计算量子化学习题答案

计算量子化学习题答案
计算量子化学习题答案

量子化学计算方法试验

量子化学计算方法试验 1. 应用量子化学计算方法进行计算的意义 化学是一门基础学科,具有坚实的理论基础,化学已经发展为实验和理论并重的科学。理论化学和实验化学的主要区别在于,实验化学要求把各种具体的化学物质放在一起做试验,看会产生什么新的物质,而理论化学则是通过物理学的规律来预测、计算它可能产生的结果,这种计算和预测主要借助计算机的模拟。也就是说,理论化学可以更深刻地揭示实验结果的本质并阐述规律,还可以对物质的结构和性能预测从而促进科学的发展。特别是近几年来,随着分子电子结构、动力学理论研究的不断深入以及计算机的飞速发展,理论与计算化学已经发展成为化学、生物化学及相关领域中不可缺少的重要方向。目前,已有多种成熟的计算化学程序和商业软件可以方便地用于定量研究分子的各种物理化学性质,是对化学实验的重要的补充,不仅如此,理论计算与模拟还是药物、功能材料研发环境科学的领域的重要实用工具。 理论化学运用非实验的推算来解释或预测化合物的各种现象。理论化学主要包括量子化学,(quantum chemistry)是应用量子力学的基本原理和方法研究化学问题的一门基础科学。研究范围包括稳定和不稳定分子的结构、性能及其结构与性能之间的关系;分子与分子之间的相互作用;分子与分子之间的相互碰撞和相互反应等问题。量子化学可分基础研究和应用研究两大类,基础研究主要是寻求量子化学中的自身规律,建立量子化学的多体方法和计算方法等,多体方法包括化学键理论、密度矩阵理论和传播子理论,以及多级微扰理论、群论和图论在量子化学中的应用等。理论与计算化学的巨大进展,正使化学学科经历着革命性的变化。今天的理论与计算化学几乎渗透到现代一切科技领域,与材料、生物、能源、信息和环保尤为密切,理论化学的应用范围将越来越广。理论与计算化学逐步发展成为一门实用、高效、富有创造性的基础科学,在化学、生物学等领域的影响越来越显著,且与日剧增。 2. 应用量子化学计算方法进行计算的目的 (1)了解量子化学计算的用途。 (2)了解量子化学计算的原理、方法和步骤。 (3)通过一两个计算实例进行量子化学计算的上机操作试验。 (4)学会简单的分析和应用计算结果。 3. 量子化学计算试验的原理

量子化学习题及答案

量子化学习题及答案

1.1998及2013年度诺贝尔化学奖分别授予了量子化学以及分子模拟领域的杰出贡献者,谈谈你的了解及认识。 答:1998年诺贝尔化学奖得主:瓦尔特·科恩和约翰·波普尔。1964-1965年瓦尔特·科恩提出:一个量子力学体系的能量仅由其电子密度所决定,这个量比薛定谔方程中复杂的波函数更容易处理得多。他同时还提供一种方法来建立方程,从其解可以得到体系的电子密度和能量,这种方法称为密度泛函理论,已经在化学中得到广泛应用,因为方法简单,可以应用于较大的分子。沃尔特·库恩的密度泛函理论对化学作出了巨大的贡献。约翰·波普尔发展了化学中的计算方法,这些方法是基于对薛定谔方程中的波函数作不同的描述。他创建了一个理论模型化学,其中用一系列越来越精确的近似值,系统地促进量子化学方程的正确解析,从而可以控制计算的精度,这些技术是通过高斯计算机程序向研究人员提供的。今天这个程序在所有化学领域中都用来作量子化学的计算。 2013年诺贝尔化学奖得主:马丁·卡普拉斯、迈克尔·莱维特、阿里耶·瓦谢勒。他们为复杂化学系统创立了多尺度模型。为研发了解和预测化学过程的强有力的计算机程序奠定了基础。对于今天的化学家来说,计算机就像试管一样重要。模拟过程是如此的真实以至于传统实验的结果也能被计算机预测出来。多尺度复杂化学系统模型的出现无疑翻开了化学史的“新篇章”。化学反应发生的速度堪比光速。刹那间,电子就从一个原子核跳到另一个原子核,以前,对化学反应的每个步骤进行追踪几乎是不可能完成的任务。而在由这三位科学家研发出的多尺度模型的辅助下,化学家们让计算机做“做帮手”来揭示化学过程。20世纪70年代,这三位科学家设计出这种多尺度模型,让传统的化学实验走上了信息化的快车道。 2.谈谈你对量子化学中两种流派(VBT,MOT)的认识。 答:1926年,奥地利物理学家薛定谔(Schrodinger)建立了描述电子运动规律的波动方程。1927年,海尔特(Heilter)和伦敦(London)在处理氢分子结构时首次采用两个氢原子基态电子波函数的乘积表示电子对键,通过共振结构波函数的线性组合获得薛定谔方程的解,标志着价键理论的诞生。1931年,鲍林(Pauling)建立了较为完善的电子对键与杂化轨道理论模型,随后以电子配对形成定域化学键为核心思想的价键理论,凭借其既直观又能定量计算的优势,得以在化学领域迅速推广应用。他也因此获得了1954年的诺贝尔化学奖。但是VB理论做出的某些预言不正确。比如简单的VB模型错误地预言了环丁二烯(以及其它含四元环的)有较大的共振能。事实上是简单的休克尔MO(HMO)理论过分地强调了4n与(4n+2)环之间的区别。正确的共振能结果是MO和VB预言的中间值。此外,由于选用非正交的原子轨道为基函数,计算量大,曾一度停滞不前,但随着计算机的发展这种理论进入复兴期。 1932年美国化学家莫立肯(Mullikeen)和德国化学家洪特(Hund)从不同于价键理论的角度提出了分子轨道(MO)理论。并获得1966年诺贝尔化学奖。罗汤(Roothaan)和美国化学家哈尔(Hall)各自独立地为自洽场(SCF)计算方法学完成了原子轨道线型组合型(LCAO)数学框架。从此分子轨道的数学计算得以实现并得到了广泛的应用。此后,20世纪50年代日本化学家福井谦一的前线轨道理论和美国化学家杜瓦(Dewer)的微扰分子轨道理论(PMO)以及60年代中期美国化学家伍德沃德·霍夫曼(Woodward·Hoffman)的分子轨道对称守恒原理的提出,使该理论可以定性地对化学反应的结果做出预言。福井谦一和霍夫曼双双获得1981年诺贝尔化学奖。 在处理具体分子中,这两种理论所用的原始基函数——原子轨道是同样的,并且都是用变分法来处理。所不同的仅在于MOT先经过了一次基函数的组合,把它变为非定域的基函数;而VBT则直接使用原始基函数。严格计算,其结果是一样的。两种理论的结果差别完全是由于实际计算中引入了不同的近似所造成的。对一般分子的定性解释,两种理论的结果往往是一样的。 3.试了解中国量子化学发展状况。 答:解放前,在旧中国科学研究不受重视,因而量子化学这个领域几乎是个空白点。1949-1959:所研究的问题比较集中在分子的内旋转、杂化轨道理论、分子间作用力、小分子的分子轨道计算、多电子键函数等问题。六十年代中期:对配位场理论方法开展研究,获得了重要成果。1966年以后,“四人帮”的干扰,量子化学的研究被迫停止了一个时期。七十年代:课题主要集中在分自1978年科学大会以来,有了更大的发展。特别是结合电子计算机的应用,量子化学应用研究从无到有,由小到大,有了更为明显的发展。子轨道理论方面。在轨道对称守恒原理、分子轨道图形理论、几何剖析法课题

2016年第30届中国化学奥林匹克(初赛)试题及答案(WORD版)

第30届中国化学奥林匹克(初赛)试题 第1题(8分) 1-1离子化合物A2B由四种元素组成,一种为氢,另三种为第二周期元素。正、负离子皆由两种原子构成且均呈正四面体构型。写出这种化合物的化学式。 1-2对碱金属Li、Na、K、Rb和Cs,随着原子序数增加以下哪种性质的递变不是单调的?简述原因。 (a)熔沸点(b)原子半径(c)晶体密度(d)第一电离能 1-3保险粉(Na2S2O4.2H2O)是重要的化工产品,用途广泛,可用来除去废水(pH~8)中的Cr(Ⅵ),所得含硫产物中硫以S(Ⅳ)存在。写出反应的离子方程式。 1-4 化学合成的成果常需要一定的时间才得以应用于日常生活。例如,化合物A合成于1929年,至1969年才被用作牙膏的添加剂和补牙填充剂成分。A是离子晶体,由NaF和NaPO3在熔融状态下反应得到。它是易溶于水,阴离子水解产生氟离子和对人体无毒的另一种离子。 1-4-1 写出合成A的反应方程式。 1-4-2 写出A中阴离子水解反应的离子方程式。 第2题(9分) 鉴定NO3—离子的方法之一是利用“棕色环”现象:将含有NO3—的溶液放入试管,加入FeSO4,混匀,然后顺着管壁加入浓硫酸,在溶液的界面上出现“棕色环”。分离出棕色物质,研究发现其化学式为[Fe(NO)(H2O)5]SO4。该物质显顺磁性,磁矩为3.8μB(玻尔磁子),未成对电子分布在中心离子周围。 2-1 写出形成“棕色环”的反应方程式。 2-2 推出中心离子的价电子组态、自旋态(高或低)和氧化态。 2-3 棕色物质中的NO的键长与自由NO分子中N-O键长相比,变长还是变短?简述理由。 第3题(13分) 3-1好奇心是科学发展的内在动力之一。P2O3和P2O5是两种经典的化合物,其分子结构已经确定。自然而然会有如下问题:是否存在磷氧原子比介于二者之间的化合物?由此出发,化学家合成并证实了这些中间化合物的存在。 3-1-1写出这些中间化合物的分子式。 3-1-2画出其中具有2重旋转轴的分子的结构图。根据键长不同,将P-O键分组并用阿拉伯数字标出(键长相同的用同一个数字标识)。比较键角∠O-P(Ⅴ)-O和∠O-P(Ⅲ)-O的大小。 3-2 NH3分子在独立存在时H-N-H键角为106.7°。右图上[Zn(NH3)6]2+ 离子的部分结构以及H-N-H键角的测量值。解释配合物中H-N-H键 角变为109.5°的原因。 3-3量子化学计算预测未知化合物是现代化学发展的途径之一。2016 年2月有人通过计算预言铁也存在四氧化物,其分子构型是 四面体,但该分子中铁的氧化态是+6而不是+8。

量子化学计算

物理化学专业博士研究生课程 教学大纲 课程名称:量子化学计算(Computational Quantum Chemistry) 课程编号:B07030411 学分:3 总学时数:72 开课学期:第2学期 考核方式:学习论文 课程说明:(课程性质、地位及要求的描述)。 《量子化学计算》是在学习了《结构化学》、《量子化学》之后,为物理化学专业博士研究生开设的一门方向课,在每学年第二学期讲授。 如果说《结构化学》、《量子化学》还有更多的抽象,那么《量子化学计算》则直接对各研究体系进行可与实验对比的计算机模拟。近二十年来,随着计算机硬件和软件水平的迅速发展,计算化学已成为理论化学的重要分支,主要通过量子化学方法、分子力学方法以及分子动力学模拟来解决与化学相关的问题。目前,计算化学已广泛应用于化学及相关交叉学科的各个领域,迅速成为定量预测分子的结构、性质以及反应性能的有力工具。 本课程计划安排72个学时。采用授课与上机演习相结合的教学方法,使学生在较短时间内掌握当今国际流行的常用计算软件的原理、使用方法及技巧,着重培养同学们解决化学实际问题的能力。要求同学们通过本课程的学习,能对计算化学的原理和方法有一个初步的了解,并能够在化学合成、反应机理、生物、材料等各个领域中得到应用。 教学内容、要求及学时分配: 第一章绪论 内容: 1.1量子力学历史背景 1.221世纪的理论化学计算机模拟

要求:了解量子化学的背景知识、国际国内发展现状及其未来方向学时:4 第二章从头计算法的基本原理和概念 内容: 2.1量子力学基本假设2.2定态近似 2.3从头计算法的“头” 2.4自洽场方法2.5变分法和LCAO-MO近似 2.6量子化学中的一些基本原理和 概念 2.7量子化学中的基本近似 要求:了解从头计算法的基础知识、计算化学中的一些基本原理、概念和近似。 学时:12 第三章布居分析和基组专题 内容: 3.1布居分析 3.2基组专题 要求:理解基组概念及选择的原则,掌握布居分析的计算方法和基组的计数,了解Mulliken布居分析的优缺点及改进的思路。 学时:6 第四章计算方法简介 内容: 4.1半经验方法 4.2HF方法 4.3Post-HF方法 4.4DFT方法 4.5SCF-X 方法 4.6精确模型化学理论方法——Gn 和CBS 4.7赝势价轨道从头计算法 4.8激发态的计算——CIS和CAS 4.9溶剂效应 4.10分子力学和分子动力学基础 要求:了解一些常用计算方法的基本原理及优缺点,重点掌握AM1、INDO、MNDO/PM3、HF、MP、CI、CC、DFT、CAS、溶剂效应等方法的原理,掌握选择计算方法的思路和原则。

第一章习题答案

第一章 思考题和习题 1 什么是物质波和它的统计解释? 2 如何理解合格波函数的基本条件? 3 如何理解态叠加原理? 4 测不准原理的根源是什么? 5 铝的逸出功是4.2eV ,用2000?的光照射时,问(a )产生的光电子动能是多少?(b)与其 相联系的德布罗依波波长是多少?(c)如果电子位置不确定量与德布罗依波波长相当,其动量不确定量如何? 6 波函数e -x (0≤x ≤∞)是否是合格波函数,它归一化了吗?如未归一化,求归一化常数。 7 一个量子数为n ,宽度为l 的一维势箱中的粒子,①在0~1/4 区域内的几率是多少?②n 取何值时几率最大?③当n →∞时,这个几率的极限是多少? 8 函数x l l x l l x π πψ2sin 22sin 23 )(+=是不是一维势箱中粒子的可能状态?如果是,其能量有无确定值?如果有,是多少?如果能量没有确定值,其平均值是多少? 9 在算符 ∑ , 错误!未定义书签。, exp, 错误!未定义书签。中,那些是线性算符? 10 下列函数, 那些是错误!未定义书签。的本征函数? 并求出相应的本征值。 (a) e imx (b) sin x (c) x 2+ y 2 (d) (a -x )e -x 11 有算符,?,?X X dx d D == 求D X X D ????-。 参考答案 1 象电子等实物粒子具有波动性被称作物质波。物质波的波动性是和微粒行为的统计性联系在一起的。对大量粒子而言,衍射强度(即波的强度)大的地方,粒子出现的数目就多,而衍射强度小的地方,粒子出现的数目就少。对一个粒子而言,通过晶体到达底片的位置不能准确预测。若将相同速度的粒子,在相同的条件下重复多次相同的实验,一定会在衍射强度大的地方出现的机会多,在衍射强度小的地方出现的机会少。因此按照波恩物质波的统计解释,对于单个粒子,ψψ=ψ *2 代表粒子的几率密度,在时刻t ,空间q 点附近体积元τ d 内粒子的几率应为τd 2 ψ;在整个空间找到一个粒子的几率应为 12 =ψ ?τd 。 表示波函数具有归一性。 2 合格波函数的基本条件是单值,连续和平方可积。由于波函数2 ψ 代表概率密度的物理 意义,所以就要求描述微观粒子运动状态的波函数首先必须是单值的,因为只有当波函数ψ

量子化学计算实验详解

量子化学计算方法及应用 吴景恒 实验目的: (1)掌握Gaussian03W的基本操作 (2)掌握 Gaussian03W进行小分子计算的方法,比较不同方法与基组对计算结果的影响,并比较同分异构体的稳定性(3)通过运用量子力学方法计算分子的总电子密度,自旋密度,分子轨道及静电势 实验注意: (1)穿实验服;实验记录用黑色,蓝色或蓝黑色钢笔或签字笔记录;实验数据记录不需要画表格 (2)实验前请先仔细阅读前面的软件使用介绍,然后逐步按照实验步骤所写内容进行操作 (3)截图方法:调整视角至分子大小适中,按下键盘上的PrintScreen按键截图,从“Windows开始菜单”打开“画图”工具,按Ctrl+v或“编辑-粘贴”,去掉四周多余部分只留下分子图形,保存图片 (4)所有保存的文件全部存在E盘或D盘根目录用自己学号命名的文件夹下,不要带中文命名,实验完毕全部删除,不得在计算用机上使用自己携带的U盘或其他便携存储设备! (5)HyperChem里面截图时候可以用工具栏以下几个工具调整视图: Rotate out-of-plane:平面外旋转工具,转换视角用 Mgnify/Shrink:放大镜工具,转换视角用 Gaussian03W使用介绍:(注意,下面只是界面示意图,实验時切勿按下图设置) 输入文件:Gaussian输入文件,以GJF为文件后缀名 联系命令行:设定中间信息文件(以CHK为后缀名)存放的位置、计算所需的内存、CPU数量等 作业行:指定计算的方法,基组,工作类型,如:#P HF/6-31G(d) Scf=tight Opt Pop=full #作业行开始标记 P 计算结果显示方式为详细, 选择还有T(简单)和 N(常规,默认) HF/6-31G(d) 方法/基组 Opt对分子做几何优化 Pop=full进行轨道布居分析,详尽输出轨道信息和能量 电荷 多重态:分子总电荷及自旋多重态(2S+1, S=n/2, n为成单电子数) 分子结构的表示 1、直角坐标:元素符号X坐标Y坐标Z坐标(如上图所示) 2、Z矩阵(参考后附内容):元素符号(原子一)原子二键长原子三键角原子四二面角

量子化学理论与软件介绍

量子化学是应用量子力学的规律和方法来研究化学问题的一门学科。将量子理论应用于原子体系还是分子体系是区分量子物理与量子化学的标准之一。 主要分为:①分子轨道法(简称MO法,见分子轨道理论);②价键法(简称VB法,见价键理论);③密度泛函理论。以下只介绍分子轨道法。 ①分子轨道法:分子体系中的电子用单电子波函数满足Pauli不相容原理的直积(如Slater 行列式)来描述,其中每个单电子波函数通常由原子轨道线性组合得到(类似于原子体系中的原子轨道),被称作分子轨道,分子轨道理论是目前应用最为广泛的量子化学理论方法。 o HF方法:它是原子轨道对分子的推广,即在物理模型中,假定分子中的每个电子在所有原子核和电子所产生的平均势场中运动,即每个电子可由一个单电子函数(电子的坐标的函数)来表示它的运动状态,并称这个单电子函数为分子轨道,而整个分子的运动状态则由分子所有的电子的分子轨道组成(乘积的线性组合),这就是分子轨道法名称的由来。分子轨道法的核心是哈特里-福克-罗特汉方程,简称HFR方程,它是以三个在分子轨道法发展过程中做出卓著贡献的人的姓命名的方程。1928年D.R. 哈特里提出了n个将电子体系中的每一个电子都看成是在由其余的n-1个电子所提 供的平均势场中运动的假设。这样对于体系中的每一个电子都得到了一个单电子方程(表示这个电子运动状态的量子力学方程),称为哈特里方程。使用自洽场迭代方式求解这个方程(见自洽场分子轨道法),就可得到体系的电子结构和性质。哈特里方程未考虑由于电子自旋而需要遵守的泡利原理。1930年,B.A.福克和J.C.斯莱特分别提出了考虑泡利原理的自洽场迭代方程,称为哈特里-福克方程。它将单电子轨函数(即分子轨道)取为自旋轨函数(即电子的空间函数与自旋函数的乘积)。泡利原理要求,体系的总电子波函数要满足反对称化要求,即对于体系的任何两个粒子的坐标的交换都使总电子波函数改变正负号,而斯莱特行列式波函数正是满足反对称化要求的波函数。将哈特里-福克方程用于计算多原子分子,会遇到计算上的困难。C.C.J.罗 特汉提出将分子轨道向组成分子的原子轨道(简称AO)展开,这样的分子轨道称为原子轨道的线性组合(简称LCAO)。使用LCAO-MO,原来积分微分形式的哈特里-福克方程就变为易于求解的代数方程,称为哈特里-福克-罗特汉方程,简称HFR 方程。 o CI方法:组态相互作用(Configuration Interaction)方法。用HF自洽场方法计算获得的波函数和各级激发的波函数为基展开体系波函数。完全的组态相互作用(Full-CI)是指定基组下最精确的方法,但其计算量约以基函数的阶乘规模增加,目前仅限于对小分子作为Benchmark以检测其他方法的可靠性,在实际应用中常采用截断CI方法,如

量化B习题-2013

《量子化学B 》 习题 (2013年9月) A1. 已知琴弦振动的驻波条件为a n =2 λ (n =1,2,…, a 为弦长) 。按照“定态即驻波”的说法,束缚在长度为a 的一维势箱中的粒子(质量为m )的定态能量取值是多少? A2. 下列哪些函数不是品优函数,说明理由:2 f (x)x =,|x|e ?,Sin |x|, 2 x e ?A3. 试写出下列体系的定态薛定谔方程:(a )He 原子(b )H 2分子。 A4. 设,为厄米算符,证明: (1)A ∧ B ∧ A B ∧ ∧ +是厄米的; (2)是厄米的。 i A,B ∧∧ ????? ?A5. 1,3—丁二烯分子长度a ≈7?,试用测不准关系估计其基电子态能级的大小(量级)。 A6. 一维势箱中的粒子基态波函数为Ψ1=a /2sin(πx/a),试画出其几率密度分布图(纵坐标以2/a 为单位,横坐标以a 为单位)。 A7. 试用一维势箱模型(6个 π 电子)计算如下分子的电子光谱最大吸收波长(第一吸收峰)。 H 3H 3C H C H C H N + CH 3CH 3 l =8A A8. 一维势箱(0,a )中的粒子处于n ψ态。试计算x x,p ΔΔ ;并验证不确定关系。 A9.已知在一维方势阱中运动的粒子的波函数为?? ? ???= x a n a πψsin 2,其中为势阱的长度。试计算: (a)粒子动量的平方。(b)取何值时粒子在区间a n ?? ? ???a 41,0的几率最大。 A10. 一维势箱(0,a )中的粒子的状态为 2 x x (x)ASin cos a a ππψ=,计算: (1) 能量的可能测量值及相应的几率; (2) 能量的平均值; (3) 求归一化系数A 。 A11. 作为近似,苯中的6个π电子可看作在边长为0.35 nm 的正方形二维势阱中运动。试计 算由基态跃迁到第一激发态所对应的光吸收的波长(nm )? A12. 设体系处于态)u (u 2 1 21+=Ψ,其中u 1, u 2是体系哈密顿算符H 的归一化的本征函数,相应的本征值为E 1,E 2 。测量处于Ψ态的体系的能量,测量出的可能值是什么?几率多大?测量平均值是什么? A13. 写出角动量算符L 2及其分量L z 的球坐标表达式,试证L 2与L z 对易,有共同的本征函数。 A14. 一刚性转子转动惯量为I ,它的能量的经典表达式为H=L 2/2I (L 为角动量)。试求对应的 量子体系在下列情况下的本征能量和波函数:(1)转子绕一固定轴转动;(2)转子绕一固

《量子化学》期末考试复习题

群论与量子化学期中考试 姓名:专业:学号: 一、判断下列集合是否够成群。(4分) (1){除零以外的全部有理数}结合规则是乘法y (2){1,0,-1 },结合规则是加法n (3){1,0,-1 },结合规则是乘法n (4){1,-1,i,-i},结合规则是乘法y 二、判断分子所属点群。(27分,每个0.5分)

三、假定CuCl 42-原来属于T d 点群,四个Cl 原子的标号如图所示,当出现以下情况是,它所属的点群如何变化。(10分) (1)Cu —Cl (1)键长缩短; C 3v (2)键长Cu —Cl (1)和Cu —Cl (2)缩短相同长度;C 2v (3)键长Cu —Cl (1)和Cu —Cl (2)缩短不同长度;Cs (4) Cl (1)—Cl (2)和Cl (3)—Cl (4)间距离缩短不同的长度;C 2v (5)Cl (1)—Cl (2)和Cl (3)—Cl (4)间距离缩短相同的长度。D 2d 注:若Cu —Cl 键缩短,假定Cu 原子不动,只有相应的Cl 原子移动, 若Cl —Cl 间的距离缩短,视为两个原子分别向两原子连线的中 心移动相同的距离。 四、证明:同一类操作矩阵的特征标相等。(6分) 证明:Tr(R)=Tr(S -1R’S )=Tr(S S -1 R’)=Tr(R’).命题得证。 五、用D 3d 群的特征标表验证小正交定理。(5分) ()*() ()*()()*()()()R i i i i i j j ij R R g g g g g νμμννμμνννν χχδχχδχχδ===∑∑∑ 六、试求具有如下的阶和类数的群的不可约表示的维数。(6分) (1)6阶,3类 1 1 2 (2)12阶,4类 1 1 1 3 (3)24阶,5类 1 1 2 3 3

量子化学复习提纲

量子化学复习提纲 1 量子力学QM与分子力学MM 研究化合物的结构和性能,可以从两个层次:宏观层次和微观层次。宏观层次就是我们熟悉的实验观测;微观则是计算分子结构。计算分子结构基本上可以分为两种方法:量子力学(Quantum Mechanics)和分子力学(Molecular Mechanics) 量子力学是计算电子波函数的,计算电子波函数就要解薛定谔方程,简称S方程。通过核和电子的相互作用原理和规律等,运用量子力学原理,经过近似处理直接求解S方程得到电子波函数,从而求得电子总能和分子结构,我们称为第一性原理(First Principle),狭义的第一性原理计算就是从头算(ab initio),它不采用经验参数,只用电子质量,光速,质子中子质量等少数实验数据去做量子计算。所以说量子力学是纯净无污染的(自己种的苹果)。 分子力学则从另一个方面,其直接计算原子和分子,不计算电子波函数,又叫力场方法(force field method)。它应用的原理是能量最小值方法。即原子间相互作用势下,改变原子(分子)的几何分布,以能量最小为判据,求得体系最佳构型。分子立场方法来源不清,假象的(超市卖的苹果)。 2 薛定谔方程 薛定谔方程HΨ=EΨ。薛定谔方程可以由驻波方程去推导。因为电子本身既是粒子又是波,而驻波的方程恰好可以反应粒子的性质。将驻波方程求二阶微导并与波粒二象性公式联系即可得到S方程。S方程不含自旋,而一个完整的电子波函数应该包括空间波函数和自旋波函数。S方程得到的波函数Ψ是不含自旋的空间波函数。既包括空间波函数也包括自旋波函数的方程是狄拉克方程D方程。 3 能量E 能量包括两部分:动能和势能。S方程中H代表哈密顿算符。H与E对应,所以H应该包括两个算符动能算符+势能算符。动能算符就是拉布拉斯算符(倒三角)作用于(-h2/8π2m) 一个完整的哈密顿算符在具体的电子计算中包括五个部分:电子动能(-)+核动能(-)+电子核吸引势能(-)+电子之间排斥能(+)+核之间排斥能(+),括号内代表值的正负 实际计算中我们都采用B-O近似,也就是玻恩奥本海默近似(绝热近似)。与电子相比,核质量大,基本不动,所以我们把核动能+核之间排斥势视为常数,所以B-O近似下的哈密顿算符就只包括三项。这样就把薛定谔方程分为了两部分乘积:核S方程X 电子S方程。

量子化学与群论习题

量子化学与群论习题 1. 证明x P ?为厄米算符. 2. 验证x x P x x P ????≠. 3. 证明x P ?和y P ?可对易. 4. 试求在一维无限深势阱中运动的电子在基态时的.,,,,,,22x x x x P x x P P x P x ???? 5. 证明在一维深势阱中运动的质点的不同波函数互相正交. (证明)0* =?dx m n ψψ 6. 函数 a x a a x a x ππψ2sin 23sin 22)(? -? =是否是一维势箱中粒子的一种可能状态?若是,其 能量有无确定值?若有,其值为多少?若无,求其平均值.7. 用变分函数2x xL -=ψ, 求一维势箱中(0;0)(,0≤=<V 0)的反射系数和透射系数. 15. 上题这若4/30E V =, 计算在0=x 处被反射的粒子的几率(反射系数为多少). 16. 设G 一切不等于零的有理数集合, 证明G 对于数的乘法构成一个群.

量子化学-重要概念

(1)开壳层,闭壳层 指电子的自旋状态,对于闭壳层,采用限制性计算方法,在方法关键词前面加R 对于开壳层,采用非限制性计算方法,在方法关键词前面加U.比如开壳层的HF就是UHF.对于不加的,程序默认为是闭壳层. 一般采用开壳层的可能性是 1. 存在奇数个电子,如自由基,一些离子 2. 激发态 3. 有多个单电子的体系 4. 描述键的分裂过程 (2) 核磁是单点能计算中另外一个可以提供的数据,在计算的工作设置部分,就是以#开头的一行里,加入NMR关键词就可以了,如 #T RHF/6-31G(d) NMR Test 在输出文件中,寻找如下信息 GIAO Magnetic shielding tensor (ppm) 1 C Isotropic = Anisotropy = 这是采用上面的设置计算的甲烷的核磁结果,所采用的甲烷构形是用B3LYP密度泛函方法优化得到的. 一般的,核磁数据是以TMS为零点的,下面是用同样的方法计算的TMS(四甲基硅烷)的结果1 C Isotropic = Anisotropy = 这样,计算所得的甲烷的核磁共振数据就是,与实验值相比,还是很接近的. (3) 标准几何坐标. 找到输出文件中Standard Orientation一行,下面的坐标值就是输入分子的标准几何坐标. (4) stable 本例中采用SCF方法分析分子的稳定性.对于未知的体系,SCF稳定性是必须要做的.当分子本身不稳定的时候,所得到的SCF结果以及波函数等信息就没有

化学意义. (5)势能面 分子几何构型的变化对能量有很大的影响.由于分子几何构型而产生的能量的变化,被称为势能面.势能面是连接几何构型和能量的数学关系.对于双原子分子,能量的变化与两原子间的距离相关,这样得到势能曲线,对于大的体系,势能面是多维的,其维数取决与分子的自由度. (6)opt Opt=ReadFC 从频率分析(往往是采用低等级的计算得到的)所得到的heckpoint文件中读取初始力矩阵,这一选项需要在设置行之前加入%Chk= filename 一句,说明文件的名称. Opt=CalCFC 采用优化方法同样的基组来计算力矩阵的初始值. Opt=CalcAll 在优化的每一步都计算力矩阵.这是非常昂贵的计算方法,只在非常极端的条件下使用. 有时候,优化往往只需要更多的次数就可以达到好的结果,这可以通过设置MaxCycle来实现.如果在优化中保存了Checkpoint文件,那么使用Opt=Restart可以继续所进行的优化.当优化没有达到效果的时候,不要盲目的加大优化次数.这是注意观察每一步优化的区别,寻找没有得到优化结果的原因,判断体系是否收敛,如果体系能量有越来越小的趋势,那么增加优化次数是可能得到结果的,如果体系能量变化没有什么规律,或者,离最小点越来越远,那么就要改变优化的方法. (7) 频率分析的计算要采用能量对原子位置的二阶导数.HF方法,密度泛函方法(如B3LYP),二阶Moller-Plesset方法(MP2)和CASSCF方法(CASSCF)都可以提供解析二阶导数.对于其他方法,可以提供数值二阶导数. 一般的,对于HF方法,采用计算的频率乘以矫正因子, 方法频率矫正因子零点能矫正因子 HF/3-21G HF/6-31G(d) MP2(Full)/6-31G(d) MP2(FC)/6-31G(d) SVWN/6-31G(d)

量子化学习题及答案

量子化学习题及答案-CAL-FENGHAI.-(YICAI)-Company One1

1.1998及2013年度诺贝尔化学奖分别授予了量子化学以及分子模拟领域的杰出贡献者,谈谈你的了解及认识。 答:1998年诺贝尔化学奖得主:瓦尔特·科恩和约翰·波普尔。1964-1965年瓦尔特·科恩提出:一个量子力学体系的能量仅由其电子密度所决定,这个量比薛定谔方程中复杂的波函数更容易处理得多。他同时还提供一种方法来建立方程,从其解可以得到体系的电子密度和能量,这种方法称为密度泛函理论,已经在化学中得到广泛应用,因为方法简单,可以应用于较大的分子。沃尔特·库恩的密度泛函理论对化学作出了巨大的贡献。约翰·波普尔发展了化学中的计算方法,这些方法是基于对薛定谔方程中的波函数作不同的描述。他创建了一个理论模型化学,其中用一系列越来越精确的近似值,系统地促进量子化学方程的正确解析,从而可以控制计算的精度,这些技术是通过高斯计算机程序向研究人员提供的。今天这个程序在所有化学领域中都用来作量子化学的计算。 2013年诺贝尔化学奖得主:马丁·卡普拉斯、迈克尔·莱维特、阿里耶·瓦谢勒。他们为复杂化学系统创立了多尺度模型。为研发了解和预测化学过程的强有力的计算机程序奠定了基础。对于今天的化学家来说,计算机就像试管一样重要。模拟过程是如此的真实以至于传统实验的结果也能被计算机预测出来。多尺度复杂化学系统模型的出现无疑翻开了化学史的“新篇章”。化学反应发生的速度堪比光速。刹那间,电子就从一个原子核跳到另一个原子核,以前,对化学反应的每个步骤进行追踪几乎是不可能完成的任务。而在由这三位科学家研发出的多尺度模型的辅助下,化学家们让计算机做“做帮手”来揭示化学过程。20世纪70年代,这三位科学家设计出这种多尺度模型,让传统的化学实验走上了信息化的快车道。 2.谈谈你对量子化学中两种流派(VBT,MOT)的认识。 答:1926年,奥地利物理学家薛定谔(Schrodinger)建立了描述电子运动规律的波动方程。1927年,海尔特(Heilter)和伦敦(London)在处理氢分子结构时首次采用两个氢原子基态电子波函数的乘积表示电子对键,通过共振结构波函数的线性组合获得薛定谔方程的解,标志着价键理论的诞生。1931年,鲍林(Pauling)建立了较为完善的电子对键与杂化轨道理论模型,随后以电子配对形成定域化学键为核心思想的价键理论,凭借其既直观又能定量计算的优势,得以在化学领域迅速推广应用。他也因此获得了1954年的诺贝尔化学奖。但是VB理论做出的某些预言不正确。比如简单的VB 模型错误地预言了环丁二烯(以及其它含四元环的)有较大的共振能。事实上是简单的休克尔MO(HMO)理论过分地强调了4n与(4n+2)环之间的区别。正确的共振能结果是MO和VB预言的中间值。此外,由于选用非正交的原子轨道为基函数,计算量大,曾一度停滞不前,但随着计算机的发展这种理论进入复兴期。 1932年美国化学家莫立肯(Mullikeen)和德国化学家洪特(Hund)从不同于价键理论的角度提出了分子轨道(MO)理论。并获得1966年诺贝尔化学奖。罗汤(Roothaan)和美国化学家哈尔(Hall)各自独立地为自洽场(SCF)计算方法学完成了原子轨道线型组合型(LCAO)数学框架。从此分子轨道的数学计算得以实现并得到了广泛的应用。此后,20世纪50年代日本化学家福井谦一的前线轨道理论和美国化学家杜瓦(Dewer)的微扰分子轨道理论(PMO)以及60年代中期美国化学家伍德沃德·霍夫曼(Woodward·Hoffman)的分子轨道对称守恒原理的提出,使该理论可以定性地对化学反应的结果做出预言。福井谦一和霍夫曼双双获得1981年诺贝尔化学奖。 在处理具体分子中,这两种理论所用的原始基函数——原子轨道是同样的,并且都是用变分法来处理。所不同的仅在于MOT先经过了一次基函数的组合,把它变为非定域的基函数;而VBT则直接使用原始基函数。严格计算,其结果是一样的。两种理论的结果差别完全是由于实际计算中引入了不同的近似所造成的。对一般分子的定性解释,两种理论的结果往往是一样的。 3.试了解中国量子化学发展状况。 答:解放前,在旧中国科学研究不受重视,因而量子化学这个领域几乎是个空白点。1949-1959:所研究的问题比较集中在分子的内旋转、杂化轨道理论、分子间作用力、小分子的分子轨道计算、多电子键函数等问题。六十年代中期:对配位场理论方法开展研究,获得了重要成果。1966年以后,“四人帮”的干扰,量子化学的研究被迫停止了一个时期。七十年代:课题主要集中在分自1978年科学大会以来,有了更大的发展。特别是结合电子计算机的应用,量子化学应用研究从无到有,由小到大,有了更为明显的发展。子轨道理论方面。在轨道对称守恒原理、分子轨道图形理论、几何剖析法课题方面获得较为突出的成果。

量子化学习题集

量子化学习题集 第一章 量子力学基础 1.1 如果g = ?f 对每一组?与f 求g 。 (1) ?=d /dx , f =cos(x 2+1); (2) ?=5, f =sin x ; (3) ?=( )2, f =sin x ; (4) ?=exp , f =ln x ; (5) ?=d 2/dx 2, f =ln3x ; (6) ?=d 2/dx 2+3xd /dx , f =4x 3; 1.2 如?f (x )=3x 2f (x )+2xdf /dx ,f (x )为任意函数,给出?的表达式 1.3 给出3个满足?e x =e x 的?的表达式 1.4 如果?= d 2/dx 2, ?B= x 2, 计算(1) ??B x 3;(2) ?B?x 3;(3) ??B f (x );(4) ?B?f (x ); 1.5 计算下列对易子 (1)[x , y ] (2)??[,]x y p p (3)?[,]x x p (4) 2?[,]x x p (5) ?[,]n x x p (6)?[1,]x x p (7)2 ?[1,]x x p (8)????[,]y x z y xp yp yp zp -- (9)222[(),()]x y y x ???? (10)[sin x , d /dx ];(11)[ d 2/dx 2, ax 2+bx+c ](a , b , c 为常数);(12) [d /dx , d 2/dx 2] 1.6 证明,对于线性算符,有?(?B+ ?)= ??B+?? 1.7 如果?是线性算符,b ,c 为常数,f , g 为任意函数,证明?(bf +cg )= b ?f + c ?g ; 证明若?(bf +cg )= b ?f + c ?g ,则?一定是线性算符。 1.8 证明: (1) [?, ?B]= - [?B, ?] (2)[?m ,?n ]=0 (3)[?2, ?B]= ?[?, ?B]+[?, ?B]? (4) [?, [?B, ?]]+ [?B, [?, ?]]+ [?, [?, ?B]]=0 1.9 2??2()x H p m V x =+, 分别计算(1)当V (x )=V (常数),(2)当V (x )=kx 2/2,(3)当V (x )→ V (r )=e 2/4πε0r 时的对易子??[,]x H p 与?[,]H x 1.10 拉普拉斯变换算符?L 定义为0 ?()()px Lf x e f x dx ∞-=? (1) ?L 是否是线性算符,(2)计算?L (1);计算?Le ax ,假定p >a

四应用量子化学计算方法进行分子结构优化

实验四 应用量子化学计算方法进行分子结构优化 以及异构化反应研究 Experiment 4. Study on Molecular Structure Optimization and Isomerization Reaction by Using Quantum Chemistry Method 4.1 目的要求 Purpose (1)了解量子化学计算的原理和用途以及几种常用的量子化学计算方法。 (2)熟悉常用量子化学计算软件Gaussian 03的基本使用方法和操作步骤。 (3)掌握如何使用Gaussian 03软件进行分子结构优化和异构化反应过渡态计算。 (4)本实验4学时。 4.2 背景介绍 Background Information 量子化学(quantum chemistry )以量子力学为理论基础,以计算机为工具,主要通过计算来阐述物质(化合物、晶体、离子、过渡态、反应中间体等)的结构、性质、反应性能及反应机理,研究物质的微观结构与宏观性质的关系,揭示物质和化学反应所具有的特性的内在本质及其规律性[1-4]。随着量子化学计算方法不断发展,计算量以及计算速度不断提高,所计算的体系越来越复杂,现在可以计算有机分子甚至较大分子量的生物分子。 目前常用的量子化学计算软件有Gaussian (https://www.360docs.net/doc/4d5331777.html, )、GAMESS (https://www.360docs.net/doc/4d5331777.html,/GAMESS )、Spartan (https://www.360docs.net/doc/4d5331777.html, )和Molpro (https://www.360docs.net/doc/4d5331777.html, )等。Gaussian 软件是使用最为广泛的量子化学计算软件,支持几乎所有的量子化学计算方法,可以计算得到分子的几乎一切性质,如稳定结构、能量、振动频率、红外和拉曼光谱、NMR 化学位移、轨道能级、静电势、极化率、电离能、电子亲和力、电子密度分布、过渡态和反应途径等。可以模拟在气相和溶液中的体系,模拟基态和激发态等问题。它最早的版本是1970年的Gaussian 70,最新的版本是Gaussian 09。本实验使用的版本为Gaussian 03。 4.3 实验原理 Experimental Principles 4.3.1 量子化学计算方法和特点 多体理论是量子化学的核心问题。n 个粒子构成的量子体系的性质原则上可通过求解n 粒子体系的薛定谔(Schr?dinger )方程得到体系的波函数来描述。 22 ,111122p q p p i p pq j pi P i p q i j p i Z Z Z E m R ri r ψψ<

量子化学习题及答案

1.1998及2013年度诺贝尔化学奖分别授予了量子化学以及分子模拟领域的杰出贡献者,谈谈你的了解及认识。 答:1998年诺贝尔化学奖得主:瓦尔特·科恩和约翰·波普尔。1964-1965年瓦尔特·科恩提出:一个量子力学体系的能量仅由其电子密度所决定,这个量比薛定谔方程中复杂的波函数更容易处理得多。他同时还提供一种方法来建立方程,从其解可以得到体系的电子密度和能量,这种方法称为密度泛函理论,已经在化学中得到广泛应用,因为方法简单,可以应用于较大的分子。沃尔特·库恩的密度泛函理论对化学作出了巨大的贡献。约翰·波普尔发展了化学中的计算方法,这些方法是基于对薛定谔方程中的波函数作不同的描述。他创建了一个理论模型化学,其中用一系列越来越精确的近似值,系统地促进量子化学方程的正确解析,从而可以控制计算的精度,这些技术是通过高斯计算机程序向研究人员提供的。今天这个程序在所有化学领域中都用来作量子化学的计算。 2013年诺贝尔化学奖得主:马丁·卡普拉斯、迈克尔·莱维特、阿里耶·瓦谢勒。他们为复杂化学系统创立了多尺度模型。为研发了解和预测化学过程的强有力的计算机程序奠定了基础。对于今天的化学家来说,计算机就像试管一样重要。模拟过程是如此的真实以至于传统实验的结果也能被计算机预测出来。多尺度复杂化学系统模型的出现无疑翻开了化学史的“新篇章”。化学反应发生的速度堪比光速。刹那间,电子就从一个原子核跳到另一个原子核,以前,对化学反应的每个步骤进行追踪几乎是不可能完成的任务。而在由这三位科学家研发出的多尺度模型的辅助下,化学家们让计算机做“做帮手”来揭示化学过程。20世纪70年代,这三位科学家设计出这种多尺度模型,让传统的化学实验走上了信息化的快车道。 2.谈谈你对量子化学中两种流派(VBT,MOT)的认识。 答:1926年,奥地利物理学家薛定谔(Schrodinger)建立了描述电子运动规律的波动方程。1927年,海尔特(Heilter)和伦敦(London)在处理氢分子结构时首次采用两个氢原子基态电子波函数的乘积表示电子对键,通过共振结构波函数的线性组合获得薛定谔方程的解,标志着价键理论的诞生。1931年,鲍林(Pauling)建立了较为完善的电子对键与杂化轨道理论模型,随后以电子配对形成定域化学键为核心思想的价键理论,凭借其既直观又能定量计算的优势,得以在化学领域迅速推广应用。他也因此获得了1954年的诺贝尔化学奖。但是VB理论做出的某些预言不正确。比如简单的VB模型错误地预言了环丁二烯(以及其它含四元环的)有较大的共振能。事实上是简单的休克尔MO(HMO)理论过分地强调了4n与(4n+2)环之间的区别。正确的共振能结果是MO和VB预言的中间值。此外,由于选用非正交的原子轨道为基函数,计算量大,曾一度停滞不前,但随着计算机的发展这种理论进入复兴期。 1932年美国化学家莫立肯(Mullikeen)和德国化学家洪特(Hund)从不同于价键理论的角度提出了分子轨道(MO)理论。并获得1966年诺贝尔化学奖。罗汤(Roothaan)和美国化学家哈尔(Hall)各自独立地为自洽场(SCF)计算方法学完成了原子轨道线型组合型(LCAO)数学框架。从此分子轨道的数学计算得以实现并得到了广泛的应用。此后,20世纪50年代日本化学家福井谦一的前线轨道理论和美国化学家杜瓦(Dewer)的微扰分子轨道理论(PMO)以及60年代中期美国化学家伍德沃德·霍夫曼(Woodward·Hoffman)的分子轨道对称守恒原理的提出,使该理论可以定性地对化学反应的结果做出预言。福井谦一和霍夫曼双双获得1981年诺贝尔化学奖。 在处理具体分子中,这两种理论所用的原始基函数——原子轨道是同样的,并且都是用变分法来处理。所不同的仅在于MOT先经过了一次基函数的组合,把它变为非定域的基函数;而VBT则直接使用原始基函数。严格计算,其结果是一样的。两种理论的结果差别完全是由于实际计算中引入了不同的近似所造成的。对一般分子的定性解释,两种理论的结果往往是一样的。 3.试了解中国量子化学发展状况。 答:解放前,在旧中国科学研究不受重视,因而量子化学这个领域几乎是个空白点。1949-1959:所研究的问题比较集中在分子的内旋转、杂化轨道理论、分子间作用力、小分子的分子轨道计算、多电子键函数等问题。六十年代中期:对配位场理论方法开展研究,获得了重要成果。1966年以后,“四人帮”的干扰,量子化学的研究被迫停止了一个时期。七十年代:课题主要集中在分自1978年科学大会以来,有了更大的发展。特别是结合电子计算机的应用,量子化学应用研究从无到有,由小到大,有了更为明显的发展。子轨道理论方面。在轨道对称守恒原理、分子轨道图形理论、几何剖析法课题方面获得较为突出的成果。 4. 试用前线轨道理论说明下列反应在没有催化剂的条件下不能发生。

相关文档
最新文档