新编_______发电机自并励励磁自动控制系统设计

辽宁工业大学

电力系统自动化课程设计(论文)题目:发电机自并励励磁自动控制系统设计(3)

院(系):电气工程学院

专业班级:电气091

学号: 090303007

学生姓名:张宝全

指导教师:

起止时间:2012.12.31—2013.01.11

课程设计(论文)任务及评语

院(系):电气工程学院教研室:电气工程及其自动化Array

注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要

励磁控制系统是同步发电机的一个重要组成部分,在保证电能质量、无功率合理分配和提高电力系统运行的可靠性方面起着十分重要作用。本文针采用了单片机AT89C51作为控制核心和适合大容量的自并励方式设计了300MV A的水轮发电机励磁控制系统。在硬件电路中进行了模拟量检测电路和功率因数测量电路的设计,通过编程控制单片机在软件上实现了对同步发电机励磁系统调压范围及调差系数的调节与控制。采取了以提高电力系统动态稳定性为目标的线性最优励磁控制方式不仅实现了电压调节,还兼顾了功率及功率因数角的测量。

关键词:AT89C51;自并励;调差系数;线性最优控制

目录

第1章绪论 (1)

1.1励磁控制系统概况 (1)

1.2本文主要内容 (1)

第2章发电机自并励励磁自动控制系统硬件设计 (3)

2.1发电机自并励励磁自动控制系统总体设计方案 (3)

2.2单片机最小系统设计.......................... 错误!未定义书签。

2.3发电机自并励励磁自动控制系统模拟量检测电路设计 (7)

2.4直流稳压电源电路设计 (8)

第3章自并励励磁控制系统软件设计 (11)

3.1软件实现功能综述 (11)

3.2流程图设计 (11)

3.2.1 主程序流程图设计 (11)

3.2.2 模拟量检测流程图设计 (12)

3.3程序清单 (13)

第4章系统仿真与分析............................... 错误!未定义书签。

4.1系统仿真模型建立............................ 错误!未定义书签。

4.2系统仿真模型的设计.......................... 错误!未定义书签。第5章课程设计总结. (15)

参考文献 (15)

第1章绪论

1.1励磁控制系统概况

励磁控制系统是同步发电机的一个重要组成部分,在保证电能质量、无功率合理分配和提高电力系统运行的可靠性方面起着十分重要作用。励磁系统主要作用是为同步发电机励磁绕组提供直流电流,并且励磁调节器通过控制励磁电压及励磁电流,担负着对电力系统稳定运行的控制和保护功能。

随着大规模集成电路技术及计算机技术发展,采用微处理器作为硬件控制核心的微机励磁控制器将成为今后励磁控制器发展方向。数字控制的励磁调节器由以下几个优点:

(1)由于计算机具有计算和逻辑判断功能,使得复杂的控制策略可以在励磁控制中得到实现。

(2)调节准确、精度高,在线该变参数方便。在数字是励磁调节器中,信号处理、调节控制规律都由软件来完成,不仅简化控制装置,而且信号处理和控制精度高。

(3)可靠性高,无故障时间长等。

因此本文采用了单片机进行控制的发电机励磁系统。

同步发电机励磁方式根据励磁电源不同分为:直流励磁机、交流励磁机和静止励磁机方式。直流励磁方式有自励式和他励式两种,他用具有整流子的直流发电机作为励磁电源。不受电力系统中非正常运行状况影响。交流励磁机方式有自励式和他励式两种,经半导体可控硅整流后供给发电机励磁。同样发电机励磁也不受电力系统运行情况变化的影响。但由于交流励磁机的电枢反应压降相对直流机励磁机大些,在发电机近端短路故障时可能会造成强力不足。静止励磁方式用接于发电机出口或厂用母线上的变压器作为交流励磁电源,经半导体整流后供给发电机励磁绕组。静止励磁系统直接对转子励磁,其显著特点是具有高起始励磁电压响应速度,易于实现高起始响应比。具有结构简单、造价低既能减少轴系统振动等优点。因此在本文采用里静止励磁方式。

励磁控制系统是由励磁功率单元、励磁控制器和同步发电机共同组成的反馈系统。励磁功率单元和励磁控制器组成的系统就是人们通常所说的励磁系统。励

磁功率单元负责向发电机转子提供直流励磁或交流励磁电流;励磁控制器负责根据检测到的发电机的电压、电流或其他状态量的输入信号,按照给定的励磁控制准侧自动调节励磁功率单元的输出。

优良的励磁系统不仅可以保证发电机可靠运行,而且还可以有效地提高电力系统的性能指标。根据运行方面的要求,同步发电机力控制系统任务:(1)电压控制

电力系统正常运行时同步发电机总是随负荷波动而变化,要求发电励磁系统对励磁电流进行调节以维持机端或系统中某一点的电压在给定水平;

(2)控制无功功率分配;

(3)提高同步发电机并联运行的稳定性;

(4)改善电力系统运行条件。

1.2本文主要内容

本文根据发电机励磁系统的基本原理设计了容量300MW水轮发电机的励磁系统。基于数字式励磁系统的优势和所学知识选择单片机AT89C51作为发电机励磁系统的控制核心,并选择静止励磁方式进行励磁系统设计。根据励磁机要实现的功能,整个系统分为不同模块:数据采集电路;CPU部分;模数转换电路;功率因数测量电路;触发电路;SCR;继电器输出电路及模拟输入电路。对每个模块进行设计,并通过软件设计达到励磁目的。通过设计基本参数达到如下要求:1水轮发电机容量300MW,功率因数0.80,定子额定电压18KV,空载额定转子电压200V。

2 要求电压调差系数在±12%范围内可调。

3 强励倍数2,不小于10秒

4 调压精度,机端电压静差率小于0.5%。

5 自动电压调节范围:70%~130%。

6 起动升压至额定电压时,超调量不大于8%

第2章发电机自并励励磁自动控制系统硬件设计

2.1发电机自并励励磁自动控制系统总体设计方案

如图2.1所示即为励磁控制器设计总体设计方案的框图,其中分为五个模块,分别是直流稳压电源模块、复位电路模块、时钟电路模块。AT89C51单片机模块和励磁开关驱动控制电路模块,实现单片机控制外部电路。

在AT89C51单片机模块中,应用内部的软件编辑程序,实现对励磁系统驱动控制电路的控制。在复位电路模块中,复位操作可以使单片机初始化,也可以使机状态下的单片机重新启动。复位电路需要外加电源,而题目中只给出AC220V

交流电源,因此在复位电路前加入了直流稳压电源模块,为复位电路提供可靠的直流稳压电源。

在时钟电路模块中,时钟电路为单片机提供工作所需的时钟信号。励磁开关驱动控制电路模块中,采用光电隔离器MOC3041,是单片机与外部电路实现隔离,并且能有效地控制外部电路。

图2.1励磁控制系统总体设计方案框图

2.2单片机最小系统设计

单片机最小系统包括CPU、存储器、晶振电路、复位电路几个部分。

2.2.1 CPU

根据所学知识本文中选择AT89C51单片机作为系统的控制核心。89C51有面向控制的八位CPU ,有一个片内震荡器和时钟产生电路,震荡频率为0~24 MHz ;片内4KB Flash ROM 的程序存储器,128B 的片内数据存储器; 89C51有4个并行I/O ,共32条可单独编程的I/O 线;存在5个中断远源,2个中断优先级。

2、引脚功能介绍:单片机89C51引脚如图2.2所示。

(1) 外接晶体引脚1XTAL 和2XTAL :1XTAL 是震荡电路反向放大器的输入端及内部时钟发生器的输入端,2XTAL 是震荡电路反向放大器的输出端,当采用外部震荡器时。

(2)RESET:复位信号输入端,当震荡器工作时,此引脚出现两个机器周期以上高电平,就可以使单片机复位。

(3)_______0INT 、_______1INT 分别是外部中断0、外部中断1申请输入。

(4)输入输出引脚P0口、P1口

P0口(P0.0-P0.7):用作普通I/O 口,访问外部存储器时,可分时用做低8位地址和8数据线;

P1口(P1.0-P1.7):用作普通I/O 口。

图2.2 89C51单片机的引脚图

引脚功能:

VCC :供电电压。

GND :接地。

RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE 端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/VPP:当/EA保持低电平时,则在此期间外部程序存器

(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH 编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:来自反向振荡器的输出。

复位操作可以使单片机初始化,也可以使机状态下的单片机重新启动,因此十分重要。单片机的复位都是靠外部复位电路来实现的,在时钟电路工作后,只要在单片机的RESET引脚上出现24个时钟震荡脉冲(两个机器周期)以上的高电平,单片机就能实现复位。为了保证系统可靠地复位,在设计复位电路时,一般使RESET 引脚保持10毫秒以上的高电平,单片机便可以可靠地复位。当RESET 从高电平变为低电平以后,单片机从0000H地址开始执行程序。在复位有效期间,ALE和/PSEN引脚输出高电平。如图2.3所示即为AT89C51单片机的按键电平复位电路,这种复位电路利用电容器充电实现。当加电时,电容C充电,电路有电流通过,构成回路,在电阻R上产生压降,RESET的引脚为高电平;当电容C充满电后,电路相当于断开,复位结束。它还可以通过按键实现复位,按下键后,通过R1和R2形成回路,使RESET端产生高电平。按键的时间决定了复位时间。如图2.3所示即为89C51单片机的按键电平复位电路。

图2.3 按键电平复位电路

时钟电路用于产生单片机工作所需的时钟信号,时钟信号可以有两种方式产生:内部时钟方式和外部时钟方式,下面介绍内部时钟方式。89C51内部有一个高增益反相放大器(即与非门的一个输入端编程为常有效时),用于构成片内振荡器,引脚XTAL1和XTAL2分别是此放大器的输入端和输出端。在XTAL1和XTAL2两端跨界晶体或陶瓷谐振器,就构成了稳定的自激振荡器,其发出的脉冲直接送入内部时钟发生器,如图2.所示。外接晶振时,C1、C2参数通常选择30pF左右。C1、C2可稳定频率并对振荡频率有微调作用,谐振频率范围是0到24MHz,为了减少寄生电容,更好地保证振荡器稳定可靠接地,谐振器和电容应该尽量安装的与单片机芯片靠近。内部时钟发生器实质是一个二分频的触发器其输出是单片机工作所需的时钟信号. 如图2.4所示即为89C51单片机的内部时钟电路。

图2.4 内部时钟电路

综合以上所作分析与选择,形成了如图2.5所示的完整的CPU最小系统图

图2.5 单片机最小系统图

2.3发电机自并励励磁自动控制系统模拟量检测电路设计

在励磁系统中需要测得参数包括发电机的极端电压、发电机输出电流、励磁电压、励磁电流、有功功率、无功功率以及功率因数

cos,经过一系列限制计算和调节计算来得到整定后的励磁电压所对应的可控硅的导通角,从而触发可控硅,使发电机出口电压稳定在一个新水平。励磁系统模拟量检测电路包括信号采集部分、信号转换部分、A/D转换部分。

1、信号采集

交流量的采样有两种方法:①直流采样法;②交流采样法。

交流采样则是交流电量经互感器后直接进行采样,这种采样方法能实时反映出电参量瞬时值的大小以及动态变化情况,这就使同步采样或准同步采样成为了可能。由于采样电路不存在直流滤波电容,所以不存在滞后,有利于实时控制。

本文采用交流采样法采集的交流量,即采用电压互感器和电流互感器来获取

机端电压和电流,以及励磁电流。

2、信号转换

从互感器获得电压、电流信号很大,而数模转换器只能对一定范围内输入电压转换,故需要通过变换器对输入的电压、电流信号进行处理。本文中选择电压变换器UV 来实现电压信号的变换,电流变换器UA 来实现电流信号的转变。变换器的原理图如图2.6所示。

图2.6 变换器的原理图

2.4 直流稳压电源电路设计

本次课设要求控制器选用AC220V 电源供电,而单片机的工作电源是+5V 的直流电源,因此需要利用使用直流稳压电源为单片机提供电源。直流稳压电源由电源变压器、整流电路、滤波电路和稳压电路四部分组成,其原理框图如图2.7所示。

电网供给的交流电压u 1(220V,50Hz) 经电源变压器降压后,得到符合电路需

要的交流电压u 2,然后由整流电路变换成方向不变、大小随时间变化的脉动电压

u 3,再用滤波器滤去其交流分量,就可得到比较平直的直流电压u I 。但这样的直

流输出电压,还会随交流电网电压的波动或负载的变动而变化。在对直流供电要求较高的场合,还需要使用稳压电路,以保证输出直流电压更加稳定。

C1

.

一般情况下,生产生活中所需的直流电压的数值与电网电压的有效值相差较大,一次需要通过电源变压器降压后,在对交流电压进行处理。变压器副边电压有效值决定于后面电路的需要。目前,也有部分电路不用变压器,利用其他办法进行升压与降压。

变压器副边电压通过整流电路从交流电压转化为直流电压,即将正弦波电压转化为点一方向的脉动电压,半波整流和全波整流电路的输出波形如框图中所画。本次可设选用桥式全波整流。可以看出它们均含有较大的交流分量,会影响负载电路的正常工作;例如,交流分量将混入输入信号被放大电路放大,甚至在放大电路的输出端所混入的电源交流分量大于有用信号;因而不能直接作为电子电路的供电电源。

为了减小电压的脉动,需要通过低通滤波电路滤波,使输出电压平滑。理想情况下,应将交流分量全部滤去,是滤波电路的输出电压仅为直流电压。然而由于滤波电路位无源电路,所以接入负载后势必影响其滤波效果。对于稳定系要求不高的电子电路,蒸馏和滤波后的直流电压可以作为供电电源。

稳压电路的功能是使输出直流电压基本上不受电网电压波动和负载电阻变化的影响,从而获得足够高的稳定性。本次设计主要应用三端稳压器,而W7800系列三端稳压器的输出电压为5v,6v.9v.12v.15v.18v 和24v 七个档次,型号后面的两位数字表示输出电压值。W7805表示的输出电压为5v 。最大电压为1.5A ,因此选用W7805三端稳压器。如图2.7所示即为直流稳压电源的主电路图。

图2.7直流稳压电源电路图 本次课课设的目的在于用弱电控制强电,因此在这一部分,强电与弱电的隔离成为关键,现在有许多种开关控制输出电路,其中大多数是通过芯片给出的电压电流如TTL 电平信号,这种电平信号一般不能直接驱动外部设备,而需经过转化后才能驱动外部设备,许多外设如大功率交流接触器、制冷剂等在开关控制过

T1220V 50Hz

程中会产生较强的电磁干扰信号,不加隔离就会对系统造成误动作或伤害。因此,在接口处理中,还要包括隔离技术。针对这个问题,所选励磁开关驱动控制电路如图2.8所示,所选的光电隔离器是MOC3041,它是根据晶闸管原理开发出来的。晶闸管是一种大功率半导体器件,可以作为大功率驱动器件使用。具有用较小功率控制大功率、开关无触点等特点,双向晶闸管目前已经广泛应用于生产生活中,而与它相配套的光电隔离器已经有现成的产品,这种器件一般称为光耦双向晶闸管驱动器,常用的有MOC3000系列,用于不同负载下电压使用。

图2.8 开关驱动控制电路

例如MOC3011用于110V 交流,而MOC3041等用于220V 交流使用。在驱动电路中,R1为限流电阻,一般在微机测控系统中,其输出可以用OC 门驱动,在光隔输出端,于双向晶闸管并联的RC 是为了在感性负载时,吸收与电流不同步的过压,而门极电阻是为了提高抗干扰能力,以防误触发。

P1.0P1.15V

第3章自并励励磁控制系统软件设计

3.1软件实现功能综述

控制系统通过软件完成以下主要功能:恒定机端电压调节功能;无功调差功能;空载过压保护功能;强行励磁功能;欠励限制功能;通过发电机出口电压、电流及计算功率因数;在线调节PID系数功能。

根据励磁调节器所完成的功能不同,将整个励磁调节器的软件划分为主程序和中断服务程序。控制系统软件采用模块化结构设计,各种功能都由相应的子程序来完成。本励磁控制系统的软件主要由以下几个部分组成:实时采样,数据处理程序;中断处理程序;励磁限制处理程序;调节计算程序;键盘管理及其显示程序。

3.2流程图设计

3.2.1主程序流程图设计

为了更好的完成上述功能,本设计采用单片机来完成,首先单片机完成数据采集、控制角的计算、调节PID系数等功能,再完成六路脉冲的产生和触发的功能。主程序流程图如图3.1所示。

控制系统上电后首先执行的是初始化和自检,初始化包括标志位和变量的初始化、中断初始化、设置各接口芯片初始化、还包括各种程序模块的初始化等等。初始化结束以后,表明励磁调节器已经准备就绪,接着程序进入起励的设置和起励条件的判别,励磁调节器等待转速信号,在发电机开机而转速未达到额定转速的95%之前将电压给定值设置在空载额定位置,转速一旦达到额定转速的95%,则主程序立刻进入主循环:首先是数据采集和处理部分,主要由三个子模块组成:电机出口交流电压采样处理子模块、电机出口交流电流采样处理子模块和励磁电压采用处理子模块。然后进入功率因数采集计算,它利用徽处理器的外部中断0和定时器1的联合使用来完成对功率因数的采样和计算,并且采用数字滤波的方式最后求得功率因数;无功调差模块可以实现无功的合理分配,以适应发电机并列运行的需要;PID调节计算模块根据采集的数据结果与额定值进行比较,从而进行PID 调节计算来算出可控硅的控制角;限制控制子模块则是为保证发电机的正常及安全运行而设置的。

3.2.2模拟量检测流程图设计

由于功率因数在系统中是一个很重要的参数,它反映了发电机所带负载的性质,而且在计算有功功率和无功功率的时候都必须用到它,所以必须对它进行很细致的采集。模拟量检测流程图如图3.2所示。

图3.2 模拟量检测流程图

本科生课程设计(论文)

3.3程序清单

ORG 0000H

SJMP MAIN

ORG 0030H

START: MOV SP, #60H

MOV TMOD,#10H

MOV TL1,#00H

MOV TH1,#4BH

MOV R0,#00H

MOV R1,#20H

SETB TR1

SETB EA

LCALL L_DELAY

SJMP $

INT_T1: PUSH ACC

PUSH PSW

PUSH DPL

PUSH DPH返

CLR TR1

MOV TL1,#00H

MOV TH1,#48H

SETB TR1

MAIN:MOV TMOD,#21H;

SETB TR0;

SETB TR1

MOV R7,#8;

MOV R6,#8

MOV R5,#4

MOV A,#00H

LOOP:MOV P1,A;

RL A

INC A

ACALL MAIN0;

DJNZ R7,LOOP MAIN1:MOV A,#0FFH

MOV P1,A;

RR A;

SUBB A,#08H;

ACALL MAIN0

DJNZ R6,MAIN1 MAIN2:MOV A,#00H;

MOV P1,A

CPL A

ACALL MAIN0

DJNZ R5,MAIN2

LJMP LOOP

MAIN0:MOV DPTR,#15536;

MOV TL0,DPL

MOV TH0,DPH

MOV TL1,#236;

MOV TH1,#236

JNB TF0,$;?0ms

CLR TF0;?0ms

CPL P3.5

JNB TF1,MAIN0;

CLR TF1

RET

第4章课程设计总结

励磁系统主要作用是为同步发电机励磁绕组提供直流电流,并且励磁调节器通过控制励磁电压及励磁电流,担负着对电力系统稳定运行的控制和保护功能。本文基于发电机励磁系统的原理,结合设计要求为容量300MW水轮发电机设置了励磁系统。

随着大规模集成电路电路技术及计算机技术发展,采用微处理器作为硬件控制核心的微机励磁控制器的优点更加显著,因此本文选择单片机AT89C51作为控制器的核心,使得复杂的控制策略可以在励磁控制中得到实现。信号处理、调节控制规律都由软件来完成,不仅简化控制装置,而且信号处理和控制精度高。而且系统的可靠性可靠性高,无故障时间长。同步发电机励磁方式直流励磁机、交流励磁机和静止励磁机三种方式。本文中选择优点相对突出的静止励磁方式。

本文通过电流、电压互感器获取电信号,经变换器转换为模拟量,通过A/D 转换器输入AT89C51中。对单片机进行程序设计,对输入量进行计算分析,最后由单片机控制励磁系统的功率控制单元来实现发电机的励磁控制。

参考文献

[1] 郭培源.《电力系统自动控制新技术》.科学出版社,2003.4

[2] 王葵等.电力系统自动化.中国电力出版社,2007.1

[3] 何仰赞等.电力系统分析.华中科技大学出版社,2002.3

[4] 于海生.微型计算机控制技术.清华大学出版社,2003.4

[5] 刘卫国等.MATLAB程序设计与应用(第2版).高等教育出版社, 2008

[6] 梅丽凤等.单片机原理及接口技术.清华大学出版社,2009.7

[7] 黄益庄.变电所综合自动化技术.北京:中国电力出版社,2000.4

[8] 赵晶主编.《Prote199高级应用》.人民邮电出版社,2000:18-25

发电厂电气部分毕业设计论文

1 引言 近年,我国电力工业发展迅速,电力供应能力显著增强。“十五”期间全国发电装机新增近2亿千瓦,创历史最高水平,2006年又新增装机容量1亿千瓦,总容量超过6亿千瓦,今年投产规模仍将保持在7000万千瓦以上,全国电力供应紧的局面已经得到全面缓解。但是,我国电力工业结构不合理的矛盾仍十分突出,特别是能耗高、污染重的小火电机组比重过高。因此,电力工业将“上大压小”、加快关停小火电机组放在了“十一五”期间工作的首位[9]。 据测算,火电机组容量的不同,反映在煤耗和污染物排放量上差别很大。大型高效发电机组每千瓦时供电煤耗为290克--340克,中小机组则达到380克--500克。5万千瓦机组其供电煤耗约440克/千瓦时,发同样的电量,比大机组多耗煤30--50%。与此同时,小火电机组排放二氧化硫和烟尘排放量分别占电力行业总排放量的35%和52%。国家发改委能源局局长小平算了一笔账,“现有的小机组若能够完全由大机组替代,一年可节能9000万吨标准煤,相应减少排放二氧化硫220万吨,少排放二氧化碳2.2亿吨。 目前全国10万千瓦及以下小火电机组占火电装机比重达到29.4%,这些小火电绝大部分是在我国电力供应较为紧的“八五”、“九五”期间建设的,主要分布于经济发达地区和煤炭资源丰富的省份。加速关停小火电机组,一方面是保证节能降耗指标的完成,另一方面有助于保障大机组的开工率,促进电力产业结构改造升级。 关停小火电机组是从国家大局出发,优化电力工业结构的重要举措,对提高电力工业的整体质量和效益,促进电力工业可持续发展具有十分重要的意义。 发电厂二期工程电气部分设计 ①装机容量:装机两台,总容量600MW; ②机组年利用小时数: Tmax=6000小时 ③气象条件:发电厂所在地最高气温32℃,年平均气温5.65℃,最大风速25m/s ④厂用电率:按6%考虑 ⑤ 220kV电压等级,架空线路2回与系统相连,系统电抗以100MVA为基准折算到220kV 母线为0.028 设计基本要求:

自并励励磁装置

自并励励磁装置 [摘要] 结合上海南市发电厂60MW自并励汽轮发电机组的运行情况,对自并励接线方式,励磁变的选择,自并励的起励、试验电源,保护可靠性等分别予以讨论。 [关键词] 自并励励磁装置探讨 在发电机的各种励磁方式中,自并励方式以其接线简单,可靠性高,造价低,电压响应速度快,灭磁效果好的特点而被广泛应用。随着电子技术的不断发展,大容量可控硅制造水平的逐步成熟,大型汽轮发电机采用自并励励磁方式已成为一种趋势。国外某些公司甚至把这种方式列为大型机组的定型励磁方式。近二十年来,美国、加拿大对新建电站几乎一律采用自并励励磁系统,加拿大还拟将火电厂原交流励磁机励磁系统改为自并励励磁系统。在国内,虽然国产大中型机组大都采用三机励磁方式,但近年来进口的大中型机组大都装备的是自并励励磁系统,对于600MW以上汽轮发电机组,自并励励磁已基本成为定型方式。随着电网的不断扩大,对于大型机组业界人士也越来越倾向于采用自并励方式。因为从国内外运行情况来看,采用自并励励磁和附加励磁控制,已成为改善电力系统稳定性的有效措施。 南市电厂#10发电机(60MW)自基建投运即使用自励半导体励磁系统,具体接线型式为一台励磁变压器并联在发电机机端(主变压器的低压侧),属自并励型式(简称机端励磁)。由于种种原因,该装置自1999年6月19日至2000年2月间,多次发生故障,并经历了一次小系统运行。 本文就对该发电机励磁装置运行、维护谈谈自并励汽轮发电机励磁电源的几个问题: 自并励接线方式,励磁变的选择,自并励的起励、试验电源,保护可靠性等。 1 自并励装置特点 自并励静止励磁系统由励磁变压器、励磁调节装置、功率整流装置、发电机灭磁及过电压保护装置、起励设备及励磁操作设备等部分组成。 以南市电厂#10发电机的WKKL型微机型自并激励磁系统为例,整套装置由两台调节柜(一台运行,一台备用),三台整流柜(正常时单柜运行),一台灭磁电阻柜及一台转子开关柜组成。 自并励静止励磁方式与旧有的励磁方式相比,具有以下几方面的优点。

浅谈同步发电机的励磁系统

浅谈同步发电机的励磁系统 技术分类:电机与运动控制作者:赵宇发表时间:2006-11-10 1 概述 向同步发电机的转子励磁绕组供给励磁电流的整套装置叫做励磁系统。励磁系统是同步发电机的重要组成部分,它的可靠性对于发电机的安全运行和电网的稳定有很大影响。发电机事故统计表明发电机事故中约1/3为励磁系统事故,这不但影响发电机组的正常运行而且也影响了电力系统的稳定,因此必须要提高励磁系统的可靠性,而根据实际情况选择正确的励磁方式是保证励磁系统可靠性的前提和关键。我国电力系统同步发电机的励磁系统主要有两大类,一类是直流励磁机励磁系统,另一类是半导体励磁系统。 2 直流励磁机励磁系统 直流励磁机励磁系统是采用直流发电机作为励磁电源,供给发电机转子回路的励磁电流。其中直流发电机称为直流励磁机。直流励磁机一般与发电机同轴,励磁电流通过换向器和电刷供给发电机转子励磁电流,形成有碳刷励磁。直流励磁机励磁系统又可分为自励式和它励式。自励与他励的区别是对主励磁机的励磁方式而言的,他励直流励磁机励磁系统比自励励磁机励磁系统多用了一台副励磁机,因此所用设备增多,占用空间大,投资大,但是提高了励磁机的电压增长速度,因而减小了励磁机的时间常数,他励直流励磁机励磁系统一般只用在水轮发电机组上。 图1 自励直流励磁机励磁系统原理接线图 上图中 LH——电流互感器 YH——电压互感器 F ——同步发电机 FLQ——同步发电机的励磁线圈 L——直流励磁机 LLQ——直流励磁机的励磁线圈 Rc——可调电阻

采用直流励磁机供电的励磁系统,在过去的十几年间,是同步发电机的主要励磁系统。目前大多数中小型同步发电机仍采用这种励磁系统。长期的运行经验证明,这种励磁系统的优点是:具有独立的不受外系统干扰的励磁电源,调节方便,设备投资及运行费用也比较少。缺点是:运行时整流子与电刷之间火花严重,事故多,性能差,运行维护困难,换向器和电刷的维护工作量大且检修励磁机时必须停主机,很不方便。近年来,随着电力生产的发展,同步发电机的容量愈来愈大,要求励磁功率也相应增大,而大容量的直流励磁机无论在换向问题或电机的结构上都受到限制。因此,直流励磁机励磁系统愈来愈不能满足要求。目前,在100MW及以上发电机上很少采用。 3 半导体励磁系统 半导体励磁系统是把交流电经过硅元件或可控硅整流后,作为供给同步发电机励磁电流的直流电源。半导体励磁系统分为静止式和旋转式两种。 3.1 静止式半导体励磁系统 静止式半导体励磁系统又分为自励式和它励式两种。 3.1.1自励式半导体励磁系统 自励式半导体励磁系统中发电机的励磁电源直接由发电机端电压获得,经过控制整流后,送至发电机转子回路,作为发电机的励磁电流,以维持发电机端电压恒定的励磁系统,是无励磁机的发电机自励系统。最简单的发电机自励系统是直接使用发电机的端电压作励磁电流的电源,由自动励磁调节器控制励磁电流的大小,称为自并励可控硅励磁系统,简称自并励系统。自并励系统中,除去转子本体极其滑环这些属于发电机的部件外,没有因供应励磁电流而采用的机械转动或机械接触类元件,所以又称为全静止式励磁系统。下图为无励磁机发电机自并励系统框图,其中发电机转子励磁电流电源由接于发电机机端的整流变压器ZB提供,经可控硅整流向发电机转子提供励磁电流,可控硅元件SCR由自动励磁调节器控制。系统起励时需要另加一个起励电源。 图2 无励磁机发电机自并励系统原理接线图

风力发电机的设计及风力发电系统的研究毕业设计论文

毕 业 论 文 题 目: 风力发电机的设计及风力发电系统的研究

诚信声明 本人声明: 1、本人所呈交的毕业设计(论文)是在老师指导下进行的研究工作及取得的研究成果; 2、据查证,除了文中特别加以标注和致谢的地方外,毕业设计(论文)中不包含其他人已经公开发表过的研究成果,也不包含为获得其他教育机构的学位而使用过的材料; 3、我承诺,本人提交的毕业设计(论文)中的所有内容均真实、可信。 作者签名:日期:年月日

毕业设计(论文)任务书 题目: 风力发电机的设计及风力发电系统的研究 一、基本任务及要求: 1)基本数据:额定功率 600=N P KW 连接方式 Y 额定电压 V U N 690= 额定转速 min /1512r n N = 相数 m=3 功率因数 88.00=?s c 效率 96.0=η 绝缘等级 F 极对数 P=2 2、本毕业设计课题主要完成以下设计内容: (1) 风力发电机的电磁设计方案; (2) 风力发电系统的研究; (3) 电机主要零部件图的绘制; (4) 说明书。 进度安排及完成时间: 2月20日——3月10日:查阅资料、撰写文献综述、撰写开题报告 3月13日——4月25日:毕业实习、撰写实习报告 3月27日——5月30日:毕业设计 4月中旬:毕业设计中期抽查 6月1日——6月14日:撰写毕业设计说明书(论文) 6月15日——6月17日:修改、装订毕业设计说明书(论文),并将电子文档上传FTP 6月17日——6月20日:毕业设计答辩

目录 摘要 ..............................................................................................I ABSTRACT ......................................................................................II 第1章绪论 .. (1) 1.1 开发利用风能的动因 (1) 1.1.1 经济驱动力 (1) 1.1.2 环境驱动力 (2) 1.1.3 社会驱动力 (2) 1.1.4 技术驱动力 (2) 1.2 风力发电的现状 (2) 1.2.1 世界风力发电现状 (2) 1.2.2 中国风力发电现状[13] (3) 1.3风力发电展望 (3) 第2章风力发电系统的研究 (5) 2.1 风力发电系统 (5) 2.1.1 恒速恒频发电系统 (5) 2.1.2 变速恒频发电机系统 (6) 2.2 变速恒频风力发电系统的总体设计 (10) 2.2.1 变速恒频风力发电系统的特点 (10) 2.2.2 变速恒频风力发电系统的结构 (10) 2.2.3 变速恒频风力发电系统运行控制的总体方案 (20) 第3章风力发电机的设计 (27) 3.1 概述[11] (27) 3.2 风力发电机 (28) 3.2.1 风力发电机的结构 (28) 3.2.2 风力发电机的原理 (29) 3.3 三相异步发电机的电磁设计 (29) 3.3.1 三相异步发电机电磁设计的特点 (30) 3.3.2 三相异步发电机和三相异步电动机的差异[2] (30) 3.3.3 三相异步发电机的电磁设计方案 (31) 3.3.4 三相异步发电机电磁计算程序 (32)

小型家用风力发电机毕业设计

小型家用风力发电机毕 业设计 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

摘要风能作为一种清洁的可再生能源越来越受到人们的重视,风力发电也逐渐成为了时下的朝阳产业。本论文详细阐明了小型独立风力发电系统的设计方案,对风力发电机组的结构和电能的变换及继电控制电路做了深入的研究。 本文提出的解决方案为,风力发电机组带动单相交流发电机,然后通过AC—DC—AC 变换为用户需要的标准交流电,并且考虑到风力的不稳定性,在系统中并入蓄电池组,通过控制电路的监控实现系统的控制,保证系统在风能充足时可蓄能,在风能不充足时亦可为负载供电。系统的运行状况采用继电控制电路监控和切换。 本论文的重点在于继点控制电路的设计,并对各种不同风力情况下系统的运行状况进行了全面而严谨的分析,最后电气控制部分进行了系统仿真。 关键词:风力发电机组;整流——逆变;继电控制 目录

引言 随着世界工业化进程的不断加快,使得能源消耗逐渐增加,全球工业有害物质的排放量与日俱增,从而造成气候异常、灾害增多、恶性疾病的多发,因此,能源和环境问题成为当今世界所面临的两大重要课题。由能源问题引发的危机以及日益突出的环境问题,使人们认识到开发清洁的可再生能源是保护生态环境和可持续发展的客观需要。可以说,对风力发电的研究和进行这方面的毕业设计对我们从事风力发电事业的同学是有着十分重大的理论和现实意义的,也是十分有必要的

第一章绪论 风能是一种清洁的、储量极为丰富的可再生能源,它和存在于自然界的矿物质燃料能源,如煤、石油、天然气等不同,它不会随着其本身的转化和利用而减少,因此可以说是一种取之不尽、用之不竭的能源。而矿物质燃料储量有限,正在日趋减少,况且其带来的严重的污染问题和温室效应正越来越困扰着人们。因此风力发电正越来越引起人们的关注。 风力发电概述 1.1.1风力发电现状与展望 全球风能资源极为丰富,技术上可以利用的资源总量估计约53×106亿kWh /年。作为可再生的清洁能源,受到世界各国的高度重视。近20年来风电技术有了巨大的进步,发展速度惊人。而风能售价也已能为电力用户所承受:一些美国的电力公司提供给客户的风电优惠售价已达到2~美分/kWh,此售价使得美国家庭有25%的电力可以通过购买风电获得。 2004年欧洲风能协会和绿色和平组织签署了《风力12——关于2020年风电达到世界电力总量的12%的蓝图》的报告,“风力12%”的蓝图展示出风力发电已经成为解决世界能源问题的不可或缺的重要力量。按照风电目前的发展趋势,预计2008~2012年期间装机容量增长率为20%,以后到2015年期间为15%,2017~2020年期间为10%。其推算的结果2010年风电装机亿KW,风电电量×104亿kWh,2020年风电装机亿KW,风电电量×104亿kWh,占当时世界总电消费量×104亿kWh的%。 世界风电发展有如下特点:

大型汽轮发电机自并励静止

大型汽轮发电机自并励静止励磁系统技术条件 2004年10月

中华人民共和国电力行业标准 大型汽轮发电机自并励静止励磁系统技术条件 DL/T650—1998 neq IEC34—16—1:1991 neq IEC34—16—3:1996 Specification for potential source static exciter systems for large turbine generators 中华人民共和国电力工业部1998—03—19批准 1998—08—01实施 前言 同步发电机自并励静止励磁系统由于其运行可靠性高、技术和经济性能优越,已成为大型汽轮发电机的主要励磁方式之一。为统一和明确汽轮发电机自并励静止励磁系统的基本技术要求,根据电力工业部科学技术司技综[1996]51号文《关于下达1996年制定、修订电力行业标准计划项目(第二批)的通知》的安排,依据GB/T7409—1997《同步电机励磁系统》的基本原则,参考IEC34—16系列和IEEE Std.421系列标准,在广泛征求各方意见的基础上,结合我国发电机和控制设备设计、制造、运行、维护的实际情况制定了《大型汽轮发电机自并励静止励磁系统技术条件》,为设计选型、调试验收及运行改造提供依据。 电力行业标准《大型汽轮发电机自并励静止励磁系统技术条件》为第一次制定。 本标准的附录A和B是标准的附录。 本标准的附录C是提示的附录。 本标准由浙江省电力工业局提出。 本标准由电力工业部电机标准化技术委员会归口。 本标准起草单位:浙江省电力试验研究所。 主要起草人:竺士章、戚永康、方思立。 本标准由电力工业部电机标准化技术委员会负责解释。 1范围 本标准规定了大型汽轮发电机自并励静止励磁系统的使用条件、基本性能、试验项目、提供用户使用的技术文件、设备上的标志、包装、运输、储存以及保证期等。 本标准适用于200MW及以上汽轮发电机自并励静止励磁系统。200MW以下汽轮发电机自并励静止励磁系统可参照执行。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB1094—1996电力变压器 GB3797—89电控设备第二部分装有电子器件的电控设备 GB/T3859—93半导体变流器 GB4064—83电气设备安全设计导则 GB4208—93外壳防护等级(IP代码) GB6162—85静态继电器及保护装置的电气干扰试验 GB6450—86干式电力变压器 GB/T7064—1996透平型同步电机技术要求 GB/T7409—1997同步电机励磁系统 GB13926—92工业过程测量和控制装置的电磁兼容性

同步发电机怎么励磁

无刷励磁发电机的轴端头是一台交流发电机,其转子是发电绕组,发出的电流通过固定在发电机轴上的导线引导固定在轴上的硅整流管,整流后的直流直接进入转子绕组,其中没有整流刷这个东西,所以成为无刷励磁。 无刷励磁发电机的轴端头是一台交流发电机,其转子是发电绕组,发出的电流通过固定在发电机轴上的导线引导固定在轴上的硅整流管,整流后的直流直接进入转子绕组,其中没有整流刷这个东西,所以成为无刷励磁。曾经风靡过一段时间,但是由于整流管坏了就得停机,所以现在已经用的很少了,基本都采用自复励系统。 同步发电机励磁方式分为两大类:一类是用直流发电机作为励磁电源的直流励磁系统;另一类是用硅整流装置将交流转化成直流后供给励磁的整流器励磁系统。现说明如下: 1.直流励磁机励磁 直流励磁机通常与同步发电机同轴,采用并励或他励接法。采用他励接法时,励磁机的励磁电流由另一台被称为副励磁机的同轴的直流发电机供给。 2.静止励磁器励磁 同一轴上有3台发电机,即主发电机、交流主励磁机和交流副励磁机。副励磁机的励磁电流开始时由外部直流电源提供,待电压建立起来后再转为自励(有时采用永磁发电机)。副励磁机的输出电流经过静止晶闸管整流器整流后供给主励磁机,而主励磁机的交流输出电流经过静止的三相桥式硅整流器整流后供给主发电机的励磁绕组。 3.旋转整流器励磁 静止整流器的直流输出必须经过电刷和集电环才能输送到旋转的励磁绕组,对于大容量的同步发电机,其励磁电流达到了数千安培,使得集电环严重过热。因此,在大容量的同步发电机中,常采用不需要电刷和集电环的旋转整流器励磁系统。主励磁机是旋转电枢式三相同步发电机,旋转电枢的交流电流经与主轴一起旋转的硅整流器整流后,直接送到主发电机的转子励磁绕组。交流主励磁机的励磁电流由同轴的交流副励磁机经静止的晶闸管整流器整流后供给。用于这种励磁系统取消了集电环和集电装置,故又称为无刷励磁系统。

小型风力发电机动力结构设计毕业设计论文

第一章概述 1.1课题研究的目的和意义 数千年来,风能技术发展缓慢,也没有引起人们足够的重视。但自1973年世界石油危机以来,在常规能源告急和全球生态环境恶化的双重压力下,风能作为新能源的一部分才重新有了长足的发展。风能作为一种无污染和可再生的新能源有着巨大的发展潜力,特别是对沿海岛屿,交通不便的边远山区,地广人稀的草原牧场,以及远离电网和近期内电网还难以达到的农村、边疆,作为解决生产和生活能源的一种可靠途径,有着十分重要的意义。 当前,全球都面临着能源枯竭、环境恶化、气温升高等问题,日益增长的能源需求、能源安全问题受到世界各国广泛关注。风能是一种可再生能源,它资源丰富,是一种永久性的本地资源,可为人类提供长期稳定的能源供应;她安全、清洁,没有燃料风险,更不会在使用中破坏环境。为此,世界各国都在加快风力发电技术的研究,以缓解越来越重的能源与环境压力,中国也不例外。 中国是世界上最大的煤炭生产国和消费国,能源利用以煤炭为主。在当前以石化能源为主体的能源结构中,煤炭占73.8%,石油占18.6%,天然气占2%,其余为水电等其它资源。在电力的能源消费中,也是以煤炭为主,燃煤发电量占总发电量的80%。但是,能为人类所用的石化资源是有限的,据第二届环太平洋煤炭会议资料介绍,按目前的技术水平和采掘速度计算,全球煤炭资源还可开采200年。此外,石油探明储量预测仅能开采34年,天然气约能开采60年。随着人口的增长和经济的发展,能源供需矛盾加剧,如果不趁早调整以石化能源为主体的能源结构,势必形成对数亿年来地球积累的生物石化遗产更大规模的挖掘、消耗,由此将导致有限的石化能源趋于枯竭,人类生态环境质量下降的恶性循环,不利于经济、能源、环境的协调发展。电力部己制定“大力发展水电,继续发展火电,适当发展核电,积极发展新能源发电”的基本原则,把风力发电作为优化我国电力工业结构跨世纪的战略发展目标①。 表1-1 1996-2005年世界风电市场增长 从表1-1可以看出,世界上的风电能源增长的非常迅速,10年平均增长率达到了29.77。截止2005年底,全世界并网运行的风力发电机总装机容量达到59237 MW ,是1996年装机容量的9.76倍②。

小型风力发电机毕业设计论文

小型风力发电机毕业设计 摘要 基于开发风能资源在改善能源结构中的重要意义,本论文对风力发电机的特性作了简要的介绍,且对风力发电机的各种参数和风力机类型作了必要的说明。在此基础上,对风力发电机的原理和结构作了细致的分析。首先,对风力发电机的总体机械结构进行了设计,并且设计了限速控制系统。本课题设计的是一种新型的立式垂直轴小型风力发电机,由风机叶轮、立柱、横梁、变速机构、离合装置和发电机组成。这种发电机有体积小、噪音小、使用寿命长、价格低的特点,适合在有风能资源地区的楼房顶部,供应家庭用电,例如照明:灯泡,节能灯;家用电器:电视机、收音机、电风扇、洗衣机、电冰箱。 关键词:风力发电限速控制系统小型风力发电机

Abstract Exploiting wind energy resources is of great significance in improving energy structure. In the discourse,the characters of wind generator are introduced briefly,while parameters and types of wind generators are also narrated. Base on these,the theory and constitution of the wind generator are meticulously analyzed. Firstly,Has carried on the design to wind-driven generator's overall mechanism, And has designed the regulating control system. What I design is one kind of new vertical axis small wind-driven generator, by the air blower impeller, the column, the crossbeam, the gearshift mechanism, the engaging and disengaging gear and the generator is composed. This kind of generator has the volume to be small, the noise is small, the service life is long, the price low characteristic, suits in has the wind energy resources area building crown, the supply family uses electricity, For example illumination: The light bulb, conserves energy the lamp; Domestic electric appliances: Television, radio, electric fan, washer, electric refrigerator. Key words:Wind power generation, Regulating control system, Small wind-driven generator

发电机励磁原理

发电机励磁原理 励磁机的作用: 发电机原理为永磁极随转子旋转,产生交流电,交流电一部分作为AER的电源,一部分通过逆变器整流成直流为转子建立磁场。通过调节导通角可以改变发电机的端电压(空载时)进而实现并网,在并网时调节向电网的无功输出。 工作原理:众所周知,同步发电机要用直流电流励磁。在以往的他励式同步发电机中,其直流电流是有附设的直流励磁机供给。直流励磁机是一种带机械换向器的旋转电枢式交流发电机。其多相闭合电枢绕组切割定子磁场产生了多相交流电,由于机械换向器和电刷组成的整流系统的整流作用,在电刷上获得了直流电,再通过另一套电刷,滑块系统将获得的直流输送到同步发电机的转子,励磁绕组去励磁,因此直流励磁机的换向器原则上是一个整流器,显然可以用一组硅二极管取代,而功率半导体器件的发展提供了这个条件。将半导体元件与发电机的轴固结在一起转动,则可取消换向器、滑块等滑动接触部分、利用二极管换成直流电流。直流送给转子励磁、绕组励磁。这就是无刷系统。 下面我们以典型的几种不同发电机励磁系统,介绍它的工作原理。 一、相复励励磁原理 由线形电抗器DK把电枢绕组抽头电压移相约90°、和电流互感器LH提供的电压几何叠加,经过桥式整流器ZL整流,供给发电机励磁绕组。负载时由电流互感器LH供给所需的复励电流,进行电流补偿,由线形电抗器DK移相进行相位补偿。 二、三次谐波原理 对一般发电机来源,我们需要的是工频正弦波,称为基波,比基波高的正弦波都称为谐波、其中三次谐波的含量最大,在谐波发电机定子槽中,安放有主绕组和谐波励磁绕组(s1、s2),而这个绕组之间没有电的联系。谐波绕组将绕组中150HZ谐波感应出来,经过ZL桥式整流器整流,送到主发电机转子绕组LE 中进行励磁。 三、可控硅直接励磁原理 可控硅直接励磁是采用可控硅整流器直接将发电机输出的任一相一部分能量,经整流后送入励磁绕组去的励磁方式,它是由自动电压调节器(AVR),控制

5发电机自并励励磁自动控制系统设计()

作者:Pan Hon glia ng 仅供个人学习 辽宁工业大学

电力系统自动化课程设计(论文)题目:发电机自并励励磁自动控制系统设计(1)院(系):电气工程学院 专业班级:电气XXX _________ 学号:_xxx _______________ 学生姓名: ___________________ 指导教师: ___________________ 起止时间:2013.12.16 —12.29

课程设计(论文)报告地内容及其文本格式 1、课程设计(论文)报告要求用A4纸排版,单面打印,并装订成册,内容包括: ①封面(包括题目、院系、专业班级、学生学号、学生姓名、指导教师姓名、、起止时间等) ②设计(论文)任务及评语 ③中文摘要(黑体小二,居中,不少于200字) ④目录 ⑤正文(设计计算说明书、研究报告、研究论文等) ⑥参考文献 2、课程设计(论文)正文参考字数:2000字周数. 3、封面格式 4、设计(论文)任务及评语格式 5、目录格式 ①标题“目录”(小二号、黑体、居中) 6、正文格式 ①页边距:上2.5cm,下2.5cm,左3cm,右2.5cm,页眉1.5cm,页脚1.75cm,左侧装订; ②字体:一级标题,小二号字、黑体、居中;二级,黑体小三、居左;三级标题,黑体四号;正文文字小四号字、宋体; ③行距:20磅行距; ④页码:底部居中,五号、黑体; 7、参考文献格式 ①标题:“参考文献”,小二,黑体,居中. ②示例:(五号宋体) 期刊类:[序号]作者1,作者2, ... 作者n.文章名.期刊名(版本).岀版年,卷次(期次):页次. 图书类:[序号]作者1,作者2,……作者n.书名.版本.岀版地:岀版社,岀版年:页次.

同步发电机的励磁建模

2.1同步电机模型 同步电机是电力系统的主要元件,电磁暂态和机电互动现象十分丰富,模型的建立和求解往往决定着仿真的精度和能够反映实际系统动态过程的程度,因此,很多专家在同步发电机建模方面展开研究并取得多项成果。 同步电机是励磁控制系统的控制对象,又和励磁控制系统密切相关系。研究励磁系统的动态特性,离不开对同步电机动态特性的分析。同步电机的过渡过程比较复杂,通过以d,q 坐标系统推导出来的派克(Park)方程作为同步电机的基本方程,求出完整的动态模型;在某些特定的条件下,可由完整的动态模型得到简化模型。在小干扰情况下,可以将非线性的完整模型在工作点附近线性化,得出线性化模型:同样,在某些特定的条件下,还可以求得简化的线性模型。 同步电机dqO 坐标下的暂态方程称为派克方程,它是一组非线性的微分方 程组。由于dqO 三轴之间的解耦以及aqO 坐标下的电感参数是常数,因此派克变换及同步电机的派克方程在实用分析中得到广泛的使用。 同步电机具有三个定子绕组、一个转子绕组、两个阻尼绕组。六个绕组间 都有磁的耦合,加上转子位置不断变化,绕组间的耦合又必然是转子的位置函 数。要正确反映上述情况就需要七个非线性微分方程。 2.1.1同步电机基本方程 由同步电机在d,q 轴的park 微分方程组出发,电压和磁链方程(以标幺值形式)如(2.1)-(2.10)所示: 电压方程: 定子绕组:d q d d ri p U --=ωψψ (2.1) q d q q ri p U --=ωψψ (2.2) 励磁绕组: f f f f p r i U ψ-= (2.3) 阻尼绕组: d d d p i r 1110ψ-= (2.4) q q q p i r 1110ψ-= (2.5) 磁链方程: 定子绕组:d ad f ad d d d i X i X i X 1++-=ψ (2.6) q aq q q q i X i X 1+-=ψ (2.7) 励磁绕组:d ad f f d ad f i X i X i X 1++-=ψ (2.8) 阻尼绕组:d d f ad d ad d i X i X i X 111++-=ψ (2.9) q q q aq q i X i X 111+-=ψ (2.10) 其中,dt d p θθω==。式中各物理量的定义为:d i -负载电流d 轴分量;q i -负载电流q 轴分量;f i -励磁电流;d U -机端电压d 轴分量;q U —机端电压q 轴分量;f U -

电气工程及其自动化专业本科毕业论文

电气工程及其自动化专业 本科毕业论文 Last revision date: 13 December 2020.

可控励磁发电系统综合性实验的设计 摘要 现代电力系统的发展,对同步发电机励磁控制提出了更高要求。发电机在正常工作情况下,负载总在不断地变化着。而不同容量的负载,以及负载的不同功率因数,对同步发电机励磁磁场的反映作用是不同的,要维持同步发电机端电压为一定水平,就必须根据负载的大小及负载的性质随时调节同步发电机的励磁。在各类电站中,励磁系统是保证同步发电机正常工作,提高电网稳定水平的关键设备。同步发电机励磁的自动控制在保证电能质量、无功功率的合理分配和提高电力系统运行的可靠性方面都起着十分重要的意义。 本文主要对可控励磁发电系统进行了实验设计,首先对可控励磁发电系统做了相关简介并探讨了可控励磁发电系统的国内外未来发展形势。本文着重在可控励磁系统中的过励限制方面作了重点分析,并设计了相关的一个过励限制特性试验,对过励限制系统加深了了解。 关键词电力系统;励磁控制系统;过励限制

Integrated power system excitation control design of experiment Abstract The development of modern power system, synchronous generator excitation control on a higher requirement. Generators in normal circumstances, the total load is constantly changing. And different load capacity and load of different power factor, synchronous generator excitation field on the reflection of the role is different, to maintain the synchronous generator terminal voltage to a certain level, it must be based on load size and the nature of the load regulation at any time synchronization power generator. In various power plant, synchronous generator excitation system is to ensure that work to improve the level of power and stability of key equipment. Synchronous generator excitation control in power quality assurance, rational allocation of reactive power and improve reliability of power system operations and play an important role. This paper mainly controlled experimental excitation power system design, first generation system as a controllable excitation profile and the related power system excitation control of the future development of the situation at home and abroad. This article focuses on the controlled excitation system overexcited restrictions were analyzed, and design-related characteristics of an overexcited limit test, the system had exciting limit to deepen understanding. Keywords:power system;excitation control system;overexcited limit

试论发电机自并励励磁系统的特点及问题

试论发电机自并励励磁系统的特点及问题 发表时间:2019-07-09T15:25:57.537Z 来源:《电力设备》2019年第6期作者:薛江辉 [导读] 摘要:发电机自并励励磁系统又称为自并励静止励磁系统,对发电机运行的稳定性、安全性、供电质量有着直接的影响。 (内蒙古京泰发电有限责任公司内蒙古鄂尔多斯市 010300) 摘要:发电机自并励励磁系统又称为自并励静止励磁系统,对发电机运行的稳定性、安全性、供电质量有着直接的影响。基于此,本文首先介绍了发电机自篇【并励励磁系统的特点。其次,分析了目前发电机自并励励磁系统存在的问题。最后,针对这些问题,从设计、选型两个主要方面,分析优化发电机自并励励磁系统的方式。 关键词:发电机; 自并励励磁系统; 励磁功率柜; 励磁调节器; 引言 国家电力系统在1998年颁布了DL/T650—1998《大型汽轮发电机自并励静止励磁系统技术条件》,此后,我国发电机自并励励磁系统的发展一直在这个框架内进行。目前,自并励励磁系统已经全国超过80%的发电厂广泛应用,如大唐临清发电有限责任公司的350MW机组、大唐鲁北发电有限责任公司的330MW机组等。 作为同步发电机的重要组成部分,励磁系统直接影响着发电机的运行特性,同时对电力系统的运行有重要的影响。发电机灭磁是指消灭发电机转子内部储存能量的过程,以加快正常的停机速度。当发电机故障时,通过发电机灭磁可将故障造成的损失降到最低。发电机灭磁一般分为两大类: (1) 发电机正常停机时采用的逆变灭磁; (2) 事故时保护动作跳灭磁开关的灭磁方式。在发电机正常停机过程中,灭磁是一个非常重要的环节。发电机灭磁失败会对发电机与励磁装置的安全运行构成较大的危害,例如产生转子过电压,危及转子绝缘甚至烧毁转子磁极,使转子本体发热,加速转子绝缘的老化,烧毁灭磁开关等。 1 发电机自并励励磁系统的特点 发电机自并励励磁系统主要由 (1) 主变压器; (2) 励磁调节转换装置; (3) 功率整流装置; (4) 发电机消磁装置; (5) 过电压保护装置; (6) 励磁启动装置; (7) 励磁操作控制设备几个主要部分组成。这7个主要装置配合科学、运行良好。因而,目前的发电机自并励励磁系统,主要具有以下几个突出的特点: 第一,稳定性强。发电机自并励励磁系统去掉了原有励磁系统中的旋转部件,结构更加流畅稳定,一旦发生故障,系统可以通过自检装置及时发出警报。 第二,安全性强。发电机自并励励磁系统对上游指令的相应速度快,这大大提高了发电系统与供电系统的运行稳定性与安全性。 第三,运行成本较低。与传统的励磁控制设备系统相比,发电机自并励励磁系统的运行部件减少到了7个,不仅大大提高了系统的轴系稳定性,也降低了系统生产运行的材料成本与电力成本、人工维修成本。 2 发电机自并励励磁系统的问题 目前发电机自并励励磁系统存在的问题,与原有的励磁系统,既有一定的共性,也有很大的差别:一方面,发电机自并励励磁系统的过流保护控制难度较高,受到设备部件缩减的影响,一旦发电机电流超过运行范围,系统将会在短时间内受到比较严重的损害;另一方面,发电机自并励励磁系统的变压器,很少加装外壳和制冷系统,设备在高温状态下容易出现故障,变压器过热将导致抗阻电压增大、荷载电压过载等问题,影响电力生产与电力供应系统的正常运行。 3 优化发电机自并励励磁系统的方式 3.1 发电机自并励励磁系统设计 3.1.1 严格把控发电机自并励励磁系统的应用条件 第一,电力系统故障导致电压不稳、波动较大的情况下,不宜使用发电机自并励励磁系统,避免电压波动过大,对励磁系统的主变压器造成严重影响,导致变压器中的元件损坏,或无法正常发挥励磁功能。第二,位于发电主网震荡中心的发电机,不适合使用发电机自并励励磁系统。这种环境中放置的发电机,电流状况不稳定,容易导致自并励励磁系统电压过低。 3.1.2 优化自并励励磁系统变压器的运行保护 首先,自并励励磁系统在户内使用时,可以不加装保护外壳,但要注意严格监控系统运行中的温度,防止冬季的温度过低,对系统的运行产生影响,必要时要加装制冷系统,如风冷系统、水冷系统,保障系统运行的温度不过高。其次,在户外使用时,技术人员要根据当地的天气状况,合理判断是否要为自并励励磁系统变压器加装保护外壳,尤其是在正午阳光直射的时候,要监测阳光照射对系统运行的影响。最后,技术人员要加强对变压器运行中,额定功率变化的检测,提高系统在高电压环境下的强励能力。 3.1.3 重点解决发电机起励问题 首先,在发电机电压核准之前,发电机自并励励磁系像发电机提供励磁电源,这种情况下,设计人员要根据发电系统的具体需求,建立备用的起励方案。其次,在备用起励方案的设置上,技术人员可以进行以下几方面的尝试: (1) 构建备用的起励回路,利用起励电源对发电机进行励磁,安装智能电压感应装置,当电压恢复到正常电压的50%以上时,起励回路由备用回路调整为正常回路。 (2) 安装备用起励装置。减少发电系统的电压波动,增加发电系统的电容量。最后,在发电机自并励励磁系统第一次投入使用,或周期性大修结束之后的再次启用时,技术人员要对发电机自并励励磁系统进行短路检测与空载试验检测,以控制变压装置的整流电源。 3.1.4 优化励磁功率柜的选择 一方面,励磁功率柜的选择要遵守“容量大”原则。采用可控硅全控桥的方式,选择大电流的励磁功率柜,简化整流桥,降低发电机自并励励磁系统的电阻,简化整个系统的运行元件,保障系统中各个元器件的电压、电流、电阻分布均匀。另一方面,励磁功率柜的选择要遵循“参数高”的原则。对发电机自并励励磁系统进行过电保护,保障励磁系统使用在温度适宜的环境中,采用合理的温度控制手段,保障整流柜均流系数达到要求。 3.2 发电机自并励励磁系统选型 发电机自并励励磁系统运行的稳定性是其最突出的特点,要正常的发挥出这一特性,最关键的是要优化励磁系统的应用条件,保障励磁器运行过程中的电压始终稳定。发电机自并励励磁系统选型主要应注意以下几个问题: (1) 优化过压保护装置的配置; (2) 增强励磁调节器选择的针对性; (3) 严格遵守国家的相关技术指导规范。尤其是GB/T7409—1997《同步电机励磁系统》中的相关要求。

浅谈同步发电机的励磁系统

浅谈同步发电机的励磁系统 1 概述 向同步发电机的转子励磁绕组供给励磁电流的整套装置叫做励磁系统。励磁系统是同步发电机的重要组成部分,它的可靠性对于发电机的安全运行和电网的稳定有很大影响。发电机事故统计表明发电机事故中约1/3为励磁系统事故,这不但影响发电机组的正常运行而且也影响了电力系统的稳定,因此必须要提高励磁系统的可靠性,而根据实际情况选择正确的励磁方式是保证励磁系统可靠性的前提和关键。我国电力系统同步发电机的励磁系统主要有两大类,一类是直流励磁机励磁系统,另一类是半导体励磁系统。 2 直流励磁机励磁系统 直流励磁机励磁系统是采用直流发电机作为励磁电源,供给发电机转子回路的励磁电流。其中直流发电机称为直流励磁机。直流励磁机一般与发电机同轴,励磁电流通过换向器和电刷供给发电机转子励磁电流,形成有碳刷励磁。直流励磁机励磁系统又可分为自励式和它励式。自励与他励的区别是对主励磁机的励磁方式而言的,他励直流励磁机励磁系统比自励励磁机励磁系统多用了一台副励磁机,因此所用设备增多,占用空间大,投资大,但是提高了励磁机的电压增长速度,因而减小了励磁机的时间常数,他励直流励磁机励磁系统一般只用在水轮发电机组上。

图1 自励直流励磁机励磁系统原理接线图 上图中LH——电流互感器 YH——电压互感器 F ——同步发电机 FLQ——同步发电机的励磁线圈 L——直流励磁机 LLQ——直流励磁机的励磁线圈 Rc——可调电阻 采用直流励磁机供电的励磁系统,在过去的十几年间,是同步发电机的主要励磁系统。目前大多数中小型同步发电机仍采用这种励磁系统。长期的运行经验证明,这种励磁系统的优点是:具有独立的不受外系统干扰的励磁电源,调节方便,设备投资及运行费用也比较少。缺点是:运行时整流子与电刷之间火花严重,事故多,性能差,运行维护困难,换向器和电刷的维护工作量大且检修励磁机时必须停主机,很不方便。近年来,随着电力生产的发展,同步发电机的容量愈来愈大,要求励磁功率也相应增大,而大容量的直流励磁机无论在

相关文档
最新文档