基于小波变换的图像去噪方法研究报告附MATLAB程序

基于小波变换的图像去噪方法研究报告附MATLAB程序
基于小波变换的图像去噪方法研究报告附MATLAB程序

基于小波变换的图像去噪方法的研究

(附送程序,见上传者“我的文档”)

摘要

图像在生成和传输的过程中会受到各种噪声的干扰,对信息的处理、传输和存储造成极大的影响。寻求一种既能有效地减小噪声,又能很好地保留图像边缘信息的方法,是人们一直追求的目标。小波分析是局部化时频分析,它用时域和频域联合表示信号的特征,是分析非平稳信号的有力工具。它通过伸缩、平移等运算功能对信号进行多尺度细化分析,能有效地从信号中提取信息。

本文对基于小波变换的图像去噪方法进行了研究分析, 详细介绍了其去噪原理和算法,分析了去噪过程中参数的选取问题,并给出了一些选取依据;详细介绍了小波系数相关性去噪方法的原理和算法。最后对均值滤波、中值滤波和维纳滤波方法在高斯噪声下进行了分析比较,并给出了仿真实验结果,结果证明小波去噪十分有效,其结果好于其它3种滤波。

关键词:小波变换,图像去噪,阈值,阈值函数

1.引言

数字图像在我们日常生活中起着非常重要的作用,它与我们的日常生活息息相关,例如在卫星、电视、核磁共振、计算机视觉、地球信息系统以及天文学中应用非常广泛。但是一般情况下采集到的数字图像是含有噪声的。噪声[1]可以理解为“妨碍人们感觉器官对所接收的信源信息理解的因素”。图像在生成和传输的过程中灰受到各种噪声的干扰,对信号的处理、传输和存储造成极大的影响。数字图像之所以含有噪声这是因为在图像的采集、获取、编码和传输的过程中,所有的图像均不同程度地被可见或不可见的噪声“污染”。对于这种“污染”,如果信噪比(SNR)低于一定水平,就会影响图像场景内容的表示,直接导致图像质

量的下降。除了视觉质量上下降外,噪声还可能掩盖一些重要的图像细节,使图像的熵增大,从而对于图像数据的有效压缩起到了一定的妨碍作用。对于图像在采集、获取过程造成的“污染”,我们虽然尽量提高硬件设备以获取质量更高的图像,但图像传感器的截止频率总是有一定的,受硬件水平和价格的限制,且图像在编码和传输过程中造成的“污染”,必需采取有效的降噪技术才能提高图像的质量。

对图像进行去噪最初主要是在空域内进行的,图像空域去噪方法很多,主要是通过各种滤波器对图像进行去噪。例如均值滤波器、顺序统计滤波器、维纳滤波器等。为了进一步提高去噪的效果,在变换域中进行降噪处理成为有效的方法,图像变换域去噪就是对图像进行某一种变换,然后将图像从时域变换到变换域中,再对变换域中的图像变换系数按照某种方法进行处理,最后再对处理后的系数按照某种方法进行反变换,这样就实现了将图像去除图像噪声的目的。将图像从时域转换到变换域的变换方法很多,例如傅立叶变换、小波变换等等。

小波变换是在短时傅立叶变换的基础上发展起来的一种新型的变换方法。小波变换具有多分辨率分析的特点,在时域、频域都具有较强的表征信号局部特征的能力,因此基于小波分析的图像去噪技术已成为图像去噪的一个重要方法。本文采用小波阈值去噪的方法,从去噪的效果上比较了多种去噪方法的优劣,实验证明小波去噪在图像噪声处理中起到很好的效果。

2.小波变换概述

2.1 小波变化去噪技术研究现状

上个世纪八十年代Mallet 提出了MRA(Multi_Resolution Analysis),并首先把小波理论运用于信号和图像的分解与重构,利用小波变换模极大值原理进行信号的奇异性检测,提出了交替投影算法用于信号重构,为小波变换用于图像处理奠定了基础[1]。后来,人们根据信号与噪声在小波变换下模极大值在各尺度上的不同传播特性,提出了基于模极大值去噪的基本思想。1992年,Donoho和Johnstone 提出了“小波收缩”,它较传统的去噪方法效率更高。“小波收缩”被Donoho 和Johnstone证明是在极小化极大风险中最优的去噪方法,但在这种方法中最重要的就是确定阈值。1995年,Stanford大学的学者D.L.Donoho和I.M.Johnstone 提出了通过对小波系数进行非线性阈值处理来降低信号中的噪声[2]。从这之后的小波去噪方法也就转移到从阈值函数的选择或最优小波基的选择出发来提高去噪的效果。影响比较大的方法有以下这么几种:Eero P.Semoncelli和Edward H.Adelson提出的基于最大后验概率的贝叶斯估计准则确定小波阈值的方法[3];Elwood T.Olsen等在处理断层图像时提出了三种基于小波相位的去噪方法:边缘跟踪法、局部相位方差阈值法以及尺度相位变动阈值法;学者Kozaitis结合小波变换和高阶统计量的特点提出了基于高阶统计量的小波阈值去噪方法[4];

G.P.Nason等利用原图像和小波变换域中图像的相关性用GCV(general cross- validation)法对图像进行去噪;Hang.X和Woolsey等人提出结合维纳滤波器和小波阈值的方法对信号进行去噪处理[5],Vasily Strela等人将一类新的特性良好的小波(约束对)应用于图像去噪的方法[6];同时,在19世纪60年代发展的隐马尔科夫模型(Hidden Markov Model),是通过对小波系数建立模型以得到不同的系数处理方法;后又有人提出了双变量模型方法[7],它是利用观察相邻尺度间父系数与子系数的统计联合分布来选择一种与之匹配的二维概率密度函数。这些方法均取得了较好的效果,对小波去噪的理论和应用奠定了一定的基础。

小波具有低墒性、多分辨率、去相关性、选基灵活性等特点。

2.2 连续小波变换

1. 小波基函数

所谓小波(Wavelet),即存在于一个较小区域的波。小波函数的数学定义是:

设()t ψ为一平方可积函数,即()()R L t 2∈ψ,若其傅立叶变换()w ψ

?满足: ()

∞=?

dw C R

w

w 2

ψψ(2.1)

时,则称()t ψ为一个基本小波或小波母函数,并称上式是小波函数的可容许条件。

根据小波函数的定义,小波函数一般在时域具有紧支集或近似紧支集,即函数的非零值定义域具有有限的范围,这即所谓“小”的特点;另一方面,根据可容许性条件可知()00==w w ψ,即直流分量为零,因此小波又具有正负交替的波动性。

将小波母函数()t ψ进行伸缩和平移,设其伸缩因子(亦称尺度因子)为a ,平移因子为b ,并记平移伸缩后的函数为()t b a ,ψ,则:

()()0;,,1

,≠∈=--a R b a a t t b a τ

ψψ(2.2)

并称()t b a ,ψ为参数a 和b 小波基函数。由于a 和b 均取连续变换的值,因此又称为连续小波基函数,它们是由同一母函数()t ψ经伸缩和平移后得到的一组函数系列。

2. 连续小波变换

将()R L 2空间的任意函数()t f 在小波基下进行展开,称其为函数()t f 的连续小波变换CWT ,变换式为:

()()()dt t f f b a WT a

b t R

a

b a f -?>=

=

,,,(2.3)

当小波的容许性条件成立时,其逆变换为:

()()()?

?

+∞∞

--+∞

∞-?=

db b a WT t f a b t f a da C ψψ

,2

1(2.4)

其中()

∞=?

dw C R

w

w 2

ψψ为()t ψ的容许性条件。

另外,在小波变换过程中必须保持能量成比例,即:

()()???

=R

R

f R

a da

dx x f C db b a WT 2

2

,2

ψ(2.5)

由CWT 的定义可知,小波变换和傅立叶变换一样,也是一种积分变换,其中

()b a W T f ,为小波变换系数。

可见小波变换对函数()t f 在小波基上的展开具有多分辨率的特性,这种特性正是通过缩放因子a 和平移因子b 来得到的。

一个一维函数()t f 的连续小波变换是一双变量的函数,变量比()t f 多一个,因此称连续小波变换是超完备的,因为它要求的存储量和它代表的信息量都显著增加了。对于变量超过一个的函数来说,这个变换的维数也将增加。

若()t f 是一个二维函数,则它的连续小波变换是:

()()(

)d xdy t t f b b a WT b y b x a

y x f y x

--+∞∞-+∞

-??

=

,

,,,211

ψ

(2.6)

其中,x b ,y b 表示在两个维度上的平移,二维连续小波逆变换为:

()()(

)y

x

a

b y a

b x y x f a da

C db db b b a WT y x f y x

??

?

+∞∞---+∞∞

-+∞

=

,

,,,0

13ψ

ψ

(2.7)

同样的方法可以推广到两个或两个以上的变量函数上。

2.3 离散小波变换

计算机中的图像信息是以离散信号形式存放的,所以需要将连续小波变换离散化。而最基本的离散化方法就是二进制离散,一般将这种经过离散化的小波及其变换叫做二进小波和二进变换。需要注意的是这里的离散化都是针对连续的尺度因子a 和连续平移因子b 的,而不是针对时间t 的。这儿限制尺度因子a 总是正数。

1. 尺度与位移的离散化

对连续小波基函数()t b a ,ψ尺度因子a 和平移因子b 进行离散化可以得到离散小波变换()b a W T f ,,从而减少小波变换系数的冗余度。在离散化时通常对尺度因

子a 和平移因子b 按幂级数进行离散化,即取m

m b b a a 0

0,==(m 为整数,,10≠a 但一般都假定10 a ),得到离散小波函数为:

()(

)()0011

,0

00

nb t a t m a a b na t a n m m

m -=

=

--ψψ

ψ(2.8)

其对应系数为:

()()()dt t t f t f C n m n m n m ,,,,ψψ?+∞

->==<(2.9)

2. 二进制小波变换

二进小波变换是一种特殊的离散小波变换,特别地令参数20=a ,10=b ,则有()n t m n m m -=--22,ψψ。该二进尺度分解的原理在二十世纪三十年代由

Littlewood 和 Paley 在数学上进行了研究证明。

离散小波变换为:

()()()dt t t f n m n m WT n m f ?+∞

->==<,,,ψ(2.10)

离散二进小波变换为:

()()()dt t t f n m n m WT n m f ?+∞

->==<,,,ψ(2.11)

二维离散小波变换:

我们考虑二维尺度函数是可分离的情况,也就是:

()()()2121,x x x x φφφ?=(2.12)

设()i x ψ是与()i x φ对应的一维小波函数,则有:

()()()21211,x x x x ψφψ=(2.13)

()()()21212,x x x x φψψ=(2.14) ()()()21213,x x x x ψψψ=(2.15)

以上三式就建立了二维小波变换的基础。

3. 图像的小波变换及Mallat 算法

图像是二维信号,二维多分辨率分析与一维类似,但空间)(2R L 变成)*(2R R L ,一维中引入的尺度函数)(x φ变为),(y x φ。

设{

}Z j j V ∈是)(2R L 的一个多分辨率分析,则可以证明,张量空间{}

Z

j j V ∈2:

j j j V V V ⊕=2构成)*(2R R L 的一个多分辨率分析,并且二维多分辨率分析{}

Z

j j V ∈2

的二维尺度函数),(y x φ为

)()(),(y x y x φφφ= (2.16)

式中:)(x φ是{

}Z j j V ∈尺度函数(一维)。 式(2.28)说明了二维尺度函数的可分离性。对于每一个Z j ∈,函数系

}),()()(),({2,,,,Z m n y x y x m j n j m n j ∈=φφφ构成{}

Z

j j V ∈2

的规范正交基,这里下标j ,n ,

m 的含义是:

)0(),2()2(2),(,,≥--=j m y n x y x j j j m n j φφφ(2.17)

我们将{}

Z

j j V ∈2

称为)*(2

R R L 的可分离多分辨率分析。因)(x φ、)(y φ都是低通的尺度函数,所以{}

Z

j j V ∈2

平滑的低通空间。

如果)(x ψ是一维多分辨率分析{

}Z j j V ∈的正交小波基,则二维多分辨率分析的三个小波函数为:

)

()(),()()(),()

()(),(321y x y x y x y x y x y x ψψψφψψψφψ===(2.18) 对于每一个Z j ∈,它们的整数平移系为:

)

()(),()()(),()

()(),(,,,,3,,,,2,,,,1y x y x y x y x y x y x m j n j m n j m j n j m n j m j n j m n j ψψψφψψψφψ===(2.19) 注意这里的上标只是索引而不是指数。它们构成了Z j j W ∈}{2

的规范正交基。

因此以上的三个正交基中都至少包含一个带通的)(x ψ或)(y ψ,所以它们都是带通的。也就是说这三部分反应的都是细节信息。

具体来说,函数系}2,2(2{)},({,,m y n x y x j j j m n j --=εεψψ,3,2,1,0=≥εj 是

)*(2R R L 的正交归一基,其中均为整数,ε=1,2,3分别对应于水平、垂直和对角三个方向。对于任一二维图像信号)*(),(2R R L y x f ∈,在分辨率j -2下有:

2

,,332,,222

,,112,,),(),(),,(),(,),(),,(),(),(),,(),(,),(),,(Z m n y x y x f f D Z m n y x y x f f D Z m n y x y x f f D Z m n y x y x f f A m n j j m n j j m n j j m n j j ∈=∈=∈=∈=ψψψφ (2.20)

上式表明,在j -2分辨率上将图像分解成f A j 、f D j 1、f D j 2和f D j 3四个子图,其中f A j 代表原图像在j -2分辨率上的近似(即图像的低频部分,不妨用LL 来表示),f D j ε则代表这种近似的误差(即图像的高频部分或“细节”部分);f

D j 1

对应于垂直方向的高频成分,即水平的边缘(细节)信息(不妨用LH 表示);f D j 2对应于水平方向的高频成分,即垂直的边缘(细节)信息(不妨用HL 表示);f D j 3则对应于对角方向的高频成分(不妨用HH 表示)。图2.1形象地表示了二维图像的多分辨率小波分解。图中符号的上标表示图像的小波分解层数,图中示意了图像的2级小波分解。可以看到,在每一分解层上,图像均被分解为LL, LH, HL 和HH 的四个频带;下一层的分解仅对低频分量LL 进行分解。

图2.1二维图像的小波分解

按照Mallat 的快速算法,图像的小波分解算法如图2.2所示:

图2.2图像的小波分解算法

图2.2示意了图像的一步小波分解过程,可以看到:二维图像的小波分解可以对图像依次按行、按列与一维的低通(H)和高通(G)滤波器作卷积来实现,在卷积之后进行相应的降2采样。图像小波分解的重构算法如图2.3所示。

图2.3图像的小波重构算法

图2.3示意了小波分解图像的一步重构过程,小波分解图像的重构是先对列或行进行升2采样(在相邻列或行间插入一零列或零行),然后再按行、按列与一维的低通或高通滤波器进行卷积,这样递推下去便可重构原图像。二维图像的这种行、列可分离性简化了图像的小波变换。

3.小波阈值去噪

3.1阈值函数的选取

在阈值去噪中,阈值函数体现了对超过和低于阈值的小波系数模的不同处理策略以及不同估计方法。常用的阈值函数有硬阈值函数和软阈值函数两种[8-9]。硬阈值策略保留大于闽值的小波系数,而把小于阈值的小波系数都设定为零。软阈值策略把小于闽值的小波系数置零,把大于阈值的小波系数的绝对值减去阈值以除去噪声的影响。设A 为元素小波系数,t 为阈值,两种阈值函数的表达式分别如下:

(1) 硬阈值函数:

()????

?≥==t

A t

A A t A T x h 0,(3.1)

(2) 软阈值函数:

()????

?≥-==t

A t A t

A t A T x s 0

,(3.2)

硬阈值法得到的小波系数的连续性较差,重构信号可能出现突变或振荡现象;如图3.2(a )所示。软阈值法的到的小波系数的连续性好,但当小波系数较大时,得到的处理后的小波系数和实际的小波系数有一定的偏差,会导致重构结果的误差。如图3.2(b )所示。

图3.2 两种阈值方法

3.2阈值的选取

小波阈值去噪方法除了阈值函数的选取,另一个关键因素是对阈值的具体估计。如果阈值较小,去噪后的图像信号与输入比较接近,但是残留了较多噪声。若阈值较大,则得到较多为零的小波系数,对于软阈值策略重建图像变得模糊。在小波域阈值去噪中,阈值的选取直接影响滤波效果。本文用了2种的阈值估计方法。

(1) Visushrink 阈值

也称通用阈值,是Donoho 和Johnstone 提出的,针对多维独立正态变量联合分布,在维数趋于无穷是得出的结论,是基于最小最大估计得出的最优阈值[10]。阈值t 的选择满足

A

A

(a )硬阈值

(b )软阈值

()N l t n n 2σ=(3.3)

其中,N 为信号长度,n σ为噪声标准差。n σ的估计公式如下:

6745

.0)(ij n Y Median =

σ(3.4)

(2) Surehrink 阈值

也称Stein 无偏风险阈值,是一种基于Stein 的无偏似然估计的自适应阈值选择[s53],它是针对软阈值函数得出的结论。SureShrink 阈值的具体计算过程如下:

①求取信号的长度N ;

②将某一层的小波系数的绝对值由小到大排列,得打一个新的向量,X=[x 1,x 2,x 3,…,x N ],其中x 1

③计算风险向量,R=[r 1,r 2,r 3,…,r N ],其中

N

x x N i N r i

k i

i i ∑=+-+-=

1)1(2(3.5)

④以R 中最小元素r B 作为风险值,由r B 的相应位置B 求出对应的x B ,则SureShrink 阈值为B n x t σ=。

3.3 小波阈值去噪过程

阈值去噪法就是通过对图像进行小波变换,得到小波变换系数。因为信号对应的小波系数包含有重要的信息,其数据较少,幅值变化较大,而噪声对应的小波系数的分布则恰好相反,通过设定特定的阈值对小波系数进行取舍,就可以得到小波系数估计值,最后通过估计小波系数进行小波重构,就得到去噪后的图像[11]。阈值去噪法实现简单,计算量小,在实际中有着广泛的应用。经过阈值处理后,得到的处理后的小波系数多,因此可以直接对其进行小波重构,如图3.3所示。

图3.3小波阈值去噪过程

在实际中,小波分解层数值J一般取3-5。实际中,J取越大,则噪声和信号表现不同特征越明显,越有利于信噪分离;另一方面,对重构来讲,分解层越多,则失真越大,即重构误差越大。最大分解层数应该与信号的信噪比有关,根据实验表明,对一般的信号而言,若信噪比大于20,则取J=3,否则,取J=4。

本文采用了小波基为coif2的小波分解法,以及以上2中阈值去噪法,过程如下:Array图3.4本文小波去噪流程图

4.实验仿真及结论

本文为说明小波去噪的有效性和优越性,对含有高斯白噪声的Lenna图像进

行消噪处理,其中噪声平均为0,方差2σ为0.01,0.02,0.03,0.04,0.05,0.06。

为了客观评价噪声图像的噪声污染度,以及各种去噪方法的效果,本文引用了峰值信噪比PSNR :

∑∑-=--=101

22

10

)),('),((1255log 10m i n j

j i I j i I mn PSNR (4.1)

式中I ’(i,j)和I(i,j)分别是有噪图像和原始理想图像在点(i,j )处的灰度值,m 、n 分别表示图像的行数和列数。

由于在各方差噪声下,噪声图像的峰值信噪比均小于20,所以小波尺度取J =4。本文对方差为0.01噪声图像进行小波系数分解,得到下图:

图4.1小波系数分解图

本文分别用小波去噪、均值去噪、中值去噪和维纳去噪对8位的255灰度值的Lena 图像进行去噪处理,结果图如下所示:

图4.2去噪效果图

此外,本文也对多个方差的噪声进行去噪处理,并得出PSNR 值进行对比,如下表所示。

表4.1 各种去噪方法的PSNR 值比较

通过以上结果分析可知,小波阈值去噪的效果较均值滤波、中值滤波和维纳滤波效果都好。

参考文献

[1] 杨福生.小波变换的工程分析与应用.北京:科学出版社,1999:150-176.

原图像噪声图小波去噪图

中值滤波均值滤波维纳滤波

[2] 阮秋琦.数字图像处理学[M].第二版.北京.电子工业出版社.2007.1-2

[3] D.L.Donoho, I.M.Johnstone. Wavelet Shrinkage: Asymptopia J. R. Stat. Soc. B.1995,

57:301-369.

[4] D.L.Donoho, I.M.Johnstone. Ideal Time-Frequency Denoising. Standford

University,Technical Report, Dept. of Statistics,1994:3397-3415.

[5] 张晔,黄秀明.小波变换及在图像处理中的小波特性分析[J].中国图像图形学报,

1997,2(7):480-484.

[6] Elwood T.Olsen, Biquan Lin. A Wavelet Phase Filter for Emission Tomography.

SPIE,1996,2491:829-839.

[7] Kozaitis, Basuhail. Adaptive Wavelet Threshold Selection Using Higher Order

Statistics for Signal Denoising. SPIE,1998,3391:68-74.

[8] Tu Dan and Shen Jianjun.The design of wavelet domain wiener filter and its

application in inage denoising.Systems Engineering and Electronics.2011.23.4-7 [9] Shubhankar R,Bani K.A Bayesian transformation model for wavelet shrinkage. IEEE

Trans. on IP.2003.12(12).1512-1520

[10] Donoho D L,Johnstone I.Adapting to unknown smoothness via wavelet shinkage.

Journal of Amercan Stat.Assoc.1995.90.1201-1225

[11] 张磊,潘泉,张洪才,戴冠中,小波域滤波阈值参数c的选取,电子学报,

2001,3,29(3).

[12] Xu Chen, Zhao Ruizhen, Gan Xiaobing. ApplicationAlgorithm of Wavelet

Analysis[M]. Beijing:Science Press,2004.

[13] Chao Rui, Zhang Ke, Li Yanjun. A Wavelet TransformBased Image Fusion

Method[J].Acta Electronica Sinica,2004,32(5):750-753.

[14] Gai Li-ping,Wang Gui-lian. Technology of filtering in medical image

processing[J].ChineseMedical EquipmentJournal,2007,(06):50-51.

[15] Gao Qing-wei,Li Bin. An image de-noising method based on stationary wavelet

transform[J].Journal of Computer Research and Development,2002,(12):1689-1693.

基于Matlab基本图像处理程序

图像读入 ●从图形文件中读入图像 imread Syntax: A = imread(filename, fmt) filename:指定的灰度或彩色图像文件的完整路径和文件名。 fmt:指定图形文件的格式所对应的标准扩展名。如果imread没有找到filename所制定的文件,会尝试查找一个名为filename.fmt的文件。 A:包含图像矩阵的矩阵。对于灰度图像,它是一个M行N列的矩阵。如果文件包含 RGB真彩图像,则是m*n*3的矩阵。 ●对于索引图像,格式[X, map] = imread(filename, fmt) X:图像数据矩阵。 MAP:颜色索引表 图像的显示 ●imshow函数:显示工作区或图像文件中的图像 ●Syntax: imshow(I) %I是要现实的灰度图像矩阵 imshow(I,[low high],param1, val1, param2, val2,...) %I是要现实的灰度图像矩阵,指定要显示的灰度范围,后面的参数指定显示图像的特定参数 imshow(RGB) imshow(BW) imshow(X,map) %map颜色索引表 imshow(filename) himage = imshow(...) ●操作:读取并显示图像 I=imread('C:\Users\fanjinfei\Desktop\baby.bmp');%读取图像数据 imshow(I);%显示原图像 图像增强 一.图像的全局描述 直方图(Histogram):是一种对数据分布情况的图形表示,是一种二维统计图表,它的两个坐标分别是统计样本和该样本对应的某个属性的度量。 图像直方图(Image Histogram):是表示数字图像中亮度分布的直方图,用来描述图象灰度值,标绘了图像中每个亮度值的像素数。 灰度直方图:是灰度级的函数,它表示图像中具有某种灰度级的像素的个数,反映了图 像中某种灰度出现的频率。描述了一幅图像的灰度级统计信息。是一个二维图,横坐标为图像中各个像素点的灰度级别,纵坐标表示具有各个灰度级别的像素在图像中出现的次数或概率。 归一化直方图:直接反应不同灰度级出现的比率。纵坐标表示具有各个灰度级别的像

小波变换图像去噪综述

科技论文写作大作业小波变换图像去噪综述 院系: 班级: 学号: 姓名:

摘要小波图象去噪已经成为目前图象去噪的主要方法之一.在对目前小波去噪文献进行理解和综合的基础上,首先通过对小波去噪问题的描述,揭示了小波去噪的数学背景和滤波特性;接着分别阐述了目前常用的3类小波去噪方法,并从小波去噪中常用的小波系数模型、各种小波变换的使用、小波去噪和图象压缩之间的联系、不同噪声场合下的小波去噪等几个方面,对小波图象去噪进行了综述;最后,基于对小波去噪问题的理解,提出了对小波去噪方法的一些展望 关键词:小波去噪小波萎缩小波变换图象压缩 1.前言 在信号数据采集及传输时,不仅能采集或接收到与所研究的问题相关的有效信号,同时也会观测到各种类型的噪声。在实际应用中,为降低噪声的影响,不仅应研究信号采集的方式方法及仪器的选择,更重要的是对已采集或接收的信号寻找最佳的降噪处理方法。对于信号去噪方法的研究可谓是信号处理中一个永恒的话题。传统的去噪方法是将被噪声污染的信号通过一个滤波器,滤除掉噪声频率成分。但对于瞬间信号、宽带噪声信号、非平稳信号等,采用传统方法具有一定的局限性。其次还有傅里叶(Fourier)变换也是信号处理中的重要手段。这是因为信号处理中牵涉到的绝大部分都是语音或其它一维信号,这些信号可以近似的认为是一个高斯过程,同时由于信号的平稳性假设,傅立叶交换是一个很好的信号分析工具。但也有其不足之处,给实际应用带来了困难。 小波变换是继Fourier变换后的一重大突破,它是一种窗口面积恒定、窗口形状可变(时间域窗口和频率域窗口均可改变)的时频局域化分析方法,它具有这样的特性;在低频段具有较高的频率分辨率及较低的时间分辨率,在高频段具有较高的时间分辨率及较低的频率分辨率,实现了时频窗口的自适应变化,具有时频分析局域性。小波变换的一个重要应用就是图像信号去噪。将小波变换用于信号去噪,它能在去噪的同时而不损坏信号的突变部分。在过去的十多年,小波方法在信号和图像去噪方面的应用引起学者广泛的关注。本文阐述小波图像去噪方法的原理,概括目前的小波图像去噪的主要方法,最后对小波图像去噪方法的发展和应用进行展望。 2小波图像去噪的原理 所谓小波变化,即:

MATLAB实现频域平滑滤波以及图像去噪代码

用MATLAB实现频域平滑滤波以及图像去噪代码 悬赏分:50 - 解决时间:2008-11-8 14:21 是数字图象处理的实验,麻烦高人给个写好的代码,希望能在重要语句后面附上一定的说明,只要能在MATLAB上运行成功,必然给分。具体的实验指导书上的要求如下: 频域平滑滤波实验步骤 1. 打开Matlab 编程环境;

2. 利用’imread’函数读入图像数据; 3. 利用’imshow’显示所读入的图像数据; 4. 将图像数据由’uint8’格式转换为’double’格式,并将各点数据乘以 (-1)x+y 以便FFT 变换后的结果中低频数据处于图像中央; 5. 用’fft2’函数对图像数据进行二维FFT 变换,得到频率域图像数据; 6. 计算频率域图像的幅值并进行对数变换,利用’imshow’显示频率域图 像; 7. 在频率图像上去除滤波半径以外的数据(置0); 8. 计算频率域图像的幅值并进行对数变换,利用’imshow’显示处理过的 频域图像数据; 9. 用’ifft2’函数对图像数据进行二维FFT 逆变换,并用’real’函数取其实部,得到处理过的空间域图像数据; 10. 将图像数据各点数据乘以(-1)x+y; 11. 利用’imshow’显示处理结果图像数据; 12. 利用’imwrite’函数保存图像处理结果数据。 图像去噪实验步骤: 1. 打开Matlab 编程环境; 2. 利用’imread’函数读入包含噪声的原始图像数据; 3. 利用’imshow’显示所读入的图像数据; 4. 以3X3 大小为处理掩模,编写代码实现中值滤波算法,并对原始噪声 图像进行滤波处理; 5. 利用’imshow’显示处理结果图像数据; 6. 利用’imwrite’函数保存图像处理结果数据。 即使不是按这些步骤来的也没关系,只要是那个功能,能实现就OK,谢谢大家 %%%%%%%%spatial frequency (SF) filtering by low pass filter%%%%%%%% % the SF filter is unselective to orientation (doughnut-shaped in the SF % domain). [FileName,PathName,FilterIndex] = uigetfile ; filename = fullfile(PathName, FileName) ; [X map] = imread(filename, fmt); % read image L = double(X); % transform to double %%%%%%%%%%%%% need to add (-1)x+y to L % calculate the number of points for FFT (power of 2) fftsize = 2 .^ ceil(log2(size(L))); % 2d fft Y = fft2(X, fftsize(1), fftsize (2));

Matlab中关于图像处理、去噪分析以及有关散点连线画图等程序

算法程序 1.找到图片 addpath('C:\Documents and Settings\user\My Documents\My Pictures'); imshow('3.jpg') 2.将彩色图片处理成灰度图片 addpath('C:\Documents and Settings\user\My Documents\My Pictures'); A=imread('3.jpg'); I=rgb2gray(A); imshow(I) 3.改变图片大小 右键----编辑----属性-----输入想要的大小 4.两张图片相叠加(区分imadd和系数叠加) 直接把图像数据矩阵相加,可以设定叠加系数,如(系数可自由设定,按需要) img_tot = img1 * 0.5 + img2 * 0.5; %两个图像大小要一致 图像的矩阵我再那里能找到 img1 = imread('tupian.bmp'); 图片相加 addpath('C:\Documents and Settings\user\My Documents\My Pictures'); A=imread('2.jpg'); imshow(A) >> B=imread('3.jpg'); imshow(B) >> C=imadd(A,B); imshow(C) >> D=A*0.5+B*0.5; imshow(D) A图像

B图像 C图像 D图像 5.两张图片相减 addpath('C:\Documents and Settings\user\My Documents\My Pictures'); A=imread('2.jpg');

外文翻译小波变换在图像处理中的仿真及应用

论文翻译 通信102 吴志昊 译文: 小波变换在图像处理中的仿真及应用 一、课题意义 在传统的傅立叶分析中, 信号完全是在频域展开的, 不包含任何时频的信息, 这对于某些应用来说是很恰当的, 因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要, 所以人们对傅立叶分析进行了推广, 提出了很多能表征时域和频域信息的信号分析方法, 如短时傅立叶变换, Gabor 变换, 时频分析, 小波变换等。而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷, 具有多分辨率分析的特点, 使其在图像处理中得到了广泛应用。 传统的信号理论,是建立在Fourier分析基础上的,而Fourier变换作为一种全局性的变化,其有一定的局限性。在实际应用中人们开始对Fourier变换进行各种改进,小波分析由此产生了。小波分析是一种新兴的数学分支,它是泛函数、Fourier分析、调和分析、数值分析的最完美的结晶;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,它被认为是继Fourier分析之后的又一有效的时频分析方法。小波变换与Fourier变换相比,是一个时间和频域的局域变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题。 小波变换是一种快速发展和比较流行的信号分析方法, 其在图像处理中有非常重要的应用, 包括图像压缩, 图像去噪, 图像融合, 图像分解, 图像增强等。小波分析是傅立叶分析思想方法的发展与延拓。除了连续小波(CWT)、离散小波(DWT), 还有小波包(Wavelet Packet)和多维小波。 小波分析在图像处理中有非常重要的应用, 包括图像压缩, 图像去噪, 图像融合, 图像分解, 图像增强等。小波变换是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的时间一频率窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,因此,小波变换在许多领域都得到了成功的应用,特别是小波变换的离散数字算法已被广泛用于许多问题的变换研究中。从此,小波变换越来越引进人们的重视,其应用领域来越来越广泛。 二、课题综述 (一)小波分析的应用与发展 小波分析的应用是与小波分析的理论研究紧密地结合在一起的。现在,它已经在科技信息产业领域取得了令人瞩目的成就。电子信息技术是六大高新技术中重要的一个领域,它的重要方面是图象和信号处理。现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复)。从数学地角度来看,信号与图象处理可以统一看作是信号处理(图象可以看作是二维信号),在小波分析的许

小波变换去噪基础地的知识整理

1.小波变换的概念 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么? 有几种定义小波(或者小波族)的方法: 缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。在双正交小波的情况,分解和重建的滤波器分别定义。 高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如Daubechies和Symlet 小波。 缩放函数:小波由时域中的小波函数 (即母小波)和缩放函数 (也称为父小波)来定义。 小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。 对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。例如Meyer小波。 小波函数:小波只有时域表示,作为小波函数。例如墨西哥帽小波。 3.小波变换分类 小波变换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点 从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性变化后的熵很低; 2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性 3) 去相关性域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。 5.小波变换的科学意义和应用价值

matlab图像去噪算法设计(精)

数字图像去噪典型算法及matlab实现 希望得到大家的指点和帮助 图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。实验一:均值滤波对高斯噪声的效果 I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像 J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声 subplot(2,3,1);imshow(I); title('原始图像'); subplot(2,3,2); imshow(J); title('加入高斯噪声之后的图像'); %采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5 K3=filter2(fspecial('average',7),J)/255; %模板尺寸为7 K4= filter2(fspecial('average',9),J)/255; %模板尺寸为9 subplot(2,3,3);imshow(K1); title('改进后的图像1'); subplot(2,3,4); imshow(K2); title('改进后的图像2');

基于小波变换的图像去噪

第1章绪论 由于各种各样的原因,现实中的图像都是带噪声的。噪声恶化了图像质量,使图像变得模糊。对同时含有高斯噪声和椒盐噪声的图像先进行混合中值滤波,在滤除椒盐噪声的同时,又很好地保留了图像中的物体细节和轮廓。小波域去噪处理具有很好的时频特性、多分辨分析特性等优点,可以看成特征提取和低通滤波功能的综合。小波模极大值去噪方法能有效地保留信号的奇异点信息,去噪后的信号没有多余振荡,具有较好的图画质量,改进后可以得到更满意的图像。小波相位滤波去噪算法是基于小波变换系数相关性去噪算法的,适于强噪声图像,去噪后也可以改善图像质量。 1.1课题背景 图像信息以其信息量大、传输速度快、作用距离远等优点成为人类获取信息的重要来源及利用信息的重要手段,而现实中的图像由于种种原因都是带噪声的。噪声恶化了图像质量,使图像模糊,甚至淹没和改变特征,给图像分析和识别带来困难。为了去除噪声,会引起图像边缘的模糊和一些纹理细节的丢失。反之,进行图像边缘增强也会同时增强图像噪声。因此在去除噪声的同时,要求最小限度地减小图像中的信息,保持图像的原貌。经典的图像去噪算法,如均值滤波、维纳滤波、中值滤波等,其去噪效果都不是很理想。 中值滤波是由图基(Turky)在1971年提出的,开始用于时间序列分析,后来被用于图像处理,在去噪复原中得到了较好的效果。它的基本原理是把数字图像或数字序列中的一点的值,用该点的一个邻域中的各点的中值代替。中值滤波在抑制椒盐噪声的同时又能较好地保持图像特征,图像也得到了平滑。对同时含有高斯噪声和椒盐(脉冲)噪声的图像,先进行混合中值滤波处理。基于极值的混合中值滤波兼容了中值滤波和线性滤波的优点,在滤除椒盐噪声的同时又对图像中的物体细节和轮廓进行了很好的保留。基于混合中值滤波和小波去噪相结合的方法,去噪效果好于单纯地使用小波变换去除噪声,或者单纯使用混合中值滤波去除噪声,能获得比单一使用任何一种滤波器更好的效果。

最新图像去噪处理的研究及MATLAB仿真

图像去噪处理的研究及M A T L A B仿真

目录 引言 (1) 1图像去噪的研究意义与背景 (2) 1.1数字图像去噪研究意义与背景 (2) 1.2 数字图像去噪技术的研究现状 (3) 2 邻域平均法理论基础 (3) 2.1 邻域平均法概念 (3) 3 中值滤波法理论基础 (3) 3.1中值滤波法概念 (3) 3.2中值滤波法的实现 (4) 4中值滤波法去噪技术MATLAB仿真实现 (4) 4.1Matlab仿真软件 (4) 4.2中值滤波法的MATLAB实现 (5) 4.3邻域平均法的MATLAB实现 (6) 总结 (8) 全文工作总结 (8) 工作展望 (8) 参考文献 (9) 英文摘要 (10) 致谢语 (11)

图像去噪处理的研究及MATLAB仿真 电本1102班姓名:杨韬 指导老师:刘明军摘要:图像是生活中一种重要的信息来源,通过对图像的处理可以帮助我们了解信息的内在信息。数字图像去噪声涉及光学系统、微电子技术、计算机科学、数学分析等领域,是一门综合性很强的边缘科学,如今其理论体系非常完善,且其应用很广泛,在医学、军事、艺术、农业等都有广泛且充分的应用。MATLAB是一种高效的工程计算语言,在数值计算、数据处理、图像处理、神经网络、小波分析等方面都有广泛的应用。MATLAB是一种向量语言,它非常适合于进行图像处理。 本文概述了邻域平均法与中值滤波法去噪的基本原理。对这两种常用的去噪方法进行了分析比较和仿真实现。最后根据理论分析和实验结果,讨论了一个完整去噪算法中影响去噪性能的各种因素。为实际工作中的图像处理,去噪方法的选择和改进提供了数据参考和依据。 关键字:邻域平均法;中值滤波法;MATLAB 引言 图像因为一些原因总会被外界干扰,所以图像质量往往不是很好,而质量不好的图片又不容易进行进一步的处理。在对图像的地处理过程中,图像去噪是很重要的一个环节,所以想对图像进行进一步的处理,对图像的去噪就变得重要起来,所以很多研究人员对这一课题进行了比较全面的研究,图像的处理最传统的方法是在空域中的处理,也就是说在图像的空间范畴内对图像质量进行改善。也可以对图像进行平滑处理等,这属于第一类图像处理方法。 中值滤波法与邻域平均法是出现最早的去噪手段,而且由于其具备良好的空频特性,实际应用也非常广泛。其中图像的邻域平均去噪方法是众多空域图像去噪方法中效果最好的去噪方法。基本思想就是用邻近的像素平均值来代替噪声的像素,且图像尺寸越大,去噪

小波变换图像去噪的算法研究自设阈值

基于小波的图像去噪 一、小波变换简介 在数学上,小波定义卫队给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成: ())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的内积: () dx a b x a x f f x W b a b a )(1)(,,,-ψ=ψ=?+∞ ∞- (3) 与时域函数对应,在频域上则有:

())(,ωωa e a x j b a ψ=ψ- (3) 可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。 二、图像去噪描述 所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。 依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设f(x,y)力为理想图像,n(x,y)力为噪声,实际输入图像为为g(x,y),则加性噪声可表示为: g(x,y)= f(x,y)+ n(x,y), (4) 其中,n(x,y)和图像光强大小无关。 图像去噪的目的就是从所得到的降质图像以g(x,y)中尽可能地去除噪声n(x,y),从而还原理想图像f(x,y)。图像去噪就是为了尽量减少图像的均方误差,提高图像的信噪比,从而尽可能多地保留图像的特征信息。 图像去噪分为时域去噪和频域去噪两种。传统图像去噪方法如维纳滤波、中值滤波等都属于时域去噪方法。而采用傅里叶变换去噪则属于频域去噪。这些方法去噪的依据是一致的,即噪声和有用信号在频域的不同分布。我们知道,有用信号主要分布于图像的低频区域,噪声主要分布在图像的高频区域,但图像的细节信息也分布在高频区域。这样在去除高频区域噪声的同时,难免使图像的一些细节也变得模糊,这就是图像去噪的一个两难问题。因此如何构造一种既能降低图像噪声,又能保留图像细节特征的去噪方法成为图像去噪研究的一个重大课题。

图像去噪TV模型及Matlab实现

1.%% ROFdenoise 2.% 3.% Image -to denoise 4.% Theta - the parameter 5.% 6.% This denoising method is based on total-variation, originally proposed by 7.% Rudin, Osher and Fatemi. In this particular case fixed point iteration 8.% is utilized. 9.%------ 10.% For the included image, a fairly good result is obtained by using a 11.% theta value around 12-16. A possible addition would be to analyze the 12.% residual with an entropy function and add back areas that have a lower 13.% entropy, i.e. there are some correlation between the surrounding pixels. 14.%------ 15.% Code Provided By Li.J.Z 16.% Based on total-variation 17. 18.function A = ROFdenoise(Image, Theta) 19. 20.[Image_h Image_w] = size(Image); 21.g = 1; dt = 1/4; nbrOfIterations = 50; 22.Image = double(Image); 23. 24.p = zeros(Image_h,Image_w,2); 25.d = zeros(Image_h,Image_w,2); 26.div_p = zeros(Image_h,Image_w); 27. 28.for i = 1:nbrOfIterations 29. for x = 1:Image_w 30. for y = 2:Image_h-1 31. div_p(y,x) = p(y,x,1) - p(y-1,x,1); %backward difference 32. end 33. end 34. 35. for x = 2:Image_w-1 36. for y = 1:Image_h 37. div_p(y,x) = div_p(y,x) + p(y,x,2) - p(y,x-1,2); 38. end 39. end 40. 41. % Handle boundaries 42. div_p(:,1) = p(:,1,2);

小波变换图像去噪MATLAB实现

基于小波图像去噪的MATLAB 实现 一、 论文背景 数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。 然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。 二、 课题原理 1.小波基本原理 在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成:

())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的积: ( )dx a b x a x f f x W b a b a )(1)(,,,-ψ= ψ=?+∞∞- (3) 与时域函数对应,在频域上则有: ())(,ωωa e a x j b a ψ=ψ- (4) 可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。 2. 图像去噪综述 所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。 依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设

小波变换去噪

小波变换的图像去噪方法 一、摘要 本文介绍了几种去噪方法,比较这几种去噪方法的优缺点,突出表现了小波去噪法可以很好的保留图像的细节信息,性能优于其他方法。 关键词:图像;噪声;去噪;小波变换 二、引言 图像去噪是一种研究颇多的图像预处理技术。一般来说, 现实中的图像都是带噪图像。为了减轻噪声对图像的干扰,避免误判和漏判,去除或减轻噪声是必要的工作。 三、图像信号常用的去噪方法 (1)邻域平均法 设一幅图像f (x, y) 平滑后的图像为g(x, y),它的每个象素的灰度值由包含在(x, y)制定邻域的几个象素的灰度值的平均值决定。将受到干扰的图像模型化为一个二维随机场,一般噪声属于加性、独立同分布的高斯白噪声。可见,邻域平均所用的邻域半径越大,信噪比提高越大,而平滑后图像越模糊,细节信息分布不明显。 (2)时域频域低通滤波法 对于一幅图像,它的边缘、跳跃部分以及噪声都为图像的高频分量,而大面积背景区和慢变部分则代表图像低频分量,可以设计合适的低通滤波器除去高频分量以去除噪声。 设f(x,y)为含噪图像,F(x,y)为其傅里叶变换,G(x,y)为平滑后图像的傅里叶变换,通过H,使F(u,v)的高频分量得到衰减。理想的低通滤波器的传递函数满足下列条件: 1 D(u,v)≤D H(u,v)= 0 D(u,v)≤D 式中D0非负D(u,v)是从点(u,v)到频率平面原点的距离,即,即D(u, v) = u2 + v2 (3)中值滤波 低通滤波在消除噪声的同时会将图像中的一些细节模糊掉。中值滤波器是一种非线性滤波器,它可以在消除噪声的同时保持图像的细节。 (4)自适应平滑滤波 自适应平滑滤波能根据图像的局部方差调整滤波器的输出。局部方差越大,滤波器的平滑作用越强。它的最终目标是使恢复图像f*(x,y) 与原始图f(x,y) 的均方误差 e2 = E ( f (x, y) ? f *(x, y))2 最小。自适应滤波器对于高斯白噪声的处理效果比较好. (5)小波变换图像信号去噪方法 小波变换去噪法的基本思想在于小波变换将大部分有用信号的信息压缩而将噪声信息分散。对信号进行小波分解,就是把信号向L2 ( R) ( L2 ( R) 是平方可积的实数空间) 空间各正交基分量投影,即求信号与各小波基函数之间的相关系数,亦即小波变换值。“软阈值化” ( soft-thresholding) 和“硬阈值化”( hard-thresholding) 是对超过阈值之上的小波系数进行缩减的两种主要方法。一般说来,硬阈值比软阈值处理后的图像信号更粗糙,所以常对图像信号进行软 阈值的小波变换去噪。如图2 所示,横坐标代表信号( 图像) 的原始小波系数,纵坐标

基于小波变换的图像去噪方法研究毕业设计

题目基于小波变换的图像去噪方法研究

毕业论文﹙设计﹚任务书 院(系) 物理与电信工程学院专业班级通信1101班学生姓名陈菲菲 一、毕业论文﹙设计﹚题目基于小波变换的图像去噪方法研究 二、毕业论文﹙设计﹚工作自 2015 年 3 月 1 日起至 2015 年 6 月 20 日止 三、毕业论文﹙设计﹚进行地点: 物理与电信工程学院实验室 四、毕业论文﹙设计﹚的内容 1、图像处理中,输入的是质量低的图像,输出的是改善质量后的图像。常用的图像处理方法有图像增强、复原、编码、压缩等。一般图像的能量主要集中在低频区域中,只有图像的细节部的能量才处于高频区域中。因为在图像的数字化和传输中常有噪声出现,而这部分干扰信息主要集中在高频区域内,所以消去噪声的一般方法是衰减高频分量或称低通滤波,但与之同时好的噪方法应该是既能消去噪声对图像的影响又不使图像细节变模糊。为了改善图像质量,从图像提取有效信息,必须对图像进行去噪预处理。 设计任务: (1)整理文献,研究现有基于小波变换的图像去噪算法,尝试对现有算法做出改进; (2)在MATLAB下仿真验证基于小波变换的图像去噪算法。 2、要求以论文形式提交设计成果,应掌握撰写毕业论文的方法,应突出“目标,原理,方法,结论”的要素,对所研究内容作出详细有条理的阐述。 进度安排: 1-3周:查找资料,文献。 4-7周:研究现有图像去噪技术,对基于小波变换的图像去噪算法作详细研究整理。 8-11周:研究基于小波的图像去噪算法,在MATLAB下对算法效果真验证。 12-14周:分析试验结果,对比各种算法的优点和缺点,尝试改进算法。 15-17周:撰写毕业论文,完成毕业答辩。 指导教师陈莉系(教研室) 系(教研室)主任签名批准日期 2015.1.1 接受论文 (设计)任务开始执行日期 2015.3.1 学生签名

数字图像去噪典型算法及matlab实现

图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。 实验一:均值滤波对高斯噪声的效果 代码 I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像 J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声 subplot(2,3,1);imshow(I); title('原始图像'); subplot(2,3,2); imshow(J); title('加入高斯噪声之后的图像'); %采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5

根据Matlab的图像去噪算法仿真

基于Matlab的图像去噪算法仿真 在信息化的社会里,图像在信息传播中所起的作用越来越大。所以,消除在图像采集和传输过程中而产生的噪声,保证图像受污染度最小,成了数字图像处理领域里的重要部分。 本文主要研究分析邻域平均法、中值滤波法、维纳滤波法及模糊小波变换法的图像去噪算法。首先介绍图像处理应用时的常用函数及其用法;其次详细阐述了四种去噪算法原理及特点;最后运用Matlab软件对一张含噪图片(含高斯噪声或椒盐噪声)进行仿真去噪,通过分析仿真结果得出: 一.均值滤波是典型的线性滤波,对高斯噪声抑制是比较好的; 二.中值滤波是常用的非线性滤波方法,对椒盐噪声特别有效; 三.维纳滤波对高斯噪声有明显的抑制作用; 四.对小波系数进行阈值处理可以在小波变换域中去除低幅值的噪声和不期望的信号。 本论文主要是从两方面展开,首先是图像去噪算法:简要说明了图像噪声的概念及分类,详细阐述了邻域平均法、中值滤波法、维纳滤波法及模糊小波变换法的去噪原理及特点。 其次是基于Matlab的图像去噪算法仿真:根据邻域平均法、中值滤波法、维纳滤波法及模糊小波变换法原理分析,运用Matlab仿真软件编写代码,对一张含噪图片(含高斯噪声或椒盐噪声)进行仿真去噪,并对结果分析讨论,比较几种方法的优缺点。 本论文仿真时选取一张彩色图片“2010-03-09-2.bmp”,并在图片中加入

两种噪声:高斯噪声和椒盐噪声。所谓高斯噪声是指它的概率密度函数服从高斯分布的一类噪声。椒盐噪声是由图像传感器、传输信道、解码处理等产生的黑白相间的亮暗点噪声,属于非平稳噪声。本章利用Matlab软件对含噪图像的去噪算法进行仿真,将应用邻域平均法、中值滤波法、维纳滤波法和模糊小波变换法对含有高斯噪声和椒盐噪声图像的去噪效果进行比较,从而得到相应结论。 1.1邻域平均法的仿真 本节选用邻域平均法对含有高斯噪声和椒盐噪声的图片进行去噪,并用Matlab软件仿真。 (1)给图像加入均值为0,方差为0.02的高斯噪声,选择3×3模板去噪Matlab部分代码: j=imnoise(x,'gaussian',0,0.02); h=ones(3,3); h=h/9; k=conv2(j,h); 仿真结果如图4-1所示。

matlab图像去噪程序

function varargout = jiemian(varargin) %返回从函数jiemian.m中得到的参数中变量的数目;传递一个参数中变量的数目给函数jiemian.m。 % JIEMIAN Application M-file for jiemian.fig % FIG = JIEMIAN launch jiemian GUI. % JIEMIAN('callback_name', ...) invoke the named callback. % Last Modified by shijiawei v2.5 24-May-2014 02:45:18 if nargin == 0 % LAUNCH GUI %nargin 显示输入变量 fig = openfig(mfilename,'reuse'); %打开包含在FIG文件filename.fig中的图形,确保它是可见的并且完全定位在屏幕上。 % Generate a structure of handles to pass to callbacks, and store it. handles = guihandles(fig); %返回一个结构,它包含图像中对象的句柄 guidata(fig, handles); %将变量handles存储到fig文件中 if nargout > 0 %如果输出变量大于0 varargout{1} = fig; %返回fig end elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK %如果varargin{1}是一个字符数组则返回逻辑真(1),否则返回逻辑假(0)。 try if (nargout) %显示用户提供的输出变量的个数 [varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard %varargout传递参数中的变量数目else feval(varargin{:}); % FEVAL switchyard %**feval函数的求值 end catch %如果出错开始执行catch块 disp(lasterr); %%%% lasterr函数查询出错原因。如果函数lasterr的运行结果为一个空串,则表明组命令1被成功执行了 %%%% disp 显示矩阵和文字内容 end end %| ABOUT CALLBACKS: %| GUIDE automatically appends subfunction prototypes to this file, and %| sets objects' callback properties to call them through the FEVAL %| switchyard above. This comment describes that mechanism. %| %| Each callback subfunction declaration has the following form: %| (H, EVENTDATA, HANDLES, VARARGIN) %| %| The subfunction name is composed using the object's Tag and the %| callback type separated by '_', e.g. 'slider2_Callback', %| 'figure1_CloseRequestFcn', 'axis1_ButtondownFcn'.

相关文档
最新文档