飞机纵向运动的动稳定性

91108-飞行力学-第10章:飞机的横航向动稳定性和操纵性

第10章 飞机的横航向动稳定性和动操纵性 作业: 10.1 10.2 10.4 10.5

内容10.1 飞机横航向动稳定性10.1.2 典型的横航向运动模态10.1.3 滚转模态 10.1.4 螺旋模态 10.1.5 滚转--螺旋模态 10.1.6 荷兰滚模态 10.2 飞机横航向动操纵性10.2.1 副翼的操纵反应 10.2.2 方向舵的操纵反应 小结

由组成的四阶方程,对于正常布局的飞机,它由一个负的大实根、一对实部为负的共轭复根和一个小的实根(可正可负)组成。 10.1.2 典型的横航向运动模态 ,,,p r βφ滚转模态 荷兰滚模态 螺旋模态负的大实根负的共轭复根 小的实根

对应于特征方程中的一个大的负实根; 其特征是衰减很快的非周期运动,其振幅衰减一半的时间仅为零点几秒; 受横侧扰动后,飞机绕机体轴的单自由度滚转,收敛过程很快。运动变量是滚转角速度和滚转角; 飞机具有较大的横向阻尼(来源机翼),运动衰减快,一般均能满足品质要求。 1.滚转模态 ,p φlp C

飞机横航向运动中最重要的模态; 对应特征方程中的一对共轭复根,滚转角、侧滑角和偏航角的量级相同; 偏航运动略超前滚转,即左偏航时右滚转。飞机重心沿直线轨迹前进,颇似荷兰人的滑冰动作而得名; 模态频率高,周期约为数秒至十几秒,介于纵向长、短周期之间。品质规范对其特性有严格要求。 ,,βφψ荷兰?

3.螺旋模态 对应特征方程中的一个小实根; 特征是衰减缓慢的非周期运动,运动变量为偏航角和滚转角; 允许其特征根为一小的正根,由于运动不 稳定时呈螺旋状而得名; 运动缓慢,半幅或倍幅时间长,约上百秒,易于纠正,对其模态特性要求不高。 ,ψφ

飞机动力学模型建立

建立飞机飞行动力学模型 飞机的本体飞行动力学模型分为非线性模型和线性模型。如图所示,线 性模型常用于飞机的飞行品质特性分析和飞行控制律设计,而非线性模型通常用于飞机稳定性和操纵性特征的精确估计,从而进行各种非线性特征和线性模型的误差分析。另外,非线性模型还特别用在一些特殊的飞行任务,例如大迎角和快速机动飞行等线性模型不适用的场合。 建立全量非线性六自由度运动方程 (1)刚体飞机运动的假设['3]: ①飞机为刚体且质量为常数; ②固定于地面的坐标系为惯性坐标系; ③固定于机体的坐标系以飞机质心为原点; ④忽略地球曲率,即采用所谓的“平板地球假设”; ⑤重力加速度不随飞行高度变化; 以上假设是针对几云J<3,H<30加飞机的。 (2)坐标系说明: ①地面坐标轴系凡一O。x:夕。29:在地面上选一点09,使xg轴在水平面内并指向某一方向,z。轴垂直于地面并指向地心,yg轴也在水平面内并 垂直于x。轴,其指向按照右手定则确定,如图2一3(a) ②机体坐标轴系凡一d朴忆:原点O取在飞机质心处,坐标系与飞机固 连,x轴在飞机对称面内并平行于飞机的设计轴线指向机头,y轴垂直

于飞机对称面指向机身右方,:轴在飞机对称面内,与x轴垂直并指向机身下方,如图2一3(b)。 (3)刚体飞机的全量六自由度非线性运动方程为: 力方程组: 力矩方程组: 运动方程组:

导航方程组: 符号说明: 建立飞机小扰动线化方程 (l)基本假设: ①小扰动假设:我们把运动状态与飞机基准运动状态差别很小的扰动运动 称为小扰动运动。采用小扰动假设线化后的方程,在大多数情况下均能 给出足够满意的结果。这是因为:a、在大多数飞行情况下,各主要气 动参数的变化与扰动量成线性关系;b、飞行中即使遇到相当强烈的扰 动,在有限的时间内飞机的线速度和角速度也往往只有很小的变化量。 ②飞机具有对称面(气动外形和质量分布均对称)则且略去 机体内转动部件的陀螺力矩效应。 ③在基准运动中,对称平面处于铅垂位置(即θ=0), 且运动所在平面与飞机对称平面相重合(即β=O)。 在满足上述条件下,可以推论出:纵向气动力和力矩对横侧参数在其基准运动状态下的倒数均等于零。 横侧气动力和力矩对纵向运动参数在基准运动状态下的导数也均等于零。

稳定性分析答案

稳定性分析 2009-10-14 14:18 1功角的具体含义。 电源电势的相角差,发电机q轴电势与无穷大系统电源电势之间的相角差。 电磁功率的大小与δ密切相关,故称δ为“功角”或“功率角”。电磁功率与功角的关系式被称为“功角特性”或“功率特性”。 功角δ除了表征系统的电磁关系之外,还表明了各发电机转子之间的相对空间位置。 2功角稳定及其分类。 电力系统稳态运行时,系统中所有同步发电机均同步运行,即功角δ 是稳定值。系统在受到干扰后,如果发电机转子经过一段时间的运动变化后仍能恢复同步运行,即功角δ 能达到一个稳定值,则系统就是功角稳定的,否则就是功角不稳定。 根据功角失稳的原因和发展过程,功角稳定可分为如下三类: 静态稳定(小干扰) 暂态稳定(大干扰) 动态稳定(长过程) 3电力系统静态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到小干扰后,不发生自发振荡或非周期性失步,自动恢复到原始运行状态的能力。如果能,则认为系统在该正常运行状态下是静态稳定的。不能,则系统是静态失稳的。 特点:静态稳定研究的是电力系统在某一运行状态下受到微小干扰时的稳定性问题。系统是否能够维持静态稳定主要与系统在扰动发生前的原始运行状态有关,而与小干扰的大小、类型和地点无关。 4电力系统暂态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到大干扰后,各同步发电机保持同步运行并过渡到新的或恢复到原来的稳态运行状态的能力。通常指第一或第二振荡周期不失步。如果能,则认为系统在该正常运行状态下该扰动下是暂态稳定的。不能,则系统是暂态失稳的。 特点:研究的是电力系统在某一运行状态下受到较大干扰时的稳定性问题。系统的暂态稳定性不仅与系统在扰动前的运行状态有关,而且与扰动的类型、地点及持续时间均有关。 作业2 5发电机组惯性时间常数的物理意义及其与系统惯性时间常数的关系。 表示在发电机组转子上加额定转矩后,转子从停顿状态转到额定转速时所经过的时间。TJ=TJG*SGN/SB 6例题6-1 (P152) (补充知识:当发电机出口断路器断开后,转子做匀加速旋转。汽轮发电机极对数p=1。额定频率为50Hz。要求列写每个公式的来源和意义。)题目:已知一汽轮发电机的惯性时间常数Tj=10S,若运行在输出额定功率状态,在t=0时其出口处突然断开。试计算(不计调速器作用) (1)经过多少时间其相对电角度(功角)δ=δ0+PAI.(δ0为断开钱的值)(2)在该时刻转子的转速。 解:(1)Tj=10S,三角M*=1,角加速度d2δ/dt2=三角M*W0/Tj=W0/10=S2 δ=δ0+δ/dt2 所以PI=*2PI*f/10t方 t=更号10/50=

飞机的稳定性和操纵性

第三章飞机的稳定性和操纵性 飞机的稳定性 在飞行中,飞机会经常受到各种各样的扰动,如气流的波动、发动机工作不稳定、飞行员偶然触动驾驶杆等。这些扰动会使飞机偏离原来的平衡状态,而在偏离以后,飞机能否自动恢复原状,这就是有关飞机的稳定或不稳定的问题。 飞机的稳定性是飞机本身的一种特性,与飞机的操纵性有密切的关系。例如,飞行员操纵杆、舵,需要用力的大小,飞机对杆、舵操纵的反应等,都与飞机的稳定性有关。因此,研究飞机的稳定性是研究飞机操纵性的基础。 所谓飞机的稳定性,就是在飞行中,当飞机受微小扰动而偏离原来的平衡状态,并在扰动消失以后,不经驾驶员操纵,飞机能自动恢复原来平衡状态的特性。 纵向稳定性 飞机的纵向稳定性是指飞机绕横轴的稳定性。 当飞机处于平衡飞行状态时,如果有一个小的外力干扰,使它的攻角变大或变小,飞机抬头或低头,绕横轴上下摇摆(也称为俯仰运动)。当外力消除后,驾驶员如果不操纵飞机,而靠飞机本身产生一个力矩,使它恢复到原来的平衡飞行状态,我们就说这架飞机是纵向稳定的。如果飞机不能靠自身恢复到原来的状态,就称为纵向不稳定的。如果它既不恢复,也不远离,总是上下摇摆,就称为纵向中立稳定的。飞机的纵向稳定性也称为俯仰稳定性。 飞机的纵向稳定性由飞机重心在焦点之前来保证。影响飞机纵向稳定性的主要因素有飞机的水平尾翼和飞机的重心位置。下面,我们首先来看一下水平尾翼是如何影响飞机的纵向稳定性的。

当飞机以一定的攻角作稳定的飞行时,如果一阵风从下吹向机头,使飞机机翼的攻角增大,飞机抬头。阵风消失后,由于惯性的作用,飞机仍要沿原来的方向向前冲一段路程。这时由于水平尾翼的攻角也跟着增大,从而产生了一个低头力矩。飞机在这个低头力矩作用下,使机头下沉。经过短时间的上下摇摆,飞机就可恢复到原来的飞行状态。 同样,如果阵风从上吹向机头,使机头下沉,飞机攻角减小,水平尾翼的攻角也跟着减小。这时水平尾翼上产生一个抬头力矩,使飞机抬头,经过短时间的上下摇摆,也可使飞机恢复到原来的飞行状态。 除水平尾翼外,飞机的重心位置对纵向稳定性也有较大的影响。重心靠后的飞机,其纵向稳定性要比重心靠前的差。其原因是:重心与焦点距离小攻角改变时产生的附加力矩减小。对于重心靠后的飞机,当飞机受扰动而增大攻角时,机翼产生的附加升力是使机头上仰,攻角进一步增大,形成不稳定力矩。这时主要靠水平尾翼的附加升力,使机头下俯,攻角减小,保证飞机的纵向稳定性。 方向稳定性 飞机的方向稳定性是指飞机绕立轴的稳定性。 飞机的方向稳定力矩是在侧滑中产生的。所谓侧滑是指飞机的对称面与相对气流方向不一致的飞行。它是一种既向前、又向侧方的运动。 飞机带有侧滑时,空气则从飞机侧方吹来。这时,相对气流方向与飞机对称面之间的夹角称为“侧滑角”,也称“偏航角”。 对飞机方向稳定性影响最大的是垂直尾翼。另外,飞机机身的侧面迎风面积也起相当大的作用。其它如机翼的后掠角、发动机短舱等也有一定的影响。 当飞机稳定飞行时,不存在偏航角,处于平衡状态。如果有一阵风突然吹来,使机头向右偏(此时,相对气流从左前方吹来,称为左侧滑),便有了偏航角。阵风消除后,由于惯性作用,飞机仍然保持原来的方向,向前冲一段路程。这时相对风吹到偏斜的垂

第三章飞行器运动方程(0901)

第三章飞行器的运动方程 刚体动力学方程的推导 1.刚体飞行器运动的假设 1)认为飞行器不仅是刚体,而且质量是常数; 2)假设地面为惯性参考系,即假设地面坐标为惯性坐标; 3)忽略地面曲率,视地面为平面; 4)假设重力加速度不随飞行高度而变化; 5)假设机体坐标系的z o x --平面为飞行器对称平面,且飞行器不仅几何外形对称,而且内部质量分布亦对称,惯性积0==zy xy I I 2.旋转坐标系中向量的导数 设活动坐标系b b b z y Ox 具有角速度ω (见图)。向量ω 在此坐标系中的分量为 r q p ,,,即 k r j q i p ++=ω () 其中i 、j 、k 是b x 、b y 、b z 轴的单位向量。 图 设有一个可变的向量)(t a ,它在此坐标系中的分量为z y x a a a ,,,即 k a j a i a a z y x ++= () 由上式求向量)(t a 对时间t 的导数: b x ω b y b z O i j k

dt k d a dt j d a dt i d a k dt da j dt da i dt da dt a d z y x z y x +++++= () 从理论力学知,当一个刚体绕定点以角速度ω 旋转时,刚体上任何一点P 的速度为 r dt r d ?=ω () 其中r 是从O 点到P 点的向径。 现在,把单位向量i 看作是活动坐标系中一点P 的向径,于是可得: i dt i d ?=ω () 同理可得: j dt j d ?=ω () k dt k d ?=ω () 将式()、()及()代入式()中,可得: )(k a j a i a k dt da j dt da i dt da dt a d z y x z y x ++?+++=ω () 或写为: a t a dt a d ?+=ωδδ () 其中k dt da j dt da i dt da t a z y x ++=δδ t a δδ 称为在活动坐标系中的“相对导数”,相当于站在此活动坐标系中的观察者所看到的向量a 的变化率。而dt a d 则称为“绝对导数”,相当于站在固定坐标系 中的观察者所看到的向量a 的变化率。例如,若a 是某点的向径,则t a δδ 代表该 点的相对速度(相对于动坐标系),而dt a d 则代表该点的绝对速度。 3.在机体坐标系(活动坐标系)中刚体飞行器质心动力学方程 由牛顿第二定律得:

3第三章 飞机的稳定性和操纵性

第三章飞机的稳定性和操纵性 3.1 飞机的稳定性 在飞行中,飞机会经常受到各种各样的扰动,如气流的波动、发动机工作不稳定、飞行员偶然触动驾驶杆等。这些扰动会使飞机偏离原来的平衡状态,而在偏离以后,飞机能否自动恢复原状,这就是有关飞机的稳定或不稳定的问题。 飞机的稳定性是飞机本身的一种特性,与飞机的操纵性有密切的关系。例如,飞行员操纵杆、舵,需要用力的大小,飞机对杆、舵操纵的反应等,都与飞机的稳定性有关。因此,研究飞机的稳定性是研究飞机操纵性的基础。 所谓飞机的稳定性,就是在飞行中,当飞机受微小扰动而偏离原来的平衡状态,并在扰动消失以后,不经驾驶员操纵,飞机能自动恢复原来平衡状态的特性。 3.1.1 纵向稳定性 飞机的纵向稳定性是指飞机绕横轴的稳定性。 当飞机处于平衡飞行状态时,如果有一个小的外力干扰,使它的攻角变大或变小,飞机抬头或低头,绕横轴上下摇摆(也称为俯仰运动)。当外力消除后,驾驶员如果不操纵飞机,而靠飞机本身产生一个力矩,使它恢复到原来的平衡飞行状态,我们就说这架飞机是纵向稳定的。如果飞机不能靠自身恢复到原来的状态,就称为纵向不稳定的。如果它既不恢复,也不远离,总是上下摇摆,就称为纵向中立稳定的。飞机的纵向稳定性也称为俯仰稳定性。 飞机的纵向稳定性由飞机重心在焦点之前来保证。影响飞机纵向稳定性的主要因素有飞机的水平尾翼和飞机的重心位置。下面,我们首先来看一下水平尾翼是如何影响飞机的纵向稳定性的。 当飞机以一定的攻角作稳定的飞行时,如果一阵风从下吹向机头,使飞机机翼的攻角增大,飞机抬头。阵风消失后,由于惯性的作用,飞机仍要沿原来的方向向前冲一段路程。这时由于水平尾翼的攻角也跟着增大,从而产生了一个低头力矩。飞机在这个低头力矩作用下,使机头下沉。经过短时间的上下摇摆,飞机就可恢复到原来的飞行状态。 同样,如果阵风从上吹向机头,使机头下沉,飞机攻角减小,水平尾翼的攻角也跟着减小。这时水平尾翼上产生一个抬头力矩,使飞机抬头,经过短时间的上下摇摆,也可使飞机恢复到原来的飞行状态。 除水平尾翼外,飞机的重心位置对纵向稳定性也有较大的影响。重心靠后的飞机,其纵向稳定性要比重心靠前的差。其原因是:重心与焦点距离小攻角改变时产生的附加力矩减小。对于重心靠后的飞机,当飞机受扰动而增大攻角时,机翼产生的附加升力是使机头上仰,攻角进一步增大,形成不稳定力矩。这时主要靠水平尾翼的附加升力,使机头下俯,攻角减小,保证飞机的纵向稳定性。 1

飞行器制导复习.doc

一、简答题 1.典型的制导体制有哪些?简述它们的工作原理。 (1)遥控制导 以设在飞行器外部的指控站或制导站,来完成飞行器运动状态的监控,或者进行目标与飞行器相对运动参数的测定,然后引导飞行器飞行的一种制导方式。 (2)自主制导 按照给定弹道生成预定导航命令或预定弹道参数信息,在发射或起飞前装订到无人飞行器的存储装置中,飞行过程中机载敏感装置会不断测量预定参数,并与存储装置中预先装订参数进行比较,一旦岀现偏差,便产生导航或导引指令,以操纵飞行器运动,完成飞行任务。这是一种自主导航或制导的方式。 (3)寻的制导 利用电磁波、红外线、激光或可见光等方式测量目标和无人飞行器之间的相对运动信息,由此实时解算出制导命令,从而导引无人飞行器飞向FI标的一种方式。 (4)复合制导 复合制导是指在飞行过程屮采用两种或多种制导方式。它可分为串联、并联和串并混合三种。串联复合制导就是在不同飞行弹道段上采用几种不同的制导方式;并联复合制导则是在整个飞行过程中或在某段飞行弹道上同时采用几种制导方式;而串并联混合制导就是既有串联复合也有并联复合的混合制导方式。 2.请画出一般飞行控制系统结构原理图,并简述各部分功能。 要实现飞行控制的FI的,一般均釆用内、外环两重反馈控制回路的控制方法來实现,即在外环回路重点进行导航/制导控制方法的研究,从而达到指令飞行的FI的;在内坏回路重点进行稳定控制方法的研究,从而实现稳定飞行的目的。 3.导弹质心运动的动力学方程和绕质心运动的动力学方程分别在什么坐标系建立有最简单的形 式?并给出这两个坐标系的定义。 地心惯性坐标系:必乙,Q为坐标原点,地球的质心;X/指向J2000 地球平春分点;乙垂直

§5车辆的的蛇行运动稳定性

§7车辆的的蛇行运动稳定性 稳定性包括:静态平衡稳定性和动态(运动)稳定性两大类 静态平衡稳定性:可从静力平衡条件来判定 车体在弹簧上的搞倾覆稳定性; 车辆抗倾覆稳定性; 轮对抗脱轨稳定性。 动态稳定性:必须从运动方程或者其解的特征来判定。 一、自由轮对的蛇行运动 (三个问题) ○1 基本假设 ○2 运动方程及其解 ○ 3 解答结果讨论 1.其本假设有四点: (1) 自由轮对沿着轨距不变、刚性路面上的平直钢轨作等速 运动; (2) 轮对为一刚体,其两个车轮连续不断与钢轨接触; (3) 轮对的运动属微幅振动。因此轮轨接触几何关系。蠕滑 率-力规律均为线性,且认为纵向蠕滑与横向蠕滑系数相等即f f f ==2211; (4) 自由轮对带有锥形踏面,在新轮与新轨接角时,踏面斜 率较小,因此不计重力刚度产生的力和重力角刚度产生的力矩。 以上各条中,假设轮对为刚体并不合适。

1. 运动方程及其解 y w ωλ y 受力分析 轮对受到蠕滑力的作用(由轮对横摆和摇头引起) 蠕滑力的计算 fv T -= V V v ?= 设轮对前进速度为V ,角速度为ω。 由轮对横摆引起的蠕滑率 左轮 轮对中心 右轮 纵向 滚动圆半径 y r r l λ-=0 r 0 y r r R λ+=0 理论速度 ω(y r λ-0) ωr 0 ω(y r λ+0)

滑动速度V -ω(y r λ-0) V -ω(y r λ+0) w y ωλ -w y ωλ 纵向蠕滑率)(w x y v r y w λ - r y w λ 横向蠕滑率)(w y y v V w y ? V w y ? 由轮对摇头引起的蠕滑率 纵向滑动速度: b w ψ -b w ψ 蠕滑率)(w x v ψ: V b ? ψ -V b ? ψ 横向 由于的存在,V 的横向分速度: -V w ψ -V w ψ 蠕滑率)(w y v ψ -w ψ -w ψ 合成蠕滑率 1v r y w λ+ V b ?ψ -0 r y w λ-V b ? ψ 2v V w y ? -w ψ V w y ? -w ψ 纵向蠕滑力: -f ( r y w λ+ V b ? ψ) f (0 r y w λ+V b ? ψ ) 横向蠕滑力: -f (V w y ? -w ψ) -f (V w y ? -w ψ) 轮对的左右车轮上作用着纵向蠕滑力大小相等、方向相反,形成一力偶,力偶矩为: M Z =2b f ( r y w λ+ V b ? ψ)=2f (w y r b λ+V b ? ψ2 ) 横向力大小相等方向相同,

运动稳定性

运动稳定性 运动稳定性(motion,stabilityof)物体或系统在外干扰的作用下偏离其运动后返回该运动的性质。若逐渐返回原运动则称此运动是稳定的,否则就是不稳定的。对任何运动,外干扰都是经常存在的,因此可以说,物体或系统的某一运动的稳定性就是它的存在性,只有稳定的运动才能存在。在工程技术上,要使设计对象的某些运动能够实现,那些运动必须是稳定的。 1学说发展 运动是一切事物的变化过程,所以研究运动的稳定性,涉及所有科学技术领域,包括社会科学。1892年俄国数学家A.M. 李亚普诺夫开创了运动稳定性研究的新纪元。他提出解决运动稳定性问题的两个方法:第一,是通过求解系统的微分方程分析运动的稳定性;第二,(直接法)是定性的方法,它不需求解微分方程,而是寻求具有某些性质的函数(称李亚普诺夫函数),使这些函数与微分方程相联系,就可控制积分轨线的动向。李亚普诺夫第二方法是目前解决运动稳定性问题的基本方法,已在应用数学、陀螺力学、自动控制、航空航天等领域广泛应用。当今,如不作说明,运动稳定性常被理解为李亚普诺夫稳定性。 2线性系统的稳定性 有3种:稳定、临界情况和不稳定,它们分别对应于李亚普诺夫意义下的渐近稳定、稳定和不稳定。线性系统有以下两个常见的数学模型:①高阶微分方程,式中x(i)表示x的i阶导数,ai为标量系数。②一阶微分方程组,式中A为n×n 常值阵。下面分别给出这两个数学模型代表的线性系统的稳定性定理。 ①高阶微分方程线性系统稳定性定理。若上面第一个方程的特征根,即特征方程λn+a1λn-1+…+an-1λ+an=0的根,均具有负实部,则系统稳定;有一个零根 或一对虚根而其余根有负实部,则系统属临界情况;其他情况下,系统不稳定。为避免求根而直接由方程的系数判别系统的稳定性,有代数判据:A.赫维茨判据和E.J.劳思检验法。 ②一阶方程组线性系统稳定性定理。若上面第二个方程组的特征根,即特征方程det[λΙ-A]=0 的根,均具有负实部,则系统稳定;有一个正实部的根,则系统不稳定;实部为零的根代数重数等于其几何重数且其余根均有负实部,则属临界情况;实部为零的重根代数重数大于几何重数,则系统不稳定。 3定常非线性系统 定常非线性系统的稳定性

已知飞机纵向运动方程为

5-1 已知飞机纵向运动方程为 ?? ?-=+++=-+B B n p n p n p n p n p δθαθα?????)()(0 )(332 320 22 试求飞机纵向回路的频率特性 )()()(ωδωθωθδj j j W B B ??= 和 )() ()(ωδωαωαδj j j W B ??= 5-2 若系统单位阶跃响应为 )0(8.08.11)(94≥+-=--t e e t h t t 试求系统的频率特性. 5-3 试证明下述系统的幅相曲线为半圆 (1) 惯性环节1 1 )(+=Ts s G (2) 1 )(+= Ts Ks s G 5-4 绘制下列传递函数的幅相曲线: (1) s K s G =)( (2) 2 )(s K s G = (3) )0()(>= l s K s G l 5-5 若传递函数为 )()(0s G s K s G v = 式中)(0s G 为G(s)中除比例, 微分或积分环节外的部分, 且有1)(lim 00 =→s G s . 5-6 证明: (1)11lg 20||lg 20)(ωωv K L a -= ))(,(11ωωa L 为对数幅频渐近特性最左端直线或其延长线上的任一点. (2) ||lg 20)1(K L a = )1(a L 为对数幅频渐近特性最左端直线或其延长线上ω=1时的幅值. (3) 当0≠v 时,v K 11||=ω 1ω为对数幅频渐近特性最左端直线或其延长线与零分贝线的交点. 5-7 试将下述系统的传递函数按典型环节分解: (1) ) 65()1()254()144()3(50)()(2 2 3 2++-++++-= s s s s s s s s s s H s G

第三章飞行器的运动方程(0901)

第三章飞行器的运动方程 3.1 刚体动力学方程的推导 1.刚体飞行器运动的假设 1)认为飞行器不仅是刚体,而且质量是常数; 2)假设地面为惯性参考系,即假设地面坐标为惯性坐标; 3)忽略地面曲率,视地面为平面; 4)假设重力加速度不随飞行高度而变化; 5)假设机体坐标系的z o x --平面为飞行器对称平面,且飞行器不仅几何外形对称,而且内部质量分布亦对称,惯性积0==zy xy I I 2.旋转坐标系中向量的导数 设活动坐标系b b b z y Ox 具有角速度ω (见图 3.1-1)。向量ω 在此坐标系中的 分量为r q p ,,,即 k r j q i p ++=ω (3.1-1) 其中i 、j 、k 是b x 、b y 、b z 轴的单位向量。 图3.1-1 设有一个可变的向量)(t a ,它在此坐标系中的分量为z y x a a a ,,,即 k a j a i a a z y x ++= (3.1-2) 由上式求向量)(t a 对时间t 的导数: b x ω b y b z O i j k

dt k d a dt j d a dt i d a k dt da j dt da i dt da dt a d z y x z y x +++++= (3.1-3) 从理论力学知,当一个刚体绕定点以角速度ω 旋转时,刚体上任何一点P 的速度为 r dt r d ?=ω (3.1-4) 其中r 是从O 点到P 点的向径。 现在,把单位向量i 看作是活动坐标系中一点P 的向径,于是可得: i dt i d ?=ω (3.1-5) 同理可得: j dt j d ?=ω (3.1-6) k dt k d ?=ω (3.1-7) 将式(3.1-5)、(3.1-6)及(3.1-7)代入式(3.1-3)中,可得: )(k a j a i a k dt da j dt da i dt da dt a d z y x z y x ++?+++=ω (3.1-8) 或写为: a t a dt a d ?+=ωδδ (3.1-9) 其中k dt da j dt da i dt da t a z y x ++=δδ t a δδ 称为在活动坐标系中的“相对导数”,相当于站在此活动坐标系中的观察者所看到的向量a 的变化率。而dt a d 则称为“绝对导数”,相当于站在固定坐标系 中的观察者所看到的向量a 的变化率。例如,若a 是某点的向径,则t a δδ 代表该 点的相对速度(相对于动坐标系),而dt a d 则代表该点的绝对速度。 3.在机体坐标系(活动坐标系)中刚体飞行器质心动力学方程 由牛顿第二定律得:

飞行器制导复习

一、简答题 1. 典型的制导体制有哪些?简述它们的工作原理。 (1)遥控制导 以设在飞行器外部的指控站或制导站,来完成飞行器运动状态的监控,或者进行目标与飞行器相对运动参数的测定,然后引导飞行器飞行的一种制导方式。 (2)自主制导 按照给定弹道生成预定导航命令或预定弹道参数信息,在发射或起飞前装订到无人飞行器的存储装置中,飞行过程中机载敏感装置会不断测量预定参数,并与存储装置中预先装订参数进行比较,一旦出现偏差,便产生导航或导引指令,以操纵飞行器运动,完成飞行任务。这是一种自主导航或制导的方式。 (3)寻的制导 利用电磁波、红外线、激光或可见光等方式测量目标和无人飞行器之间的相对运动信息,由此实时解算出制导命令,从而导引无人飞行器飞向目标的一种方式。 (4)复合制导 复合制导是指在飞行过程中采用两种或多种制导方式。它可分为串联、并联和串并混合三种。串联复合制导就是在不同飞行弹道段上采用几种不同的制导方式;并联复合制导则是在整个飞行过程中或在某段飞行弹道上同时采用几种制导方式;而串并联混合制导就是既有串联复合也有并联复合的混合制导方式。 2.请画出一般飞行控制系统结构原理图,并简述各部分功能。 要实现飞行控制的目的,一般均采用内、外环两重反馈控制回路的控制方法来实现,即在外环回路重点进行导航/制导控制方法的研究,从而达到指令飞行的目的;在内环回路重点进行稳定控制方法的研究,从而实现稳定飞行的目的。 3.导弹质心运动的动力学方程和绕质心运动的动力学方程分别在什么坐标系建立有最简 单的形式?并给出这两个坐标系的定义。

地心惯性坐标系:I I I E Z Y X O ,E O 为坐标原点,地球的质心 ;I X 指向J2000地球平春分点;I Z 垂直于J2000地球平赤道面,指向北为正;E Y 在平赤道面内与EI X 轴、EI Z 轴形成右手旋转坐标系。 发射坐标系G :原点发射点o ,x 轴在发射水平面内指向瞄准方向,y 轴垂直发射水平面指向上方,z 轴构成右手坐标系。 4.大气层内飞行器所受力和力矩分别有哪些?产生控制力和控制力矩的方法有哪些? (1)引力、重力 (2)发动机推力与推力矩 (3)空气动力与气动力矩 (4)控制力与控制力矩 ① 气流控制方式:利用舵面在气流中的偏转来产生控制力和控制力矩的方式,包括燃气舵、空气舵。 ② 推力矢量控制方式:利用改变推力矢量方向来产生控制力和控制力矩的方式,包括摆动发动机、喷管摆动、扰流等。 ③ 直接推力控制方式/RCS :利用发动机直接提供控制力或控制力矩,包括冷喷发动机、可重复使用的液体发动机以及固体发动机组合等 5.简述比例导引的工作原理,说明导航比N 的取值对制导性能的影响。 比例导引法:导弹速度矢量的旋转角速度与目标瞄准线的旋转角速度成比例。 6何谓惯性坐标系?何谓相对坐标系?表达一个三轴坐标系相对于另一个三轴坐标系方向的方法通常有哪几种? 惯系:是指不受外力作用的质点能在其中保持静止或作匀速直线运动的参考系。实际问题中选择某一参考体固连的坐标系为惯性参考系。 相对: 方法:直接投影法、旋转转换法、四元素法 7分析描述飞行器姿态运动常用的参考坐标系之间的关系。 8一般制导导弹包含哪些部件?其寻的制导可以分为哪几种类型? 9一般飞行器在大气层内飞行过程中受哪些力的作用?飞行器所受的几种空气动力的详细定义式什么? 10比例导引中增大有效导航比N 会出现哪些结果? 11画出导弹自动驾驶仪的典型构成。 12简述战略导弹中惯导系统的特点。惯性系统的三个基本元件是什么? 13开普勒三大定律是什么?牛顿三大定律是什么? 14导弹的静稳定性是什么?给出导弹静稳定性的判据。 15写出导弹姿态欧拉动力学方程? 二、名词解释: 1、导航:将运载体从起始点引导到目的地的技术或方法称为导航 2、制导与控制:根据实际运动轨迹与期望运动轨迹的偏差对运载体的运动状

飞机纵向运动控制器设计

飞机纵向运动控制器设计 摘要 阐述了线性二次调节器(LQR)的基本原理和设计方法,以一类通用飞机的非线性纵向模型为研究对象,对其线性化后,应用LQR理论设计了飞机的纵向运动控制器以改善系统的性能。通过分析所设计的控制器的调节性能和抗干扰性能,并进行评估。仿真结果表明,尽管存在参数不确定性,所设计控制器能够满足飞机在复杂飞行条件下的控制要求,具有较强的鲁棒性。 关键字:纵向飞行控制;LQR控制;鲁棒性

CONTROLLER DESIGN FOR AIRCRAFT LONGITUDINAL MOTION ABSTRACT The thesis describes the basic principles and design methods of Linear quadratic regulator(LQR). By taking a nonlinear longitudinal model of a generic aircraft as an example, the thesis performs a linearization for the model, and then the LQR theory is used to design aircraft longitudinal motion controller in order to improve the performance of the system. By analyzing the regulation performance and anti-jamming performance of the feedback system designed, an evaluation is carries out. The simulation results show that in despite of the uncertainty of parameter exists, the designed controller can satisfy the control requirements of aircraft under complex conditions, and it has a good robustness. KEYWORDS: Longitudinal control,LQR control,Robustness

飞行器坐标

飞行器空间坐标修正 摘要 随着科技的快速发展,人们追求着精益求精。毋庸置疑,精确度问题成了热点问题。特别,高精度要求的航空航天领域对精度的研究更是有很重要的理论意义和应用价值。本题的目的是利用数学的方法对飞行器的测量数据进行坐标修正,使得飞行器的空间坐标位置更加精确。 针对问题一,主要产生误差的原因是电子仪器的精度和噪声干扰等。由于仪器精读造成的误差无法消除,在这里我们只考虑噪声的干扰,可以采用迭代均值法,卡尔曼滤波器模型对坐标数据进行了误差修正。 针对问题二,飞行器坐标在长时间的飞行中,坐标数据的观测值由于误差的累积发生漂移。通过问题一的修正后的数据,采用vx,vy的坐标变换法,对(vx,vy,vh)进行变换并将它与所测数据进行比较,并进行数据融合对数据进行第二次修正。 针对问题三,我们选择的具体飞行器为无人机。由飞行器运动方程,推导出斜距与飞行状态之间的关系。在根据所测数据,利用kalman滤波方法可得斜距估计。根据实际值、最优估计值和GPS推算值进行数据融合,对空间坐标修正。在将结果进行无人机仿真表明,使用此模型可以是无人机的空间坐标位置得到很好的修正,位置更精确。 关键词:迭代均值法 kalman滤波坐标变换法飞行器运动方程数据融合 一.问题的重述 随着科学技术的高速发展,飞行器得到越来越广泛的运用,而飞行器的导航精度问题一直是航空航天领域研究的重要课题,惯性导航系统是一种不依赖于任何外部信息的自主式导航系统,在航空航天领域起着越来越重要的作用。由于其系统结构误差、惯性测量部件误差、标度系数误差等因素的影响,惯性导航系统的积累误差随着时间的推移而逐渐增大,这一问题严重影响到航空航天技术的发展。目前关于定位精度的研究成果主要是从物理技术(例如红外测距)方面来提高定位的精度,近年来,围绕定位坐标精度问题的相关研究也渐渐展开。因此进一步研究飞行器空间坐标修正方法有重要的理论意义和应用价值。本题的目标是利用数学的方法对飞行器的误差进行修正,并利用结果进行飞行器的仿真。 附录表一中给出的数据是飞行器的空间位置坐标以及其在空间的速度,还有飞行器与观测站之间的偏向角和俯仰角。其中除了观测站的位置坐标(0,0,0)是准确,其余的数据均有一定的误差,请对给出的数据进行以下三项工作: 1.飞行器坐标的数据为观测值,由于电子仪器的精度和噪声干扰等,含有一定的误差波动,建立数学模型对飞行器坐标观测值的随机波动误差进行修正。 2.由于观测数据的仪器误差,飞行器坐标在长时间的飞行中,坐标数据的观测值由于误差的累积发生漂移,建立数学模型,对飞行器的坐标的这种误差进行修正。(提示:在短时间内,可以视为飞行器坐标含有一定的常量误差,或者飞行器的这种误差是线性变化的)。 3.结合具体的飞行器给出误差修正方案。

相关文档
最新文档