(文章)立体几何中存在性问题的向量解法 2

(文章)立体几何中存在性问题的向量解法 2
(文章)立体几何中存在性问题的向量解法 2

立体几何中存在性问题的向量解法

平行、垂直、距离和角的问题是立体几何中的主要问题,而以它们为背景的探索性问题

是近年来高考数学命题创新的一个显著特点,它以其较高的新颖性、开放性、探索性和创造性深受命题者的青睐。由于此类问题涉及到的点具有运动性和不确定性,所以用传统的方法解决起来难度较大,若用向量方法处理,尤其是引入坐标表达的空间向量,通过待定系数法求解存在性问题则思路简单,解法固定,操作方便。下面,举例谈谈向量法求解立体几何探索性问题的类型和方法。

1、与位置关系有关的存在性问题

例1、如图,在底面是菱形的四棱锥P

-ABCD 中,60ABC ∠= ,PA=AC=a ,PB=PD=,点

E 在PD 上,且PE :ED=2:1。

(1)证明:PA ⊥平面ABCD ;

(2)求以AC 为棱,EAC 与DAC ;

(3)在棱PC 上是否存在一点F ,使BF//平面AEC ?证明你的结论。

(1)证明:(2)解:(略)

(3)解:由(1)知PA ⊥平面ABCD ,以A

为原点,AD 所在直线为y 轴,AP 所在直线为z 轴, 过A 点且垂直于面PAD

的直线为x 轴,建立空间直角坐标系,可知x 轴垂直平分BC 。则 1

,0)2

2

B a -

,1

,0)22

C a ,P (0,0,a )E(0,

a 32,a 31)。

设(0)P F

P C λλ=> 1

,,(1))22

F a a a λλ?-;

1

(1),(1),(1))22

BF a a λλλ∴=-+- 。

设n

=(z y x ,,)为平面AEC 的法向量。

则有:?????-=-=????=+=+????

????

==??????⊥⊥y x y z y x z y a a z y x a a z y x AC n AE n 33203020)0,21,23)(,,(0)31,32,0)(,,( 。

令1-=y 得)2,1,3

3(-=n

若BF//平面AEC ,则有

BF n BF n ⊥?=

1(

(1),

(1),(1),1,2)2

2

3

a a a λλλ∴-+--=0。

解得1(0,)2

λ=

∈+∞,此时F 为PC 的中点,)442

a a

-。

因此在棱PC 上存在一点F ,)442

a a

-,使BF//平面AEC 。 【评析】:该题是根据点F 在PC 上,巧妙地引入参数λ(即待定系数),由此引出点F

的坐标,从而把点F 的探索问题转化为对参数λ的确定,然后通过向量运算来求出λ的值,使探索问题迎刃而解。

2、与距离有关的存在性问题

例2、如图,直三棱柱111C B A ABC -中,底面是等腰直角三角形,∠ACB=90°,侧棱AA1=2,CA=2,D 是1CC 的中点,试问B A 1上是否存在一点E 使得点1A 到面AED 的距离为

63

2。

解析:以CA 、CB 、

1CC 为x 、y 、z 轴建立空间直角坐标系,则有A (2,0,0)、1A (2,0,2)、D (0,0,1)。

设E 到AB 的距离为a ,则E (2-a ,a ,2-a ),则)2,,(),1,0,2(a a a AE AD --=-=。

设向量n=(x ,y ,z )为面AED 的法向量,则有0,0=?=?n AE n AD

即??

?=-++-=+-0

)2(0

2z a ay ax z x ,

可令2,4

3,1=-=

=z a a y x 。(注:此处也可令y 、z 为常数,因为法向量不唯一)

于是)2,4

3,1(a

a n -=, 由题意可知63

2=

=

d ,解得)1,1,1(,1E a =。

所以,当点E 为B A 1的中点时,1A 到平面AED 的距离为

63

2。

【评析】:立体几何中的点面距、线面距和面面距等都可由公式d =

解决,其中

向量n 为平面的法向量,向量PQ 为该点或线(面)上任一点与平面上任意一点所构成的向量。

3、与夹角有关的存在性问题

例3、在正三棱柱ABC —A 1B 1C 1中,所有棱的长度都是2,M 是BC 边的中点,问:在侧棱CC 1上是否存在点N ,使得异面直线AB 1和MN 所成的角等于45°?

解析:以A 点为原点,建立如图9-6-5所示的空间右手直角坐标系A -xyz.;

因为所有棱长都等于2,所以A (0,0,0),C (0,

2,0),B (1,0),B 11,2),2

32

0)。

点N 在侧棱CC 1上,可设N (0,2,m )(0≤m≤2),

则1AB 1,2),MN =(2

3-,

12

,m),

于是|1AB |=2

2

,|MN |=

1

2

+m

,1AB ·

MN =2m -1。 如果异面直线AB 1和MN 所成的角等于45°,那么向量

1

AB 和MN 的夹角是45°或135°,

而cos<1AB ,MN >=1=1221

22

+?-m m ,

所以1221

22

+?-m m =±2

2。

解得m=-

4

3,这与0≤m≤2矛盾。

即在侧棱CC 1上不存在点N ,使得异面直线AB 1和MN 所成的角等于45°。

【评析】:两异面直线所成的角、直线与平面所成的角和二面角是立体几何中与角有关的主要问题,利用向量法解决此类问题可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用公式.cos 2121n n =

θ21,n n 为两直线的方向向量或为两平面的法

向量),就可以使此类问题巧妙获解。

以立体几何中探索性问题为背景的解答题(解析版)知识讲解

【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.1.以“平行、垂直、距离和角”为背景的存在判断型问题是近年来高考数学中创新型命题的一个显著特点,它以较高的新颖性、开放性、探索性和创造性深受命题者的青睐.此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由.这类问题常用“肯定顺推”的方法.求解此类问题的难点在于:涉及的点具有运动性和不确定性.所以用传统的方法解决起来难度较大,若用空间向量方法来处理,通过待定系数法求解其存在性问题,则思路简单、解法固定、操作方便.解决与平行、垂直有关的存在性问题的基本策略是:通常假定题中的数学对象存在(或结论成立),然后在这个前提下 进行逻辑推理,若能导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;若导出与条件或实际情况相矛盾的结果,则说明假设不成立,即不存在.如本题把直二面角转化为这两个平面的法向量垂直,利用两法向量数量积为零,得参数p 的方程.即把与两平面垂直有关的存在性问题转化为方程有无解的问题. 2.与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题 的强有力的方法. 【精选名校模拟】 1. 在四棱锥E ABCD中,底面ABCD是正方形,AC与BD交于点O,EC 底面ABCD ,F 为BE 的中点.(Ⅰ)求证:DE ∥平面ACF ; (Ⅱ)求证:BD AE ;

立体几何中存在性问题教案.docx

教学背景分析 立体几何中常出现点的存在性和位置待定的问题,以“是否存在”、“是否有”、“在何位置”教学 等形式设问,以示结论有待于确定.文科主要涉及到平行与垂直的位置关系的考查,其中渗透反证 内容 法与分析法的解题思路,也是高考中的常见题型。2012 年北京市高考文科就考查了有关线面垂直的分析 存在性问题,2016 年北京市高考文科就考查了有关线面平行的存在性问题。 1、进一步熟悉空间直线与直线、直线与平面和平面与平面平行的位置关系;理解并掌握线面平行和 教学 面面平行的判定定理及性质定理,会运用定理解决与平行有关的存在性问题; 目标 2、通过对例题的分析,以及对问题的探究,会把空间问题转化为平面问题,尝试用不同的方法找到 需要确定的点、线、面,初步形成解决存在性问题的思路及方法; 3、感受“线线问题、线面问题、面面问题”之间的转化,逐步体会逻辑推理的严谨性。 学生情况 学生在前面立体几何的复习过程中,基本掌握了线线、线面、面面平行的判定与性质,碰到证明问题有一定的思路,但碰到存在性问题多以猜想特殊点的方法去尝试解决,并没从深层次上思考为什么去找这个位置。另外前面的复习过程中由于对反证法并没有过多的强调,所以在碰到结论是不存在的情况时,还不会叙述,不会写解题格式。 教学方法教学重点教学难点教学引导启发式 线线平行、线面平行、面面平行的相互转化 探索立体几何中(与平行有关的)存在性问题的解题思路,思考存在性问题的本质多媒体、几何画板课件 辅助手段

课题:立体几何中与平行有关的存在性问题 板书例题分析 设计问题 3:方法总结:问题 6: 教学步骤 教学过程 教师活动学生活动设计目的 一、热身训练 二、例题精讲判断下列命题是否正确,若不正确,请修改或 添加条件使结论成立. ①若 a / /b,b,则 a / /; ②若 a / / ,b,则 a / /b ; ③若 m / / , n / / , m, n,则 / /; ④若/ / , a,则 a / /; ⑤若/ / , m, n,则 m / / n . 例题:如图,在四棱锥P ABCD 中,底面 ABCD 是梯形,AB∥ CD ,AB 1 CD . 2 问题 1:请指出图中的线面平行的位置关系并选 择一组证明; 问题 2:AD∥平面PBC吗为什么 问题 3:过点A能做平面PBC 的平行线吗如果 能,请在图中作出一条或两条直线并证明. 回忆、思考、小组讨论 说明或操作演示为什么不正 确,如何改正 总结证明线线、线面、面面平 行的证明方法以及相互关系 P D C A B 梳理平行的相关知 识,为本节课的复 习内容作铺垫,加 强知识之间的联系 检验学生对定理的 理解程度 为例题及问题的证 明明确证明的思路 培养学生学习的自 主性 训练学生如何说明 结论不成立

立体几何典型问题的向量解法

立体几何中几类典型问题的向量解法 空间向量的引入为求立体几何的空间角和距离问题、证线面平行与垂直以及解决立体几 何的探索性试题提供了简便、快速的解法。它的实用性是其它方法无法比拟的, 因此应加强 运用向量方法解决几何问题的意识, 提高使用向量的熟练程度和自觉性, 注意培养向量的代 数运算推理能力,掌握向量的基本知识和技能,充分利用向量知识解决图形中的角和距离、 平行与垂 直问题。 「、利用向量知识求点到点,点到线,点到面,线到线,线到面,面到面的距离 (1) 求点到平面的距离除了根据定义和等积变换外还可运用平面的法向量求得,方法是: (3)求点P 到直线AB 的距离,可在 AB 上取一点Q ,令AQ 的最小值求得参数 ■,以确定Q 的位置,贝U PQ 为点P 到直线AB 的距离。还可以在AB 上 任取一点Q 先求cos ::: PQ, AB ?,再转化为sin ::: PQ, AB ?,则 点P 到直线AB 的距离。 (4)求两条异面直线li,l2之间距离,可设与公垂线段 例 1:设 A(2,3,1), B(4,1,2), C(6,3,7), D(-5,-4,8),求点 D 到平面 ABC 的距离 例2:如图,正方形 ABCD 、ABEF 的边长都是1,而且平面 ABCD 、ABEF 互相垂直。 点M 在AC 上移动,点 N 在BF 上移动,若CM 二BN 二a (0 ::: a 2)。 求出平面的一个法向量的坐标,再求出已知点 P 与平面内任一点 M 构成的向量 M P 的坐 标, 那么P 到平面的距离d = MP ?'cosen,MP > (2)求两点P,Q 之间距离,可转化求向量 PQ 的模。 sin :: PQ, AB 为 AB 平行的向量n , C,D 分别是ht 上 的任意两点,贝y h,l2之间距离 AB =

以立体几何中探索性问题为背景的解答题(解析版)知识讲解

【名师综述】利用空间向量解决探索性问题 立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如. 1.以“平行、垂直、距离和角”为背景的存在判断型问题是近年来高考数学中创新型命题的一个显著特点,它以较高的新颖性、开放性、探索性和创造性深受命题者的青睐.此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由.这类问题常用“肯定顺推”的方法. 求解此类问题的难点在于:涉及的点具有运动性和不确定性.所以用传统的方法解决起来难度较大,若用空间向量方法来处理,通过待定系数法求解其存在性问题,则思路简单、解法固定、操作方便.解决与平行、垂直有关的存在性问题的基本策略是:通常假定题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理,若能导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;若导出与条件或实际情况相矛盾的结果,则说明假设不成立,即不存在.如本题把直二面角转化为这两个平面的法向量垂直,利用两法向量数量积为零,得参数p 的方程.即把与两平面垂直有关的存在性问题转化为方程有无解的问题. 2.与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法. 【精选名校模拟】 1. 在四棱锥ABCD E -中,底面ABCD 是正方形,AC 与BD 交于点O ,⊥EC 底面ABCD ,F 为BE 的中点. (Ⅰ)求证:DE ∥平面ACF ; (Ⅱ)求证:AE BD ⊥;

用向量方法解立体几何题(老师用)

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线 l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ--的平面角α=arccos |||| a b a b

法二、设12,,n n 是二面角l αβ --的两个半平面的法向量, 其方向一个指向内侧,另一个指向外侧,则二面角l α β --的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设A O α ⊥于O,利用A O α ⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||A O . (2)求异面直线的距离 法一、找平面β使b β?且a β ,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别 为异面直线a 、b 的方向向量,求n (n a ⊥ ,n b ⊥ ),则 异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ== (此方法移植 于点面距离的求法).

高考数学立体几何中探索性问题

立体几何中探索性问题 立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法. 【例1】(2018?全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=?,1AA BC ⊥, 124AA AC AB ===,且11BC AC ⊥. (1)求证:平面1ABC ⊥平面11A ACC ; (2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使得//DE 平面1ABC .若存在,求二面角1E AC B --的余弦值. 【解答】证明:(1)在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,1AA AB ∴⊥, 又1AA BC ⊥,AB BC B =,1AA ∴⊥平面ABC ,1A A AC ∴⊥. 又1A A AC =,11AC AC ∴⊥.又11 BC AC ⊥,111BC AC C =,1 AC ∴⊥平面1ABC , 又1A C ?平面11A ACC ,∴平面1ABC ⊥平面11A ACC . (2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,如图,取1A A 的中点F ,连接EF ,FD , //EF AB ,1//DF AC ,又EF DF F =,1AB AC A =, ∴平面//EFD 平面1ABC ,则有//DE 平面1ABC . 设点E 到平面1ABC 的距离为d , AB AC ⊥,且1AA AB ⊥,AB ∴⊥平面11A ACC ,1AB AC ∴⊥, ∴1 1 22 BAC S =?= 1A A AC ⊥,AB AC ⊥,AC ∴⊥平面11A ABB , 11//AC AC ,11AC ∴⊥平面11ABB , ∴111 1118 2243323 C ABE ABE V S AC -?=??=????=, 由118 3 E ABC C ABE V V --== ,解得1 88 3 33ABC d S =? == 以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,

立体几何存在性问题解析

A B C D , AB DC , AB AD ⊥, 1AD =, AB , E 是PA 的中点, F 在线段AB 上, 且满足0CF BD ?=. 平面PBC PC B --的余弦值;)在线段PA 上是否存在点与平面PFC 所成角的余弦. 2.如图,已知长方形ABCD 中,, M 为DC 的中点。将ADM ? 沿AM 折起,使得平面ADM ⊥平面ABCM 。 (1)求证: ; (2是线段上的一动点,问点E 在何位置时,二面角的余弦值为55 。 3.如图,在四棱锥P —ABCD 中,底面ABCD 为菱形且∠DAB =60°,O 为AD 中点. (Ⅰ)若P A =PD ,求证:平面POB ⊥平面P AD ; (Ⅱ)若平面P AD ⊥平面ABCD ,且P A =PD =AD =2,试问在线段PC 上是否存在点M , 使二面角M —BO —C 的大小为60°,如存在,求 的值,如不存在,说明理由. 4.如图,在四棱锥 中,底面ABCD 是直角梯形,侧棱 底面ABCD ,AB 垂直于AD 和BC ,M 为棱SB 上的点, , . (1)若M 为棱SB 的中点,求证: 平面SCD ; (2)当 时,求平面AMC 与平面SAB 所成的锐二面角的余弦值; (3)在第(2)问条件下,设点N 是线段CD 上的动点,MN 与平面SAB 所成的角为θ,求当 取最大值时点N 的位置.

5.如图,在直三棱柱中,平面平面,且. (1)求证:; (2)若直线与平面所成的角为,求锐二面角的大小. 6.如图,在平行四边形中,,,,四边形为矩形,平面平面,,点在线段上运动,且. (1)当时,求异面直线与所成角的大小; (2)设平面与平面所成二面角的大小为(),求的取值范围. 7.如图,在四棱锥中,平面,四边形是菱形,,,是上任意一点。 (1)求证:; (2)当面积的最小值是9时,在线段上是否存在点,使与平面所成角的正切值为2?若存在?求出的值,若不存在,请说明理由

高中数学向量法解立体几何总结

向量法解立体几何 1、直线的方向向量和平面的法向量 ⑴.直线的方向向量:若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量. ⑵.平面的法向量:若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作 n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量. ⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系. ②设平面α的法向量为(,,)n x y z =. ③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==. ④根据法向量定义建立方程组0 n a n b ??=???=??. ⑤解方程组,取其中一组解,即得平面α的法向量. 2、用向量方法判定空间中的平行关系 ⑴线线平行。设直线12,l l 的方向向量分别是a b 、 ,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈.⑵线面平行。设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥ α,只需证明a u ⊥,即0a u ?=. ⑶面面平行。若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=. 3、用向量方法判定空间的垂直关系⑴线线垂直。设直线12,l l 的方向向量分别是a b 、 ,则要证明12l l ⊥,只需证明a b ⊥,即0a b ?=.⑵线面垂直 ①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l α⊥,只需证明a ∥u ,即a u λ=. ②(法二)设直线l 的方向向量是a ,平面α内的两个相交向量分别为m n 、 ,若

第九讲-立体几何中探索性问题的向量解法

立体几何中探索性问题的向量解法 高考中立体几何试题不断出现了一些具有探索性、开放性的试题。对于这类问题一般可用综合推理的方法、分析法、特殊化法和向量法来解决。立体几何引入空间向量后,可以借助向量工具,使几何问题代数化,降低思维的难度.尤其是在解决一些立体几何中的探索性问题时,更可以发挥这一优势. 本节课主要研究:立体几何中的存在判断型和位置探究型问题等探索性问题。 一、存在判断型 1、已知空间三点A (-2,0,2),B (-2,1,2),C (-3,0,3).设a =AB ,b =AC ,是否存在存在实数k ,使向量k a +b 与k a -2b 互相垂直,若存在,求k 的值;若不存在,说明理由。 解∵k a +b =k (0,1,0)+(-1,0,1)=(-1,k ,1),k a -2b =(2,k ,-2), 且(k a +b )⊥(k a -2b ), ∴(-1,k ,1)·(2,k ,-2)=k 2 -4=0. 则k=-2或k=2. 点拨:第(2)问在解答时也可以按运算律做. (k a +b )(k a -2b )=k 2a 2-k a ·b -2b 2= k 2 -4=0,解得k=-2或k=2. 2、 如图,已知矩形ABCD ,PA ⊥平面ABCD ,M 、N 分别是AB 、PC 的中点,∠PDA 为θ,能否确定θ,使直线MN 是直线AB 与PC 的公垂线?若能确定,求出θ的值;若不能确定,说明理由. 解:以点A 为原点建立空间直角坐标系A -xyz.设|AD|=2a ,|AB|=2b , ∠PDA=θ.则A(0,0,0)、B(0,2b ,0)、C(2a ,2b ,0)、D(2a ,0,0)、P(0, 0,2atan θ)、M(0,b ,0)、N(a ,b ,atan θ). ∴=(0,2b ,0),=(2a ,2b ,-2atan θ),=(a ,0,atan θ). ∵AB ·MN =(0,2b ,0)·(a ,0,atan θ)=0, ∴⊥.即AB ⊥MN. 若MN ⊥PC , 则·=(a ,0,atan θ)·(2a ,2b ,-2atan θ) =2a 2-2a 2tan 2θ=0. ∴tan 2θ=1,而θ是锐角. ∴tan θ=1,θ=45°. 即当θ=45°时,直线MN 是直线AB 与PC 的公垂线. 【方法归纳】对于存在判断型问题,解题的策略一般为先假设存在,然后转化为“封闭型”问题求解判断,若不出现矛盾,则肯定存在;若出现矛盾,则否定存在。这是一种最常用也是最基本的方法.

立体几何中的存在性问题

立体几何中的存在性问题 1、如图,在直四棱柱ABCD -A 1B 1C 1D 1中,已知DC =DD 1=2AD =2AB ,AD ⊥DC ,AB ∥DC . (1)求证:D 1C ⊥AC 1; (2)问在棱CD 上是否存在点E ,使D 1E ∥平面A 1BD .若存在,确定点E 位置;若不存在,说明理由. 2.如图所示,平面ABDE ⊥平面ABC ,△ABC 是等腰直角三角形,AC =BC =4,四边形ABDE 是直角梯 形,BD ∥AE ,BD ⊥BA ,BD =1 2AE =2,O ,M 分别为CE ,AB 的中点. (1)求证:OD ∥平面ABC ; (2)求直线CD 和平面ODM 所成角的正弦值; (3)能否在EM 上找一点N ,使得ON ⊥平面ABDE ?若能,请指出点N 的位置,并加以证明;若不能,请说明理由. 3、在如图所示的几何体中,底面ABCD 为菱形,∠BAD =60°,AA 1∥DD 1∥CC 1∥BE ,且AA 1=AB ,D 1E ⊥平面D 1AC ,AA 1⊥底面ABCD . (1)求二面角D 1-AC -E 的大小; (2)在D 1E 上是否存在点P ,使得A 1P ∥平面EAC ,若存在,求D 1P PE 的值,若不存在,说明理由. 立体几何中的存在性问题 1、如图,在直四棱柱ABCD -A 1B 1C 1D 1中,已知DC =DD 1=2AD =2AB ,AD ⊥DC ,AB ∥DC . (1)求证:D 1C ⊥AC 1; (2)问在棱CD 上是否存在点E ,使D 1E ∥平面A 1BD .若存在,确定点E 位置;若不存在,说明理由. 2.如图所示,平面ABDE ⊥平面ABC ,△ABC 是等腰直角三角形,AC =BC =4,四边形ABDE 是直角梯形,BD ∥AE ,BD ⊥BA ,BD =1 2AE =2,O ,M 分别为CE ,AB 的中点. (1)求证:OD ∥平面ABC ; (2)求直线CD 和平面ODM 所成角的正弦值; (3)能否在EM 上找一点N ,使得ON ⊥平面ABDE ?若能,请指出点N 的位置,并加以证明;若不能,请说明理由. 3、在如图所示的几何体中,底面ABCD 为菱形,∠BAD =60°,AA 1∥DD 1∥CC 1∥BE ,且AA 1=AB ,D 1E ⊥平面D 1AC ,AA 1⊥底面ABCD . (1)求二面角D 1-AC -E 的大小; (2)在D 1E 上是否存在点P ,使得A 1P ∥平面EAC ,若存在,求D 1P PE 的值,若不存在,说明理由.

利用法向量解立体几何题

利用法向量解立体几何题 一、运用法向量求空间角 向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量 ''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ= '''' AA BB AA BB ??, 不需 要用法向量。 1、运用法向量求直线和平面所成角 设平面α的法向量为n =(x, y, 1),则直线AB 和平面α所成的角θ的正弦值为 sin θ= cos( 2 π -θ) = |cos| = AB AB n n ?? 2、运用法向量求二面角 设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角。这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角。 二、运用法向量求空间距离 1、求两条异面直线间的距离 设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点A 、B ,则异面直线a 、b 的距离 d =AB ·cos ∠BAA ' = || || AB n n ? 略证:如图,EF 为a 、b 的公垂线段,a '为过F 与a 平行的直线, 在a 、b 上任取一点A 、B ,过A 作AA '// EF ,交a '于A ' , A

则?ˉ //AA n ,所以∠BAA ' =<,BA n >(或其补角) ∴异面直线a 、b 的距离d =AB ·cos ∠BAA ' = || || AB n n ? * 其中,n 的坐标可利用a 、b 上的任一向量,a b (或图中的,AE BF ),及n 的定义得 0n a n a n b n b ??⊥?=?????⊥?=??? ? ① 解方程组可得n 。 2、求点到面的距离 求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =,在α内任取一点B ,则A 点到平面α的距离为 d = || || AB n n ?,n 的坐标由n 与平面α内的两个不共线向量的垂直关系,得到方程组(类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设 (1,,0)n y =,下同)。 3、求直线到与直线平行的平面的距离 求直线a 到平面α的距离,设平面α的法向量法为(,,1)n x y =,在直线a 上任取一点A , 在平面α内任取一点B ,则直线a 到平面α的距离 d = || || AB n n ? 4、求两平行平面的距离 设两个平行设平面α、β的公共法向量法为(,,1)n x y =,在平面α、β内各任取一点A 、 B ,则平面α到平面β的距离 d = || || AB n n ? 三、证明线面、面面的平行、垂直关系 设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n ,则 1a//a n α?⊥ 1a a//n α⊥? 12////n n αβ? 12n n αβ⊥?⊥

高考数学专题04 立体几何的探索性问题(第三篇)(原卷版)

备战2020年高考数学大题精做之解答题题型全覆盖高端精品 第三篇 立体几何 专题04 立体几何的探索性问题 【典例1】【2020届江苏巅峰冲刺卷】 如图,在四棱锥P ABCD 中,P A ⊥平面ABCD ,∠ABC =∠BAD =90°,AD =AP =4,AB =BC =2,M 为PC 的中点. (1)求异面直线AP ,BM 所成角的余弦值; (2)点N 在线段AD 上,且AN =λ,若直线MN 与平面PBC 所成角的正弦值为4 5 ,求λ的值. 【典例2】【2020届江西省赣州市高三上学期期末考试】 如图,在平行四边形ABCD 中,2,4,60AB AD BAD ?==∠=,平面EBD ⊥平面ABD ,且 ,EB CB ED CD ==.

(1)在线段EA 上是否存在一点F ,使//EC 平面FBD ,证明你的结论; (2)求二面角A EC D --的余弦值. 【典例3】【北京市昌平区2020届高三期末】 如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,1 2 BC CD AD == . (Ⅰ)求证:CD ⊥PD ; (Ⅰ)求证:BD ⊥平面P AB ; (Ⅰ)在棱PD 上是否存在点M ,使CM ∥平面P AB ,若存在,确定点M 的位置,若不存在,请说明理由. 【典例4】【2019届陕西省西安中学高三下学期第十二次重点考试】 在三棱锥P—ABC 中,PB ⊥平面ABC ,AB ⊥BC ,AB=PB =2,BC E 、G 分别为PC 、P A 的中点.

(1)求证:平面BCG ⊥平面P AC ; (2)假设在线段AC 上存在一点N ,使PN ⊥BE ,求 AN NC 的值; (3)在(2)的条件下,求直线BE 与平面PBN 所成角的正弦值 【典例5】【浙江省丽水市2020届模拟】 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,90ABC ∠=?,1AB BC ==,2PA AD ==. (1)求证:CD ⊥平面PAC ; (2)在棱PC 上是否存在点H ,使得AH ⊥平面PCD ?若存在,确定点H 的位置;若不存在,说明理由. 【典例6】【江苏省苏州市实验中学2020届高三月考】 直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=?, E 、 F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证: (1)//EF 平面11AAC C ; (2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由. 【典例7】【山东省临沂市2019年普通高考模拟】 如图,底面ABCD 是边长为3的正方形,平面ADEF ⊥平面ABCD ,AF ∥DE ,AD ⊥DE ,AF =DE =

2020-2021学年高考数学二轮复习:第2部分_八大难点突破_难点2_立体几何中的探索性与存在性问题_有答案

难点二 立体几何中的探索性与存在性问题 (对应学生用书第65页) 数学科考试大纲指出,通过考试,让学生提高多种能力,其中空间想象能力是对空间形式的观察、分析、抽象的能力.要在立体几何学习中形成.立体几何中的探索性与存在性问题实质是对线面平行与垂直性质定理的考查. 探究性与存在性问题常常是条件不完备的情况下探讨某些结论能否成立,立体几何中的探究性与存在性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力. 1.对命题条件的探索 探索条件,即探索能使结论成立的条件是什么.对命题条件的探索常采用以下三种方法: (1)先猜后证,即先观察与尝试给出条件再给出证明; (2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性; (3)把几何问题转化为代数问题,探索出命题成立的条件. 【例1】 如图1,在四棱锥P -ABCD 中,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12 AD ,E 为棱AD 的中点,异面直线PA 与CD 所成的角为90°. 在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由. 【导学号:56394092】

图1 [解] 在梯形ABCD中,AB与CD不平行.如图,延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点. 理由如下: 由已知,知BC∥ED,且BC=ED, 所以四边形BCDE是平行四边形, 从而CM∥EB. 又EB?平面PBE,CM?平面PBE, 所以CM∥平面PBE. (说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点) [思路分析] 证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解

利用空间向量解立体几何(完整版)

向量法解立体几何 引言 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系

线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点()111,,P x y z 与()222,,Q x y z 的 距离为(PQ x =2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ 在法向量 (),n A B =上的射影PQ n n ?= 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ , 计算平面α的法向量n , 计算PQ 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤:

立体几何(向量法)—找点难(定比分点公式)

立体几何(向量法)—找点难(定比分点公式) 例1(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱 ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB (Ⅰ) 证明B 1C 1⊥CE ; (Ⅱ) 求二面角B 1-CE -C 1的正弦值. (Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为6 , 求线段AM 的长. 【答案】解:方法一:如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0). (1)证明:易得B 1C 1→=(1,0,-1),CE →=(-1,1,-1),于是B 1C 1→·CE → =0,所以B 1C 1⊥CE . (2)B 1C → =(1,-2,-1), 设平面B 1CE 的法向量=(x ,y ,z ),

则?????·B 1C →=0,m · CE →=0,即?????x -2y -z =0,-x +y -z =0,消去x ,得y +2z =0,不妨令z =1,可得一个法向量 为=(-3,-2,1). 由(1),B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故B 1C 1→ =(1,0,-1)为平面CEC 1 的一个法向量. 于是cos 〈,B 1C 1→〉=m ·B 1C 1→ |m |·|B 1C 1→|=-414×2=-2 77,从而sin 〈,B 1C 1→ 〉=217. 所以二面角B 1-CE -C 1的正弦值为217. (3)AE →=(0,1,0),EC 1→=(1,1,1).设EM →=λEC 1→=(λ,λ,λ),0≤λ≤1,有AM →=AE →+EM →=(λ,λ+1,λ).可取AB → =(0,0,2)为平面ADD 1A 1的一个法向量. 设θ为直线AM 与平面ADD 1A 1所成的角,则 sin θ=|cos 〈AM →,AB → 〉|=|AM →·AB →||AM →|·|AB →|= 2λ λ2+(λ+1)2+λ2×2=λ3λ2+2λ+1. 于是 λ3λ2+2λ+1=26 ,解得λ=1 3(负值舍去),所以AM = 2. 方法二:(1)证明:因为侧棱CC 1⊥平面A 1B 1C 1D 1, B 1 C 1?平面A 1B 1C 1 D 1,所以CC 1⊥B 1C 1.经计算可得B 1 E =5,B 1C 1=2,EC 1=3,从而 B 1E 2=B 1 C 21+EC 21,所以在△B 1EC 1中,B 1C 1⊥C 1E .又CC 1,C 1E ? 平面CC 1E ,CC 1∩C 1E =C 1,所以B 1C 1⊥平面CC 1E ,又CE ?平面CC 1E ,故B 1C 1⊥CE . (2)过B 1 作B 1G ⊥CE 于点G ,联结C 1G .由(1),B 1C 1⊥CE .故CE ⊥平面B 1C 1G ,得CE ⊥C 1G ,

立体几何存在性问题

立体几何存在性问题
未命名
一、解答题 1.在多面体
中,底面
是梯形,四边形
形,

,面
面,
.
.
(1)求证:平面
平面 ;
是正方
(2)设 为线段 上一点,
,试问在线段 上是否存在一点 ,使得
平面 ,若存在,试指出点 的位置;若不存在,说明理由?
(3)在(2)的条件下,求点 到平面 的距离.
2.如图,四棱锥
中,底面
是直角梯形,


,侧面 是等腰直角三角形,
,平面
平面
,点 分别是棱
上的点,平面 平面
(Ⅰ)确定点 的位置,并说明理由;
(Ⅱ)求三棱锥
的体积.
3.如图,在长方体
中,
,点 在棱 上,


点 为棱 的中点,过 的平面 与棱 为菱形.
交于 ,与棱 交于 ,且四边形
(1)证明:平面
平面

(2)确定点 的具体位置(不需说明理由),并求四棱锥
的体积.
4.如图 2,已知在四棱锥
中,平面
平面 ,底面 为矩形.
(1)求证:平面
平面 ;
(2)若 5.如图,三棱锥 点.
的三条侧棱两两垂直,
,试求点 到平面 的距离. , , 分别是棱 , 的中
(1)证明:平面
平面 ;
(2)若四面体 的体积为 ,求线段 的长.
6.如图,在四棱锥
中,



.

用向量方法解立体几何的的题目

用向量方法求空间角和距离 前言: 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin | ||||| l n l n (3)求二面角 a l ⊥,在β内 b l ⊥,其方向如图,则二 方法一:在α内

面角l αβ--的平面角α=arccos |||| a b a b 方法二:设12,,n n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角 α=12 12arccos |||| n n n n 2.求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的 距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离 方法一:设n 是平面α的法向量,在α内取一点B, 则 A 到 α的距离|| |||cos ||| AB n d AB n θ== 方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 方法一:找平面β使b β?且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. a 、 b 分别为异面直线a 、b 的方向 法二:在a 上取一点A, 在b 上取一点B, 设 向量,求n (n a ⊥,n b ⊥),则 异面直线a 、b 的距离

立体几何中的存在性问题

立体几何中的存在性问题

————————————————————————————————作者:————————————————————————————————日期: ?

高中数学 立体几何 存在性问题专题 1.(天津理17) 如图,在三棱柱中, 是正方形的中心, ,平面,且 (Ⅰ)求异面直线AC 与A1B1所成角的余弦值; (Ⅱ)求二面角的正弦值; (Ⅲ)设为棱的中点,点在平面内,且平面,求线段的 长. 本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.满分13分. 方法一:如图所示,建立空间直角坐标系,点B为坐标原点. 依题意得 (I)解:易得, 于是 所以异面直线AC 与A1B1所成角的余弦值为 (II)解:易知 设平面AA1C1的法向量, 则即 不妨令可得, 同样地,设平面A1B1C1的法向量, 111ABC A B C -H 11AA B B 122AA =1C H ⊥11AA B B 1 5.C H =111A AC B --N 11B C M 11AA B B MN ⊥11A B C BM (22,0,0),(0,0,0),(2,2,5)A B C -111(22,22,0),(0,22,0),(2,2,5)A B C 11(2,2,5),(22,0,0)AC A B =--=-11111142cos ,,3||||322AC A B AC A B AC A B ?= ==??2.3111(0,22,0),(2,2,5).AA AC ==--(,,)m x y z =11100m A C m AA ??=???=??2250,220.x y z y ?--+=??=??5,x =(5,0,2)m =(,,)n x y z =

向量法解立体几何

中山二中2011届空间向量解立体几何 一、空间直角坐标系的建立及点的坐标表示 (1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底 叫单位正交基底,用{,,}i j k 表示; (2)在空间选定一点O 和一个单位正交基底 {,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正 方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -, 点O 叫原点,向量,,i j k 都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为 xOy 平面,yOz 平面,zOx 平面。 (3)作空间直角坐标系O xyz -时,一般使135xOy ∠=(或45),90yOz ∠=; (4)在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,称这个坐标系为右手直角坐标系规 定立几中建立的坐标系为右手直角坐标系 (5)空间直角坐标系中的坐标:如图给定空间直角坐 标系和向量 a ,设,,i j k 123(,,)a a a ,使123a a i a j a k =++,有序实数组123(,,)a a a 作向量a 在空间直角坐标系O xyz -123(,,)a a a a =.在空间直角坐标系O xyz -中,对空间任 一点A ,存在唯一的有序实数组(,,)x y z ,使 OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的 坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标. 二、空间向量的直角坐标运算律 (1)若123(,,)a a a a =,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++, 112233(,,) a b a b a b a b -=---, 123(,,)()a a a a R λλλλλ=∈, 112233//,,()a b a b a b a b R λλλλ?===∈, (2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 (3)//a b b a λ?=11 223 3()b a b a R b a λλλλ=?? ?=∈??=? 三、空间向量直角坐标的数量积 1、设,是空间两个非零向量,我们把数量><,cos |||| 规定:零向量与任一向量的数量积为0。 2、模长公式 2| |a a a x =?=+3、两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z , 则2 ||(AB AB = =, 或,A B d = 4、夹角:cos |||| a b a b a b ??= ?. 注:①0(,a b a b a b ⊥??=是两个非零向量); ②2 2||a a a a =?=。 5、 空间向量数量积的性质: ①||cos ,a e a a e ?=<>.②0a b a b ⊥??=.③2||a a a =?.

相关文档
最新文档