单元计算; (3)当选常应变三角单元时,分别采用不同划分方案计算。 该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。 二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算 1、有限元建模 (1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences 为Structural (2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 (3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3 (4)建几何模型:生成特征点;生成坝体截面 (5)网格化分:划分网格时,拾取lineAB和lineBC,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后得到600个单元。

(6)模型施加约束:约束采用的是对底面BC 全约束。大坝所受载荷形式为Pressure ,作用在AB 面上,分析时施加在L AB 上,方向水平向右,载荷大小沿L AB 由小到大均匀分布。以B 为坐标原点,BA 方向为纵轴y ,则沿着y 方向的受力大小可表示为: }{*980098000)10(Y y g gh P -=-==ρρ 2、 计算结果及结果分析 (1) 三节点常应变单元 三节点常应变单元的位移分布图 三节点常应变单元的应力分布图

有限元上机实验报告

有限元上机实验报告结构数值分析与程序设计 上机实验 院系: 土木工程与力学学院专业: 土木工程 班级: 姓名: 学号: 指导教师: 1、调试教材P26-30程序FEM1。 1.1、输入数据文件为: 6,4,12,6,1.0E0,0.0,1.0,0.0,1 3,1,2 5,2,4 3,2,5 6,3,5 0.0,2.0 0.0,1.0 1.0,1.0 0.0,0.0 1.0,0.0 2.0,0.0

1,3,7,8,10,12 1.2、输出数据文件为: NN NE ND NFIX E ANU T GM NTYPE 6 4 12 60.1000E+01 0.000 1.0000.0000E+00 1 NODE X-LOAD Y-LOAD 1 0.000000E+00 -0.100000E+01 2 0.000000E+00 0.000000E+00 3 0.000000E+00 0.000000E+00 4 0.000000E+00 0.000000E+00 5 0.000000E+00 0.000000E+00 6 0.000000E+00 0.000000E+00 NODE X-DISP Y-DISP 1 -0.879121E-15 -0.325275E+01 2 0.879121E-16 -0.125275E+01 3 -0.879121E-01 -0.373626E+00 4 0.117216E-1 5 -0.835165E-15 5 0.175824E+00 -0.293040E-15 6 0.175824E+00 0.263736E-15 ELEMENT X-STR Y-STR XY-STR 1 -0.879121E-01 -0.200000E+01 0.439560E+00 2 0.175824E+00 -0.125275E+01 0.256410E-15 3 -0.879121E-01 -0.373626E+00 0.307692E+00 4 0.000000E+00 -0.373626E+00 -0.131868E+00 2、修改FEM1,计算P31例2-2。

大作业报告参考2有限元学习心得

有限元学习心得 吴清鸽车辆工程 50110802411 短短八周的有限元课已经结束。关于有限元,我一直停留在一个很模糊的概念。我知道这是一个各个领域都必须涉及的点,只要有关于CAE分析的,几乎都要涉及有限元。总体来说,这是一门非常重要又有点难度的课程。 有限元方法(finite element method) 或有限元分析(finite element analysis),是 求取复杂微分方程近似解的一种非常有效的工具,是现代数字化科技的一种重要 基础性原理。将它用于在科学研究中,可成为探究物质客观规律的先进手段。将 它应用于工程技术中,可成为工程设计和分析的可靠工具。本课程教学基本内容 有固体力学和结构力学简介;有限元法基础;桁架、梁、刚架、二维固体、板和 壳、三维固体的有限元法;建模技术;热传导问题的有限元分析;PATRAN软件 的使用. 通过有限元分析课程学习使我了解和掌握了一些有限元知识: 1.简要了解二维和三维固体以及桁架、梁和板结构的三组基本力学方程,即表示位移-应变关系的几何方程,表示应力-应变关系的本构方程和表示内力-外力关系的平衡方程。 2.了解利用能量法形成有限元离散系统方程的基本原理,即哈密尔顿原理。掌握有限元分 析的基本方法及步骤,包括域的离散、位移插值、构造形函数、单元有限元方程 的建立、坐标变换、整体有限元方程的组装、整体有限元方程的求解技术。 3.具体深入的了解并掌握桁架结构、梁结构、刚架结构、二维固体、板和壳结构、三维固体的有限元法分析技术,包括他们具体的形函数构造,应变矩阵,局部坐标系和整体坐标系中的单元矩阵。各种结构的实例研究。 4.了解并掌握建立高质量建模所涉及的各种关键技术。包括单元类型的选择,单元畸形的限制,不同阶数单元混用时网格的协调性问题,对称性的应用(平面对称、轴对称、旋转对称、重复对称),由多点约束方程形成刚域及应用(模拟偏移、不同自由度单元的连接、网格协调性的施加)等,以及多点约束方程的求解。以PATRAN有限元通用软件为例了解一般商业有限元软件的组成及结构。掌握PATRAN软件的基本使用。利用PATRAN软件上机实践完成两个上机练习:刚架结构有限元分析和三维固体有限元分析。 课程的具体学习内容: 内容: 1.三节点三角形单元:单元分析、总刚度矩阵组装、引入约束条件修正总刚度 矩阵、载荷移置、方程求解; 2.四边形单元分析、四节点四面体单元分析、八节点六面体单元分析;

有限元 第二次作业教学提纲

2-2 图示悬臂板,属于平面应力问题,其网格图及单元、节点编号见图2-1,E=2.1×1011,u=0.28,演算其单刚阵到总刚阵的组集过程,并用MATLAB 软件计算总刚阵。 图2-1 答:根据图2-1所示列出单元节点列表: i j k 1 3 5 4 2 2 5 3 3 2 6 5 4 1 6 2 (1)计算单元刚度阵 单元1的刚度矩阵:[] ????? ?????=15,514 ,513 ,515,414,41 3 ,415,314,313,3 1k k k k k k k k k k ,[] ?????????? ??????????=000000 000 00000000 000000 14 ,514 ,513 ,515,414,41 3,41 5,31 4,31 3 ,31 k k k k k k k k k k ; 单元2的刚度矩阵:[] ??? ? ????? ?=25 ,523 ,522 ,525,323,322,325,223,222,22 k k k k k k k k k k ,[] ????????? ?????? ?? ???=00 000000000000000000 0024,523,522,525,323 ,322,32 5 ,22 3 ,22 2,22k k k k k k k k k k ; 节点 单元

单元3的刚度矩阵:[] ??? ? ????? ?=36 ,635 ,632 ,636,535,532,536,235,232,23 k k k k k k k k k k ,[] ????????? ? ????? ?? ???=36,635 ,632,636,535,532 ,536,23 5 .23 2,2300000000 00 0000000000000000k k k k k k k k k k ; 单元4的刚度矩阵:[] ???? ? ???? ?=46,642 ,641,646,242,241 ,246,142,141 ,14 k k k k k k k k k k ,[] ?? ? ??? ? ?? ? ??????????=46,641 ,646,242,241.246,142 ,141,140000 000000000000000000000000k k k k k k k k k ; 总刚度矩阵:[][][][][][]4 3 2 1 4 1 k k k k k K e e +++=∑== []??????? ?? ? ????? ?????++++++++++++=4 6,636,635 ,642 ,632,641 ,636 ,535 ,525,515,514,523 ,513,53 2,522,515,414,413,425 ,315,314,323 ,313,322 ,346,236,235 ,225,223 ,242 ,232,222,241,246,142 ,141 ,10 00000 00 000k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k K Matlab 程序语言的编写: function Idex global gNode gElement gMaterial gNode=[0.0 0.01 0.5 0.01 1.0 0.01 1.0 0.0 0.5 0.0

(完整版)有限元大作业matlab---课程设计例子

有限元大作业程序设计 学校:天津大学 院系:建筑工程与力学学院 专业:01级工程力学 姓名:刘秀 学号:\\\\\\\\\\\ 指导老师:

连续体平面问题的有限元程序分析 [题目]: 如图所示的正方形薄板四周受均匀载荷的作用,该结构在边界 上受正向分布压力, m kN p 1=,同时在沿对角线y 轴上受一对集中压 力,载荷为2KN ,若取板厚1=t ,泊松比0=v 。 [分析过程]: 由于连续平板的对称性,只需要取其在第一象限的四分之一部分参加分析,然后人为作出一些辅助线将平板“分割”成若干部分,再为每个部分选择分析单元。采用将此模型化分为4个全等的直角三角型单元。利用其对称性,四分之一部分的边界约束,载荷可等效如图所示。

[程序原理及实现]: 用FORTRAN程序的实现。由节点信息文件NODE.IN和单元信息文件ELEMENT.IN,经过计算分析后输出一个一般性的文件DATA.OUT。模型基本信息由文件为BASIC.IN生成。 该程序的特点如下: 问题类型:可用于计算弹性力学平面问题和平面应变问题 单元类型:采用常应变三角形单元 位移模式:用用线性位移模式 载荷类型:节点载荷,非节点载荷应先换算为等效节点载荷 材料性质:弹性体由单一的均匀材料组成 约束方式:为“0”位移固定约束,为保证无刚体位移,弹性体至少应有对三个自由度的独立约束 方程求解:针对半带宽刚度方程的Gauss消元法

输入文件:由手工生成节点信息文件NODE.IN,和单元信息文件ELEMENT.IN 结果文件:输出一般的结果文件DATA.OUT 程序的原理如框图:

中南大学ANSYS上机实验报告

ANSYS上机实验报告 小组成员:郝梦迪、赵云、刘俊 一、实验目的和要求 本课程上机练习的目的是培养学生利用有限单元法的商业软件进行数值计算分析,重点是了解和熟悉ANSYS的操作界面和步骤,初步掌握利用ANSYS建立有限元模型,学习ANSYS分析实际工程问题的方法,并进行简单点后处理分析,识别和判断有限元分析结果的可靠性和准确性。 二、实验设备和软件 台式计算机,ANSYS10.0软件 三、基本步骤 1)建立实际工程问题的计算模型。实际的工程问题往往很复杂,需要采用适当的模型在计算精度和计算规模之间取得平衡。常用的建模方法包括:利用几何、载荷的对称性简化模型,建立等效模型。 2)选择适当的分析单元,确定材料参数。侧重考虑一下几个方面:是否多物理耦合问题,是否存在大变形,是否需要网格重划分。 3)前处理(Preprocessing)。前处理的主要工作内容如下:建立几何模型(Geometric Modeling),单元划分(Meshing)与网格控制,给定约束(Constraint)和载荷(Load)。在多数有限元软件中,不能指定参数的物理单位。用户在建模时,要确定力、长度、质量及派生量的物理单位。在建立有限元模型时,最好使用统一的物理单位,这样做不容易弄错计算结果的物理单位。建议选用kg,N,m,sec;常采用kg,N,mm,sec。 4)求解(Solution)。选择求解方法,设定相应的计算参数,如计算步长、迭代次数等。 5)后处理(Postprocessing)。后处理的目的在于确定计算模型是否合理、计算结果是否合理、提取计算结果。可视化方法(等值线、等值面、色块图)显

有限元作业第二次作业

土木工程专业 有限元第二次作业 姓名: 班级: 学号: 指导教师: 二〇一五年6月12日

习 题:平面应力问题的八节点等参元,已给定8个节点 的坐标。试查资料并论述: 1、单元中位移函数u (ξ,η),v (ξ,η)和单元节点位 移{δe }的关系式; 2、[ B ]矩阵的计算步骤和计算式; 3、单元刚度矩阵[ k e ]的一般计算方法和计算步骤; 4、论述相邻单元间公共边界上位移的连续性; 5、如果给定母单元中点A , (ξ,η),怎样求实际单元中与 A , 相对应的点A (x ,y );反之,如果给定实际单元中的点A (x ,y ),怎样求其在母单元中对应点A , (ξ,η)? 6、如果已经求解得到单元8个节点的位移值{δe }怎样求单 元中某一点B (x ,y )的应力? 实际单元 1 2 6 7 Y 1 2 43 67 8η= 1η=﹣1 母单元 ξ= 1 ξ=﹣1

解: 1、此题分两步进行: 单元位移场的表达: 如图1所示,在任意四边形的每边中间设一附加节点,则单元边界就变成二次曲线的了。如果直接在整体坐标系(),x y 下,像八节点矩形元那样,构造双二次多项式的位移插值函数,则因曲边四边形单元边界是二次曲线,故边界上的位移是()x y 或的五次多项式, 它不能由曲边上三个节点的位移分量唯一地决定,从而不能保证相邻两个单元在公共边上位移的协调条件,所以在整体坐标系(),x y 下构造完全协调的位移插值 函数是很困难的,利用坐标变换,可将曲边四边形单元变换成基本单元,如图2所示的在自然坐标(),ξη下具有边长为2的八节点正方形单元,自然坐标系(),ξη是外节点坐标值为±1的局部坐标系。在自然坐标系的单元上构造 协调的位移插值函数,其形状函数是较普通的,取位移分量为,ξη的双二次多项式, 即: 2222 12345678222 2910111213141516u a a a a a a a a v a a a a a a a a ξηξξηηξηξηξηξξηηξηξη?=+++++++??=+++++++?? (1-1) 利用8 个节点的16 个位移分量可唯一确定16 个待定常数1216,,a a a …,,若代入8个节点的局部坐标值,得: 图1:在总坐标系中具有二 次曲边的四边形单元 图2:在自然坐标系中的 曲边四边形的基本单元

有限元分析大作业试题

有限元分析习题及大作业试题 要求:1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方 案、载荷及边界条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分 析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单 元改变对精度的影响分析、不同网格划分方案对结果的 影响分析等) E、建议与体会 4)11月1日前必须完成,并递交计算分析报告(报告要求打印)。

习题及上机指南:(试题见上机指南) 例题1 坝体的有限元建模与受力分析 例题2 平板的有限元建模与变形分析 例题1:平板的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: plane 0.5 m 0.5 m 0.5 m 0.5 m 板承受均布载荷:1.0e 5 P a 图1-1 受均布载荷作用的平板计算分析模型 1.1 进入ANSYS 程序 →ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: plane →Run 1.2设置计算类型 ANSYS Main Menu : Preferences →select Structural → OK 1.3选择单元类型 ANSYS Main Menu : Preprocessor →Element T ype →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element T ypes window) → Options… →select K3: Plane stress w/thk →OK →Close (the Element T ype window) 1.4定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY :0.3 → OK 1.5定义实常数 ANSYS Main Menu: Preprocessor →Real Constant s… →Add … →select T ype 1→ OK →input THK:1 →OK →Close (the Real Constants Window)

有限元 第二次作业

2-2 图示悬臂板,属于平面应力问题,其网格图及单元、节点编号见图2-1,E=2、1×1011,u=0、28,演算其单刚阵到总刚阵得组集过程,并用MATLAB 软件计算总刚阵。 图2-1 答:根据图2-1所示列出单元节点列表: i j k 1 3 5 4 2 2 5 3 3 2 6 5 4 1 6 2 (1)计算单元刚度阵 单元1得刚度矩阵: ,; 单元2得刚度矩阵:,; 单元3得刚度矩阵:,; 单元4得刚度矩阵:,; 总刚度矩阵: []??????? ?? ? ????? ?????++++++++++++=4 6,636,635 ,642 ,632,641 ,636 ,535 ,525,515,514,523 ,513,53 2,522,515,414,413,425 ,315,314,323 ,313,322 ,346,236,235 ,225,223 ,242 ,232,222,241,246,142 ,141 ,10 00000 00 000k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k K 节点 单元

Matlab 程序语言得编写: function Idex global gNode gElement gMaterial gNode=[0、0 0、01 0、5 0、01 1、0 0、01 1、0 0、0 0、5 0、0 0、0 0、0] %gNode 同样就是一个矩阵,每一行表示一个结点,第1 列就是结点得x 坐标,第2 列就是结点得y坐标 gElement=[3 4 5 2 3 5 2 5 6 1 2 6 ]; %gElement 就是一个矩阵,每一行表示一个单元,第1 行就是单元得第1 个结点号,第2 行就是单元得第2个结点号。 Return function k=StiffnessMatrix(ie) %计算单元刚度矩阵函数 global gNode gElement k=zeros(6,6); %6x6单元刚阵 E=2、1*10^11; %材料特性 u=0、28 ; %材料特性 t=0、01; %材料特性 xi=gNode(gElement(ie,1),1);

有限元大作业

风电主轴承有限元分析 XXX 摘要:基于有限元法在接触问题中的应用,对风电主轴承进行非线性分析。以轴承外圈的内表面和内圈的外表面为目标面,以滚子为接触面创建接触对分析滚子的接触应力情况。最大应力值出现在滚子边缘出,对最大承载滚子环向接触应力分析表明,有限元分析结果与理论计算结果相近,验证了利用有限元法分析风电主轴承应力状态的可行性。 关键词:风电主轴承;接触应力;有限元分析 0 引言 随着传统能源的日益枯竭以及环境污染问题愈发严重,风能作为一种清洁的的可再生能源近些年受到越来越多的关注。风力发电技术已广泛运用于世界各地。一些发达国家风力发电产业已得到了迅猛发展,技术日趋成熟,并开始走向产业化规模化发展阶段[1-3]。 风电主轴承是风力发电机重要的组成部分。其结构形式图下图1所示。据统计,如今安装的所有风力发电机中,采用主轴轴承支撑原理的占总数的75-80%[4],这种支撑是轴承内圈安装在旋转的主轴上,外圈固定在单独的轴承座上,相对于圆锥滚子轴承或圆柱滚子轴承来说,主轴轴承位置处轴产生变形,需要轴承具有一定的调心作用,所以都采用了调心滚子轴承。近年来由于计算机技术的飞速发展,轴承的受力分析计算已经普遍采用有限元分析的方法,能够准确合理地解决轴承复杂的非线性接触问题,为轴承的分析和计算提供了一种新的方法,成为未来的一个发展方向。在机械设备的设计过程中,对受力较大且复杂的零件进行受力分析,校核其整体和局部强度并进行合理的布局设计,是为了防止因应力过大而导致在实际工作中损坏或寿命降低[5]。本文主要运用ANSYS Workbench有限元软件对风电主轴承进行静力学计算,分析轴承内部结构参数对轴承载荷分布和最大接触应力的影响规律。 图1 风电主轴承结构及安装图 1 有限元分析过程 1.1 风电轴承有限元分析基本步骤 不同的物理性质和数学模型的问题,有限元法求解的基本步骤是相同的,只不过 具体公式推导和运算求解不尽相同。有限元分析求解问题的基本计算步骤[6]: 1.问题及求解域定义; 2.求解域离散化; 3.确定状态变量及控制方法; 4.单元推导;

有限元实验报告模板

有限元实验报告 T1013-5 20100130508 蔡孟迪

ANSYS有限元上机报告(一) 班级:T1013-5 学号:20100130508 姓名:蔡孟迪 上机题目: 图示折板上端固定,右侧受力F=1000N,该力均匀分布在边缘各节点上;板厚t=2mm 材料选用低碳钢,弹性模量E=210Gpa,μ=0.33. 一、有限元分析的目的: 1.利用ANSYS构造实体模型; 2.根据结构的特点及所受载荷的情况,确定所用单元类型;正确剖分网格并施加外界条件;3.绘制结构的应力和变形图,给出最大应力和变形的位置及大小;并确定折板角点A处的应力和位移; 4.研究网格密度对A处角点应力的影响; 5.若在A处可用过渡圆角,研究A处圆角半径对A处角点应力的影响。 二、有限元模型的特点: 1.结构类型 本结构属于平面应力类型 2.单位制选择 本作业选择N(牛),mm(毫米),MPa(兆帕)。 3.建模方法 采用自左向右的实体建模方法。 4.定义单元属性及类型 1)材料属性:弹性模量:EX=2.10E5MPa, 泊松比:PRXY=0.33 2)单元类型:在Preferences选Structural,Preprocessor>ElemmentType>Add/Edit/Delete中定义单元类型为:Quad4 node 182,K3设置为:平面薄板问题(Plane strs w/thk) 3)实常数:薄板的厚度THK=2mm 5.划分网格 在MeshTool下选set,然后设置SIZE Element edge length的值,再用Mesh进行网格划分。6.加载和约束过程:在薄板的最上端施加X、Y方向的固定铰链,在薄板的最右端施加1000N 的均匀布置的载荷。

有限元08上机作业

调试书本26到30页程序 开列数组维数: DIMENSION LOC(4,3),CX(6),CY(6),IFIX(6),F(12), 1GK(12,12),STRES(4,3),BAK(4,3,6) 结点集中力输入: DO 10 I=1,ND 10 F(I)=0.0 F(2)=-1.0 数据文件输入: 6,4,12,6,1.0E0,0.0,1.0,0.0,1 3,1,2 5,2,4 2,5,3 6,3,5 0.0,2.0 0.0,1.0 1.0,1.0 0.0,0.0 1.0,0.0 2.0,0.0 1,3,7,8,10,12 数据文件输出: NN NE ND NFIX E ANU T GM NTYPE 6 4 12 6 0.1000E+01 0.000 1.000 0.0000E+00 1 NODE X-LOAD Y-LOAD 1 0.000000E+00 -0.100000E+01 2 0.000000E+00 0.000000E+00 3 0.000000E+00 0.000000E+00 4 0.000000E+00 0.000000E+00 5 0.000000E+00 0.000000E+00 6 0.000000E+00 0.000000E+00 NODE X-DISP Y-DISP 1 -0.879121E-15 -0.325275E+01 2 0.879121E-16 -0.125275E+01 3 -0.879121E-01 -0.373626E+00 4 0.117216E-1 5 -0.835165E-15 5 0.175824E+00 -0.293040E-15 6 0.175824E+00 0.263736E-15 ELEMENT X-STR Y-STR XY-STR 1 -0.879121E-01 -0.200000E+01 0.439560E+00

有限元实验报告

一、实验目的 通过上机对有限元法的基本原理和方法有一个更加直观、深入的理解;通过对本实验所用软件平台Ansys 的初步涉及,为将来在设计和研究中利用该类大型通用CAD/CAE 软件进行工程分析奠定初步基础。 二、实验设备 机械工程软件工具包Ansys 三、实验内容及要求 1) 简支梁如图3.1.1所示,截面为矩形,高度h=200mm ,长度L=1000mm ,厚 度t=10mm 。上边承受均布载荷,集度q=1N/mm2,材料的E=206GPa ,μ=0.29。平面应力模型。 X 方向正应力的弹性力学理论解如下: 图3.1.1 ①在Ansys 软件中用有限元法探索整个梁上x σ,y σ的分布规律。 ②计算下边中点正应力x σ的最大值;对单元网格逐步加密,把x σ的计算值与理论解对比,考察有限元解的收敛性。 ③针对上述力学模型,对比三节点三角形平面单元和4节点四边形平面等参元的求解精度。 2) 一个正方形板,边长L = 1000mm ,中心有一小孔,半径R = 100mm ,左右边 受均布拉伸载荷,面力集度q = 25MPa ,如图 3.2.1所示。材料是 206E GPa =,0.3μ=,为平面应力模型。当边长L 为无限大时,x = 0截面上理论解为: ) 534()4 (6222 23-+-=h y h y q y x L h q x σ

)32(2|44 220r R r R q x x ++==σ 其中R 为圆孔半径,r 为截面上一点距圆心的距离。x = 0截面上孔边(R r =)应力q x 3=σ。所以理论应力集中系数为3.0。 图3.2.1 用四边形单元分析x = 0截面上应力的分布规律和最大值,计算孔边应力集中系数,并与理论解对比。利用对称性条件,取板的四分之一进行有限元建模。 3) 如图3.3.1所示,一个外径为0.5m ,内径为0.2m ,高度为0.4m 的圆筒,圆 筒的外壁施加100MPa 的压强,圆筒的内部约束全部的自由度,材料参数是密度。 使用平面单元,依照轴对称的原理建模分析。 q

ansys上机作业

实验一坝体的有限元建模及应力应变分析 一、实验目的: 1、掌握ANSYS软件基本的几何形体构造方法、网格划分方法、边界条件施加方法及各 种载荷施加方法。 2、熟悉有限元建模、求解及结果分析步骤和方法。 3、能利用ANSYS软件对结构进行有限元分析。 二、实验设备: 微机,ANSYS软件。 三、实验内容: 计算分析模型如图所示,分析坝体的应力、应变。 四、实验步骤: 1 进入ANSYS 程序→ANSYS →change the working directory into yours →input Initial jobname: dam 2设置计算类型 ANSYS Main Menu: Preferences →select Structural → OK 3选择单元类型

ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element Types window)→Options… →select K3: Plane Strain →OK→Close (the Element Type window) 4定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear→Elastic→Isotropic→input EX:2.1e11, PRXY:0.3→ OK 5生成几何模型 生成特征点 ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input:1(0,0),2(1,0),3(1,5),4(0.45,5)→OK 生成坝体截面 ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPS→依次连接四个特征点,1(0,0),2(1,0),3(1,5),4(0.45,5) →OK 生成坝体截面如图一 图一 6 网格划分 ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool→(Size Controls) lines: Set →依次拾取两条横边:OK→input NDIV: 15 →Apply→依次拾取两条纵边:OK →input NDIV: 40 →OK →(back to the mesh tool window)Mesh: Areas, Shape: Quad, Mapped →

ansys有限元分析大作业

ansys有限元分析大作业

有限元大作业 设计题目: 单车的设计及ansys有限元分析 专业班级: 姓名: 学号: 指导老师: 完成日期: 2016.11.23

单车的设计及ansys模拟分析 一、单车实体设计与建模 1、总体设计 单车的总体设计三维图如下,采用pro-e进行实体建模。 在建模时修改proe默认单位为国际主单位(米千克秒 mks) Proe》文件》属性》修改

2、车架 车架是构成单车的基体,联接着单车的其余各个部件并承受骑者的体重及单车在行驶时经受各种震动和冲击力量,因此除了强度以外还应有足够的刚度,这是为了在各种行驶条件下,使固定在车架上的各机构的相对位置应保持不变,充分发挥各部位的功能。车架分为前部和后部,前部为转向部分,后部为驱动部分,由于受力较大,所有要对后半部分进行加固。

二、单车有限元模型 1、材料的选择 单车的车身选用铝合金(6061-T6)T6标志表示经过热处理、时效。 其属性如下: 弹性模量:) .6+ 90E (2 N/m 10 泊松比:0.33 质量密度:) 3 2.70E+ N/m (2 抗剪模量:) 60E .2+ N/m (2 10 屈服强度:) .2+ (2 75E 8 N/m 2、单车模型的简化 为了方便单车的模拟分析,提高电脑的运算

效率,可对单车进行初步的简化;单车受到的力的主要由车架承受,因此必须保证车架能够有足够的强度、刚度,抗振的能力,故分析的时候主要对车架进行分析。简化后的车架如下图所示。 3、单元体的选择 单车车架为实体故定义车架的单元类型为实体单元(solid)。查资料可以知道3D实体常用结构实体单元有下表。 单元名称说明 Solid45 三维结构实体单元,单元由8个节点定义,具有塑性、蠕变、应力刚化、 大变形、大应变功能,其高阶单元是 solid95

有限元上机题

注:题中E表示材料弹性模量,μ表示泊松比,ρ表示密度。 一静力结构分析 1 如图1所示为普通订书钉,E=2.1×105MPa,μ=0.3,横截面尺寸为宽B=0.64mm,高H=0.402mm。当订书钉被压入纸张时,约需要120N的载荷,载荷均匀地分布在订书钉上部。以下面两种情况进行有限元分析。(单位:mm)(1)订入时A、B点为铰支条件; (2)订入时A、B点为固定约束。 图1 载荷和尺寸情况 2、小型铁路桥由横截面积为3250mm2的钢制杆件组装而成。一辆火车停在桥上,其载荷施加在桥梁两侧的桁架上,单侧的桁架如图2所示,等效载荷为F1,F2,E=2.1×105MPa,μ=0.3,ρ=7.8×103kg/m3。试计算位置R处由于载荷作用而沿水平方向移动的距离以及支反力,同时,分析各个节点的位移和非单元应力。 图2 铁路桥单侧桁架及载荷情况 3如图3所示,模型参数为:E=3.0×1010Pa,A1=30m,A2=10m,B=80m,t=20m,p=2200Pa。 有关风载的确定,按照海洋井架行业标准,有以下方法: 风压(Pa)=0.6115×风速(m/s)×高度系数×形状系数对于一般的海洋井架及建筑物,高度在30m左右,高度系数取为1.1,形状系数取为1.25,风速取为47.8m/s。换算出来后得到的风压为2200Pa。

图3 高层建筑物及其风载荷 4对于含裂纹体的结构及材料,若按照线弹性力学分析,会在裂纹的尖端处产生应力的奇异性,这时需要计算裂纹尖端处的应力强度因子(对于Ⅰ型裂纹,有K1=σ(πa)1/2),并以应力强度因子作为准则来对材料的裂纹是否扩展进行判断。图4所示为一块矩形平板,其边缘存在长为a的裂纹,板的两端承受拉应作用。利用结构上下的对成性,取矩形的一半建立有限元模型,完成看一力σ 下工作: (1)球裂纹的张角θ(在施加载荷前=0,θ=0) (2)沿直线AO,画出y方向应力σy沿x变化的曲线图。假设 σy= K1/(2πx)1/2利用回归方法估计K1。将计算结果与计算无限大平板的修正结果进行比较,其中基于无限大平板的修正关系式为K1=1.2σ0(πa)1/2)(3)在裂缝尖端处,进行网格的细化,重新求解(2)中的问题。 模型中的相关参数为 E=2.1×105MPa,μ=0.3,L=400mm,a=9.5mm,b=95mm,σ0=450MPa。 图4 承受拉升载荷的带裂纹平面结构

相关文档
最新文档