时域有限差分法对平面TE波的MATLAB仿真

时域有限差分法对平面TE波的MATLAB仿真
时域有限差分法对平面TE波的MATLAB仿真

有限差分法求解偏微分方程MATLAB教学教材

有限差分法求解偏微分方程M A T L A B

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程姓名:罗晨 学号: 115104000545 成绩: 有限差分法求解偏微分方程

一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程: 22(,)()u u f x t t x αα??-=??其中为常数 具体求解的偏微分方程如下: 22001 (,0)sin()(0,)(1,)00 u u x t x u x x u t u t t π???-=≤≤?????? =??? ==≥??? 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析; 4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2 100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+- (2-1) 求解区域的网格划分步长参数如下:

时域有限差分法(FDTD算法)的基本原理及仿真之令狐文艳创作

时域有限差分法(FDTD算法) 令狐文艳 时域有限差分法是1966年K.S.Yee发表在AP上的一篇论文建立起来的,后被称为Yee网格空间离散方式。这种方法通过将Maxwell旋度方程转化为有限差分式而直接在时域求解, 通过建立时间离散的递进序列, 在相互交织的网格空间中交替计算电场和磁场。 FDTD算法的基本思想是把带时间变量的Maxwell旋度方程转化为差分形式,模拟出电子脉冲和理想导体作用的时域响应。需要考虑的三点是差分格式、解的稳定性、吸收边界条件。有限差分通常采用的步骤是:采用一定的网格划分方式离散化场域;对场内的偏微分方程及各种边界条件进行差分离散化处理,建立差分格式,得到差分方程组;结合选定的代数方程组的解法,编制程序,求边值问题的数值解。 1.FDTD的基本原理 FDTD方法由Maxwell旋度方程的微分形式出发,利用二阶精度的中心差分近似,直接将微分运算转换为差分运算,这样达到了在一定体积内和一段时间上对连续电磁场数据的抽样压缩。 Maxwell方程的旋度方程组为:

E E H σε+??=??t H H E m t σμ-??-=??(1) 在直角坐标系中,(1)式可化为如下六个标量方程: ???????????+??=??-??+??=??-??+??=??-??z z x y y y z x x x y z E t E y H x H E t E x H z H E t E z H y H σεσεσε, ???????????-??-=??-??-??-=??-??-??-=??-??z m z x y y m y z x x m x y z H t H y E x E H t H x E z E H t H z E y E σμσμσμ (2) 上面的六个偏微分方程是FDTD 算法的基础。 Yee 首先在空间上建立矩形差分网格,在时刻t n ?时刻, F(x,y,z)可以写成 ),,(),,,(),,,(k j i F t n z k y j x i F t z y x F n =????=(3) 用中心差分取二阶精度: 对空间离散: 对时间离散: ()[] 2211),,(),,() ,,,(t O t k j i F k j i F t t z y x F n n t n t ?+?-≈??-+?=(4) Yee 把空间任一网格上的E 和H 的六个分量,如下图放置: 图1 Yee 氏网格及其电磁场分量分布 在FDTD 中,空间上连续分布的电磁场物理量离散的空 间排布如图所示。由图可见,电场和磁场分量在空间交叉 放置,各分量的空间相对位置也适合于Maxwell 方程的差 分计算,能够恰当地描述电磁场的传播特性。同时,电场 和磁场在时间上交替抽样,抽样时间间隔相差半个时间

时域有限差分法的Matlab仿真

时域有限差分法的Matlab仿真 关键词: Matlab 矩形波导时域有限差分法 摘要:介绍了时域有限差分法的基本原理,并利用Matlab仿真,对矩形波导谐振腔中的电磁场作了模拟和分析。 关键词:时域有限差分法;Matlab;矩形波导;谐振腔 目前,电磁场的时域计算方法越来越引人注目。时域有限差分(Finite Difference Time Domain,FDTD)法[1]作为一种主要的电磁场时域计算方法,最早是在1966年由K. S. Yee提出的。这种方法通过将Maxwell旋度方程转化为有限差分式而直接在时域求解,通过建立时间离散的递进序列,在相互交织的网格空间中交替计算电场和磁场。经过三十多年的发展,这种方法已经广泛应用到各种电磁问题的分析之中。 Matlab作为一种工程仿真工具得到了广泛应用[2]。用于时域有限差分法,可以简化编程,使研究者的研究重心放在FDTD法本身上,而不必在编程上花费过多的时间。 下面将采用FDTD法,利用Matlab仿真来分析矩形波导谐振腔的电磁场,说明了将二者结合起来的优越性。 1FDTD法基本原理 时域有限差分法的主要思想是把Maxwell方程在空间、时间上离散化,用差分方程代替一阶偏微分方程,求解差分方程组,从而得出各网格单元的场值。FDTD 空间网格单元上电场和磁场各分量的分布如图1所示。 电场和磁场被交叉放置,电场分量位于网格单元每条棱的中心,磁场分量位于网格单元每个面的中心,每个磁场(电场)分量都有4个电场(磁场)分量环绕。这样不仅保证了介质分界面上切向场分量的连续性条件得到自然满足,而且

还允许旋度方程在空间上进行中心差分运算,同时也满足了法拉第电磁感应定律和安培环路积分定律,也可以很恰当地模拟电磁波的实际传播过程。 1.1Maxwell方程的差分形式 旋度方程为: 将其标量化,并将问题空间沿3个轴向分成若干网格单元,用Δx,Δy和Δz 分别表示每个网格单元沿3个轴向的长度,用Δt表示时间步长。网格单元顶点的坐标(x,y,z)可记为: 其中:i,j,k和n为整数。 同时利用二阶精度的中心有限差分式来表示函数对空间和时间的偏导数,即可得到如下FDTD基本差分式: 由于方程式里出现了半个网格和半个时间步,为了便于编程,将上面的差分式改写成如下形式:

各大仿真软件介绍

各大仿真软件介绍(包括算法,原理) 随着无线和有线设计向更高频率的发展和电路复杂性的增加,对于高频电磁场的仿真,由于忽略了高阶传播模式而引起仿真的误差。另外,传统模式等效电路分析方法的限制,与频率相关电容、电感元件等效模型而引起的误差。例如,在分析微带线时,许多易于出错的无源模式是由于微带线或带状线的交叉、阶梯、弯曲、开路、缝隙等等,在这种情况下是多模传输。为此,通常采用全波电磁仿真技术去分析电路结构,通过电路仿真得到准确的非连续模式S参数。这些EDA仿真软件与电磁场的数值解法密切相关的,不同的仿真软件是根据不同的数值分析方法来进行仿真的。通常,数值解法分为显示和隐示算法,隐示算法(包括所有的频域方法)随着问题的增加,表现出强烈的非线性。显示算法(例如FDTD、FIT方法在处理问题时表现出合理的存储容量和时间。本文根据电磁仿真工具所采用的数值解法进行分类,对常用的微波EDA仿真软件进行论述。2.基于矩量法仿真的微波EDA仿真软件基于矩量法仿真的EDA 软件主要包括A D S(Advanced Design System)、Sonnet电磁仿真软件、IE3D和Microwave office。 2.1ADS仿真软件Agilent ADS(Advanced Design System)软件是在HP EESOF系列EDA软件基础上发展完善起来的大型综合设计软件,是美国安捷伦公司开发的大型综合设计软件,是为系统和电路工程师提供的可开发各种形式的射频设计,对于通信和航天/防御的应用,从最简单到最复杂,从离散射频/微波模块到集成MMIC。从电路元件的仿真,模式识别的提取,新的仿真技术提供了高性能的仿真特性。该软件可以在微机上运行,其前身是工作站运行的版本MDS(Microwave Design System)。该软件还提供了一种新的滤波器的设计引导,可以使用智能化的设计规范的用户界面来分析和综合射频/微波回路集总元滤波器,并可提供对平面电路进行场分析和优化功能。它允许工程师定义频率范围,材料特性,参数的数量和根据用户的需要自动产生关键的无源器件模式。该软件范围涵盖了小至元器件,大到系统级的设计和分析。尤其是其强大的仿真设计手段可在时域或频域内实现对数字或模拟、线性或非线性电路的综合仿真分析与优化,并可对设计结果进行成品率分析与优化,从而大大提高了复杂电路的设计效率,使之成为设计人员的有效工具[6-7]。2.2Sonnet仿真软件Sonnet是一种基于矩量法的电磁仿真软件,提供面

各种BP学习算法MATLAB仿真

3.3.2 各种BP学习算法MATLAB仿真 根据上面一节对BP神经网络的MATLAB设计,可以得出下面的通用的MATLAB程序段,由于各种BP学习算法采用了不同的学习函数,所以只需要更改学习函数即可。 MATLAB程序段如下: x=-4:0.01:4; y1=sin((1/2)*pi*x)+sin(pi*x); %trainlm函数可以选择替换 net=newff(minmax(x),[1,15,1],{'tansig','tansig','purelin'},'trainlm'); net.trainparam.epochs=2000; net.trainparam.goal=0.00001; net=train(net,x,y1); y2=sim(net,x); err=y2-y1; res=norm(err); %暂停,按任意键继续 Pause %绘图,原图(蓝色光滑线)和仿真效果图(红色+号点线) plot(x,y1); hold on plot(x,y2,'r+'); 注意:由于各种不确定因素,可能对网络训练有不同程度的影响,产生不同的效果。如图3-8。 标准BP算法(traingd)

图3-8 标准BP算法的训练过程以及结果(原图蓝色线,仿真图+号线)增加动量法(traingdm) 如图3-9。 图3-9 增加动量法的训练过程以及结果(原图蓝色线,仿真图+号线)弹性BP算法(trainrp)如图3-10 图3-10 弹性BP算法的训练过程以及结果(原图蓝色线,仿真图+号线)

动量及自适应学习速率法(traingdx)如图3-11。 图3-11 动量及自适应学习速率法的训练过程以及结果(原图蓝色线,仿真图+号线)共轭梯度法(traincgf)如图3-12。

时域有限差分法发展综述

时域有限差分法发展综述 潘忠 摘要:时域有限差分法(FDTD)是解决复杂电磁问题的有效方法之一,目前FDTD 法的许多重要问题得到了很好的解决,已经发展成为一种成熟的数值计算方法。随着计算机数据处理性能的快速提高和计算机价格的下降,使得FDTD法的应用范围越来越广,而FDTD法本身在应用中又有新的发展.本文介绍并分析了时域有限差分法,对各种条件的应用进行了比较和分析,给出了具有一定参考价值的结论。 关键词:时域有限差分法;研究与发展;比较;分析 A Summary of FDTD and Development at Home and Abroad Zhong Pan Abstract: The finite difference time-domain (FDTD) method is one of the most effective methods to solve electromagnetic problems. Many important questions of FDTD method have been solved well through many scientists’ effort. Now, FDTD method is a mature numerical method. Especially in few years, the range of using FDTD method is becoming wider and wider because of the faster data processing and processing and cheaper price of computer. FDTD method has also been developed during using. FDTD method is introduced and discussed in this paper. The applications of various conditions are compared and analyzed. Finally, some valuable conclusions are drawn. Key words: FDTD; Research and Development; Comparison; Analysis 1966年,K.S.Yee首次提出电磁场数值计算的新方法—时域有限差分法(Finite Difference- Time Domain,简称FDTD)。经历了二十年的发展FDTD法才逐渐走向成熟。上世纪80年代后期以来FDTD法进入了一个新的发展阶段,即由成熟转为被广泛接受和应用的阶段。FDTD法是解决复杂问题的有效方法之一,是一种直接基于时域电磁场微分方程的数值算法,它直接在时域将Maxwell旋度方程用二阶精度的中心差分近似,从而将时域微分方程的求解转换为差分方程的迭代求解。是电磁场和电磁波运动规律和运动过程的计算机模拟。原则上可以求解任意形式的电磁场和电磁波的技术和工程问题,并且对计算机内存容量要求较低、计算速度较快、尤其适用于并行算法。现在FDTD法己被广泛应用于天线的分析与设计、目标电磁散射、电磁兼容、微波电路和光路时域分析、生物电磁剂量学、瞬态电磁场研究等多个领域。

有限差分法求解偏微分方程MATLAB

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程姓名:罗晨 学号: 成绩: 有限差分法求解偏微分方程

一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程: 22(,)()u u f x t t x αα??-=??其中为常数 具体求解的偏微分方程如下: 22001 (,0)sin()(0,)(1,)00 u u x t x u x x u t u t t π???-=≤≤?????? =??? ==≥??? 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析; 4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+- (2-1) 求解区域的网格划分步长参数如下:

科技写作结课作业(时域有限差分法的Matlab仿真开题报告)

开题报告 论文题目:基于matlab的时域有限差分法的电磁仿真研究(10分) 学院:电气工程及其自动化学院学号:1103000105姓名:__杨志刚___ 一、论文选题的目的和意义(300字以内;15分) 时域有限差分法,因具有多种优点被运用到电磁场理论研究的各个方面,而且其使用成效和应用领域还在迅速扩大和提高,在现代电磁场理论研究中具有很大的重要性和很强的可操作性。但是同时这种方法也存在一定的缺陷,主要表现在对无边界问题需要吸收边界条件处理,有色散误差,消耗内存大等方面。本课题在利用时域有限差分法对一些实际的算例进行实验仿真和验证,同时对这种方法在解决实际问题的缺陷进行一定程度的研究和分析。 Matlab作为一种工程仿真工具得到了广泛应用。用于时域有限差分法,可以简化编程,使研究者的研究重心放在FDTD法本身上,而不必在编程上花费过多的时间。 二、国内外关于该论题的研究现状和发展趋势(500字以内;15分) 时域有限差分方法作为一种典型的全波时域分析方法,因其原理直观、编程简便、实用性强在目前的计算电磁学领域内被人们广泛深入地研究,并取得巨大应用成功的方法。时域数值技术的一个突出优点是可以给出关于问题空间的丰富的时域信息,而且经过简单的时频变换,即可得到宽带范围的频域信息,相对频域方法显著地节约了计算量。最近几十年,是电磁场数值计算时域技术蓬勃发展的时期,各具优势和特色的新颖时域算法层出不穷。 但是到目前为止国内关于时域有限差分法中的PML 算法文献较少,其中绝大多数文献集中在综述和应用方面。而在国际的学报和杂志上对于这方面的文献非常多。时域有限差分法经过了三十年多年的高速发展之后,仍然还是计算电磁学制高点的研究热潮,而且其应用的范围和成效还在迅速的扩大和提高。本课题正是利用时域有限差分法的基础理论,利用matlab对一些实际的电磁场问题进行仿真研究。 三、论文的主攻方向、主要内容、研究方法及技术路线(1000字左右;40分) 通过对时域有限差分法理解基础之上,利用matlab仿真软件按照这种方法编程,实现对三种情况下的电磁场情况的仿真研究。

内点法matlab仿真doc资料

编程方式实现: 1.惩罚函数 function f=fun(x,r) f=x(1,1)^2+x(2,1)^2-r*log(x(1,1)-1); 2.步长的函数 function f=fh(x0,h,s,r) %h为步长 %s为方向 %r为惩罚因子 x1=x0+h*s; f=fun(x1,r); 3. 步长寻优函数 function h=fsearchh(x0,r,s) %利用进退法确定高低高区间,利用黄金分割法进行求解h1=0;%步长的初始点 st=0.001; %步长的步长 h2=h1+st; f1=fh(x0,h1,s,r); f2=fh(x0,h2,s,r); if f1>f2 h3=h2+st; f3=fh(x0,h3,s,r); while f2>f3 h1=h2; h2=h3; h3=h3+st; f2=f3; f3=fh(x0,h3,s,r); end else st=-st; v=h1; h1=h2; h2=v; v=f1; f1=f2; f2=v; h3=h2+st; f3=fh(x0,h3,s,r); while f2>f3 h1=h2; h2=h3; h3=h3+st; f2=f3;

f3=fh(x0,h3,s,r); end end %得到高低高的区间 a=min(h1,h3); b=max(h1,h3); %利用黄金分割点法进行求解 h1=1+0.382*(b-a); h2=1+0.618*(b-a); f1=fh(x0,h1,s,r); f2=fh(x0,h2,s,r); while abs(a-b)>0.0001 if f1>f2 a=h1; h1=h2; f1=f2; h2=a+0.618*(b-a); f2=fh(x0,h2,s,r); else b=h2; h2=h1; f2=f1; h1=a+0.382*(b-a); f1=fh(x0,h1,s,r); end end h=0.5*(a+b); 4. 迭代点的寻优函数 function f=fsearchx(x0,r,epson) x00=x0; m=length(x0); s=zeros(m,1); for i=1:m s(i)=1; h=fsearchh(x0,r,s); x1=x0+h*s; s(i)=0; x0=x1; end while norm(x1-x00)>epson x00=x1; for i=1:m s(i)=1; h=fsearchh(x0,r,s);

LED-FDTD LED时域有限差分方法

Efficiency enhancement of homoepitaxial InGaN/GaN light-emitting diodes on free-standing GaN substrate with double embedded SiO2 photonic crystals Tongbo Wei,* Ziqiang Huo, Yonghui Zhang, Haiyang Zheng, Yu Chen, Jiankun Yang, Qiang Hu, Ruifei Duan, Junxi Wang, Yiping Zeng, and Jinmin Li Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China *tbwei@https://www.360docs.net/doc/4e6200723.html, Abstract: Homoepitaxially grown InGaN/GaN light emitting diodes (LEDs) with SiO2 nanodisks embedded in n-GaN and p-GaN as photonic crystal (PhC) structures by nanospherical-lens photolithography are presented and investigated. The introduction of SiO2 nanodisks doesn’t produce the new dislocations and doesn’t also result in the electrical deterioration of PhC LEDs. The light output power of homoepitaxial LEDs with embedded PhC and double PhC at 350 mA current is increased by 29.9% and 47.2%, respectively, compared to that without PhC. The corresponding light radiation patterns in PhC LEDs on GaN substrate show a narrow beam shape due to strong guided light extraction, with a view angle reduction of about 30°. The PhC LEDs are also analyzed in detail by finite-difference time-domain simulation (FDTD) to further reveal the emission characteristics. ?2014 Optical Society of America OCIS codes: (230.0230) Optical devices; (230.3670) Light-emitting diodes; (160.5298) Photonic crystals; (220.4241) Nanostructure fabrication. References and links 1. B. Monemar and B. E. Sernelius, “Defect related issues in the “current roll-off” in InGaN based light emitting diodes,” Appl. Phys. Lett. 91(18), 181103 (2007). 2. G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, “Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies,” J. Appl. Phys. 114(7), 071101 (2013). 3. K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, and K. Katayama, “Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates,” J. Appl. Phys. 101(3), 033104 (2007). 4. Y. Yang, X. A. Cao, and C. H. Yan, “Rapid efficiency roll-off in high-quality green light-emitting diodes on freestanding GaN substrates,” Appl. Phys. Lett. 94(4), 041117 (2009). 5. C.-L. Chao, R. Xuan, H.-H. Yen, C.-H. Chiu, Y.-H. Fang, Z.-Y. Li, B.-C. Chen, C.-C. Lin, C.-H. Chiu, Y.-D. Guo, J.-F. Chen, and S.-J. Cheng, “Reduction of Efficiency Droop in InGaN Light-Emitting Diode Grown on Self-Separated Freestanding GaN Substrates,” IEEE Photon. Technol. Lett. 23(12), 798–800 (2011). 6. M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, and M. R. Krames, “Bulk GaN based violet light-emitting diodes with high efficiency at very high current density,” Appl. Phys. Lett. 101(22), 223509 (2012). 7. X. A. Cao, S. F. LeBoeuf, M. P. D’Evelyn, S. D. Arthur, J. Kretchmer, C. H. Yan, and Z. H. Yang, “Blue and near-ultraviolet light-emitting diodes on free-standing GaN substrates,” Appl. Phys. Lett. 84(21), 4313 (2004). 8. Y. J. Zhao, J. Sonoda, C.-C. Pan, S. Brinkley, I. Koslow, K. Fujito, H. Ohta, S. P. DenBaars, and S. Nakamura, “30-mW-class high-power and high-efficiency blue (1011) semipolar InGaN/GaN light-emitting diodes obtained by backside roughening technique,” Appl. Phys. Express 3, 102101 (2010). 9. Y.-K. Fu, B.-C. Chen, Y.-H. Fang, R.-H. Jiang, Y.-H. Lu, R. Xuan, K.-F. Huang, C.-F. Lin, Y.-K. Su, J.-F. Chen, and C.-Y. Chang, “Study of InGaN-based light-emitting diodes on a roughened backside GaN substrate by a chemical wet-etching process,” IEEE Photon. Technol. Lett. 23(19), 1373–1375 (2011). #209568 - $15.00 USD Received 4 Apr 2014; revised 23 May 2014; accepted 26 May 2014; published 2 Jun 2014 (C) 2014 OSA30 June 2014 | Vol. 22, No. S4 | DOI:10.1364/OE.22.0A1093 | OPTICS EXPRESS A1093

一维导热方程 有限差分法 matlab实现

第五次作业(前三题写在作业纸上) 一、用有限差分方法求解一维非定常热传导方程,初始条件和边界条件见说明.pdf 文件,热扩散系数α=const , 22T T t x α??=?? 1. 用Tylaor 展开法推导出FTCS 格式的差分方程 2. 讨论该方程的相容性和稳定性,并说明稳定性要求对求解差分方程的影响。 3. 说明该方程的类型和定解条件,如何在程序中实现这些定解条件。 4. 编写M 文件求解上述方程,并用适当的文字对程序做出说明。(部分由网络搜索得到,添加,修改后得到。) function rechuandaopde %以下所用数据,除了t 的范围我根据题目要求取到了20000,其余均从pdf 中得来 a=0.00001;%a 的取值 xspan=[0 1];%x 的取值范围 tspan=[0 20000];%t 的取值范围 ngrid=[100 10];%分割的份数,前面的是t 轴的,后面的是x 轴的 f=@(x)0;%初值 g1=@(t)100;%边界条件一 g2=@(t)100;%边界条件二 [T,x,t]=pdesolution(a,f,g1,g2,xspan,tspan,ngrid);%计算所调用的函数 [x,t]=meshgrid(x,t); mesh(x,t,T);%画图,并且把坐标轴名称改为x ,t ,T xlabel('x') ylabel('t') zlabel('T') T%输出温度矩阵 dt=tspan(2)/ngrid(1);%t 步长 h3000=3000/dt;

h9000=9000/dt; h15000=15000/dt;%3000,9000,15000下,温度分别在T矩阵的哪些行T3000=T(h3000,:) T9000=T(h9000,:) T15000=T(h15000,:)%输出三个时间下的温度分布 %不再对三个时间下的温度-长度曲线画图,其图像就是三维图的截面 %稳定性讨论,傅里叶级数法 dx=xspan(2)/ngrid(2);%x步长 sta=4*a*dt/(dx^2)*(sin(pi/2))^2; if sta>0,sta<2 fprintf('\n%s\n','有稳定性') else fprintf('\n%s\n','没有稳定性') error end %真实值计算 [xe,te,Te]=truesolution(a,f,g1,g2,xspan,tspan,ngrid); [xe,te]=meshgrid(xe,te); mesh(xe,te,Te);%画图,并且把坐标轴名称改为xe,te,Te xlabel('xe') ylabel('te') zlabel('Te') Te%输出温度矩阵 %误差计算 jmax=1/dx+1;%网格点数 [rms]=wuchajisuan(T,Te,jmax) rms%输出误差

PID控制算法的matlab仿真

PID 控制算法的matlab 仿真 PID 控制算法就是实际工业控制中应用最为广泛的控制算法,它具有控制器设计简单,控制效果好等优点。PID 控制器参数的设置就是否合适对其控制效果具有很大的影响,在本课程设计中一具有较大惯性时间常数与纯滞后的一阶惯性环节作为被控对象的模型对PID 控制算法进行研究。被控对象的传递函数如下: ()1d s f Ke G s T s τ-= + 其中各参数分别为30,630,60f d K T τ===。MATLAB 仿真框图如图1所示。 图1 2 具体内容及实现功能 2、1 PID 参数整定 PID 控制器的控制参数对其控制效果起着决定性的作用,合理设置控制参数就是取得较好的控制效果的先决条件。常用的PID 参数整定方法有理论整定法与实验整定法两类,其中常用的实验整定法由扩充临界比例度法、试凑法等。在此处选用扩充临界比例度法对PID 进行整定,其过程如下: 1) 选择采样周期 由于被控对象中含有纯滞后,且其滞后时间常数为 60d τ=,故可选择采样周期1s T =。 2) 令积分时间常数i T =∞,微分时间常数0d T =,从小到大调节比例系数K , 使得系统发生等幅震荡,记下此时的比例系数k K 与振荡周期k T 。 3) 选择控制度为 1.05Q =,按下面公式计算各参数:

0.630.490.140.014p k i k d k s k K K T T T T T T ==== 通过仿真可得在1s T =时,0.567,233k k K T ==,故可得: 0.357,114.17,32.62, 3.262p i d s K T T T ==== 0.0053.57 p s i i p d d s K T K T K T K T === = 按此组控制参数得到的系统阶跃响应曲线如图2所示。 01002003004005006007008009001000 0.20.40.60.811.21.41.6 1.8 图2 由响应曲线可知,此时系统虽然稳定,但就是暂态性能较差,超调量过大,且响应曲线不平滑。根据以下原则对控制器参数进行调整以改善系统的暂态过程: 1) 通过减小采样周期,使响应曲线平滑。 2) 减小采样周期后,通过增大积分时间常数来保证系统稳定。 3) 减小比例系数与微分时间常数,以减小系统的超调。 改变控制器参数后得到系统的阶跃响应曲线如图3所示,系统的暂态性能得到明显改善、

时域有限差分法(姚伟)介绍

伊犁师范学院硕士研究生 ————期末考核 科目:电磁波有限时域差分方法 姓名:姚伟 学号:1076411203009 学院:电子与信息工程学院 专业:无线电物理

时域有限差分法 1 选题背景 在多种可用的数值方法中,时域有限差分法(FDTD)是一种新近发展起来的可选方法。1966年,K.S.Yee 首次提出电磁场数值计算的新方法—时域有限差分法(Finite Difference- Time Domain ,简称FDTD)。经历了二十年的发展FDTD 法才逐渐走向成熟。上世纪80年代后期以来FDTD 法进入了一个新的发展阶段,即由成熟转为被广泛接受和应用的阶段。FDTD 法是解决复杂问题的有效方法之一,是一种直接基于时域电磁场微分方程的数值算法,它直接在时域将Maxwell 旋度方程用二阶精度的中心差分近似,从而将时域微分方程的求解转换为差分方程的迭代求解。是电磁场和电磁波运动规律和运动过程的计算机模拟。原则上可以求解任意形式的电磁场和电磁波的技术和工程问题,并且对计算机内存容量要求较低、计算速度较快、尤其适用于并行算法。现在FDTD 法己被广泛应用于天线的分析与设计、目标电磁散射、电磁兼容、微波电路和光路时域分析、生物电磁剂量学、瞬态电磁场研究等多个领域[1]。 2 原理分析 2.1 FDTD 的Yee 元胞 E,H 场分量取样节点在空间和时间上采取交替排布,利用电生磁,磁生电的原理 t t ??=??=??E D H ε t t ??-=??-=??H B E μ 图1 Yee 模型 如图1所示,Yee 单元有以下特点[2]: 1)E 与H 分量在空间交叉放置,相互垂直;每一坐标平面上的E 分量四周由H 分量环绕,H 分量的四周由E 分量环绕;场分量均与坐标轴方向一致。 2)每一个Yee 元胞有8个节点,12条棱边,6个面。棱边上电场分量近似相等,用棱边的中心节点表示,平面上的磁场分量近似相等,用面的中心节点表示。 3)每一场分量自身相距一个空间步长,E 和H 相距半个空间步长 4)每一场分量自身相距一个时间步长,E 和H 相距半个时间步长,电场取n 时刻的值,磁场取n+0.5时刻的值;即:电场n 时刻的值由n-1时刻的值得到,磁场n+0.5时刻的值由n-0.5时刻的值得到;电场n 时刻的旋度对应n+0.5时刻的磁场值,磁场n+0.5时刻的

有限差分法的Matlab程序(椭圆型方程)

有限差分法的Matlab程序(椭圆型方程) function FD_PDE(fun,gun,a,b,c,d) % 用有限差分法求解矩形域上的Poisson方程 tol=10^(-6); % 误差界 N=1000; % 最大迭代次数 n=20; % x轴方向的网格数 m=20; % y轴方向的网格数 h=(b-a)/n; % x轴方向的步长 l=(d-c)/m; % y轴方向的步长 for i=1:n-1 x(i)=a+i*h; end % 定义网格点坐标 for j=1:m-1 y(j)=c+j*l; end % 定义网格点坐标 u=zeros(n-1,m-1); %对u赋初值 % 下面定义几个参数 r=h^2/l^2; s=2*(1+r); k=1; % 应用Gauss-Seidel法求解差分方程 while k<=N % 对靠近上边界的网格点进行处理 % 对左上角的网格点进行处理 z=(-h^2*fun(x(1),y(m-1))+gun(a,y(m-1))+r*gun(x(1),d)+r*u(1,m-2)+u(2,m-1))/s; norm=abs(z-u(1,m-1)); u(1,m-1)=z; % 对靠近上边界的除第一点和最后点外网格点进行处理 for i=2:n-2 z=(-h^2*fun(x(i),y(m-1))+r*gun(x(i),d)+r*u(i,m-2)+u(i+1,m-1)+u(i-1,m-1))/s; if abs(u(i,m-1)-z)>norm; norm=abs(u(i,m-1)-z); end u(i,m-1)=z; end % 对右上角的网格点进行处理 z=(-h^2*fun(x(n-1),y(m-1))+gun(b,y(m-1))+r*gun(x(n-1),d)+r*u(n-1,m-2)+u(n-2,m-1))/s; if abs(u(n-1,m-1)-z)>norm norm=abs(u(n-1,m-1)-z); end u(n-1,m-1)=z; % 对不靠近上下边界的网格点进行处理 for j=m-2:-1:2 % 对靠近左边界的网格点进行处理

实验一 典型环节的MATLAB仿真汇总

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、SIMULINK 的使用 MATLAB 中SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包。利用SIMULINK 功能模块可以快速的建立控制系统的模型,进行仿真和调试。 1.运行MATLAB 软件,在命令窗口栏“>>”提示符下键入simulink 命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK 仿真 环境下。 2.选择File 菜单下New 下的Model 命令,新建一个simulink 仿真环境常规模板。 3.在simulink 仿真环境下,创建所需要的系统 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G 实验处理:1)(1=s G SIMULINK 仿真模型

波形图为: 实验处理:2)(1=s G SIMULINK 仿真模型 波形图为: 实验结果分析:增加比例函数环节以后,系统的输出型号将输入信号成倍数放大. ② 惯性环节11)(1+= s s G 和15.01)(2+=s s G 实验处理:1 1 )(1+=s s G SIMULINK 仿真模型

波形图为: 实验处理:1 5.01 )(2+= s s G SIMULINK 仿真模型 波形图为: 实验结果分析:当1 1 )(1+= s s G 时,系统达到稳定需要时间接近5s,当

电磁场实验一_有限差分法的matlab实现

电磁场与电磁波实验报告 实验项目:_______有限差分法__ ____ 班级:_____ __12电子2 ____ __ 实验日期:__2014年12月23日 姓名:___ _ __陈奋裕 __ __ 学号:___ ___1215106003 _____ 组员姓名:___ _ __ __ __ 组员学号:___ ___ _____ 指导教师:_ ____张海 ______

一、实验目的及要求 1、学习有限差分法的原理与计算步骤; 2、学习用有限差分法解静电场中简单的二维静电场边值问题; 3、学习用Matlab 语言描述电磁场与电磁波中内容,用matlab 求解问题并用图形表示出了,学习matlab 语言在电磁波与电磁场中的编程思路。 二、实验内容 理论学习:学习静电场中边值问题的数值法中的优先差分法的求解知识; 实践学习:学习用matlab 语言编写有限差分法计算二维静电场边值问题; 三、实验仪器或软件 电脑(WIN7)、Matlab7.11 四、实验原理 基本思想是把连续的定解区域用有限个离散点构成的网格来代替, 这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组 , 解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 简单迭代法: 这一方法的求解过程是,先对场域内的节点赋予迭代初值(0),i j ?,这里上标(0)表示0次 (初始)近似值。然后按Laplace 方程 (k 1)(k)(k)(k)(k),1,,11,,11 []4 i j i j i j i j i j ?????+--++=+++(i,j=1,2,…) 进行反复迭代(k=0,1,2,…)。若当第N 次迭代以后,所有的内节点的相邻两次迭代值之间的最大误差不超过允许范围,即 (N)(N-1) ,,max|-|

相关文档
最新文档