新旧碳源(14年)呼吸测定

新旧碳源(14年)呼吸测定
新旧碳源(14年)呼吸测定

Altered utilization patterns of young and old soil

C by microorganisms caused by temperature

shifts and N additions

M.P.WALDROP 1,2,*and M.K.FIRESTONE 1

1Department of Environmental Science,P olicy,and Management,University of California at Berkeley,CA,USA;2Current address:Dana Building,School of Natural Resources and Environ-ment,University of Michigan,430E.University Ave.,Ann Arbor,MI 48109-1115,USA;*Author for correspondence (e-mail:mwaldrop@https://www.360docs.net/doc/474945626.html,;phone:+1-734-763-8003;fax:+1-734-936-2195Received 22July 2002;accepted in revised form 28April 2003

Key words:13C-PLFA,Carbon cycling,Enzyme activities,Microbial community composition,Respiration,Temperature

Abstract.To determine if changes in microbial community composition and metabolic capacity alter decomposition patterns of young and old soil carbon pools,we incubated soils under conditions of varying temperature,N-availability,and water content.We used a soil from a pineapple plantation (CAM;d 13C litter =à14.1%)that had previously been under tropical forest (C3;d 13C soil carbon =à26.5%).Forest derived carbon represented ‘old’carbon and plantation inputs represented ‘new’carbon.In order to di?erentiate utilization of young (<14years)and old (>14years)soil carbon,we measured the d 13C of respired CO 2and microbial phospholipid fatty acids (PLFAs)during a 103day laboratory incubation.We determined community composition (PLFA and bacterial intergenic transcribed spacer (ITS)analysis)in addition to carbon degrading and nutrient releasing enzyme activities.We observed that greater quantities of older carbon were respired at higher temperatures (20and 358C)compared to the lower temperature (58C).This e?ect could be explained by changes in microbial community composition and accompanying changes in enzyme activities that a?ect C degradation.Nitrogen addition stimulated the utilization of older soil carbon,possibly due to greater peroxidase activity,but microbial community composition was una?ected by this treatment.In-creasing soil moisture had no e?ect on the utilization of older SOM,but enzyme activity typically declined.Increased oxidative enzyme activities in response to elevated temperature and nitrogen additions point to a plausible mechanism for alterations in C resource utilization patterns.Introduction

Understanding the controls on the dynamics of soil carbon is important be-cause of the central role soil carbon plays in ecosystem sustainability,nutrient availability and the production of global greenhouse gases.The activity of the soil biota controls,in part,the release of soil carbon to the atmosphere.Re-latively little is known regarding how changes in microbial community com-position or metabolic capacity may alter the types or amounts of soil carbon consumed and respired (Sollins et al.1996).Macdonald et al.(1995)and Zogg et al.(1997)found that changes in temperature alter the size of the available substrate pool,which was associated with changes in microbial community composition.They modeled the kinetics of microbial respiration (Y )using a # 2004Kluwer Academic Publishers.Printed in the Netherlands.

Biogeochemistry 235–248,2004.

67:

236

?rst order rate equation:

Y?A oeeàktTe1Twith a variable substrate pool size(A o)and rate constant(k)where elevated temperature typically increases the rate constant(t is time).They found that the assumption of a constant pool size may be incorrect;increases in tem-perature appeared to increase the amount of available C for microbial utili-zation(Macdonald et al.1995;Zogg et al.1997).Research using free air CO2 enrichment(FACE)sites has also shown that increases in temperature increase the utilization of older C(Andrews et al.2000).Andrews et al.(2000)suggest that a possible mechanism for changing utilization patterns of soil organic carbon was alteration in microbial community composition,which may lead to changes in whole-community metabolic capacity.However,the mechanism that allows for greater access to older SOM was not demonstrated. Extracellular macromolecular carbon degrading enzymes play a central role in the degradation of litter and soil organic matter and thus may provide a mechanistic link to alterations in resource utilization patterns.In some cases, enzymes are considered to be the rate-limiting step in decomposition (Sinsabaugh et al.1994).Di?erent microbial populations di?er in the types of enzymes produced(Kirk and Farrell1987).For example,fungi and actino-mycetes produce phenol oxidase and peroxidase enzymes that are central to the degradation of phenolic compounds indicative of older,more recalcitrant or-ganic matter(Kirk and Farrell1987;Waldrop et al.2003).Other important carbon degrading enzymes are hydrolytic cellulases(b-glucosidase,cellobio-hydrolase),hemicellulases(b-xylosidase,N-acetyl-glucosaminidase),galactase, and a-glucosidase.Unlike oxidative enzymes,these hydrolytic enzymes are produced by a wide variety of microorganisms,and thus a change in com-munity composition may not a?ect the activity of these enzymes.Extracellular enzyme activity has been observed to decrease with high soil moisture contents and greater N availability,possibly reducing microbial access to older C sources in SOM(Fog1988;Freeman et al.1996).

Our objective was to quantify the utilization of young and old soil C under altered environmental conditions by monitoring the d13C of respired CO2and microbial biomarkers(PLFAs),and relating these data to changes in the mi-crobial community composition and extracellular C-degrading enzyme activ-ities.We hypothesized that increases in soil temperature would increase the utilization of old soil C and that high soil moisture and soil N would reduce the utilization of older soil C.We also hypothesized that utilization of older C would be associated with increases in oxidative enzyme activities.

Methods

Soils were obtained from pineapple plantations and adjacent forests on the island of Tahiti(178300S,1498500W)in French Polynesia.The maximum mean

237 monthly temperature was278C(January–March)and the minimum was248C (July–August).The forest(C3physiology consisting of Hibiscus tillaceus, Nephrolepis and Gleichenia linearis,Psidium guajava,Pistache,and Eugenia cumini)was clearcut,forest litter burned,and pineapple plantations were established within1year(CAM physiology;Bromilacea ananas comelsus var. quentii).Thirty thousand plants per hectare were grown for14years.Every3–4 years the plants became unproductive and were pulverized and incorporated into the surface soil.Each plant was given approximately80g fertilizer per year (30:10:30:10N:P:K:S).Soil cores(12.5cm long?4.5cm diameter)were taken every3m along three transects in the plantation and along?ve transects in the adjacent forest.Plantation soil was homogenized and stored for approximately 9months atà48C before the incubation began.The conversion from forest to plantation shifted bulk soil d13C fromà26.5±0.1%toà23.0±0.1%in the pineapple plantation(pineapple litter d13C=à14.1±0.5%(n=3)).

The experiment was organized in a factorial design with control,water,and N additions within each temperature treatment using three replicate soil samples.Thus we had27total samples.Fifty grams of oven dry equivalent soil were placed into1.0L mason jars and the soil water content adjusted to 0.43g gà1.The water content of the‘+water’treatment was increased until there was standing water(0.59g gà1).The‘+N’treatment received NH4NO3 equivalent to30m g N gà1and was at the same water content as the control. Soil temperature was altered by incubating soils at5,20or358C.Mason jars were kept sealed but opened after gas sampling to allow re-equilibration of the headspace gas.We used new lids with silicone-lined septa to minimize leakage problems.Headspace gas samples were taken using a syringe through a septum in the mason jar lid.CO2concentrations were measured on a Schimadzu gas chromatograph with a thermal conductivity detector.Subsamples of headspace CO2were stored in Hungate glass vials with septa until analyzed for d13C values(relative to V-PBD)on a Finnigan MAT(Bremen Germany)Delta Plus XL isotope ratio mass spectrometer(IRMS).

All microbial community analyses(enzyme activities,PLFA,DNA analysis) were conducted at the end of the incubation experiment(day103).b-glucosi-dase,a-1,4-glucosidase,galactase,b-xylosidase,cellobiohydrolase,NAGase, phosphatase,and sulfatase were assayed using MUB-linked substrates in5mM pH8bicarbonate bu?er.Aliquots of a1:100(w/v)soil slurry were added to substrate solutions and assayed on microplates(8analytical replicates)with appropriate quenching controls using a Fluorolog3spectro?uorometer with a Micromax plate reader(ISA instrumetents)with the excitation wavelength set at360nm.Plates were incubated at278C for1–2h.Emission(450nm)was measured at the beginning and end of the incubation.Enzyme activities were expressed as m mol substrate converted hà1gà1.

Phenol oxidase and peroxidase enzyme substrate was10mM L-dihydroxy-phenyalanine(LDOPA).Phenol oxidase activity was measured as the increase in absorbance at469nm after1h using a Spectramax plus spectrophotometer (Molecular Devices).Controls were100m l soil mixture and100m l bu?er.

238

Peroxidase activity the di?erence between samples reacted with and without 3m l3%H2O2.Units for phenol oxidase and peroxidase are m mol LDOPA converted hà1gà1.Following the enzyme assays,dissolved organic carbon content was measured on the bicarbonate bu?er soil solution?ltered through a Whatman number1?lter.Soil extracts were analyzed on a1010total organic carbon analyzer(OI analytical).

Phospholipid fatty acid analysis(PLFA)was conducted on5g samples of freeze dried soil using the procedure by White and Ringelberg(1998)and peaks were identi?ed on a MIDI-FAME system(MIDI,Inc,Newark,DE).Isotope ratios of microbial PLFAs were measured on an isoprime isotope ratio mass spectrometer linked through a combustion interface to an HP1530A gas chromatograph with a25m?0.2mm?0.33m m Ultra2(5%-phenyl)-me-thylpolysiloxane column(Hewlett Packard).The GC analyzed a2m l splitless injection,at an initial temperature of458C,ramped up to1458C at208C per minute,then slowed to0.58C per minute until1808C,and?nally ramped up to 2508C at208C per minute.We corrected the isotope ratios of PLFAs for the additional carbon moiety added during transesteri?cation using the equation by Abraham et al.(1998).

DNA for bacterial intergenic transcribed spacer(ITS)region analysis was extracted using a BIO101DNA extraction kit.Initial vortexing was increased to 30s and heating of the sample was increased to7.5min at378C.This was repeated three times.Bacterial16-23S ITS regions were ampli?ed using primer set1406F and115R(Borneman and Triplett1997).Thermocycling was per-formed on a Perkin Elmer GeneAmp2400PCR system and consisted of30 cycles at928C melting temperature,558C annealing temperature,and a728C extension temperature.The PCR product was run on a5%polyacrylamide gel at 170V for4.5h,stained with ethidium bromide and visualized by UV tran-sillumination.ITS banding patterns were compared using similarity analysis and based upon a Pearson’s correlation(GelCompar software,Applied Maths). The kinetics of microbial respiration were modeled using the?rst order rate equation(Eq.1).Calculation of A o and k were made using an iterative best-?t technique that allowed both A o and k to vary(JMP software,SAS).Isotope ratios of respired CO2were compared using analysis of covariance(ANCOVA) with cumulative respired CO2as the covariate.Two-way analysis of variance (ANOVA)was to compare the e?ect of temperature and treatment on mea-sured variables.Mean separation was performed using Tukey’s HSD test. Signi?cance level was P<0.05unless otherwise noted.

Results

Temperature

Cumulative respired CO2was highest at358C,intermediate at208C,and lowest at58C over the103day incubation period(Figure1).Respired CO2

data were closely ?t by the ?rst-order kinetic model (r 2>0.98).Modeling the kinetics of microbial respiration using a variable substrate pool size and rate constant indicated that the available substrate pool size was ?ve times larger at 358C compared to 58C (Table 1).The respiration rate constant (k )was higher at 208C than at either 35or 58C (Table 1).Hydrolytic enzyme activities and dissolved organic carbon concentrations were generally lower in the higher temperature treatments.On the other hand,oxidative enzyme activities were not signi?cantly di?erent among the temperature treatments,and phenol oxi-dase tended to increase (Table 1).Thus the ratio of oxidative enzyme activity to hydrolytic enzyme activity increases as temperature increases.

The d 13C-CO 2values became more negative over time con?rming that young carbon is easily metabolized,and more forest derived C is respired as the young C is depleted (Figure 2).The respired d 13C-CO 2values were used to quantify di?erences in young and old carbon utilization among treatments.A direct comparison of the mean d 13C-CO 2values over the entire experiment cannot be made among the three temperature treatments because microbes at high tem-peratures utilized older carbon by virtue of the fact that they respired more total carbon.To overcome this dilemma,we compared the d 13C-CO 2values using ANCOVA using cumulative respiration as the https://www.360docs.net/doc/474945626.html,ing the ANCOVA,the isotope ratio of microbial respiration displayed a signi?cant temperature e?ect (F =36.92,p <0.0001).Analysis of the d 13C-CO

2

Figure 1.Cumulative respired CO 2over time.Black,grey,and white symbols represent 35,20,and 58C treatments,respectively.Triangles,squares,and diamonds represent +N,+water,and control treatments,respectively.Bars are standard errors of the mean;n =3.

239

values revealed that the isotope ratios of respired CO 2were depleted in 13C at 208C compared to 58C,and there was no change in d 13C-CO 2values between the 20and 358C treatments (Table 1,Figure 2).The isotope ratios of the respired CO 2indicated that as temperatures warmed above 58C,the microbial community shifted to the utilization of older,forest-derived C3carbon.

PLFA analysis and bacterial ITS analysis revealed that the microbial com-munity di?ered among the three temperature treatments (Table 2,Figures 3and 4),although there was no change in the overall size of the microbial community,based upon the sum of total moles of PLFA.Interestingly,the total and relative abundance of fungal and actinomycete biomarkers were signi?cantly lower at higher temperatures (Table 2).Some microbial PLFAs are known to be temperature sensitive (Petersen and Klug 1994),thus these changes in fatty acid composition may be partially due to thermoadaptation.ITS analysis,on the other hand,is not temperature sensitive,and thus may be a more robust measure of community composition in this experiment.ITS pat-terns were compared among the control soils in the three temperature treat-ments.ITS patterns and similarity analysis reveal that there is a marked shift in community composition among the temperature treatments (Figure 4).The isotope ratios of microbial PLFA biomarkers ranged from à22.3to à32.4%.

Table 1.Available C pool (A o ),?rst-order rate constant (k )of microbial respiration,and hydrolytic and oxidative soil enzyme activities in treated soils.Letters indicate di?erences among column means for either the three incubation temperatures or the three soil treatments.

Incubation temperature (8C)

Treatment 5

2035Control +Water +N A o 1

323c 496b 1538a 666x 721x 924x k 1

1.9a 3.7b

2.8a 2.8x

3.0x 2.8x d 13C-CO 2

Least square means

à17.43b à19.08a à19.27a à18.41y à18.21y à19.17x DOC (mg C kg à1)

698a 573b 592ab 604x 607x 652x b -glucosidase 2

552a 387ab 231b 421x 385x 340x a -glucosidase 2

240a 175ab 108b 176x 165x 172x Galactase 2

247a 173ab 107b 191x 156x 170x Cellobiohydrolase 2

258a 178ab 118b 410x 311x 315x Xylosidase 2

471a 315ab 270b 201x 197x 143x NAGase 2

389a 294ab 195b 342x 235x 290x Phosphatase 2

1198a 787a 681a 1002x 688x 946x Sulfatase 2

255a 123ab 154b 194x 166x 166x Phenol oxidase 3

41a 34a 48a 51x 30y 40y Peroxidase 3

55a 52a 49a 57y 33y 70x 1A o and k were calculated using an iterative best-?t technique (n =9,p <0.05).Units for A o are mg C kg à1and units for k are year à1.

2Hydrolytic enzyme activites using MUB-substrates are in units of nmol h à1g à1(n =9,p <0.10).3Oxidative enzyme units are m mol LDOPA h à1g à1.

240

Several PLFA biomarkers were depleted in 13C in the 58C treatment relative to 358C.These included PLFA biomarker 18:0,‘Gram +’biomarkers i16:0,i17:0I,i17:0,and the fungal biomarker 18:2o 6(Table 2).

Water addition

Increasing soil water content from 0.43to 0.59g g à1had no signi?cant e?ect on the size of the available substrate pool (Table 1),the utilization of young and old soil carbon (Table 1),or microbial community composition (Table 2).However,increasing water content decreased phenol oxidase activity by 41%(Table 1).Increasing soil water content also reduced peroxidase activity by 42%,and tended to reduce all other enzyme activities,but the e?ect was not signi?cant (Table 1).Nitrogen addition

N addition also did not signi?cantly a?ect the available pool size of C or the rate constant (k )of microbial respiration (Table 1).However,ANCOVA

of Figure 2.Carbon isotope ratio of microbial respiration (d 13C-CO 2)over the 103day incubation experiment in the 20(black circle),and 58C (white circle)treatments.Isotope ratios of respired CO 2were depleted in 13C at 208C compared to 58C.

241

242

Table2.PLFA relative abundance and d13C values from soils incubated at three temperatures. Letters indicate di?erences among column means.

Incubation temperature(8C)

mol%d13C

35205355 Saturated

16:013.3a11.4b10.9bà22.30aà28.58a 18:07.0a 5.3b 4.6bà23.32aà26.07b Gram+

i15:07.1a8.1a,b8.4bà21.91aà25.69a a15:0 3.3a 3.3a 3.8bà28.44aà26.81a i16:0 6.1a 6.6b 6.7bà23.01aà26.32b i17:0i 1.3a 2.7a 2.0aà23.72aà26.12a i17:011.8a8.7b8.3bà22.52aà26.32a a17:0 2.6a 2.5a 2.4bà25.52aà26.59a 16:010me 5.1a7.0b7.5bà24.29aà27.89b 17:010me 1.1a 1.3b 1.3b

i18:0 1.4a 1.1b0.9c

Gramà

16:1o5c 1.4a 1.7b 1.6bà27.17aà26.94a 16:1o7c 1.5a 2.4b 4.3cà28.70aà27.32a 17:0cy 1.9a 2.6b 2.7bà26.59aà27.26a 16:12OH9.6a8.4b 6.9cà25.52aà26.20a 18:1o7c 1.5a 2.1b 2.3bà24.01aà27.23a 19:0cy o8c9.9a,b10.9a9.2bà24.49aà29.24a 18:1o9c 3.4a 2.9b 3.1a,b

Fungi

18:2o60.3a0.7a,b 1.1bà24.00aà32.37b Actinomycete

10ME18:0 2.6a 2.8a,b 3.4b

d13C-CO2data,using cumulative respiration as the covariate,displayed a signi?cant treatment e?ect(F=9.28,P=0.0002;Table1).The carbon isotope ratio of microbial respiration(d13C-CO2)in the+N treatment was depleted relative to the control treatment,indicating that microbial commu-nities were utilizing older SOM following N addition(Table1).Peroxidase activity increased,phenol oxidase activity decreased,and hydrolytic enzyme activities were una?ected by the+N treatment(Table1).Dissolved organic carbon concentration also tended to increase in the+N treatment,relative to control(Table1).

Microbial community composition,as revealed by PLFA and ITS analysis, was unchanged due to N addition(Figure3;ITS data not shown).The isotope ratio of PLFA biomarker a17:0was depleted in13C relative to control (control=à23.4±1.0%;nitrogen treatment=à29.2±1.6%).There was

some indication that fungal populations were also using older SOM (18:2o 6;control =à25.4±1.1%;nitrogen treatment =à29.5±6.5%),but this was not

signi?cant.

Figure 3.PLFA pro?les of microbial communities in the three temperature treatments in control,+water,and +N treatments.PLFA PC1represents the ?rst principal component and PLFA PC2represents the second principal component with amount of variability explained by the principal component in https://www.360docs.net/doc/474945626.html,munities at di?erent temperatures were signi?cantly di?erent from one another (p <0.05,n =9),and there were no signi?cant treatment or temperature ?treatment

e?ects.

Figure 4.Similarity analysis of ampli?ed bacterial ITS regions of the microbial DNA in soil incubated at di?erent temperatures.The x-axis represents the Pearson’s correlation coe?cient among treatments.Samples that cluster together have greater similarity.The ITS banding pattern from the original polyacrylamide gel is shown in the digital image.Each lane in the image corre-sponds to a sample in the similarity analysis.

243

244

Discussion

Temperature

The changes in PLFA and ITS patterns,enzyme activities,kinetic parameters of microbial respiration,and isotope ratios of respired CO2provide strong evidence for a shift in microbial community composition and function related to elevated soil temperatures.Elevated incubation temperatures led to an in-crease in the size of the substrate pool utilized by soil microbes,a result that has been observed previously(Macdonald et al.1995;Zogg et al.1997).Fur-thermore,we found that the rate constant(k)for microbial respiration was highest at208C,near the mean monthly air temperature of the site(range= 24–278C over the course of the year),which is consistent with research de-scribing di?erent temperature optima for microbial respiration in soils from di?erent climatic regions(Dalias et al.2001).Therefore it is possible that the microbial community in this study was adapted to a temperature range closer to208C than either35or58C.

In addition to increasing the pool size of available C and altering the rate constant,increasing temperatures led to increases in the utilization of old C, independent of the total quantity of C consumed.Increased utilization of older, recalcitrant SOM with increases in temperature has been previously measured. For example,Loiseau and Soussana(1999)measured increased utilization of old C with an increased temperature of only38C over a2-year period at elevated CO2but not ambient CO2.Andrews et al.(2000)using the label from FACE sites,concluded that microbes at lower temperatures were not able to utilize old SOM that microbes at20and408C could utilize.They concluded that at low temperatures there is either a change in the kinetics of carbon mineralization or a shift in the C pool being mineralized.Our data indicate that both the kinetics of carbon mineralization and the size and type of soil C mineralized is changing.

Importantly,the greater respiration of more recalcitrant C-pools at higher temperatures may be explained,in part,by changes in the composition and metabolic capacity of the microbial community that mediates C cycling pro-cesses(Macdonald et al.1995;Zogg et al.1997;Loiseau and Soussana1999). Microbial communities di?er in their genetic capacity to produce oxidative enzymes(Kirk and Farrell1987),and it is evident from our ITS data that changes in the composition of the microbial community occurred in response to changes in temperature.Although we expected to see increased respiration of larger and older C pools accompanied by increased enzyme activity,we instead observed a decrease in cellulytic and hemicellulytic enzyme activities and no change in oxidative enzyme activities.Since enzyme activity was de-termined at the end of the103day experiment,and since soils at higher tem-peratures e?ectively respired a larger pool of C,enzyme activity may have been lower at higher soil temperatures because of a depletion of the available sub-strate pool.This idea is supported by the lower DOC concentration observed in

245 the higher temperature soils.While the activities of the hydrolytic enzymes decreased by nearly50%in the358C treatment compared to the58C treat-ment,oxidative enzyme activities remained constant or even tended to increase. Thus the ratio of oxidative enzyme activity to hydrolytic enzyme activity in-creased with increasing temperature.This pattern suggests that the oxidative enzymes may have been a mechanism for the enhanced degradation of the older,more recalcitrant SOM at higher temperatures.

Increases in soil temperature may also have a?ected the physical–chemical processes controlling carbon stabilization and destabilization.For example, since the recalcitrance of a molecule is de?ned by the activation energy required to break the chemical bonds(Thornley and Cannell2001)and since the Arrhenius equation shows that the higher the activation energy(E a)for a reaction,the higher its temperature dependence,elevated temperature will theoretically accelerate the breakdown of recalcitrant compounds to a greater degree than the breakdown of labile compounds.This might then alter the biochemical forms of carbon substrates available to soil organisms,thereby shifting the composition of the microbial community to organisms that have a competitive advantage.However,elevated temperature may also theoretically increase carbon stabilization through the same mechanisms(Thornley and Cannell2001),resulting in no net increase in C availability to soil micro-organisms via abiotic processes.The relative importance of biotic and abiotic mechanisms of carbon stabilization and destabilization is an important area of further study.

Finally we attempted to determine the microbial groups that may be re-sponsible for greater access to older SOM by analysis of the isotope ratios of microbial PLFAs.Isotope ratios of microbial PLFAs di?ered among fatty acids by as much as10%,suggesting that microbial PLFAs can be used to distinguish microbial utilization of di?erent carbon sources under some cir-cumstances.Temperature related fractionation,however,seemed to a?ect the isotope ratios of microbial PLFA’s,where PLFAs at58C were depleted in13C compared to358C,which would indicate that they were made up of older C. Since temperature-related fractionation,as well as community shifts can cause large(up to7%)changes in the d13C of fatty acids(Abraham et al.1998), simple interpretations of this type are equivocal.The biophysical processes causing fractionation of microbial lipids are an important topic for further study.

Water addition

Increasing soil water content did not signi?cantly reduce microbial degradation of older soil carbon or microbial respiration in general,but we did observe a decrease in phenol oxidase enzyme activity.We also did not observe a change in microbial community composition in the+water treatment relative to control.The soil moisture in the control soil(0.43g gà1)was already very wet

246

and so the increase in moisture content from the control soil to the+water treatment was not a severe treatment.

Nitrogen addition

Phospholipid biomarker and ITS patterns were una?ected by nitrogen addition after103days,indicating that microbial community composition and biomass was unresponsive to the+N treatment.Di?erent studies have shown varying e?ects of nitrogen addition on microbial biomass,including decreases (McAndrew and Malhi1992;Arnebrandt1994;Arnebrandt et al.1996;Ajwa et al.1999),increases(Salinas-Garcia et al.2002)and no e?ect(Schmidt et al. 2000),even after many years of N addition.Although there was no change in community composition or microbial biomass,the depleted isotope ratio of respired CO2indicates that microbial communities were stimulated by N to decompose older SOM.The increase in peroxidase activity in the+N treat-ment points to a possible mechanism for greater access to older SOM.Oxi-dative enzymes can degrade the phenolic compounds within soil organic matter,making relatively more recalcitrant organic material available for mi-crobial metabolism.

The controls on soil oxidative enzyme activity and the degradation of older SOM are extremely important and not well understood.Loiseau and Soussana (1999)found that nitrogen addition decreased the decomposition rate of old SOM in a low CO2atmosphere but stimulated old SOM decomposition in a high CO2environment.They reasoned that nitrogen inhibited phenol oxidase activity at low CO2,and under high CO2nitrogen stimulated the‘priming e?ect’.However,the priming e?ect may also be caused by an induction of oxidative enzyme activity(Kuzyakov et al.2000).Thus,their data seem to suggest that N addition can either stimulate or inhibit oxidative enzyme ac-tivity,depending upon relative resource availability.When C availability is low,high N may inhibit oxidative enzyme activity,and when C availability is high N may stimulate oxidative enzyme activity.

In our experiment,N addition stimulated peroxidase enzyme activity,po-tentially a central mechanism leading to greater microbial utilization of old soil C.It is thought that N addition should decrease oxidative enzyme activity and therefore the decomposition rates of phenolic,potentially more recalcitrant, compounds.This idea comes primarily from experiments on basidiomycete fungi degrading lignin and litter.Many results with other types of fungi,for example,soft rot fungi,have found either stimulatory or no e?ect(Fog1988).As Fog(1988)notes,the e?ect of adding N on decomposition may depend on the composition of the microbial community,especially fungi,because,for example, white rot,brown rot,and soft rot fungi respond di?erently to N additions.The ultimate e?ect of N on decomposition and SOM degradation may depend on a complex interaction between substrate availability,microbial community composition and the enzymatic capacity of the microbial community.

247

We attempted to identify microbial biomarkers that were responsible for the enhanced utilization of SOM in the+N treatment by analysis of the isotope ratios of microbial PLFAs.The composition of the microbial community did not measurably change in the+N treatment,thus,isotope ratios of PLFAs could be compared among treatments without considering microbial fractio-nation due to di?erences in community composition.The depleted isotope ratios of the Gram+PLFA biomarker a17:0,and the fungal biomarker 18:2o6indicate that fungal and some Gram+organisms preferentially utilized older SOM following N addition.This may provide a link between functionally important microbial biomarkers(fungi and Gram+in this case),changes in soil oxidative enzyme activities,and the utilization of distinct pools of soil C. This study provides evidence for changes in the microbial community com-position,function,and C pool utilization due to changes in soil temperature and N addition.Changes in soil temperature and N availability can alter the forms of C utilized by microbial communities through changes in the production of oxidative enzymes,rather than just a?ecting their respiration rate constants.This result points toward a need to further understand the e?ects of changes in soil tem-perature and N availability on the composition and function of the soil com-munity,and the resulting feedback to the decomposition processes. Acknowledgements

We would like to acknowledge the help of Don Herman,Paul Brooks,Mark Conrad,Tamas Torok,Egbert Schwartz,and Eoin Brodie for laboratory as-sistance and advice on the manuscript.We would also like to acknowledge the Kearney Foundation for Soil Science Research and CA AES Project6117-H for support.

References

Abraham W.R.,Hesse C.and Pelz O.1998.Ratios of carbon isotopes in microbial lipids as an indicator of substrate usage.Appl.Environ.Microb.64:4202–4209.

Ajwa H.A.,Dell C.J.and Rice C.W.1999.Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization.Soil Biol.Biochem.31: 769–777.

Andrews J.A.,Matamala R.,Westover K.M.and Schlesinger W.H.2000.Temperature e?ects on the diversity of soil heterotrophs and the d13C of soil respired CO2.Soil Biol.Biochem.32: 699–706.

Arnebrandt K.1994.Nitrogen amendments reduce the growth of extramatrical ectomycorrhizal mycelium.Mycorrhiza5:7–15.

Arnebrandt K.,Baath K.,Soderstrom B.and Nohrstedt H.O.1996.Soil microbial activity in eleven Swedish coniferous forests in relation to site fertility and nitrogen fertilization.Scand.J. Forest Res.11:1–6.

Borneman J.and Triplett E.W.1997.Molecular microbial diversity in soils from eastern Ama-zonia:evidence for unusual microorganisms and microbial population shifts associated with deforestation.Appl.Environ.Microb.63:2647–2653.

248

Dalias P.,Anderson J.M.,Bottner P.and Couteaux M.M.2001.Temperature responses of carbon mineralization in conifer forest soils from di?erent regional climates incubated under standard laboratory conditions.Glob.Change Biol.7:181–192.

Fog K.1988.The e?ect of added nitrogen on the rate of decomposition of organic matter.Biol.

Rev.63:433–462.

Freeman C.,Liska G.,Ostle N.J.,Lock M.A.,Reynolds B.and Hudson J.1996.Microbial activity and enzymic decomposition processes following peatland water table drawdown.Plant Soil180: 121–127.

Kirk K.T.and Farrell R.L.1987.Enzymatic‘combustion’:the microbial degradation of lignin.

Annu.Rev.Microbiol.41:465–505.

Kuzyakov Y.,Friedel J.K.and Stahr K.2000.Review of mechanisms and quanti?cation of priming e?ects.Soil Biol.Biochem.32:1485–1498.

Loiseau P.and Soussana J.F.1999.Elevated CO2,temperature increase and N supply e?ects on the accumulation of below-ground carbon in a temperate grassland ecosystem.Plant Soil212: 123–134.

Macdonald N.W.,Zak D.R.and Pregitzer K.S.1995.Temperature e?ects on kinetics of microbial respiration and net nitrogen and sulfur mineralization.Soil Sci.Soc.Am.J.59:233–240. McAndrew D.W.and Malhi S.S.1992.Long-term N fertilization of a solonetzic soil–e?ects on chemical and biological properties.Soil Biol.Biochem.24:619–623.

Petersen S.O.and Klug M.J.1994.E?ects of sieving,storage,and incubation temperature on the phospholipid fatty acid pro?le of a soil microbial community.Appl.Environ.Microb.60: 2421–2430.

Salinas-Garcia J.R.,Hons F.M.,Matocha J.E.and Zuberer D.A.1997.Soil carbon and nitrogen dynamics as a?ected by long-term tillage and nitrogen fertilization.Biol.Fert.Soils25:182–188. Schmidt I.K.,Ruess L.,Baath E.,Michelsen A.,Ekelund F.and Jonasson S.2000.Long-term manipulation of the microbes and microfauna of two subarctic heaths by addition of fungicide, bactericide,carbon and fertilizer.Soil Biol.Biochem.32:707–720.

Sinsabaugh R.L.,Moorhead D.L.and Linkens A.E.1994.The enzymatic basis of plant litter decomposition:emergence of an ecological process.Appl.Soil Ecol.1:97–111.

Sollins P.,Homann P.and Caldwell B.A.1996.Stabilization and destabilization of soil organic matter:Mechanisms and controls.Geoderma74:65–105.

Thornley J.H.M.and Cannell M.G.R.2001.Soil carbon storage response to temperature:a hy-pothesis.Ann.Bot-London87:591–598.

Waldrop M.P.,McColl J.G.and Powers R.F.2003.E?ects of forest postharvest management practices on enzyme activities in decomposing litter.Soil Sci.Soc.Am.J.67in press.

White D.C.and Ringelberg D.B.1998.Signature lipid biomarker analysis.In:Burlage R.S.,Atlas R.,Stahl D.,Geesey G.and Sayler G.(eds)Techniques in Microbial Ecology.Oxford University Press,New York,pp.255–272.

Zogg G.P.,Zak D.R.,Ringelberg D.B.,MacDonald N.W.,Pregitzer K.S.and White D.C.1997.

Compositional and functional shifts in microbial communities due to soil warming.Soil Sci.Soc.

Am.J.61:475–481.

肺源性呼吸困难常见的三种类型

1、肺源性呼吸困难常见的三种类型:________、________ 、________ 。 2、与呼吸困难相关的护理诊断有:________、________、________、________ 。 3、咯血量的评估,每日咯血量在________毫升为少量咯血,________毫升为中 等量咯血、________毫升为大量咯血。 4、按病因分,发绀可分为三类 ________、________ 、________。 1、上消化道出血量的评估,一般粪便隐血试验阳性者,提示每日出血量________;出现黑粪提示出血量________;呕血提示胃内积血量________;表现急性周围循环衰竭表现,提示出血量________。 2、上消化道出血常见病因________、________、________。 1、发热的临床经过大致可分为________、________ 、________ 三个阶段,进行物理降温的最佳时期在发热的________ 、 1、腹部评估时,________ 见于腹腔大量积液病人;________ 见于恶液质病人;________ 见于结核性腹膜炎病人 2、腹部触诊时,McBurney征阳性见于________ 病人;Murphy征阳性见于________ 病人。 3、腹膜刺激征包括腹部________ 、________ 、________ 。 4、正常情况下肠鸣音________ 次/分钟, 肠鸣音活跃指肠鸣音达________ 次/分钟, 见于 ________ 。肠鸣音亢进见于________ ,肠鸣音消失见于________ 肠梗阻。 1、提示上锥体束病变的病理反射有征;提示下锥体束病变的病理反射 有 ________ 征、 ________ 征、 ________ 征、 ________ 征。 1、正常瞳孔两侧等圆等大,直径________,缩小时直径________,见于________,扩 大时直径________,见于________。 2、镜面舌见于________,草莓舌见于 ________,干燥舌见于________。 3、扁桃体肿大分三度:I 度 ________, II 度 ________,III 度________。 4、甲状腺肿大分三度:I 度 ________, II 度________,III 度 ________。 1、心脏叩诊时,心浊音界呈梨形,见于________,称之为________;浊音界呈 靴形,见于________疾病,称之为 ________;浊音界呈现三角形,见于________疾病。 3、触诊脉搏时,甲亢病人常见________脉;心包积液病人常见________脉,心房纤 颤病人常见________脉;急性左心衰病人常见________脉;期前收缩病人常 见________脉。 4、周围血管征指脉压差大于 5、3千帕病人出现________、________、________、 ________与________等周围血管特征性改变。常见于________、________、________、________。 1、发绀就是_血液中________在50克/升,黄疸就是________超过17、1微摩尔/升;黄染就是________超过34、2微摩尔/升。 2、蜘蛛痣形成就是皮肤血管末端分支性扩张而成;与 ________增高有关;主要出现 于________区域内, 与 ________等疾病有关。 3、某些疾病可呈现特征性的步态:佝偻病、肌营养不良常见________步态;小脑疾 病常见________步态;震颤性麻痹常见________步态;腓总神经麻痹常见________步态;脑瘫病人常见________步态。 4、隐性黄疸就是指血清总胆红素超过________;显形黄胆就是指血中胆红素超过________。

碳14呼气试验

碳14 呼气试验 碳14 呼气试验是幽门螺杆菌检测的金标准。碳14 呼气试验在武城县人民医院胃镜室检查。 现代医学研究表明,幽门螺杆菌(HP)是消化性溃疡(胃溃疡、十二指肠溃疡)和慢性活动性胃炎的罪魁祸首,也是世界卫生组织认定的胃癌第一类致癌原,约90%以上的十二指肠溃疡和70%以上的胃溃疡存在HP感染;约60%以上的慢性胃炎患者存在幽门螺杆菌感染。医学专家指出:及时的诊断并根除HP 感染是阻断胃病的反复发作,至于胃病的前提。 据世界卫生组织(WHO)估计,全世界胃癌年发病约为90万人,是发病率最高的恶性肿瘤。在我国,每年约有29 万人死于胃癌,占恶性肿瘤致死原因的第一位。 医学研究发现胃癌患者的HP感染率显著高于未发生胃癌者,HP 感染可使胃癌发生的危险性增加3-6 倍。 世界卫生组织认定胃癌第一类致癌原是幽门螺杆菌,及早根治幽门螺杆菌感染,能有效避免胃癌的发生。 幽门螺杆菌的传染:幽门螺杆菌传染的主要途径是粪-口或者口- 口传播,感染有家族聚集现象。引用污染的水,感染HP的人与家人 的密切接触、共餐,幼儿园、学校里儿童、学生之间的接触及吃路边摊位的不洁食品等,均可 幽门螺杆菌治疗的特点:因幽门螺杆菌只对少数几种抗生素敏感,患 者切忌自己盲目服用消炎药,否则不但不能治病,反而会导致菌株 对抗生素的耐药性,增加治愈的难度。专家强调,病人只要在医生的指导下正确选用抗生素,即可达到根治目的。临床研究发现:根除之后在感染机

会将会低于3%。所以,及时诊断HP 感染,对于消除胃癌隐患、杜绝和减少转变胃癌的几率是极为有效的。 幽门螺杆菌感染的诊断方法有两类:(一)侵入性诊断:进行此类诊断需首先使用胃镜取得胃活检组织,之后才能进行HP检测,给病人带来的痛苦比较大,属创伤性检查。 (二)非侵入性诊断:进行此类诊断不需要使用胃镜、不需要取得胃活检组织,属无痛苦、无创伤性检查。非侵入性诊断方法以新发明的尿素碳14 呼气试验使用最为普遍。 HP的诊断方法涵盖了快速尿素酶实验、组织学检测、细菌培养、粪便抗原检测、血清学检测等在内的侵入性、非侵入性检测方法,血清学检测检测的是幽门螺杆菌抗体,只是说明患者是否感染过幽门螺杆菌,对当前的病情诊断无意义。如血清学检测为幽门螺杆菌阳性,还必须查碳14 呼气试验以明确诊断。血清学检测幽门螺杆菌抗体费用为35 元。虽然费用不高,但是无形中增加了病人等待明确诊断的时间。碳14呼气试验检测HP以其非侵入性、无痛苦以及高准确率受到广大医生和患者的青睐,被学术界公认为幽门螺杆菌检测“金标准”。 经过包括美国核管理委员会、中国原子能科学研究院在内的许多国家 的专业评估,都证实14C尿素呼气试验对环境、对受试者、对操 作人员都是安全无害的 碳14 被称为胃镜检测史上的里程碑,此检测不使用胃镜,不取胃活体组织,患者只需口服一粒C14 标记尿素胶囊之后吹气,仪器就会灵敏、准确、全面测出患者是否有幽门螺杆菌感染,这一方法无创伤、无痛苦、简便、安全、快速,检测幽门螺杆菌的敏感性达到95%,特异性达100%。

呼吸困难测验题

呼吸困难测验题 一、填空题 1.呼吸困难的病因主要是和疾病。 2.肺源性呼吸困难临床上分为三型、、。 3.呼吸系统疾病引起的呼吸困难包 括:、、、、。 4.支气管哮喘可引起性呼吸困难;气管内肿瘤或异物可引起 性呼吸困难。 5.PaO2正常值是;PaCO2正常值是。 6.癔病患者由于精神、心理因素的影响可有呼吸困难,其特点是呼吸频率可达60~100次/分,常因通气过度可发生,严重时可 有。 7.左心衰竭发生呼吸困难的主要原因 是、。 8.ARDS的病理基础包括、。 9.ARDS的主要症状有、、。 10.喉部疾病引起的呼吸困难属于。 二、判断题 1.判断呼吸困难客观表现应注意呼吸频率、节律和深度的异常变化。() 2.缺氧不一定有发绀,发绀不一定有缺氧。() 3.成年人呼吸窘迫综合征是一种非心源性肺水肿。() 4.肺源性呼吸困难是由于通气、换气功能障碍,导致缺氧和(或)二氧化碳潴留引起。() 5.吸气性呼吸困难严重者可出现“三凹征”(three depression sign)() 6.呼气性呼吸困难常伴有干啰音和湿罗音。() 7.心源性呼吸困难主要是由于左心和(或)右心衰竭引起,两者发生机制相同。() 8..右心衰竭时呼吸困难的原因主要是体循环淤血所致。() 9.出现深长规则的呼吸,可伴有鼾声,称为酸中毒大呼吸(Kussmael)呼吸。()

10.左心衰竭时呼吸困难的原因主要是呼吸中枢功能障碍所致。() 三、单项选择题 1.引起呼吸困难的病因最多见的是 A.呼吸系统疾病 B.心血管疾病 C.中毒 D.血液病 E.神经精神因素 2.在呼吸系统疾病中,突发呼吸困难(吸气或呼气)或和哮鸣音,下列最多见的 情况是 A.隔肌运动受限 B.神经肌肉疾病 C.胸廓疾病 D.肺疾病 E.气道阻塞 3.严重性吸气性呼吸困难最主要的特点为 A.呼吸不规则 B.发绀明显 C.呼吸深而慢 D.出现三凹征 4. 下列引起呼气性呼吸困难的疾病是 A.白喉 B.喉水肿 C.器官异物 D.支气管哮喘 5.引起混合性呼吸困难的疾病是哪种 A.气胸 B.喉痉挛 C.气管异物 D.支气管哮喘 6. 下列哪种疾病可出现中毒性呼吸困难 A.癔病 B.尿毒症 C.脑出血 D.脑膜炎 7. 夜间阵发性呼吸困难最常见于 A.急性左心功能不全 B.右心功能不全 C.胸腔大量积液 D.慢阻肺 8.血液病所致呼吸困难 A.吸气性呼吸困难 B.呼气性呼吸困难 C.混合性呼吸困难 D.心源性呼吸 困难 E.中毒性呼吸困难 9.急、慢性肾功能衰竭或糖尿病酮症酸中毒致呼吸困难 A.吸气性呼吸困难 B.呼气性呼吸困难 C.混合性呼吸困难 D.心源性呼吸 困难 E.中毒性呼吸困难 10.颅脑重症疾病时呼吸困难 A.神经性疾病呼吸困难 B.血液性疾病呼吸困难 C.呼气性疾病呼吸困 难 D.心源性疾病呼吸困难 E.混合性呼吸困难 四、多项选择题 1.下列哪些药物具有舒张支气管作用() A.茶碱 B.β受体阻滞剂 C.胆碱能受体激动剂 D.β2受体激动剂 E.β1受体激动 2.下列哪一项为I型呼吸衰竭的正确的说法: A 缺氧不伴二氧化碳潴留 B 也可因低氧血症所致通气代偿性增加 C 二氧化碳排出过多可导致PaCO2降低

污水处理基本计算公式

污水处理基本计算公式 水处理公式是我们在工作中经常要使用到的东西,在这里我总结了几个常常用到的计算公式,按顺序分别为格栅、污泥池、风机、MBR、AAO进出水系统以及芬顿、碳源、除磷、反渗透、水泵和隔油池计算公式,由于篇幅较长,大家可选择有目的性的观看。 格栅的设计计算 一、格栅设计一般规定 1、栅隙 (1)水泵前格栅栅条间隙应根据水泵要求确定。 (2) 废水处理系统前格栅栅条间隙,应符合下列要求:最大间隙40mm,其中人工清除25~40mm,机械清除16~25mm。废水处理厂亦可设置粗、细两道格栅,粗格栅栅条间隙50~100mm。 (3) 大型废水处理厂可设置粗、中、细三道格栅。 (4) 如泵前格栅间隙不大于25mm,废水处理系统前可不再设置格栅。 2、栅渣 (1) 栅渣量与多种因素有关,在无当地运行资料时,可以采用以下资料。 格栅间隙16~25mm;0.10~0.05m3/103m3 (栅渣/废水)。 格栅间隙30~50mm;0.03~0.01m3/103m3 (栅渣/废水)。

(2) 栅渣的含水率一般为80%,容重约为960kg/m3。 (3) 在大型废水处理厂或泵站前的大型格栅(每日栅渣量大于0.2m3),一般应采用机械清渣。 3、其他参数 (1) 过栅流速一般采用0.6~1.0m/s。 (2) 格栅前渠道水流速度一般采用0.4~0.9m/s。 (3) 格栅倾角一般采用45°~75°,小角度较省力,但占地面积大。 (4) 机械格栅的动力装置一般宜设在室,或采取其他保护设备的措施。 (5) 设置格栅装置的构筑物,必须考虑设有良好的通风设施。 (6) 大中型格栅间应安装吊运设备,以进行设备的检修和栅渣的日常清除。 二、格栅的设计计算 1、平面格栅设计计算 (1) 栅槽宽度B

碳13

碳13 碳13尿素呼气试验是一种用来检测幽门螺杆菌的医学试验。幽门螺杆菌是一种可以在胃中生长的细菌,可导致胃炎、消化性溃疡,并与胃癌密切相关,所以如果能及早检测出是否感染此菌,并对症下药,将减少胃肠道炎症和溃疡等疾病的机会。碳13尿素呼气试验是最新、快速、无痛苦而且无辐射的幽门螺杆菌检测技术,不需要做胃镜,只需轻松呼气,测定呼气成份,立即能检测出是否有幽门螺杆菌感染,结果准确度高达97%。 碳13尿素呼气试验用来检查幽门螺杆菌的感染,其的理是将经过稳定核素13C标记的底物引进机体(主要方式为口服),利用同位素比值质谱仪检测底物的最终代谢产物13CO2的变化来研究机体内代谢反应和生理过程。 碳13尿素呼气试验检查正常值: 测定服药前后呼气样本中12C/13C比值(δ值),若呼气后δ值减去呼气前δ值之差<4,则为Hp阴性。 碳13尿素呼气试验检查临床意义异常结果:测定服药前后呼气样本中12C/13C比值(δ值),若呼气后δ值减去呼气前δ值之差>4,则为Hp阳性,则感染幽门螺杆菌。 需要检查人群:幽门螺旋杆菌感染,消化道溃疡患者等。 碳13尿素呼气试验检查注意事项: 不适宜检查人:无。 检查前禁忌:检测须在空腹状态或者餐后两小时后进行,患者近一月内未服用抗生素、铋制剂、质子泵抑制剂等Hp 敏感药物,否则会造成检测结果假阴性。 检查时注意:(1)检查安排在早上。(2)检测时先收集第一呼气样本,然后服用专门的冲剂,静坐等候三十分钟,在此时间内不能喝或吃任何东西,最后再全力把气体呼到另一收集试管内,将收集到气体的两个试管在特定的仪器上分析,即可得到有无HP存在的结果。 碳13尿素呼气试验检查检查过程:(1) 口服一杯试验餐(约12ml);(2) 收集零时的呼气;(3) 口服尿素[13C],并开始计时。(剂量:成人为75mg,13C 丰度>99%,儿童:12岁以下,50mg,13C丰度>99%); (4) 收集第10,20,30,40和第50分钟时的呼气。在采用简便方法时,仅收集第30分钟的呼气。具体流程,以周口远华健康管理中心实际的检查流程为准。 幽门螺旋杆菌 幽门螺杆菌(Hp)。首先由巴里·马歇尔(Barry J. Marshall)和罗宾·沃伦(J. Robin Warren)二人发现,此二人因此获得2005年的诺贝尔生理学或医学奖。目前已知幽门螺杆菌感染的发病率的高低与社会经济水平,人口密集程度,公共卫生条件以及水源供应有较密切的关系。幽门螺杆菌感染现在主要靠抗幽门螺杆菌药物进行治疗。 目前多数学者认为“人-人”“粪-口”是主要的传播方式和途径,亦可通过内镜传播,而且Hp感染在家庭内有明显的聚集现象。父母感染Hp其子女的感染机会比其他家庭高得多。

14碳―尿素呼气试验检测幽门螺杆菌感染的临床应用及护理

14碳―尿素呼气试验检测幽门螺杆菌感染的临床应用及护 理 【摘要】目的探讨14碳-尿素呼气试验检测幽门螺杆菌(HP)的临床应用及护理。方法随机选取2013年1月-2014年12月在我院行14碳-尿素呼气试验检测患者60例,分析、总结试验过程中的护理措施和体会。结果患者中HP阳性40例,阳性率66.7%,复查后,阳性者1例(0.01%)。结论检测前的护理和准备工作充分做好,规范检测时的操作,可使碳14尿素呼气试验检测HP的结果更加准确。 【关键词】14碳-尿素呼气试验;幽门螺杆菌;护理 幽门螺杆菌(HP)是消化性溃疡(胃、十二指肠球部溃疡)及慢性活动性胃炎的重要致病病因,也是世界卫生组织认定的第一类致癌原。随机选取2013年1月-2014年12月在我院行14碳-尿素呼气试验检测患者60例,分析总结检查过程中的护理措施和体会。现总结如下。 1 资料与方法 1.1 一般资料随机选取2013年1月-2014年12月在我院行14碳-尿素呼气试验检测患者60例,其中男35例,女25例,年龄17-76岁。患者均有长期胃部不适感、胃痛、反酸、胃胀、恶心呕吐等消化道症状。试验前3个月内无抗生素、

铋制剂以及质子泵抑制剂等药物使用史,1周内未发生上消 化道出血,无胃部手术史。所有标本均采用幽门螺杆菌检测仪检测;一次性幽门螺杆菌检测仪呼气卡;14碳-尿素胶囊规格:37KBq。 1.2 操作方法患者清晨空腹或禁食3小时以上受检,受 试前漱口,受检者在手不直接接触胶囊的情况下用温凉开水20mL送服碳14尿素呼气试验胶囊一粒,告知患者不能将胶囊咬破,直接吞服,如胶囊粘在食道中,应再适量饮水,保证胶囊吞入胃内。吃药后静坐20min后,开启CO2呼气卡1个,受检者向呼气卡内吹气4-5min(受试者口含呼气卡吹气,力度适中,可以换气,严禁倒吸)。当呼气卡指示窗内的指 示片的颜色由蓝色变成白色时患者停止吹气。此时护士应小心将采集好的呼气卡两边检测窗口上的封签揭开,将呼气卡插入HP检测仪器卡槽内,仪器根据标本开始自动检测。 1.3 检测结果判断标准:≥100dpm/mmol为阳性, <100dpm/mmol为阴性(即正常结果)。 1.4 禁忌证或相对禁忌证孕妇及哺乳期妇女;3个月以内 使用过抗生素、铋制剂、质子泵抑制剂等Hp敏感药物者;上消化道急性出血期;消化道肿瘤患者;有部分胃切除术病史者。 2护理体会 2.1 试验前护理体会进行14碳-尿素呼气试验前,护士 要仔细询问患者既往病史。有无食用大蒜的习惯及是否使用

肺源性呼吸困难常见的三种类型

1、肺源性呼吸困难常见的三种类型:________、________ 、________ 。 2、与呼吸困难相关的护理诊断有:________、________、________、________ 。 3、咯血量的评估,每日咯血量在________毫升为少量咯血,________毫升为中 等量咯血、________毫升为大量咯血。 4、按病因分,发绀可分为三类 ________、________ 、________。 1、上消化道出血量的评估,一般粪便隐血试验阳性者,提示每日出血量________;出现黑粪提示出血量________;呕血提示胃积血量________;表现急性周围循环衰竭表现,提示出血量________。 2、上消化道出血常见病因________、________、________。 1、发热的临床经过大致可分为________、________ 、________ 三个阶段,进行物理降温的最佳时期在发热的________ . 1、腹部评估时,________ 见于腹腔大量积液病人;________ 见于恶液质病人;________ 见于结核性腹膜炎病人 2、腹部触诊时,McBurney征阳性见于________ 病人;Murphy征阳性见于________ 病人。 3、腹膜刺激征包括腹部________ 、________ 、________ 。 4、正常情况下肠鸣音________ 次/分钟,肠鸣音活跃指肠鸣音达________ 次/分钟, 见于 ________ 。肠鸣音亢进见于________ ,肠鸣音消失见于________ 肠梗阻。 1、提示上锥体束病变的病理反射有征;提示下锥体束病变的病理反射 有 ________ 征、 ________ 征、 ________ 征、 ________ 征。 1、正常瞳孔两侧等圆等大,直径________,缩小时直径________,见于________,扩 大时直径________,见于________。 2、镜面舌见于________,草莓舌见于 ________,干燥舌见于________。 3、扁桃体肿大分三度:I 度 ________, II 度 ________,III 度________。 4、甲状腺肿大分三度:I 度 ________, II 度________,III 度 ________。 1、心脏叩诊时,心浊音界呈梨形,见于________,称之为________;浊音界呈 靴形,见于________疾病,称之为 ________;浊音界呈现三角形,见于________疾病。3、触诊脉搏时,甲亢病人常见________脉;心包积液病人常见________脉,心房纤 颤病人常见________脉;急性左心衰病人常见________脉;期前收缩病人常 见________脉。 4、周围血管征指脉压差大于5.3千帕病人出现________、________、________、 ________和________等周围血管特征性改变。常见于________、________、________、________。 1、发绀是_血液中________在50克/升,黄疸是________超过17.1微摩尔/升;黄染是________超过34.2微摩尔/升。 2、蜘蛛痣形成是皮肤血管末端分支性扩而成;与 ________增高有关;主要出现 于________区域,与 ________等疾病有关。 3、某些疾病可呈现特征性的步态:佝偻病、肌营养不良常见________步态;小脑疾 病常见________步态;震颤性麻痹常见________步态;腓总神经麻痹常见________步态;脑瘫病人常见________步态。 4、隐性黄疸是指血清总胆红素超过________;显形黄胆是指血中胆红素超过________。

05 诊断学 呼吸困难 试题

呼吸困难 一、填空题 1.呼吸困难的病因主要是 和 疾病。 2.呼吸系统疾病引起的呼吸困难包括:① 、② 、③ 、④ 、⑤ 。 3.从发生机制及症状表现,呼吸困难分为: 、 、、 。 4.肺源性呼吸困难临床上分为三型 、 、 。 5.呼吸困难伴血性泡沫样痰见于 。 6.癔病患者由于精神、心理因素的影响可有呼吸困难,其特点是呼吸频率可达60~100次/分,常因通气过度可发生 。严重时可有 。 7.左心衰竭发生呼吸困难的主要原因是 、 。 二、判断题 1.判断呼吸困难客观表现应注意呼吸频率、节律和深度的异常变化。( ) 2.呼吸困难者不一定有发绀表现。( ) 3.出现呼吸困难的主要疾病是呼吸系统和心血管系统疾病。( ) 4.肺源性呼吸困难是由于通气、换气功能障碍,导致缺氧和(或)二氧化碳潴留引起。( ) 5.吸气性呼吸困难严重者可出现“三凹征”(three depression sign) ( ) 6.呼气性呼吸困难常伴有干啰音。( ) 7.心源性呼吸困难主要是由于左心和(或)右心衰竭引起,两者发生机制相同。( ) 8.急性左心衰竭的呼吸困难又称“心源性哮喘”(Cardiac asthma)( ) 9.右心衰竭时呼吸困难的原因主要是体循环淤血所致。( ) 10.出现深长规则的呼吸,可伴有鼾声,称为酸中毒大呼吸(Kussmael)呼吸。( ) 11.呼吸中枢受抑制,致呼吸缓慢、变浅,且常有呼吸节律异常,如Cheyne-Stokes或Biot s呼吸。( ) 12.癔病患者出现的呼吸困难是由于精神或心理因素的影响所致。( ) 三、名词解释 1.呼吸困难 2.心源性哮喘 3.夜间阵发性呼吸困难 4. 三凹征 5.Kussmaul呼吸 四、选择题 A型题: 1.引起呼吸困难的病因最多见的是:( ) A.呼吸系统疾病 B.心血管疾病 C.中毒 D.血液病 E.神经精神因素 2.在呼吸系统疾病中,突发呼吸困难(吸气或呼气)或和哮鸣音,下列哪种情况最多见:( ) A.隔肌运动受限 B.神经肌肉疾病 C.胸廓疾病 D.肺疾病 E.气道阻塞 3.. 严重性吸气性呼吸困难最主要的特点为 A.呼吸不规则 B.发绀明显 C.呼吸深而慢 D.出现三凹征 4.. 下列哪种疾病引起呼气性呼吸困难 A.白喉 B.喉水肿 C.器官异物 D.支气管哮喘 5.. 引起混合性呼吸困难的疾病是哪种 A.气胸 B.喉痉挛 C.气管异物 D.支气管哮喘 6.. 下列哪种疾病可出现中毒性呼吸困难 A.癔病 B.尿毒症 C.脑出血 D.脑膜炎 7.. 夜间阵发性呼吸困难最常见于 A.急性左心功能不全 B.右心功能不全 C.胸腔大量积液 D.慢阻肺

如何核算碳源的投加量

碳源构成微生物细胞碳水化合物中碳架的营养物质,供给微生物生长发育所需能量。含有碳元素且能被微生物生长繁殖所利用的一类营养物质统称为碳源。 碳源物质通过细胞内的一系列化学变化,被微生物用于合成各种代谢产物。微生物对碳素化合物的需求是极为广泛的,根据碳素的来源不通,可将碳源物质氛围无机碳源物质和有机碳源物质。因污水中自带无机碳源及曝气会补充无机碳源(CO2),在实际生产中并不需要投加无机碳源,污水处理中所称的碳源为有机碳源! 一、普通活性污泥法的碳源投加简易计算 普通活性污泥法中CNP比100:5:1,在实际污水处理中TP往往是过量的,很多需要配合化学除磷达标,所以以TP计算的碳源往往会偏大,实际中以氨氮的量来计算碳源的投加量。 1、外部碳源投加量简易计算方法 统一的计算式为: Cm=20N-C (式1) 式中 Cm—必须投加的外部碳源量(以COD计)mg/l; 20—CN比; N—需要去除的TKN的量,mg/l C—进出水的碳源差值(以COD计)mg/l 需用去除的氮量计算 N=Ne-Ns (式2) 式中 Ne—进水实际TKN浓度mg/l; Ns—二沉池TKN排放指标mg/l 进出水的碳源差值的计算 C=Ce-Cs (式3) 式中 Ce—进水实际COD浓度mg/l; Cs—二沉池COD排放指标mg/l

2、案例计算 某城镇污水处理厂规模Q=1万m3/d,已建成稳定运行,进水COD:100mg/L,进水氨氮15mg /L,进水TP:2mg/L,二沉池出水COD≤10mg/L,氨氮N排放标准≤5mg/L,求外加碳源量。 解:按式(2)计算: N=Ne-Ns=10-5=10(mgN/L) 代入式(3)得: C=Ce-Cs=100-10=90mg/L 代入式(1)得: Cm=20N-C=20×10-90=110(mgCOD/L) 则每日需外加COD量: Cd=QCm=1×10^4×110×10^-3=1100(kgCOD/d) 若选用乙酸为外加碳源,其COD当量为1.07kgCOD/kg乙酸,乙酸量为: 1100/1.07=1028kg/d 若选用甲醇为外加碳源,其COD当量为1.5kgCOD/kg甲醇,甲醇量为:1100/1.5=733kg/d 若选用乙酸钠为外加碳源,其COD当量为0.68kgCOD/kg乙酸钠,乙酸钠量为:1100/0.68=1617kg/d 若选用葡萄糖为外加碳源,其COD当量为 1.06kgCOD/kg葡萄糖,葡萄糖量为:1100/1.06=1037kg/d 二、脱氮系统碳源投加简易计算 在硝化反硝化系统中,因内回流携带DO的影响,实际中投加碳源的量并和理论值相差很大,运营中往往是按照经验公式来计算的,简单方便快捷,脱氮系统的CN比的经验值一般控制在4~6,很多时间会采用中间值计算或者通过对化验出水TN来调整投加量! 1、外部碳源投加量简易计算方法 统一的计算式为:

肺源性呼吸困难-内科护理(Word版)

肺源性呼吸困难-内科护理 (2021最新版) 作者:______ 编写日期:2021年__月__日 肺源性呼吸困难-内科护理(一)概述 (二)类型及病因 可分为三种类型: 1.吸气性呼吸困难以吸气显著困难为特点。 重症患者可出现三凹征,即胸骨上窝、锁骨上窝及肋间隙在

吸气时明显下陷,并伴吸气性哮鸣音,其发生与大气道狭窄梗阻有关。 2.呼气性呼吸困难以呼气明显费力,呼气时间延长伴有广泛哮鸣音为特点,由肺组织弹性减弱及小支气管痉挛狭窄所致,如支气管哮喘等。 3.混合性呼吸困难特点为吸气和呼气均感费力,呼吸浅而快。由于广泛性肺部病变使呼吸面积减少所致,如严重肺炎、肺结核、大量胸腔积液、气胸等。 (三)临床表现 1.分度 (1)轻度:仅在重体力活动时出现呼吸困难。 (2)中度:呼吸困难表现为轻微体力活动(如走路、日常活动等)即出现呼吸困难。 (3)重度:即使在安静休息状态下也出现呼吸困难。可表现为端坐呼吸。

2.呼吸频率、深度、节律的改变:酸中毒引起的呼吸困难,呼吸加深且稍快,称酸中毒大呼吸;肺气肿等慢性病引起的呼吸困难逐渐发生。 (四)护理问题 1.气体交换受损与肺部病变广泛使呼吸面积减少有关。 2.低效性呼吸型态与支气管平滑肌痉挛、气道狭窄或肺气肿有关。 (五)护理措施 1.调整体位病人取半坐位或端坐位。 2.保持呼吸道通畅。 3.吸氧 氧气疗法是纠正缺氧、缓解呼吸困难最有效的方法。临床上据病情及血气分析结果合理用氧。

1)如病人血气分析Pa02在6.7~8.OkPa(50~60mmHg),PaC02在6.7kPa(50mmHg)以下,可用一般流量(2~4L/min)氧浓度(29%~37%)给氧; 2)如果病人Pa02在5.3~6.7kPa(40~50mmHg),PaC02正常,可短时间、间歇高流量(4~6L/min)高浓度(45%~53%)给氧; 3)如果病人Pa02低于8.0kPa(60mmHg),PaC02在6.7kPa (50mmHg)以上时,应持续低流量(1~2L/min)低浓度(25%~29%)持续给氧以防纠正缺氧过快,抑制呼吸中枢的兴奋作用,加重二氧化碳潴留。

干货硝化反硝化的碳源、碱度的计算

干货!硝化反硝化的碳源、碱度的计算! 一、硝化细菌 硝化反应过程:在有氧条件下,氨氮被硝化细菌所氧化成为亚硝酸盐和硝酸盐。他包括两个基本反应步骤:由亚硝酸菌(Nitrosomonas sp)参与将氨氮转化为亚硝酸盐的反应;硝酸菌(Nitrobacter sp)参与的将亚硝酸盐转化为硝酸盐的反应,亚硝酸菌和硝酸菌都是化能自养菌,它们利用CO2、CO32-、HCO3-等做为碳源,通过NH3、NH4+、或NO2-的氧化还原反应获得能量。硝化反应过程需要在好氧(Aerobic或Oxic)条件下进行,并以氧做为电子受体,氮元素做为电子供体。其相应的反应式为: 亚硝化反应方程式: 55NH4++76O2+109HCO3→C5H7O2N﹢54NO2- +57H2O+104H2CO3 硝化反应方程式:

400NO2-+195O2+NH4-+4H2CO3+HCO3-→C5H7O2N+400NO3-+3H2O 硝化过程总反应式: NH4- +1.83O2+1.98HCO3→0.021C5H7O2N+0.98NO 3-+1.04H2O+1.884H2CO3 通过上述反应过程的物料衡算可知,在硝化反应过程中,将1克氨氮氧化为硝酸盐氮需好氧4.57克(其中亚硝化反应需耗氧3.43克,硝化反应耗氧量为1.14克),同时约需耗7.14克重碳酸盐(以CaCO3计)碱度。 在硝化反应过程中,氮元素的转化经历了以下几个过程:氨离子NH4-→羟胺NH2OH→硝酰基NOH→亚硝酸盐NO2-→硝酸盐NO3-。 二、反硝化细菌 反硝化反应过程:在缺氧条件下,利用反硝化菌将亚硝酸盐和硝酸盐还原为氮气而从无水中逸出,从而达到除氮的目的。 反硝化是将硝化反应过程中产生的硝酸盐和亚硝酸盐还原成氮气的过程,反硝化菌是一类化能异养兼性缺氧型

呼吸困难鉴别

心源性、肺源性or…你还在分不清? 呼吸困难作为临床常见症状,常被来诊患者描述为“憋气”“气短”“拔气”等,由于患者描述不一,让很多医生只能靠猜来判断患者病情。呼吸困难常为伴发症状,很多时候也是患者的主观感受,因此在诊治过程中时常没有明确的界定和足够的重视。而实际上,呼吸困难常暗藏杀机,不仅仅局限在呼吸系统疾病中,还有很多其他系统及全身疾病亦有此表现。今天我们就系统学习一下呼吸困难的相关问题。 呼吸困难的概念 根据《呼吸病学》中的描述,呼吸困难是一种患者感到空气不够、呼吸不畅的感觉。既然是一种感受,就存在主观的成分,也就是说呼吸困难不仅仅会出现在病人身上,健康人也可以在某些情况出现。 常见呼吸困难的鉴别 呼吸困难的发生与多种因素有关,其发生机制较为复杂。最常见的类型是体力活动时。当机体活动时,血氧的降低或二氧化碳的升高均会使大脑呼吸中枢兴奋,引起通气量增加,导致呼吸困难的出现。在病理状态下,轻微的活动即可引发呼吸困难,甚至在休息时也会出现。根据成因,可将呼吸困难分为以下几个类型: 1、肺源性呼吸困难 常由限制性或阻塞性通气障碍引发。 (1)限制性呼吸困难:由于肺不能充分扩张以吸入足够容量气体所致。常在活动后明显,静息状态下一般无不适主诉。 (2)阻塞性呼吸困难:常由气道的狭窄引起,又根据狭窄部位分为: ①大气道阻塞:由喉水肿、喉痉挛、气管异物、气管肿瘤及压迫等因素所致,以吸气明显困难为特点,查体可见三凹征,可伴干咳和高调吸气性喉鸣; ②小气道阻塞:由支气管哮喘、慢阻肺等疾病所致,以呼气性呼吸困难为特征,查体可闻及呼气时间延长,常有哮鸣音。 (3)混合性呼吸困难:在重症肺炎、重症肺结核、大量胸腔积液或自发性气胸、大面积肺不张或肺栓塞等情况可见,特点为呼吸双相均感费力。 2.心源性呼吸困难 由于心脏泵血功能降低,液体积聚在肺内,从而产生肺水肿。常见的临床表现有呼吸气促、不能平卧、口唇发绀,双肺闻及湿啰音,心率增快,临床上首先想到的是急性左心衰。若为急性左心衰,则通过强心、利尿、扩血管等对症处理其症状可缓解。需要指出的是,此类症

碳氮比计算

食用菌培养料碳氮比的速算方法 碳氮比(C/N)是指食用菌培养料中碳源和氮源适当浓度的比值。一般在食用菌营养生长阶段碳氮比以20∶1为宜;子实体生长发育期碳氮比以30~40∶1为佳。食用菌的种类及培养材料不同,对碳氮比的要求也不同。如蘑菇在菌丝生长阶段堆制原料时的碳氮比为33∶1,子实体分化和发育期的最适碳氮比为17∶1。若碳氮比值过大,食用菌不出菇,或虽能出菇,却往往在成熟前停止发育。因此,碳氮比对食用菌生长发育十分重要。仍以蘑菇堆料为例,配制碳氮比为33∶1的培养料1 000公斤(其中稻草400公斤、干牛粪600公斤),需补充氮量即补充尿素或硫酸铵多少公斤 速算公式:需补充氮量=(主材料总碳量÷碳氮比-主材料总氮量)÷补充物质含氮量 经查得(已知):稻草含碳量%、含氮量%,干牛粪含碳量%、含氮量%,尿素含氮量46%,硫酸铵含氮量21%。速算方法: (1)设需补充尿素x公斤,用速算公式得: x={〔(400×45.58%+600×39.75%〕÷33〕-(400×0.63%+600×1.27%)}÷46%≈(公斤) (2)设需补充硫酸铵x公斤,用速算公式得: x={〔(400×45.58%+600×39.75%〕÷33〕-(400×0.63%+600×1.27%)}÷21%≈(公斤)

经计算,需补充尿素公斤或补充硫酸铵公斤;也可混合补充尿素和硫酸铵各50%。 碳氮比是植物生理里的名词,一般用于衡量碳元素与氮元素。 施用碳氮比高的肥料,会促进根的生长,抑制茎叶的生长 施用碳氮比低的肥料,会促进茎叶的生长,抑制根的生长碳氮比是指食用菌原料配制时碳元素与氮元素的总量之比。一般用“C/N”表示。如蘑菇培养料的碳氮比为30-33:1,香菇培养料的碳氮比为64:1。现将食用菌培养料的一些主要原料的碳氮比列于下表,以供参考: 常用培养料碳氮比例表(干) 成分比培养料碳(%)氮(%)碳:氮 杂木屑 栎木屑 稻草 麦秸 玉米粒 玉米芯 豆秸 野草 甘蔗渣

碳源的选择

碳源的选择 为缓解和控制水体的富营养化,国家制定的污水排放标准越来越严格,然而,当前大部分污水处理厂普遍存在低碳相对高氮磷的水质特点,由于有机物含量偏低,采用常规脱氮工艺无法满足缺氧反硝化阶段对碳源的需求,导致反硝化过程受阻,并抑制厌氧好氧菌增殖,使得氨氮(NH3—N)DE 同化作用下降,大大影响了污水处理厂脱氮效果,尤其进入低温季节情况更为严重。 为了解决这一问题,一方面可以通过增加反消化缺氧区的体积,延长反消化时间来增加脱氮效果,但这种方法需要扩建污水处理厂,基建费用高,可操作性不强;另一方面,可以通过向缺氧区投加外碳源,以补充碳源的方式提高反消化速率,实践证明,投加碳源是污水处理厂解决这类问题的重要手段。 碳源的种类 目前市面上常用的碳源:甲醇、乙酸、乙酸钠、面粉、葡萄糖、生物质碳源、污泥水解上清液、啤酒废水及垃圾渗滤液等。在使用过程中,需要根据实际工程情况选择合适的碳源。现对各种常用的碳源进行对比,分析各种碳源的优缺点: 1.甲醇

普遍认为甲醇作为外碳源具有运行费用低和污泥产量小的优势,甲醇作为碳源时,C/N〉5时能达到较好效果,但其弊端有三: 1.作为化学药剂,成本相对较高; 2.响应时间较慢,甲醇并不能被所有微生物利用,当投加甲醇后,需要一定的适应期直到它完全富集,发挥全部效果,当用于污水处理厂应急投加碳源时效果不佳; 3.甲醇具有一定的毒害作用,长期用甲醇作为碳源,对尾水的排放也会造成一定影响。 2.乙酸钠 乙酸钠的优点在于它能立即响应反硝化过程,可作为水厂应急处置时使用。 普遍认为乙醇反硝化速率不如甲醇高,但由于它没有毒性,污泥产率与甲醇相差不多,所以认为它可以作为甲醇的替代碳源。以乙醇为碳源,硝酸盐为电子受体时,最佳的C/N=5,碳源缺乏时会引起亚硝酸盐积累。 使用乙酸钠要考虑以下3点: 1.乙酸钠多为20%、25%、30%的液体,由于当量COD低,运输费用高,不能远距离运输。 2.产泥量大,污泥处理费用增加;

心源性呼吸困难诊断详述

心源性呼吸困难诊断详述 *导读:心源性呼吸困难症状的临床表现和初步诊断?如何缓解和预防? 其临床特点: 1) 患者有严重的心脏病史。 2) 呈混合性呼吸困难,卧位及夜间明显。 3) 肺底部可出现中、小湿锣音,并随体位而变化。 4) X线检查:心影有异常改变;肺门及其附近充血或兼有肺水肿征。 一.肺源性呼吸困难:由呼吸器官病变所致,主要表现为下面三种形式: 1) 吸气性呼吸困难:表现为喘鸣、吸气时胸骨、锁骨上窝及肋间隙凹陷—三凹征。常见于喉、气管狭窄,如炎症、水肿、异物和肿瘤等。 2) 呼气性呼吸困难:呼气相延长,伴有哮鸣音,见于支气管哮喘和阻塞性肺病。 3) 混合性呼吸困难:见于肺炎、肺纤维化、大量胸腔积液、气胸等。 二.心源性呼吸困难:常见于左心功能不全所致心源性肺水肿,其临床特点: 1) 患者有严重的心脏病史。

2) 呈混合性呼吸困难,卧位及夜间明显。 3) 肺底部可出现中、小湿锣音,并随体位而变化。 4) X线检查:心影有异常改变;肺门及其附近充血或兼有肺水肿征。 三.中毒性呼吸困难:各种原因所致的酸中毒,均可使血中二氧化碳升高、pH降低,刺激外周化学感受器或直接兴奋呼吸中枢,增加呼吸通气量,表现为深而大的呼吸困难;呼吸抑制剂如吗啡、巴比妥类等中毒时,也可抑制呼吸中枢,使呼吸浅而慢。 四.血源性呼吸困难:重症贫血可因红细胞减少,血氧不足而致气促,尤以活动后显剧;大出血或休克时因缺血及血压下降,刺激呼吸中枢而引起呼吸困难。 五.神经精神性与肌病性呼吸困难:重症脑部疾病如脑炎、脑血管意外、脑肿瘤等直接累及呼吸中枢,出现异常的呼吸节律,导致呼吸困难;重症肌无力危象引起呼吸肌麻痹,导致严重的呼吸困难;另外,癔症也可有呼吸困难发作,其特点是呼吸显著频速、表浅,因呼吸性硷中毒常伴有手足搐襦症。 根据病因进行针对治疗。 *结语:以上就是对于心源性呼吸困难的诊断,心源性呼吸困难怎么处理的相关内容介绍,更多有关心源性呼吸困难方面的知识,请继续关注或者站内搜索了解更多。

工艺设计计算参考

A1/O生物脱氮工艺 一、设计资料 设计处理能力为日处理废水量为30000m3 废水水质如下: PH值7.0~7.5 水温14~25℃BOD5=160mg/L VSS=126mg/L(VSS/TSS=0.7) TN=40mg/L NH3-N=30mg/L 根据要求:出水水质如下: BOD5=20mg/L TSS=20mg/L TN 15mg/L NH3-N 8mg/L 根据环保部门要求,废水处理站投产运行后排废水应达到国家标准《污水综合排放标准》GB8978-1996中规定的“二级现有”标准,即COD 120mg/l BOD 30 mg/l NH -N<20 mg/l PH=6-9 SS<30 mg/l 二、污水处理工艺方案的确定 城市污水用沉淀法处理一般只能去除约25~30℅的BOD5,污水中的胶体和溶解性有机物不能利用沉淀方法去除,化学方法由于药剂费用很高而且化学混凝去除溶解性有机物的效果不好而不宜采用。采用生物处理法是去除废水中有机物的最经济最有效的选择。 废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等四种形态存在。生活污水中氮的主要存在形态是有机氮和氨氮。其中有机氮占生活污水含氮量的40%~60%,氨氮占50%~60%,亚硝酸盐氮和硝酸盐氮仅占0%~5%。废水生物脱氮的基本原理是在传统二级生物处理中,将有机氮转化为氨氮的基础上,通过硝化和反硝化菌的作用,将氨氮通过硝化转化为亚硝态氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,而达到从废水中脱氮的目的。

废水的生物脱氮处理过程,实际上是将氮在自然界中循环的基本原理应用与废水生物处理,并借助于不同微生物的共同协调作用以及合理的认为运用控制,并将生物去碳过程中转化而产生及原废水中存在的氨氮转化为氮气而从废水中脱除的过程。在废水的生物脱氮处理过程中,首先在好氧(oxic)条件下,通过好氧硝化的作用,将废水中的氨氮氧化为亚硝酸盐氮;然后在缺氧(Anoxic)条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气(N2)而从废水中逸出。因而,废水的生物脱氮通常包括氨氮的硝化和亚硝酸盐氮及硝酸盐氮的反硝化两个阶段,只有当废水中的氨以亚硝酸盐氮和硝酸盐的形态存在时,仅需反硝化(脱氮)一个阶段. ◆与传统的生物脱氮工艺相比,A/O脱氮工艺则有流程简短、工程造价低的优点。 该工艺与传统生物脱氮工艺相比的主要特点如下: ①流程简单,构筑物少,大大节省了基建费用; ②在原污水C/N较高(大于4)时,不需外加碳源,以原污水中的有机物为碳源,保证了充分的反硝化,降低了运行费用; ③好养池设在缺养之后,可使反硝化残留的有机物得到进一步去除,提高出水水质; ④缺养池在好养池之前,一方面由于反硝化消耗了一部分碳源有机物,可减轻好养池的有机负荷,另一方面,也可以起到生物选择器的作用,有利于控制污泥膨胀;同时,反硝化过程产生的碱度也可以补偿部分硝化过程对碱度的消耗;

肺源性呼吸困难,竟表现为这三种症状

肺源性呼吸困难,竟表现为这三种症状呼气性呼吸困难常表现为呼气费力、呼气缓慢、呼气相延长,伴有哮鸣音,见于支气管哮喘和阻塞性肺病;混合性呼吸困难常表现为呼吸气期均感觉费力,频率增快,深度变浅,可伴有异常呼吸音或病理性呼吸音。 ★一、病因 由呼吸器官病变所致通气、换气功能障碍导致缺氧和二氧化碳潴留的呼吸困难。 ★二、诊断 主要表现为下面三种形式:

1)吸气性呼吸困难:吸气显著费力。表现为喘鸣、吸气时胸骨、锁骨上窝及肋间隙凹陷—三凹征。常见于喉、气管狭窄,如炎症、水肿、异物和肿瘤等。 2)呼气性呼吸困难:呼气费力、呼气缓慢、呼气相延长,伴有哮鸣音,见于支气管哮喘和阻塞性肺病。 3)混合性呼吸困难:表现为呼吸气期均感觉费力,频率增快,深度变浅,可伴有异常呼吸音或病理性呼吸音。均见于肺炎、肺纤维化、大量胸腔积液、气胸等。 ★三、鉴别 (1)肺源性呼吸困难:当呼吸器官本身发生病变,气体的吸

入、排出障碍,肺呼吸面积减少,肺组织弹性降低,使血液中氧气缺乏,二氧化碳增多,导致呼吸中枢兴奋所致,如上呼吸道狭窄的疾病,慢性肺泡气肿,各种肺炎、肺水肿、胸膜肺炎、胸膜炎等。另外,在一些传染病中也可见到,如猪肺疫、猪喘气病、鸡喉气管炎等。 (2)心源性呼吸困难:由于心脏机能异常,导致循环功能障碍,尤其在肺循环障碍时,换气受到影响,氧气和二氧化碳的吸入和排出紊乱,造成混合性呼吸困难,可见于心力衰竭、心肌炎、心包炎和心内膜炎等。 (3)血源性呼吸困难:由于血液中红细胞数量减少或血红蛋白变性,携氧能力下降,血氧不足,导致呼吸困难,可见于各型贫血等。 (4)中毒性呼吸困难:体内代谢产生的有毒物质,直接作用于呼吸中枢;或由体外进入的有毒物质,作用于血红蛋白,使携氧能力下降,血氧缺乏,二氧化碳蓄积,导致呼吸困难。可见于代谢性酸中毒、尿毒症、酮血症、亚硝酸盐中毒、氢氰酸中毒等。

相关文档
最新文档