互补MOSFET的脉冲变压器隔离驱动电路设计

互补MOSFET的脉冲变压器隔离驱动电路设计
互补MOSFET的脉冲变压器隔离驱动电路设计

MOS管驱动变压器隔离电路分析和应用

MOS管驱动变压器隔离电路分析和应用 今天在研究全桥电路,资料和书上谈到的,大多数基于理想的驱动器(立即充电完成)。这里 一篇幅把MOS管驱动的来龙去脉搞搞清楚。 预计要分几个篇幅: 1.MOS管驱动基础和时间功耗计算 2.MOS管驱动直连驱动电路分析和应用 3.MOS管驱动变压器隔离电路分析和应用 4.MOS管网上搜集到的电路学习和分析 今天主要分析MOS管驱动变压器隔离电路分析和应用和MOS管驱动基础和时间功耗计算。 参考材料: 《Design And Application Guide For High Speed MOSFET Gate Drive Circuits》是一份很好的材料《MOSFET 驱动器与MOSFET 的匹配设计》也可以借鉴。 首先谈一下变压器隔离的MOS管驱动器: 如果驱动高压MOS管,我们需要采用变压器驱动的方式和集成的高边开关。 这两个解决方案都有自己的优点和缺点,适合不同的应用。 集成高边驱动器方案很方便,优点是电路板面积较小,缺点是有很大的导通和关断延迟。 变压器耦合解决方案的优点是延迟非常低,可以在很高的压差下工作。常它需要更多,缺点是需要很多的元件并且对变压器的运行有比较深入的认识。 变压器常见问题和与MOS管驱动相关的问题: 变压器有两个绕组,初级绕组和次级绕组实现了隔离,初级和次级的匝数比变化实现了电压缩放,对于我们的设计一般不太需要调整电压,隔离却是我们最注重的。 理想情况下,变压器是不储存能量的(反激“变压器”其实是耦合电感)。不过实际上变压器还是储存了少量能量在线圈和磁芯的气隙形成的磁场区域,这种能量表现为漏感和磁化电感。对于功率变压器来说,减少漏感可以减少能量损耗,以提高效率。MOS管驱动器变压器的平均功率很小,但是在开通和关闭的时候传递了很高的电流,为了减少延迟保持漏感较低仍然是必须的。 法拉第定律规定,变压器绕组的平均功率必须为零。即使是很小的直流分量可能会剩磁,最终导致磁芯饱和。这条规则对于单端信号控制的变压器耦合电路的设计有着重大影响。 磁芯饱和限制了我们绕组的伏秒数。我们设计变压器必须考虑最坏情况和瞬时的最大的伏秒数。(在运行状态下,最坏情况和瞬时的,最大占空比和最大电压输入同时发生的情况),唯一我们确定的是变压器有一个稳定的电源电压。 对于单端应用的功率变压器来说,很大一部分开关周期需要保留来保证磁芯的正确复位(正激变换器)。复位时间大小限制电路运行的占空比。不过由于采用交流耦合实现了双向磁化,即使对于单端

收集的驱动变压器资料

(1)、驱动变压器的原边感量应该取大些,但是不能过大,过大会的导致Q值过高,从而在动态的时候会有问题。当电感量加大的时候,驱动波形中开起和关断的时候,震荡慢慢减小,最后消失 (2)、可能,高磁导率的磁芯绕制的变压器,可以获得更高的原边电感,减小激磁电流,因此可以减小所需的驱动电流。 用高磁导率的磁芯,匝比不变,电感一定,圈数可以少一点,寄生参数影响小,波形失真小 (3)、电感量越大阻抗越大,则耦合次级的波形越正常: (4)、问:电感量越高越好吗?? 答:也不是肯定有个极限 一般来说前面有个隔直电容,那么就形成一个串联谐振电路,对于这个谐振电路1)如果L取得太大,就会造成谐振周期很大,可能起机稳定之前震荡中直流偏置复位不及时磁芯饱和,所以一般应该保持在10mH以下 2)另外与开关频率有关,一定要保证LC的谐振频率离驱动频率越远越好,否则在会造成电感上的电压=Q*Vdriver,驱动电压可能会飙升到几十伏去,而电感量越大其谐振频率越小越不容易进入开关频率周围,另外L越大Q越大其选频性能越好越不容易受到影响。 所以一般来说对于一个驱动电路基本上参数都是确定的,没有什么好改变的,隔直电容100nF左右,电感量1-10mH左右,磁芯大小只跟开关频率有关,频率大些就能选小点的磁芯 (5)、那么这里面有几个参数:Tr 上升时间,时间越短,也就是我们平常说的越陡,怎么才能做到这点,方波是由正弦波叠加二成,越到脉冲的边沿频率越高,而我们的变压器的分布电容和漏感组成低通滤波器,如国变压器绕制工艺不好,分布参数大,那么更多高频成分被滤除掉,那么就出现“丢波”那么上升沿就是斜线二不是直线了! (6)、那么怎么改变分布参数呢?首先我们知道绕组越接近磁心表面漏感越小,绕组匝数越少,越容易作到这点;另外磁心的电感系数越高、磁导率越高,导磁能力越好,漏感越小。那么达到要求的电感量或者是初级阻抗的匝数越少。所以我们大多驱动变压器、网络变压器都用高导材料来做。另外在一个变压器中分布电容和漏感是两个矛盾的参数,但是通过绕制方法可以折中处理。 (7)、

UC2845的应用和PWM变压器设计及维修

VCC 7GND 5REF_5V 8VFB 2Comp 1Isense 3Output 6Rt/Ct 4UC2845D UC2845芯片资料介绍及维修方法和设计汇总 第一节:UC2845D 芯片介绍 ①管脚介绍 Unitrode 公司的UC2845D(D 是贴片)是一种高性能固定频率电流型控制器,包含误差放大器、PWM 比较器、PWM 锁存器、振荡器、内部 基准电源和欠压锁定等单元,其结构图 1脚: 是误差放大器的输出端,外接阻容元件用于改善误差放器的 增益和频率特性。 2脚: 是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准 电压进行比较,产生误差(控制)电压,误差(控制)电压变大,第6 脚输出脉冲变窄,占空比降低,抑制输出电压的增加,从而使输 出电压稳定,而控制脉冲宽度,脉宽越宽,电源输出电压越高, Vref 比较器高低门限为:3.6V/3.4V 。 3脚: 电流检测输入端。在外围电路中,在功率开关管(如Mos 管)的源 极串接一个小阻值的取样电阻,将脉冲变压器的电流转换成电 压,此电压送入3脚,控制脉宽。此外,当电源电压异常时,功率开 关管的电流增大,当取样电阻上的电压超过1V 时,缩小脉冲宽度 使电源处于间歇工作状态,UC2845就停止输出,有效地保护了功 率开关管。 4脚: 定时端,内部振荡器的工作频率由外接的阻容时间常数决定, f = 1.72 (Rt ?Ct)当上电后,5VDC 通过Rt 电阻给Ct 充电,使④脚电压近 似线性上升,当电压上升到2.8V 时,在振荡器内部,将定时电容 器CT 上的电压突然放掉,当电压下降到1.4V 时,电压又开始上 升,这样就形成一个锯齿波电压。 5脚: 为公共地端。 6脚: 为推挽输出端,输出的频率是振荡频率的1/2,内部为图腾柱式, 上升、下降时间仅为50ns,驱动能力为±1A 。 UC2845的管脚图

MOSFET驱动变压器设计详解

MOSFET驱动变压器设计详解 今天在研究全桥电路,资料和书上谈到的,大多数基于理想的驱动器(立即充电完成)。这里 一篇幅把MOS管驱动的来龙去脉搞搞清楚。 预计要分几个篇幅: 1.MOS管驱动基础和时间功耗计算 2.MOS管驱动直连驱动电路分析和应用 3.MOS管驱动变压器隔离电路分析和应用 4.MOS管网上搜集到的电路学习和分析 今天主要分析MOS管驱动变压器隔离电路分析和应用和MOS管驱动基础和时间功耗计算。 参考材料: 《Design And Application Guide For High Speed MOSFET Gate Drive Circuits》是一份很好的材料《MOSFET 驱动器与MOSFET 的匹配设计》也可以借鉴。 首先谈一下变压器隔离的MOS管驱动器: 如果驱动高压MOS管,我们需要采用变压器驱动的方式和集成的高边开关。 这两个解决方案都有自己的优点和缺点,适合不同的应用。 集成高边驱动器方案很方便,优点是电路板面积较小,缺点是有很大的导通和关断延迟。 变压器耦合解决方案的优点是延迟非常低,可以在很高的压差下工作。常它需要更多,缺点是需要很多的元件并且对变压器的运行有比较深入的认识。 变压器常见问题和与MOS管驱动相关的问题: 变压器有两个绕组,初级绕组和次级绕组实现了隔离,初级和次级的匝数比变化实现了电压缩放,对于我们的设计一般不太需要调整电压,隔离却是我们最注重的。 理想情况下,变压器是不储存能量的(反激“变压器”其实是耦合电感)。不过实际上变压器还是储存了少量能量在线圈和磁芯的气隙形成的磁场区域,这种能量表现为漏感和磁化电感。对于功率变压器来说,减少漏感可以减少能量损耗,以提高效率。MOS管驱动器变压器的平均功率很小,但是在开通和关闭的时候传递了很高的电流,为了减少延迟保持漏感较低仍然是必须的。 法拉第定律规定,变压器绕组的平均功率必须为零。即使是很小的直流分量可能会剩磁,最终导致磁芯饱和。这条规则对于单端信号控制的变压器耦合电路的设计有着重大影响。 磁芯饱和限制了我们绕组的伏秒数。我们设计变压器必须考虑最坏情况和瞬时的最大的伏秒数。(在运行状态下,最坏情况和瞬时的,最大占空比和最大电压输入同时发生的情况),唯一我们确定的是变压器有一个稳定的电源电压。 对于单端应用的功率变压器来说,很大一部分开关周期需要保留来保证磁芯的正确复位(正激变换器)。复位时间大小限制电路运行的占空比。不过由于采用交流耦合实现了双向磁化,即使对于单端MOS管驱动变压器也不是问题。

脉冲变压器

脉冲变压器 脉冲变压器是一种宽频变压器,对通信用的变压器而言,非线性畸变是一个极重要的指标,因此要求变压器工作在磁心的起始导磁率处,以至即使象输入变压器那样功率非常小的变压器,外形也不得不取得相当大。除了要考虑变压器的频率特性,怎样减少损耗也是一个很关心的问题。 与此相反,对脉冲变压器而言,因为主要考虑波形传送问题。即使同样是宽频带变压器,但只要波形能满足设计要求,磁心也可以工作在非线性区域。因此,其外形可做得比通信用变压器小很多。还有,除通过大功率脉冲外,变压器的传输损耗一般还不大。因此,所取磁心的尺寸大小取决于脉冲通过时磁通量是否饱和,或者取决于铁耗引起的温升是否超过允许值。 一、脉冲变压器工作原理 脉冲变压器利用铁心的磁饱和性能把输入的正弦波电压变成窄脉冲形输出电压的变压器。可用于燃烧器的点火、晶闸管的触发等。脉冲变压器结构为原绕组套在断面较大的由硅钢片叠成的铁心柱上,副绕组套在坡莫合金材料制成的断面较小的易于高度饱和的铁心柱上,在两柱中间可设置磁分路。电压和磁通的关系,输入电压u1是正弦波,在左面铁心中产生正弦磁通Φ1。右面铁心中磁通Φ2高度饱和,是平顶波,它只有在零值附近发生变化,并立即饱和达到定值。当Φ2过零值的瞬间,在副绕组中就感应出极陡的窄脉冲电动势e2。磁分路有气隙存在,Φσ基本上按线性变化,与漏磁相似,其作用在于保证Φ1为正弦波。 二、脉冲变压器的应用 脉冲变压器广泛用于雷达、变换技术;负载电阻与馈线特性阻抗的匹配;升高或降低脉冲电压;改变脉冲的极性;变压器次级电路和初级电路的隔离应用几个次级绕组以取得相位关系;隔离等)相同,但就磁芯的磁化过程这一点来看是有区别的,分析如下: (1) 脉冲变压器是一个工作在暂态中的变压器,也就是说,脉冲过程在短暂的时间内发生,是一个顶部平滑的方波,而一般普通变压器是工作在连续不变的磁化中的,其交变信号是按正弦波形变化. (2) 脉冲信号是重复周期,一定间隔的,且只有正极或负极的电压,而交变信号是连续重复的,既有正的也有负的电压值。 (3) 脉冲变压器要求波形传输时不失真,也就是要求波形的前沿,顶降都要尽可能小,然而这两个指标是矛盾的。 三、脉冲变压器与一般变压器的比较 所有脉冲变压器其基本原理与一般普通变压器(如音频变压器、电力变压器、电源变压器等)相同,但就磁芯的磁化过程这一点来看是有区别的,分析如下: (1) 脉冲变压器是一个工作在暂态中的变压器,也就是说,脉冲过程在短暂的时间内发生,是一个顶部平滑的方波,而一般普通变压器是工作在连续不变的磁化中的,其交变信号是按正弦波形变化. (2) 脉冲信号是重复周期,一定间隔的,且只有正极或负极的电压,而交变信号是连续重复的,既有正的也有负的电压值。 (3) 脉冲变压器要求波形传输时不失真,也就是要求波形的前沿,顶降都要尽可能小,然而这两个指标是矛盾的。 本文由https://www.360docs.net/doc/415344979.html,整理。

LED驱动变压器的制作

中心议题: * 反激式开关电源变压器的设计步骤 解决方案: * 选定原边感应电压V * 确实原边电流波形的参数 * 选定变压器磁芯 * 计算变压器的原边匝数 * 确定次级绕组的参数,圈数和线径 反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我算变压器的方法。 算变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。下面我就来算了一个输入85V到265V,输出5V,2A 的电源,开关频率是100KHZ。 第一步就是选定原边感应电压VOR,这个值是由自己来设定的,这个值就决定了电源的占空比。可能朋友们不理解什么是原边感应电压,是这样的,这要从下面看起,慢慢的来, 这是一个典型的单端反激式开关电源,大家再熟悉不过了,来分析一下一个工作周期,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的I=Vs*ton/L,这三项分别是原边输入电压,开关开通时间,和原边电感量.在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的I=VOR*toff/L,这三项分别是原边感应电压,即放电电压,开关管关断时间,和电感量.在经过一个周期后,原边电感电流的值会回到原来,不可能会变,所以,有VS*TON/L=VOR*TOFF/L,,上升了的,等于下降了的,懂吗,好懂吧,上式中可以用D来代替TON,用1-D来代替TOOF,移项可得,D=VOR/(VOR+VS)。此即是最大占空比了。比如说我设计的这个,我选定感应电压为80V,VS为90V ,则D=80/(*80+90)=0.47

开关电源隔离驱动变压器设计方案

开关电源隔离驱动变压器设计 因为电子设备的电路变得更为复杂,故要求成熟的电气工程设 计参数具有更加临界的数值。在设计电路的每一个阶段,精确的工程计算是基本的要求。同时,在其零部件设计时,这一点也是同样重要的。所以,必须精心地设计开关电源(SMPS中门脉冲驱动变压器的每一个零部件。 门脉冲驱动变压器在开关电源中被要求用来控制电路之间的 同步动作。这些器件用来为开头电源半导件元器件如高压功率MOSFET或IGBTs提供电脉冲。这种变压器也用作电压隔离和阻抗匹配。门脉冲驱动变压器是用来驱动电子开关器件门电路的基本脉冲变压器。设计这类变压器时,是假定其脉冲的上升、下降和上冲时间都是最佳的值。使用中要辨别它们是门脉冲驱动变压器还是其它变压 在基础门脉冲驱动变压器设计中,存在一系列设计变数,其中 的每个变数由其专项应用决定。它们的一些通用简图及其相应的转换关系见图1所示

1^:2 1 :1 1 : 2 3 1-------- ---------- 3 11-14OT ??? ? 2OT - 2OT2OL 40120T . wuw* a I'ttngon. com -4 2— 4 6 ■4OT (a) (b) (c} Ifll 代&门!ft 11咏冲驳戍变!L器的嗎电Jfi细态 典型的门脉冲驱动变压器是用铁氧体磁心设计制造的,这样可以降低成本。常用磁心的外形大多数是EE EER ETD型。它们都是 由“E”型磁心和相应的骨架组成。这些骨架可以采用表面安装法或通 孔安装法装配。在有些情况下,也采用环形磁心设计制作门脉冲驱动变压器。典型的脉冲变压器设计所要求的参数列于表1。

脉冲变压器设计

脉冲变压器设计

目录 前言 ......................................... 错误!未定义书签。 1 脉冲变压器设计要求和原始数据 ............... 错误!未定义书签。 脉冲变压器计算程序设计要求................. 错误!未定义书签。 计算原始数据:............................. 错误!未定义书签。 2 脉冲变压器的设计 ........................... 错误!未定义书签。 线路的计算................................. 错误!未定义书签。 绝缘的设计................................. 错误!未定义书签。 铁心和绕组的选择........................... 错误!未定义书签。 铁心的设计要求............................ 错误!未定义书签。 铁心的去磁电路............................ 错误!未定义书签。 绕组的选择............................... 错误!未定义书签。 脉冲变压器的脉冲的计算..................... 错误!未定义书签。 脉冲平顶降落的验算....................... 错误!未定义书签。 脉冲的前沿畸变验算....................... 错误!未定义书签。 脉冲后沿宽度的检查....................... 错误!未定义书签。 脉冲变压器的整体结构....................... 错误!未定义书签。 脉冲变压器的温升与经济指标................. 错误!未定义书签。 脉冲变压器的温升和经济指标................ 错误!未定义书签。 脉冲变压器的温升和经济指标的验算......... 错误!未定义书签。 3 脉冲变压器的试验 ........................... 错误!未定义书签。 脉冲变压器的初次试验....................... 错误!未定义书签。 加压试验................................. 错误!未定义书签。 改变回路参数的试验....................... 错误!未定义书签。 “+/-极性”的试验....................... 错误!未定义书签。 脉冲变压器的负荷试验....................... 错误!未定义书签。 脉冲波形的检查........................... 错误!未定义书签。 漏感和电容............................... 错误!未定义书签。 变比的测量............................... 错误!未定义书签。总结 ........................................ 错误!未定义书签。致谢 ....................................... 错误!未定义书签。参考文献 ..................................... 错误!未定义书签。

大功率脉冲变压器详细规范

Q/XEC 贵阳顺络迅达电子有限公司企业军用标准FL 5950 Q/XEC 20025-2016 大功率脉冲变压器详细规范 2015-05-05发布2015-05-30实施

Q/XEC 20025-2016 前言 本标准是包括产品全部要求的详细规范。本标准作为大功率脉冲变压器产品生产、试验、检验依据。 本标准起草单位:贵阳顺络迅达电子有限公司。 本标准主要起草人:王勇 本规范标准化审查人: 本规范标准化责任人:

Q/XEC 20025-2016 大功率脉冲变压器详细规范 1 范围 1.1主题内容 本规范适用于大功率脉冲变压器的分类、要求、试验方法、检验规则及包装运输和储存等要求。 1.2 适用范围 本规范适用于大功率脉冲变压器。 1.3分类 产品的命名及分类参照以下方式,且应按有关规定(见GJB 2829-97 中的1.3) TF 5 S 03 01 元件等别级别类别序号 2 引用文件 下列文件中的有关条款通过引用而成为本规范的条款。凡注日期或版次的引用文件,其后的任何修改单(不包括勘误的内容)或修订版本都不适用于本规范,但提倡使用本规范的各方探讨使用其最新版本的可能性。凡不注日期或版次的引用文件,其最新版本适用于本规范。 GJB 2829-97 音频、电源和大功率脉冲变压器和电感器总规范 GJB 360B-2009 电子及电气元件试验方法 GJB 548B-2005 微电子器件试验方法和程序 GJB 179A-1996 计数抽样检验程序及表 3 要求 3.1 详细规范 大功率脉冲变压器要求除应按本规范的规定外,还应参照GJB 2829-97《音频、电源和大功率脉冲变压器和电感器总规范压器总规范》的关于大功率脉冲变压器的相关规定。若本规范与总规范GJB 2829-97 的要求有矛盾时,应以本规范为准。 3.2 材料 同GJB 2829-97中3.4的规定。 3.3 设计和结构 3.3.1 安装用螺钉 安装用螺钉应符合普通螺纹系列标准的规定 3.3.2 外形结构 产品的设计结构和几何尺寸见附录A。 3.3.3 电气原理图 产品的电气原理图见附录A。 3.3.4 电气性能 产品的电气性能见附录B。 3.3.5 引出端 本规范变压器引出端为金属铜引出端,引出端的形状和几何尺寸应符合附录A的规定。 1

20170502-开关电源中的变压器隔离驱动电路(二)

开关电源中的变压器隔离驱动电路(二) 普高(杭州)科技开发有限公司 张兴柱 博士 图1(a)是另一种隔离驱动电路,其原边类似于不对称半桥中的接法,副边的电容和二极管 (a) (b) 图1: 隔离驱动电路#2 来实现隔离后信号的恢复,当原边和副边匝数相同时,该隔离驱动电路在二极管D1上的波形将与隔离前的驱动信号具有完全相同的形状,而且其幅度为Vcc_s 。2R 、3R 、1ZD 的作用与隔离驱动电路#1中对应的元件类似。这个隔离驱动电路的占空比没有限制,其变压器对称地工作于B-H 的I 、III 象限,变压器的激磁电流平均值为零。如前面所说的,该隔离驱动变压器的设计可先按原则选好铁芯的材料和铁芯的形状及尺寸,然后按下面的公式计算匝数: 8_102)1(××?= s c m s cc p f A B V D D N (匝) 其中:sat m B B <,为工作磁密幅度,单位(Gass );c A 为所选铁芯的截面积,单位2)(cm ,D 为驱动信号的占空比,s f 驱动信号的频率,单位为(Hz ) ,s cc V _为隔离驱动电路原边供

电电源,单位(V ),显然在5.0=D 时,上式最大,所以有: 8_10125.0××= s c m s cc p f A B V N (匝) 对计算的匝数取整数,并取p s N N =,然后在所选择的铁芯上按安规要求绕制这两个绕组,看看是否可以绕下,如果能够绕下,且实验波形没有失真,则该隔离变压器的设计就是成功的,否则就要选择一个大一些的铁芯来重新进行计算。从变压器匝数计算公式可知,同样频率、同样截面积的铁芯,在隔离驱动电路#2中的变压器匝数会远少于隔离驱动电路#1中(昨天介绍的)的变压器匝数,所以当处理的功率相同时,隔离驱动电路#2中的变压器会比隔离驱动电路#1中的变压器小。 图1(a)的隔离驱动电路,在产品的大动态过程或电源保护后再恢复工作的过程中,常会因为二极管1D 的没有及时导通,而导致其控制的MOSFET 不能被可靠关断,从而损坏主电路。图1(b)是用一个PNP 三极管3Q 、一个电阻4R 和一个电容3C 组成的电路来代替二极管1D ,以保证只要变压器的副边一有负电压,三极管3Q 就会立即导通,从而确保其控制的MOSFET 无论在什么样的大动态下,都能可靠关断。

深入学习高频脉冲变压器的设计

深入学习高频脉冲变压器的设计 但凡真正的KC人,都有不同程度的偏执,对一个问题不摸到根源绝不罢手—ehco 脉冲变压器属于高频变压器的范畴,与普通高频变压器工况有别。脉冲变压器要求输出波形能严格还原输入波形,前后沿陡峭,平顶斜降小。 在众多的制作实践中,随处可见脉冲变压器的身影。例如DRSSTC中的全桥驱动GDT(Gate Driving Transformers门极驱动变压器),感应加热电路中的GDT等等,相信KCer对其功能和重要性都有一定了解。但谈到如何具体设计一个符合规格的脉冲变压器,相信也还有不少人停留在简单的匝比计算或是经验设计层面,没有深入地研究。每每遇到磁芯的选择,匝数、线材的确定时,都无从下手。本文针对这些问题,在高压版black、ry7740kptv、山猫等大神的鼓舞下,将本人的学习心得形成图文与大家分享,旨在抛砖引玉。因本人水平有限,如若存在错漏,望斧正为谢。 下面从一个简易的GDT驱动电路说起 上图中,T1为脉冲变压器,当初级(左侧)为上正下负时,右侧输出上正下负信号,该信号通过D3、D4、C23、RG,给IGBT的Cge充电,当充电电压达到V GE(ON) 时IGBT的C、E开通,并且C23充电,C23的充电电压被D5钳制在8V。当T1输入为上负下正时,D3反向截止,T1的输出被阻断。在R15偏置电阻提供的偏流下,C23存储的电压构成反偏,迅速抽干Cge 存储的电荷,使IGBT快速关断。 那么,根据实测值或相关厂商数据,有以下已知数据。 1、IGBT型号:IKW50N60T 2、开关频率f s :50KHz 3、栅极正偏电压+V GE :+15V 4、栅极反偏电压-V GE :-8V 5、脉冲变压器初级侧驱动电压:+24V 6、单个IGBT驱动电压占空比D:0.46 7、栅极电阻R G :10Ω 8、IGBT管内栅极电阻R g :0Ω 9、三极管饱和压降:Vces=0.3V 10、二极管压降:V DF =0.55V 11、GDT效率η:90% 一、计算IGBT驱动所需的峰值电流I GPK I GPK =(+V GE -(-V GE ))/R G +R g =23/5.1=2.3A 二、计算次级电流有效值I srms

开关箱电路,脉冲变压器 工作原理

脉冲变压器工作原理利用铁心的磁饱和性能把输入的正弦波电压变成窄脉冲形输出电压的变压器。可用于燃烧器的点火、晶闸管的触发等。脉冲变压器结构为原绕组套在断面较大的由硅钢片叠成的铁心柱上,副绕组套在坡莫合金材料制成的断面较小的易于高度饱和的铁心柱上,在两柱中间可设置磁分路。电压和磁通的关系,输入电压u1是正弦波,在左面铁心中产生正弦磁通Φ1。右面铁心中磁通Φ2高度饱和,是平顶波,它只有在零值附近发生变化,并立即饱和达到定值。当Φ2过零值的瞬间,在副绕组中就感应出极陡的窄脉冲电动势e2。磁分路有气隙存在,Φσ基本上按线性变化,与漏磁相似,其作用在于保证Φ1为正弦波。 开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现电压变换,以及输出电压可调和自动稳压 在线性电源中,让功率晶体管工作在线性模式,与线性电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断的状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)/功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。与线性电源相比,PWM开关电源更为有效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。脉冲的占空比由开关电源的控制器来调节。一旦输入电压被斩成交流方波,其幅值就可以通过变压器来升高或降低。通过增加变压器的二次绕组数就可以增加输出的电压组数。最后这些交流波形经过整流滤波后就得到直流输出电压。控制器的主要目的是保持输出电压稳定,其工作过程与线性形式的控制器很类似。也就是说控制器的功能块、电压参考和误差放大器,可以设计成与线性调节器相同。他们的不同之处在于,误差放大器的输出(误差电压)在驱动功率管之前要经过一个电压/脉冲宽度转换单元。 市电进入电源,首先要经过扼流圈和电容,滤除高频杂波和同相干扰信号。然后再经过电感线圈和电容,进一步滤除高频杂波。接下来再经过由 4 个二极管组成的全桥电路整流(编者注:也有半桥等其他电路),和大容量的滤波电容滤波后,电流才由高压交流电转换为高压直流电。虽然经过了交流到直流的转变过程,但这还只是个先头工序,电流还是不能直接供给设备使用的,还要做进一步的调整。经过了交直转换后,电流就进入了整个电源最核心的部分:开关电路。开关电路主要由两个开 -------------------------------------------------------------------------------- Page 2 关管组成,通过它们的轮流导通和截止,便将直流电转换为高频率的脉动直流电。接下来,再送到高频开关变压器上进行降压。经过高频开关变压器降压后的脉动电压,同样要使用二极管和滤波电容进行整流和滤波,此外还会有 1、2 个电感线圈与滤波电容一起滤除高频交流成分。经过上面一系列工序后,输出的的电流,才算真正完成设备所需要的较为纯净的低压直流电。

如何设计脉冲变压器(经验算法)

如何设计脉冲变压器(经验算法) 变压器设计(经验算法) ------单端反激式1―100W,25KHZ 1. 初级电感量的计算功率富裕量10%------20% Lp=E2 *Ton2 /2*T*Pin E:电网输入整流直流高压,E=300V T:高频开关电流的工作周期,T=1/f=1/25=40us Pin=Pout/η=输出功率/效率=100W/80%=125W 设较大占空比为50%,则Ton=T*50%=20us Lp=3002*(20*10- 6 (秒))2/2*40*10- 6 (秒)*125=3.6mH 2.原边较大峰值电流Ip=E*Ton /Lp=300*20*10- 6 (秒)/3.6*10- 3 (H)=1.6A 3.设计初级线圈匝数Np=E*Ton*108/Ae(Bm-Br)=Ip*Lp*108/Ae(Bm-Br) Ae:有效中心截面积(单位cm2 ) Bm:较大磁感应强度Br一般不考虑. Np=Vinmax*108/4fBmAe = 341*108 / 4*25*103 *2500*1.18 (Vinmax取341V) Bm取2500时,Np = 115 Bm 取2000时,Np = 144 (一般取2000) Bm取1500时,Np = 192 变压器的匝数比: 变压器的匝数比,由低电网电压时的较小值输入电压Vmin,输出电压V o和反射输出电压V or三者来确定,Vmin取决于储存能量的输入电容量,通常在普通输入或100/115Vac输入应用时,每瓦特输出功率用1uF储电容。 若使用倍压器从100/115V AC输入得到更高的有效直

流电压时,应当采用两串联电容器,每只具有1瓦特输出功率的2uF电容值,这些电容器的较低电压值Vmin的选择规则:在通用输入或100/115V输入应用时,其近似值为90Vdc;而在230Vac或由100/115Vac,使用倍压器时,其近似值为240Vdc。 应用TOP2XX系列器件,输入电压230Vac/100/115Vac 需要变压器,设计在反射电压V or为135V,并使之限制峰值漏极电压的应力。应用TOP1XX系列器件,输入电压100/115Vac时,设计反射输出电压V or为60V或更低些为宜,某些应用中的设计,可利用稍低的反射输出电压V or,以便在高电压电网电压工作时,减小器件电压应力。 变压器匝比公式: Np/Ns=V or/(V o+Vd) Np:原边匝数Ns:副边匝数V or:反射输出电压V o:输出电压Vd:二极管正向电压(0.7V) 注:一般次级主回路算的偏高。

25WLED隔离驱动变压器设计

25WLED隔离驱动变压器设计 关键词:LED驱动,隔离,简单低成本,EMI 设计LED驱动,主要的是变压器参数的设计。不管是隔离还是非隔离,只是隔离是一个有两个绕组的变压器,非隔离是个一个绕组的电感。 上一遍文章中(基于SIC95123WLED的驱动制作)着重介绍了非隔离电感制作的参数设计,本文通过介绍基于SIC9655-制作的25WLED隔离驱动,着重介绍隔离变压器参数的设计。 下面先简单地介绍一下SIC655芯片。 SIC9655是PIP-8封装的LED驱动芯片。工作在DCM模式,适合全电压范围工作,良好的线性调整率、负载调整率以及优异的恒流特性。采用原边反馈技术,无需光耦及TL431反馈,无需辅助绕组供电和检测,系统实现成本低,线路简单。具有输出开短路保护、过压保护、过温自适应调节等。 下面以SIC655设计输入功率为25W的驱动过程着重介绍如何确认变压器参数。 输入要求: Vin:100-264; Vout:36V; Iled:600mA。 PF≥0.50, EMI:pass. 通过公司提供的应用原理图以及以上输入参数的要求,为能通过EMC测试,应在电源加进电感及X电容,压敏电阻,用于保护MOS管的RCD及RC电路等。画出原理图。上图。然后通过以下步骤设计出驱动(重点是确认变压器参数)。 设计步骤: 1:确定采样电阻Risen; 2:确认变压器参数; 3:开路电阻设置Radj。 4:确定输入输出端电容,输出二极管等主要原器件。 5:续流二极管的RCD及RC电路。 6:设计PCB板。 7:电路调试。 8:打印清单; 开始: 1:确定采样电阻Risen: SIC9655工作在DCM模式中,其内部具有一个400mV的基准电压,这个基准电压与我们设

脉冲变压器的工作原理及制作变压器的制作工艺

脉 冲 变 压 器 的 制 作 和 工 作 原 理 系别:电气系 学号:B11041207 姓名:孟利东

脉冲变压器的制作 1绕线 A 确定BOBBIN的参数 B 所有绕线要求平整不重叠为原则 C 单组绕线以单色线即可,双组绕线必需以双色线或开线浸锡来分脚位,以免绕错 D 横跨线必需贴胶带隔离 1 疏绕完全均匀疏开 2 密绕排线均匀紧密 3 线圈两边与绕线槽边缘保持足够的安全距离A,B 4 套管长度必须足够,一端伸入绕线管的安全胶带以内,另一端伸出BOBBIN上沿面,但不得靠近PIN 5 最外层胶带切割在铁芯组合面,切割处必须被铁芯覆盖. 6 胶带边缘与绕线槽平齐,胶带不歪斜,不反摺不破损. 7 跨越线底下须贴胶带,保持跨越线与底下线圈绝缘. 2缠线 A 立式BOBBIN 粗线: 0.8φ以上缠线1圈 细线0.2-0.8φ缠线1.5圈 极细线0.2φ以下缠线2-3圈 立式BOBBIN缠法之原则:缠线尽量压到底以不超过凸点为原则

B卧式BOBBIN :约缠2-3圈,疏绕不要压到底,以免焊锡时烫伤BOBBIN,如果有宽度限制且规格严格时才用此方式,将缠线压到底后焊锡,再剪边PIN,以减少整个变压器的宽度。 C 横式(卧式,BOBBIN之缠法:约缠2-3圈疏绕,不要压到底以免焊锡时烫伤BOBBIN 注:如果产品有宽度限制且规格紧必须将缠线部分剪短时为特例,此时即必须将缠线尽量压到底。 3套管一般套管之位置规则: A 外部:套管未端与PIN之距离愈短愈好,但切记绝对不可将套管缠在PIN上会造成空焊现象。 B 内部:a无边墙配合,平贴BOBBIN约1/2L的长度 B有边墙配合,套管一定要在档墙内。 档墙胶带(margin tape)其宽度及材料不可任意更换,因为在设计变压器时其宽度及材质都是涉及安规需特别注意。档墙胶带之宽度:一般需与绕线绕组的高度等高,以防止在绕线时铜线叠在假墙上,但如果因装core困难时有时会包约1/2-3/4的高度,但以绕线不叠在假墙为原则. 技巧: 有时因出入线粗又有套管时如果会影响其厚度时可采用跳过引出线的做法,此时要特别注意套管的位置,一定要有足够安全距离(深入假墙之宽度) 此点一定要深入假墙内有时因假墙缺口较大时或铜箔与M/F并绕时,无明显判别是否深入假墙或线上M/T时必须选用

20170502-开关电源中的变压器隔离驱动电路(一)

开关电源中的变压器隔离驱动电路(一) 普高(杭州)科技开发有限公司 张兴柱 博士 图1是非常常用的隔离驱动电路,其原边类似于正激变换器中的接法,第三绕组c N 和 (gs V 图1: 隔离驱动电路#1 二极管c D 串联用来对原边激磁电感的去磁,一般情况下,可选择p c N N =,且将c N 和p N 双股并绕。副边绕组s N 与二极管2D 、三极管2Q 及3R 、4R 来恢复原边驱动信号的波形,并实现隔离,其中调节4R 的大小,可以调节隔离驱动信号的驱动能力,2Q 与3R 的作用是保证MOSFET S1在断开瞬间,其门源电荷上电压的快速放电,以便提高 S1的关断速度。5R 与1ZD 则是用来保护S1免受损坏的两个元件,加5R 后,可避免在控制电路还没有工作,功率级已经加电时因S1的DG 电容和GS 电容所引起的 S1之误导通及相应的损坏,其阻值可选为5K~50K ;加ZD2是用来保证各种动态下S1的GS 电压不会超过其规定的最大值,以避免S1的门源损坏,其稳压值可取18V 左右。原边的Q1既可用MOSFET ,也可用三极管,电阻1R 和2R 的选择比较容易,在Q1用MOSFET 时,1R 可取几十到数百殴姆,2R 可取几千殴姆。 上述隔离驱动电路在p c N N =时,能隔离的驱动信号,其最大占空比要小于0.5,否则其变压器会因为伏秒不平衡而饱和。所以这种隔离驱动电路多用在二极管去磁双正激变换器和对称驱动半桥变换器中。如前面所说的,隔离驱动变压器的设计可先按原则选好铁芯的材料和铁芯的形状及尺寸,然后按下面的公式计算匝数: 8_max 10×?×= s c s cc p f BA V D N (匝) 其中:r B B B ?=?max ,sat B B

LED驱动变压器设计计算公式

LF-GOE100YA0920A电源设计计算书 电源的主要特性及功能描述; 输入电压范围AC90V~AC305V,额定输入电压范围AC100V~AC277V. 输入电源工作频率47Hz~63Hz,额定输入频率50Hz~60Hz. 输出功率 112W,额定输出DC90V~DC120V @ 0.92A 开路输出电压:小于135V,短路输入功率:小于15W. 效率:90V ac input 大于87%,220V ac input 大于89%,277V ac input 大于90%. 输出纹波:在输入电压范围内,纹波电压小于1.2V, 其它功能附详细的规格书. 电源的相关参数设计计算如下: 1.对于电源工作保险丝的选定 Po(max)= 126V *0.92A*1.05=121.716W(输出电压电流按照规格书的额定输出的上限计算). Pin(max)= Po(max)/Eff =121.716W / 0.80=152.145W(按照电源起动到PFC电压还没升起来的这段时间的效率并适当取低一点点进行计算,否则,频繁的开关机有可能会冲坏保险丝). Iin rms(max)= Pin(max)/ Vin(min)= 152.145W/75V=2.029A (最小输入电压根据电源的最低起动电压计算,这款电源设定最低起机电压为75V,允许电源在最低起机电压下带额定负载起机) 考虑到电路中PFC校正值并不是完整的1,需要除以0.99的功率因素,以及查相关的保险丝的图表所得,在最高工作环境温度65度时,需扣除0.8的过热等因素引起的加速熔断的折扣率,再除以安规要求的0.75的折扣率,即保险丝因选择: 2.029A /0.99/0.8/0.75= 3.416A. 由于PFC+PWM两极架构的电源开机讯间的输入浪涌电流非常大,加热敏电阻后也能达到近80A,由此保险丝需选择大于3.416A的高分断能力的慢断型。 再考虑到这款LED电源是使用在室外的路灯上,需要承受较多且较大的雷击,按照规格要求是线对线打4KV,需选择耐4KV以上雷击的保险丝。 综合以上对此款产品的保险丝最小应选择AC300V 5A慢断型保险丝。 2. 桥堆的选定: 依据前面的计算知道,电源的最大输入功率为152.145W,最大输入RMS电流是2.029A,(最低输入电压频繁开关机,输出带满负载工作,此时PFC电路还没开始工作) 桥堆输出最低直流电压:DC(min)=AC75V * 1.35=DC101.25V.(输入电压降额到AC75V,全波整流后的输出最大电压为输入的有效电压乘以根号2,但是随着输出带负载越大这个系数将会越低,这里取 1.35,这个值不可以按照PFC上的输出电压进行计算,因为起机的时候PFC还没有开始工作,如果按 照工作以后PFC上的电压进行计算,那当电源频繁的开关机动作的时候,桥堆将会被电流冲坏)。 输入功率除以桥堆后的输出DC电压就得到了桥堆的输出平均电流: 152.145W/101.25V=1.5027A.. 一般二极管类的元器件,考虑工作峰值电流的冲击,热损耗及高环境温度下工作等因素,这里按照输出平均电流的三倍进行取值。 得:1.5027A*3=4.508A,由于5A的桥堆不常见,这里直接取6A的桥堆。 6A GBU桥堆的current duration curve.

功率MOSFET管驱动变压器设计

功率MOSFET管驱动变压器设计 [导读]摘要:对具有驱动变压器的功率MOSFET管驱动电路的动态过程进行了分析,推导了驱动变压器设计参数的计算方法,定量分析了变压器漏感和电路杂散电感对开通过程的影响,并通过仿真和试验证了这套计 算方法的正确性。 1 引言 作为开关电源的开关器件,功率MOSFET管具有开关速度快、工作频率高的特点,适用于高频开关电路。此外,在并联使用时,于MOSFET管具有正温度系数,可以自动均流,无需均流电路,方便扩流,这也是目前其他功率开关器件不可替代的优点[1]。 为了加速开通,减少损耗,对MOSFET管的驱动电路的基本要求是内阻要小,驱动电压尽量高;为了加速关断,应给输入电容提供低阻放电通道;为了抑制高频振荡,栅极引线尽量短,减少线路分布参数;为了防止静电感应导致栅极电压上升引起误导通,栅极不允许开路,大功率MOSFET管截止时,栅极最好施加负电压[2]。 MOSFET管的驱动电路有多种形式,可以用TTL电平直接驱动,但更多采用隔离驱动,在驱动信号输出端与MOSFET 管栅极之间用光耦或磁耦实现与主电路电隔离。

驱动变压器是常用的磁耦元件,起到传输驱动信号和功率的作用。设计合理的驱动变压器,不仅可以提高MOSFET 管开关性能,而且体积小、重量轻,成本低。 2 MOSFET管内部电容与变压器驱动栅极电路内部电容 MOSFET管内部电容,也称极间电容,是栅极、源极、漏极之间的寄生电容。开关电源最常用N沟道增强型MOSFET 管[3],内部电容分别为:栅-源极间电容Cgs,栅-漏极间电容Cgd,漏-源极间电容Cds,如图1[1,3]。 与漏-源短路条件下小信号输入电容Ciss的关系: C i s s =C gs +C gd (1) 与栅-源短路条件下小信号输出电容Coss的关系: C o s s =C

相关文档
最新文档